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Abstract—The high variability of renewable energy is a major
obstacle toward its increased penetration. Energy storage can help

reduce the power imbalance due to the mismatch between the

available renewable power and the load. How much can storage
reduce this power imbalance? How much storage is needed to

achieve this reduction? This paper presents a simple analytic

model that leads to some answers to these questions. Considering
the multitimescale grid operation, we formulate the power imbal-

ance problem for each timescale as an infinite horizon stochastic

control problem and show that a greedy policy minimizes the
average magnitude of the residual power imbalance. Observing

from the wind power data that in shorter timescales the power

imbalance can be modeled as an iid zero-mean Laplace distributed
process, we obtain closed form expressions for the minimum cost

and the stationary distribution of the stored power. We show that

most of the reduction in the power imbalance can be achieved
with relatively small storage capacity. In longer timescales, the

correlation in the power imbalance cannot be ignored. As such, we

relax the iid assumption to a weakly dependent stationary process
and quantify the limit on the minimum cost for arbitrarily large

storage capacity.

Index Terms—Energy storage, renewable integration, stochastic

control.

I. INTRODUCTION

T HE rapid increase in world demand for electricity

[1, Fig. 72] coupled with the need to reduce the high

carbon emissions due to electric power generation from fossil

fuel [2, Table 3-7] is driving a dramatic increase in renewable

energy generation from wind and solar radiation. The power

generated from these sources, however, is intermittent and un-

certain, which presents significant challenges to power system

operation [3]. One such challenge is power imbalance: when

renewable generation falls short of meeting the demand, more

conventional generation from combined-cycle combustion

and gas turbines is needed, which increases power system

operation cost and offsets some of the environmental benefits

of renewable energy [4]; when renewable generation exceeds

demand, the excess power generated must be curtailed.

In addition to using conventional generation, renewable

energy variability can be mitigated architecturally via geo-

graphical generation diversity [3] and renewable resource

diversity [5], and operationally using demand-response [6] and

energy storage [7], [8]. In particular, storage can help reduce
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Fig. 1. Illustration of multitimescale electric power system operation.

both the amount of conventional generation needed when

renewable generation cannot meet the demand and curtailment

when there is excess renewable generation. How much can

storage help reduce power imbalance, and how much of it is

needed to achieve this reduction?

In this paper, we provide some answers to these questions

using a simple analytic approach. Our aim is to establish limits

on the benefits of storage rather than analyze the operation of

any particular power system with storage. Hence, we do not

explicitly consider the fixed or operating costs of storage, or any

economic benefit such as arbitrage (e.g., see [9]). Nevertheless,

our analysis applies to the case in which the utility company

owns and operates the storage.

We assume a power system operating in a multitimescale

fashion as follows; see Fig. 1.

� Each day, an hourly prediction of the net load (difference

between load and renewable generation) for the next day

is made. Base generation and bulk storage are scheduled to

meet this prediction.

� Each hour, a refined prediction of the net load in the next

hour is made. Peaking generation and storage are sched-

uled to meet the difference between the day ahead and hour

ahead prediction.

� Every few minutes, a prediction of the net load in the next

few minutes is made. Fast-ramping generation and storage

are scheduled to balance the difference between the min-

utes ahead and hour ahead prediction.

� The scheduled generation and storage are operated at real

time. The deviation of actual net load from the minutes

ahead prediction is matched by additional fast-ramping

generation and fast-response storage.

To model the multitimescale operation, we formulate the

power imbalance problem for each timescale separately as

0885-8950 © 2013 IEEE
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an infinite horizon stochastic control problem. The input for

this problem is the net renewable power imbalance (or power

imbalance in short) process, which is the difference between the

predicted net renewable generation (the negative of the net load

in Fig. 1) at the next timescale and the predicted net renewable

generation at this timescale (possibly with a constant offset).

For example, the hour ahead power imbalance process is the

difference between the minutes ahead prediction and the hour

ahead prediction; the minutes ahead power imbalance process

is the difference between the actual net renewable generation

and the minutes ahead prediction, that is, it is the minutes ahead

prediction error process. The controls are the storage charging

and discharging operations. We refer to the sum of the power

imbalance process, the negative of the storage charging power

process, and the storage discharging power process as the

residual power imbalance process. We aim to find the storage

control policy that minimizes the long-term average of the

magnitude of the residual power imbalance process.

The paper establishes the following results.

� In Section III, we show that a greedy policy minimizes

the average magnitude of the residual power imbalance

for an arbitrary net renewable power imbalance process

(Theorem 1).

� In Section IV, we observe from the NREL and BPA

wind power datasets [10], [11] that in the short timescale

(minutes), the wind power generation prediction error is

close to Laplace distributed. Assuming good prediction

and to make the analysis tractable, we model the net

renewable power imbalance process in this regime by an

independent and identically distributed (iid) zero-mean

Laplace distributed process. This allows us to obtain

closed form expressions for the minimum cost function

(Proposition 1) and the stationary distribution of the stored

power sequence (Proposition 2) for unconstrained rated

storage input and output powers. We show that most of the

reduction in power imbalance is achieved using relatively

small storage capacity and corroborate the results numer-

ically. We also show that most of the difference between

the analytic and numerical results can be attributed to the

iid assumption rather than the Laplace assumption.

� In Section V, we observe that for long timescales (hour

ahead) the iid assumption leads to poor results. To attempt

to capture the correlation in the power imbalance process,

we model it by a weakly dependent stationary process with

possibly non-zero mean. We quantify the asymptotic bene-

fits of storage for arbitrarily large storage capacity in terms

of the rated input and output powers, the round-trip effi-

ciency, and the first-order distribution of the power imbal-

ance process (Proposition 3). This generalizes and extends

the corresponding result under the iid Laplace assumption.

We show that this analytic result corroborates extremely

well with the numerical results using the NREL dataset.

In [12], we reported preliminary results assuming iid zero-mean

Laplace distributed power imbalance and considered only the

negative residual power imbalance in the cost function. This

paper generalizes and extends the results in [12] in several di-

rections. First, we include the positive residual power imbal-

ance (curtailment) in the cost function. Second, we generalize

the asymptotic result to weakly dependent stationary power im-

balance processes.We also include detailed proofs that establish

the results in [12] as special cases.

The literature on energy storage for renewable integration is

quite large (e.g., see [7] and references therein). The most re-

lated previous work to this paper are [13]–[15]. In [13], the op-

timal power flow problem with energy storage is formulated

assuming deterministic load with the objective of minimizing

the total quadratic generation cost. The resulting optimization

problem is not convex in general. However, the dual problem of

the convex relaxation is shown to have zero duality gap under

certain conditions on the admittance matrix. By comparison, we

consider a stochastic setting and formulate an infinite horizon

stochastic control problem. Also, our objective is not neces-

sarily optimal power flow, but rather quantifying the limits on

the benefit of storage for reducing power imbalance. In [14], the

grid operator is assumed to own the energy storage and wishes

to minimize the long-term average generation cost, which is

an increasing convex function of the load. The load is mod-

eled as an occupation process of an service queue.

A one-threshold policy is shown to be asymptotically optimal

for energy storage with perfect round-trip efficiency and in-

finite capacity. By comparison, we consider imperfect round-

trip storage efficiency and show that the average cost is quite

sensitive to this efficiency. In [15], an end-user is assumed to

own the energy storage and wishes to minimize the discounted

cost of purchasing power from the grid. The demand and price

processes are assumed to be homogeneous, possibly correlated

Markov processes. The optimal control policy is shown to be a

stationary two-threshold policy. In this paper, we wish to min-

imize the average magnitude of the residual power imbalance

process, which includes the positive residual power imbalance.

This is different from the model in [15] in which excess power

can be sold. We note that none of the previous papers obtain

limits or closed form expressions for the cost functions or stored

power distribution.

II. PROBLEM FORMULATION

We assume a single-bus electric power system with storage

operating in a multitimescale fashion as illustrated in the in-

troduction. To simplify the analysis, we assume that time is

slotted into -hour intervals, with constant power over each in-

terval, i.e., we ignore generation and load variations within each

time interval. In each timescale, we denote the power imbal-

ance at time by MW-h. The power imbal-

ance sequence is in general random with possibly

some known statistics. We characterize energy storage by the

following parameters.

� The energy storage capacity MW-h is the max-

imum amount of energy that can be stored, where

is referred to as the power storage capacity.

� The stored power at the beginning of time slot

is denoted by .

� The rated storage input power MW is the maximum

input (charging) power. If the power imbalance ,

then the charging power at time denoted by

satisfies . If the power im-

balance , then .

� The rated storage output power MW is the max-

imum output (discharging) power. If the power imbalance
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Fig. 2. Illustration of the single-bus power system. The input is the net re-

newable power imbalance , and the output is the residual power imbalance

.

, then the discharging power at time

denoted by satisfies . If

the power imbalance , then .

� The charging efficiency is the ratio of the charged power

to the input power. The discharging efficiency is the

ratio of the output power to the discharged power. The

round-trip efficiency is .

� We assume that the storage efficiency, which is the fraction

of stored power retained over a time slot, is equal to one.

Using the above definitions, we can express the dynamics of the

stored power as

for

with the constraints

, and , where

, and is given.

The residual power imbalance at each time is the power

imbalance after the charging/discharging operation of energy

storage and is equal to . Fig. 2 illustrates the power

flow in the single-bus system for a given timescale.

We wish to minimize the expected average magnitude of the

residual power imbalance by controlling the charging power

and discharging power of the energy storage in each time slot

, where the pair is a function of the history

. A control policy

is a sequence of these pairs, i.e., .

A policy is said to be stationary if for all and .

We are now ready to formulate the infinite horizon stochastic

control problem investigated in this paper given as follows:

where the expectation is over the power imbalance

. We denote the optimal policies by .

III. OPTIMAL CONTROL POLICY

We show that, under the setup in the previous section, a

simple stationary greedy policy is optimal.

TABLE I

OPTIMAL POLICY IN THEOREM 1

Fig. 3. Illustration of the optimal policy in Theorem 1. The value in each

region corresponds to the stored power at the end of slot when the stored power

and prediction error at the beginning of this slot are and , respectively.

Theorem 1: The optimal policy is given in Table I and

illustrated in Fig. 3. It is stationary.

When the power imbalance is positive, the optimal policy

charges the energy storage by as much excess power as possible.

When the power imbalance is negative, there is excess load, and

the optimal policy discharges the energy storage to satisfy as

much excess load as possible.

To prove Theorem 1, consider the finite horizon counterpart.

Define the cost-to-go function

Let be the policy achieving . For a fixed pair

, we will use the shorter notation

in place of . In the following lemma,

we establish key properties of the cost-to-go function. The

remainder of the proof of Theorem 1 is given in Appendix A.

Lemma 1: The minimum cost-to-go function must satisfy the

following conditions.

1) for

. If power imbalance , then the cost of not

charging is , but the reduction in future cost is at most

.

2) for

. If power imbalance , then the cost of not

discharging is , but the reduction in future cost is at

most .
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Proof of Lemma 1: To prove part 1, given the op-

timal policy , we find another policy such that

. Let and be

the history sequences under the policy and , respectively.

For fixed , consider

and . Let

(1)

The policy is illustrated in Fig. 4(a). By induction, the stored

power under policy is always higher than that under policy

. Consider the cost difference

The difference between the cost-to-go functions of policies

and can be upper bounded as

Thus, .

To prove part 2 of the lemma, given the optimal policy , we

find a policy such that . For

fixed , consider and

. Let

(2)

The policy is illustrated in Fig. 4(b). By induction, the stored

power under policy is always lower than the stored power

under policy . Consider the cost difference

The difference between the cost-to-go functions of policies

and can be upper bounded as

Thus, .

To illustrate the optimal policy , we use the simulated

WesternWind Dataset fromNREL [10] for the 50 highest power

density offshore sites in California. The wind power data are

sampled every 10 min. We choose the mean of the aggregate

wind power from these 50 sites as the base power, i.e., it is one

per unit. We assume that the load is accurately predicted, and

thus thewind power is the only source of power imbalance. Since

the dataset does not include forecast data, we use a simple linear

Fig. 4. Illustration for the proof of Lemma 1. (a) The policy follows the

optimal policy if the stored power is below capacity and has additional cost

(positive residual power imbalance) when the storage is full. (b) The policy

follows the optimal policy if the storage is not empty and has additional cost

(negative residual power imbalance) when the storage is empty.

Fig. 5. Illustration of the hour ahead power imbalance and the residual power

imbalance for two days assuming unlimited , and

%, The hour ahead prediction uses the persistent predictor,

that is, the prediction is the average wind power of the past hour. The 10-min

ahead prediction uses the linear predictor based on the 6 samples from the past

hour and optimized for the one-year data in 2004. The average magnitude of

power imbalance is 0.094 per unit, and the average magnitude of residual power

imbalance is 0.022 per unit. (a) Power imbalance (NREL). (b) Residual power

imbalance (NREL).

predictor. Fig. 5 illustrates the hour ahead power imbalance

and the residual power imbalance for two days.
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Fig. 6. Empirical distributions of the 10- and 5-min-ahead power imbalance for

the NREL and BPA wind power datasets, respectively, and the best fit Laplace

distributions. The standard deviations for the NREL and BPA datasets are 0.037

and 0.027 per unit, respectively.

IV. IID LAPLACE POWER IMBALANCE PROCESS

In the previous section, we formulated the power imbalance

problem as an infinite horizon stochastic control problem and

found the optimal policy minimizing the average residual

power imbalance for arbitrary power imbalance process at

each timescale. In exploring the NREL and BPA wind datasets

[11], [16], we find that the first-order distributions of their

10- and 5-min ahead prediction errors, respectively, can be

reasonably approximated by Laplace probability density

function (pdf) (see Fig. 6). Note, however,

that the Laplace assumption fits the NREL dataset better than

the BPA dataset for which the empirical pdf is more peaky than

the Laplace distribution.

To simplify the analysis and as a possibly good model for

error when the prediction is performed well, we further assume

that the prediction error sequence is iid. This allows us to ob-

tain a closed form expression for the minimum cost function

when the rated input and output powers are unconstrained, i.e.,

.

Proposition 1: The minimum average magnitude of the

residual power imbalance under the iid Laplace assumption is

where .

We can also find a closed form expression for the stationary

distribution of the stored power sequence.

Proposition 2: The cumulative distribution function (cdf) of

the stationary distribution of the stored power sequence under

the optimal policy in Theorem 1 and the iid Laplace assumption

is

for for , and for

.

The proofs for these two propositions are given in

Appendix B.

Fig. 7. Minimum cost function versus power storage capacity at the minutes

ahead timescale for round-trip efficiency %.

Note that with no storage, the minimum cost is , and with

unlimited power storage capacity, the minimum cost is

. By Proposition 1, we have

For a typical round-trip efficiency % %, 80% of

the possible reduction in cost, i.e.,

is achieved with power storage capacity less than five standard

deviations of the power imbalance process, where the standard

deviation of a Laplace random variable is .

Fig. 7 plots the minimum costs using the analytic result of

Proposition 1 and the NREL and BPA wind power datasets.

With storage capacity per unit, the energy storage re-

duces the average magnitude of the power imbalance by 84.8%

and 85.2% for the NREL and BPA datasets, respectively. Eighty

percent of this reduction can be achieved by a storage capacity

of 0.13 and 0.10 per unit, respectively, which are

only four empirical standard deviations of the NREL and BPA

datasets. Note that the minimum cost using the analytic result

differs by at most 13.8% and 21.6% from those using the NREL

and BPA datasets, respectively. To determine the contribution in

this difference due to the iid assumption, we generate iid power

imbalance sequences according to the empirical first-order dis-

tributions of the NREL and BPA datasets. In Fig. 7, we compare

the minimum costs using these iid sequences to those using the

datasets. The minimum costs for the iid sequences differ by at

most 10.8% and 12.5% from those using the NREL and BPA

datasets, respectively, hence the iid assumption is a larger con-

tributor to the difference in the cost between the analytic and

numerical results than is the Laplace assumption. Note that the

Laplace assumption contributes more to the difference for the

BPA dataset case than to that for the NREL dataset case because

its empirical pdf is not as close to Laplace as that for the NREL

dataset.
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Fig. 8. Minimum cost function versus power storage capacity at the hour ahead

timescale for round-trip efficiency %. The standard devia-

tion of the hour ahead power imbalance is 0.149 per unit.

V. STATIONARY POWER IMBALANCE PROCESS

In the previous section, we observed that the power imbal-

ance process at short timescales can be reasonably modeled as

an iid process. However, for longer timescales, the example in

Fig. 8 demonstrates that the temporal correlation of the power

imbalance cannot be ignored. To attempt to capture this corre-

lation, in this section we relax the iid assumption and model

the power imbalance process by a -weak dependent stationary

process [17] with , i.e.,

for all functions , and indices ,

where and

is defined similarly. Note that an iid process is a special case of

the -weak dependent stationary process with .

We further assume an arbitrary first-order pdf with finite

mean and variance .

Under this relaxed assumption on the power imbalance

process, we are able to quantify the minimum cost function for

extreme cases. With no storage, i.e., , the minimum

cost . This is also an upper bound on the

minimum cost for general . At the other extreme, when

the power storage capacity is unlimited, the minimum

cost is as follows.

Proposition 3: For unlimited , if the power imbalance

process is a -weak dependent stationary process with

, then the minimum average magnitude of the residual

power imbalance is

The proof of this proposition is given in Appendix C.

Note that the minimum cost depends only on the first-order

pdf of the power imbalance process, the round-trip efficiency,

and the rated input and output powers. Under the iid Laplace

assumption, this result reduces to the result in Proposition 1

for unlimited and unconstrained and . Other

statistical models of the wind power forecast error, such as in

Fig. 9. Minimum cost function versus the round-trip efficiency for unlimited

storage capacity and rated input and output powers at the minutes ahead and

hour ahead timescales, where “Wind data” represents the NREL dataset, and

“Analytic” represents the result of Proposition 3 with empirical estimates of

and from the dataset.

[18]–[20], can be similarly used to obtain more explicit expres-

sions of the minimum cost.

To compare the minimum costs with no storage and with un-

limited storage, we consider the following four regions of the

power imbalance space:

, and . For , the cost is the

sum of the power imbalance in all these regions. For unlimited

, the power imbalance costs in the regions

and are the same as the corresponding costs for

because of the rated output and input power con-

straints. However, the power imbalance for is

used to charge the storage, hence does not contribute to the cost.

For the fourth region , by Proposition 3, all of

the stored power except the loss due to the imperfect round-trip

efficiency can be used to satisfy as much of the power imbal-

ance in this region as possible over the long term. The remaining

power imbalance in this region, if any, also contributes to the

cost.

Fig. 9 illustrates the minimum cost function for the NREL

dataset with % % and unlimited storage capacity

and rated input and output powers. Note that the numerical re-

sults corroborate well with the analytic result of Proposition 3.

For perfect round-trip efficiency, the energy storage can attain

zero residual power imbalance. The results for the BPA dataset

are quite similar, hence we do not include them.

VI. CONCLUSION

We aimed to answer questions concerning the benefits of en-

ergy storage for reducing the power imbalance due to renew-

able generation: how much can energy storage reduce power

imbalance, and how much of it is needed to achieve this re-

duction? To answer these questions, we considered the multi-

timescale operation of the grid and formulated the power imbal-

ance problem for each timescale as an infinite horizon stochastic

control problem. We obtained analytic results by modeling the

power imbalance process at short timescales by an iid Laplace
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distributed process and at longer timescales by a weakly depen-

dent stationary process. The results lead to the following poten-

tially useful conclusions.

� The iid Laplace distribution, which makes the analysis far

more tractable, appears to be a reasonable approximation

of the short timescale (5–10 min) prediction error of wind

power generation (Propositions 1 and 2).

� Eighty percent of the reduction in the cost function can

be achieved using storage capacity less than five standard

deviations of the power imbalance (Proposition 1).

� Energy storage can reduce the average positive power im-

balance to zero (Proposition 3).

� When the mean of the power imbalance is large, energy

storage can reduce the average negative power imbalance

to zero (Proposition 3).

� When the mean of the power imbalance is small, energy

storage can reduce the average negative power imbalance

by the round-trip efficiency times the average positive

power imbalance (Proposition 3).

We corroborated our assumptions and analytic results using the

NREL and BPA wind power datasets.

APPENDIX A

PROOF FOR OPTIMAL CONTROL POLICY

Proof of Theorem 1: We need to show that, for any policy

, then

where and

. If , then by definition

and thus . By Part

1 of Lemma 1,

If , then by definition

and thus . By

Part 2 of Lemma 1,

By induction, we show that the stationary policy is optimal

for the finite horizon stochastic control problem. Then, for any

and policy , we have ,

and thus

APPENDIX B

PROOF FOR RESULTS UNDER THE LAPLACE ASSUMPTION

Proof of Proposition 1: To find the minimum cost

under the Laplace assumption, we need to show

that there exist a constant and a function satisfying the

average cost optimality equation

(3)

and [21], where, for a random vari-

able and a set , we define .

Then, the average cost is equal to . Now we verify that, for the

policy in Theorem 1, then

satisfies (3). Furthermore, is bounded for ,

and thus .

Proof of Proposition 2: Since the optimal policy in The-

orem 1 is stationary, the corresponding stored power sequence

is a Markov process

if

if

if

if

Let be the cdf of . Then for ,

(4)

where the limits of the integrals are determined from Fig. 3. For

, and for . Let

if

if

if

It can be verified that (4) is satisfied with

for all . Now we only need to show that the Markov

process is irreducible with respect to , which implies that

the stationary distribution is unique [22, Theorem 4.1]. Let
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, and let such that

under the stationary distribution, that is, . Then

If , then

. Similarly, for

and . Thus, we can generalize to any

set such that . Therefore, the Markov process is

irreducible.

APPENDIX C

PROOF OF PROPOSITION 3

We first establish bounds on the expected stored power.

Lemma 2: Suppose that for

, where is given and , is a

stationary process with mean , variance , and autocovari-

ance .

1) If , then .

2) If , then .

Proof of Lemma 2: If , then

where for . Note that

and . If , then

and

where the last inequality follows by induction. To complete the

proof, we only need to show that

where the first inequality follows by Jensen’s inequality. By the

inequality in [23, Corollary A2], we have

Proof of Proposition 3: Let

We first show that . Let

and . Then,

. Consider

For unlimited , we have

Consider

where the last equality follows by

. By Lemma 2, we have

and thus
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