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Abstract—The large short time-scale variability of renewable
energy resources presents significant challenges to the reliable
operation of power systems. This variability can be mitigated
by deploying fast-ramping generators. However, these generators
are costly to operate and produce environmentally harmful
emissions. Fast-response energy storage devices, such as batteries
and flywheels, provide an environmentally friendly alternative,
but are expensive and have limited capacity. To study the
environmental benefits of storage, we introduce a slotted-time
dynamic residual dc power flow model with the prediction error
of the difference between the generation (including renewables)
and the load as input and the fast-ramping generation and the
storage (charging/discharging) operation as the control variables
used to ensure that the demand is satisfied (as much as possible)
in each time slot. We assume the input prediction error sequence
to be i.i.d. zero-mean random variables. The optimal power flow
problem is then formulated as an infinite horizon average-cost
dynamic program with the cost function taken as a weighted
sum of the average fast-ramping generation and the loss of load
probability. We find the optimal policies at the two extremes
of the cost function weights and propose a two-threshold policy
for the general case. We also obtain refined analytical results
under the assumption of Laplace distributed prediction error
and corroborate this assumption using simulated wind power
generation data from NREL.

I. INTRODUCTION

Electric power generation from fossil fuel contributes over

40% of the carbon emissions in the U.S. according to a 2011

EPA study [1]. These harmful emissions can be reduced by

increasing the penetration of renewable generation from hydro,

wind, and solar. However, the power generated from wind and

solar is intermittent and uncertain, which presents significant

challenges to power systems operation. The most commonly

used approach to mitigating the variability of renewable gen-

eration is using medium and fast-ramping generators, such as

combined-cycle combustion turbines and gas turbines (e.g.,

see [2]). As renewable energy penetration increases, however,

more power from such generators is needed, which increases

cost and offsets some of the environmental benefits of re-

newable energy [3]. More environmentally friendly means

for mitigating renewable energy generation include exploiting

geographic generation diversity [2], demand-response [4], and

the use of energy storage [5], [6].

In particular, energy storage systems can be used for this

purpose at two different time scales:

(i) Over a long time scale (days, hours), bulk energy storage

systems, such as pumped hydroelectric storage and com-

pressed air energy storage (CAES), can be “charged” by

the excess renewable energy generation during off-peak

hours and “discharged” during peak hours. In [7], a finite

horizon dynamic dc optimal power flow problem with

energy storage is formulated as a convex program. The

round-trip storage efficiency is assumed to be perfect. For

the single-bus case, under certain assumptions on the cost

and the smoothness of the load profile, the optimal policy

is to charge the storage at the beginning and discharge

it at the end of the time period. In [8], the dynamic ac

optimal power flow problem with energy storage is shown

to be non-convex in general and sufficient conditions for

strong duality are established.

(ii) Over a short time scale (minutes, seconds), fast-response

energy storage systems, such as electric vehicle batteries

and flywheels, can help smooth the output of renewable

energy generators. In [9], the dynamic dc optimal power

flow problem with energy storage is studied. The renew-

able generation is modeled as a sequence of discrete

random variables. An approximate stochastic program-

ming method is proposed and illustrated via numerical

examples.

In this paper we focus on the short time scale use of

storage. We consider a slotted-time model for demand and

energy generation arising, for example, in real time (5–15

minute) dispatch. We view the generation as the sum of

a predicted (forecasted) component and a prediction error

component and similarly for the demand. We assume that

the predicted (deterministic) component of the demand is

met perfectly by the predicted component of the generation.

Such balance in demand and generation can be achieved by

solving a conventional (deterministic) static dc optimal power

flow problem. We then consider a dynamic residual power

flow problem with the difference between the generation

and demand prediction errors as input and the fast-ramping

generation and the storage (charging/discharging) operation

as control sequences. To determine the policy for using fast-

response energy storage and fast-ramping generation, we as-

sume that the difference in prediction errors is a sequence of

i.i.d. zero-mean random variables and formulate the dynamic
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residual dc power flow problem as an infinite horizon average-

cost dynamic program with the cost being a weighted sum of

the average fast-ramping generation (which measures carbon

emission cost) and loss of load probability. We find the optimal

policies at the two extremes of the cost function weights

and propose a two-threshold policy for the general case. At

the one extreme, we find that storage can reduce the needed

fast-ramping generation (relative to no storage) by a factor

that approaches the round-trip storage inefficiency as storage

capacity becomes large. At the other extreme, we find that

the loss of load probability can be reduced to zero as storage

capacity becomes large. Under the additional assumption of

Laplace distributed prediction error, which is corroborated by

simulated wind data from NREL [10], we also obtain closed

form expressions for the cost function and the storage level

and fast-ramping distributions in some special cases.

The next section introduces our residual power system

model. In Section III, we present the problem formulation

and summarize our results. The proofs of these results are

given in [11]. In Section IV, we present numerical results using

simulated Western wind dataset from NREL [10].

II. POWER SYSTEM MODELING

Consider an electric power system with conventional gener-

ators, renewable energy generators, loads, and energy storage

devices. This power system may represent for example: (i) a

transmission network with high renewable penetration, (ii) a

distribution network with distributed renewable generators and

energy storage devices, (iii) a microgrid not operated in the

island mode where the power from the macrogrid acts as a fast-

ramping generator [12], (iv) a wind farm with energy storage

devices where the fast-ramping generation is bought from

the electricity market, or (v) a stand-alone hybrid renewable

energy system with battery storage [13], [14].

The power system consists of buses and connections be-

tween them. A bus may include a generator, a load, or an

energy storage system directly connected to it. Due to the

thermal constraint on each connection, there is a capacity

limit on each connection. We will consider a dynamic dc

power flow model (e.g., see [15]), which assumes that (i)

the voltage magnitudes are constant, (ii) the angles of the

complex bus voltages are small, (iii) the connections have

no resistance, and (iv) the balance of the reactive power is

ignored. Under these assumptions, the real power flowing

through a connection can be approximated by a linear function

of the phase angle difference of the two connected buses,

where the slope of the linear function is the susceptance of

the connection. Assuming that the phase angle of one of the

bus be zero, then given the power flow injected into each bus

such that the net injected power flow is zero, the remaining

phase angles can be uniquely determined. Hence the dc power

flow is also uniquely determined.

We consider a slotted-time model for the dynamics of the

power system, where time is divided into slots each of length

τ hours and power is constant over each time slot. In the

numerical results in Section IV we assume τ = 1/6 (10

minutes). Note that the constant power assumption implicitly

implies that the balance of power at time scales shorter than

τ can be achieved via regulation services. We now introduce

the assumptions and models for the generators, loads, energy

storage systems, and the single-bus residual power system.

Generation

We assume three classes of power generators;

(i) slow to moderate ramping generators, which include base

load generators (coal-fired, hydro, and nuclear power

plants), intermediate generators (combined-cycle combus-

tion turbine), and peaking generators (gas turbines),

(ii) renewable generators (wind and solar) whose output is

intermittent, and

(iii) fast-ramping generators (gas turbines) that are dedicated

to compensating for the short time-scale variation in

renewable generation.

The output from the slow to moderate ramping generators

is assumed to be deterministic and is considered part of the

predicted (forecasted) power flow.

Renewable generators: We model the power flow from the

renewable generators as the sum of a predicted component

and a prediction error component. The sum of this predicted

component and the power from the slow to moderate ramping

generators constitutes the total predicted generation power

flow, which we assume to perfectly balance the predicted

load. We model the prediction error component of renewable

generation as a sequence of i.i.d. zero-mean random variables

∆i, i = 1, 2, . . . with finite variance E[∆2] = σ2. We will also

assume in some cases that the prediction error is a sequence of

Laplace(λ) random variables, that is, the probability density

function (pdf) of ∆i is f∆(δ) = (λ/2)e−λ|δ| for δ ∈ R (and its

standard deviation is σ =
√
2/λ). This assumption is akin to

the exponential arrival and service time assumptions in queue-

ing theory and Gaussian noise assumption in communication

theory—all make their respective problems more tractable.

In Section IV, we corroborate our Laplace assumption using

simulated wind generation dataset from NREL.

Fast-ramping generators: These generators are used to com-

pensate for the prediction error component of renewable gen-

eration. We assume that the total generation power capacity

(the sum of the power ratings) of the fast-ramping generators

is Gmax MW, and denote the sequence of power supplied by

these generators as Gi, i = 1, 2, . . ., where 0 ≤ Gi ≤ Gmax.

Load

As for the power flow for renewable energy, we model

the load profile as the sum of a predicted component and a

prediction error component. Since the load is less variable than

the renewable generation under high penetration, we ignore the

prediction error of the load profile.

Energy storage devices

We assume two types of energy storage devices, bulk energy

storage and fast-response energy storage. The operation of the
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bulk energy storage is scheduled according to the predicted

component of the load and the energy generation (e.g., see [7],

[8]), and is not considered further in this paper. The operation

of the fast-response energy storage can follow the actual load

and renewable generation. Let Ci and Di, i = 1, 2, . . ., be the

charging and discharging power sequences of the fast-response

energy storage, respectively. The storage is characterized by

the following parameters.

• Energy storage capacity τSmax MW-h: This is the max-

imum amount of energy that can be stored. We refer

to Smax as the power storage capacity. Generally the

energy storage devices cannot be completely discharged,

and there is also a limit on the minimum energy level.

Here we use the minimum level as a reference and thus

the lower limit is zero.

• Rated storage output power Dmax MW: This is the max-

imum output (discharging) power, i.e., 0 ≤ Di ≤ Dmax

for all i = 1, 2, . . ..
• Rated storage power conversion Cmax MW: This is the

maximum input (charging) power, i.e., 0 ≤ Ci ≤ Cmax

for all i = 1, 2, . . ..
• Charging, discharging, and round-trip efficiencies: The

charging efficiency αc ∈ (0, 1) is the ratio of the charged

power to the input power. The discharging efficiency αd ∈
(0, 1) is the ratio of the output power to the discharged

power. The round-trip storage efficiency is α = αcαd.

• Storage efficiency: This is the fraction of retained power

over a time slot. We assume that the storage efficiency is

very high and set it to one throughout.

Suppose that the stored power of the fast-response energy

storage devices at the beginning of time slot i = 1, 2, . . . is

Si MW. Then the dynamics of fast-response energy storage

can be represented as Si+1 = Si + αcCi − (1/αd)Di for

i = 1, 2, . . . with constraints 0 ≤ Si ≤ Smax, 0 ≤ Ci ≤ Cmax,

and 0 ≤ Di ≤ Dmax, where S1 = 0.

Single-bus residual power system

We assume that the total predicted power flow (the sum of

the power flow of the slow to moderated ramping generators,

the predicted component of renewable generators, and the

charging and discharging of the bulk energy storage systems)

and the (predicted) load are perfectly balanced. Hence from

this point onward, we consider only the residual dc power

flow model consisting of the power flow of the fast-ramping

generators, the prediction error component of the renewable

generators, and the charging and discharging of the fast-

response energy storage devices. Since the magnitude of the

residual dc power flow is small relative to the bulk power flow,

we assume that each connection in the residual power system

has unlimited capacity. Hence, if the residual power system is

still connected, a feasible dc power flow always exists when

the net residual power flow injected into the system is zero. If

the network is not connected because one or more connections

is at capacity (due to the bulk power flow), the residual power

system breaks up into several connected components, and our

model and analysis applies to each component separately.

discharge

charge

Fast-response
energy

storage Si

Fast-response
energy

storage Si

Fast-response
energy storage
Si ≤ Smax

Renewable
prediction

error

Fast-ramping
generation

∆i

Gi ≤ Gmax

Di ≤ Dmax

Ci ≤ Cmax αcCi

Di/αd

Fig. 1. A single-bus power system representation of the dynamic residual
dc power flow model.

Now, assuming a connected residual power system with

unlimited connected capacities, we can aggregate the fast-

ramping generators, the prediction error component of renew-

able generators, and the fast-response energy storage devices

into a residual single-bus power system as depicted in Figure 1.

We require the (negative) prediction error to be balanced as

much as possible by the storage and fast-ramping generation.

More specifically, when ∆i ≥ −Gmax − min{αdSi, Dmax},

there is sufficient power capacity, and the balance constraint

must be satisfied, that is, Gi +Di − Ci +∆i ≥ 0. Note that

if Gi + Di − Ci + ∆i > 0, then there is excess generation

that we assume to be curtailed. When ∆i < −Gmax −
min{αdSi, Dmax}, then loss of load occurs. In this case,

the fast-ramping generation is at the power capacity and the

fast-response storage is discharged at the rated storage output

power, i.e., Gi = Gmax, Ci = 0, and Di = min{αdSi, Dmax}.

III. PROBLEM FORMULATION AND SUMMARY OF RESULTS

We wish to investigate the long-term role of fast-response

energy storage in reducing the required fast-ramping genera-

tion and the loss of load probability under the assumptions

introduced in the previous section, namely: (i) dc power flow,

(ii) perfect balance of the total predicted power flow and the

load, (iii) unlimited connection capacities of the residual power

system, and (iv) i.i.d. zero-mean prediction error. Hence, we

consider the single-bus residual power system depicted in

Figure 1 and formulate the associated dynamic optimal power

flow problem as an infinite horizon average-cost dynamic

program (e.g. see [16]). For simplicity, we consider only

the case where the rated storage output power and power

conversion of fast-response energy storage are unconstrained,

i.e., αcCmax = (1/αd)Dmax = Smax.

• State space: The stored power of the fast-response energy

storage (stored power) si is the state at time i = 1, 2, . . .,
which is in the state space [0, Smax].

• Control space: The control of the fast-ramping generation

and the charging and discharging of the fast-response

energy storage at time i consists of deterministic non-

negative mappings gi(si, ·), ci(si, ·), di(si, ·) indexed by

si. The control space A(si) is the set of these mappings
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satisfying

0 ≤ gi(si, δi) ≤ Gmax,

0 ≤ si + αcci(si, δi)− (1/αd)di(si, δi) ≤ Smax,

0 ≤ gi(si, δi) + di(si, δi)− ci(si, δi)

+ max{δi,−Gmax − αdsi}

for all prediction error δi ∈ R. Note that the control space

does not depend on the time index.

• Dynamic system: The stored power can be express as a

dynamic system

Si+1 = Si + αcci(Si,∆i)−
1

αd
di(Si,∆i)

for i = 1, 2, . . ., where S1 = 0, and the prediction error

component of renewable generation (prediction error) ∆i,

i = 1, 2, . . . is a sequence of i.i.d. zero-mean random

variables.

• Policy: A policy π = {πi : i = 1, 2, . . .} is a sequence of

controls, where π(si) ∈ A(si) for all si ∈ [0, Smax] and

i = 1, 2, . . .. Let P be the set of all policies. A policy is

stationary if πi = πj for all i 6= j.

• Average cost: For a policy π ∈ P , we define two types

of costs—the expected average fast-ramping generation

(carbon emission cost) and the expected average loss of

load probability—as follows

J0(π) = lim sup
n→∞

E

[

1

n

n
∑

i=1

gi(Si,∆i)

]

,

J1(π) = lim sup
n→∞

E

[

1

n

n
∑

i=1

F∆(−Gmax − αdSi+1)

]

,

where F∆ is the cumulative distribution function (cdf) of

∆i and the expectations are over ∆i, i = 1, 2, . . .. We

take the total average cost J(π) to be a weighted sum of

these two costs with weights ρ0, ρ1 ≥ 0, i.e.,

J(π) = ρ0J0(π) + ρ1J1(π).

• Minimum average cost and optimal policy: The minimum

average cost is J∗ = infπ∈P J(π), and the policy π∗

achieves the infimum is the optimal policy.

We first consider the two extreme cases (ρ0, ρ1) = (1, 0)
and (ρ0, ρ1) = (0, 1), and find the optimal policy in each case.

In Subsection III-C, we propose a stationary two-threshold

policy for general (ρ0, ρ1) that includes these two optimal

policies as special cases.

A. (ρ0, ρ1) = (1, 0) Case

When (ρ0, ρ1) = (1, 0), we wish to minimize the fast-

ramping generation regardless of the loss of load probability.

In the following theorem, we show that a simple greedy

charging and discharging policy is optimal.

Theorem 1: For (ρ0, ρ1) = (1, 0), the optimal policy π∗ is

given in Table I, and it is stationary.

When the prediction error δ ≥ 0, the optimal policy charges

the storage using the excess renewable generation as much as

TABLE I
OPTIMAL POLICY IN THEOREM 1 FOR (ρ0, ρ1) = (1, 0).

π∗

i
(s) g∗

i
(s, δ) c∗

i
(s, δ) d∗

i
(s, δ)

(1/αc)(Smax − s) ≤ δ 0 (1/αc)(Smax − s) 0

0 ≤ δ < (1/αc)(Smax − s) 0 δ 0

−αds ≤ δ < 0 0 0 −δ

−Gmax − αds ≤ δ < −αds −δ − αds 0 αds

δ < −Gmax − αds Gmax 0 αds

possible. When the prediction error δ < 0, the storage is first

discharged to compensate for as much of the renewable power

deficit as possible. The fast-ramping generation is then used to

compensate for the remaining renewable generation deficit (if

any). Thus, the optimal policy never charges the storage using

fast-ramping generation. This greedy policy is the result of the

linearity of the cost function J0 and the imperfect round-trip

storage efficiency.

Now we consider the extreme case where the fast-ramping

generation capacity Gmax is unlimited. If there is no storage,

that is, Smax = 0, then the average cost is E[∆+], where x+ =
max{x, 0}. For unlimited power storage capacity Smax, the

minimum average cost is given in the following proposition.

Proposition 1: For (ρ0, ρ1) = (1, 0) and unlimited Gmax

and Smax, the minimum average cost is J0(π
∗) = (1 −

α) E[∆+].
Comparing the average costs for no storage and unlimited

power storage capacity, we show that storage can reduce

the amount of needed fast-ramping generation (relative to no

storage) by a factor no smaller than the round-trip storage

inefficiency. This is not surprising because our i.i.d. zero-mean

prediction error assumption implies that over the long term,

the excess energy is roughly equal to the deficit. With infinite

capacity and α = 1, storage can compensate for almost all

the variation in renewable generation. However, when α < 1,

it can compensate for at most this fraction of the variation

and the rest needs to be compensated for by fast-ramping

generation.

For the rest of this subsection, we assume that the prediction

error ∆i, i = 1, 2, . . . is a sequence of i.i.d. zero-mean

Laplace(λ) random variables. First, we establish the following

closed-form expression for the minimum average cost.

Proposition 2: For (ρ0, ρ1) = (1, 0), the minimum average

cost under the Laplace assumption is

J0(π
∗) =

1− e−λGmax

2λ

(

1− α

1− αe−(1/αc−αd)λSmax/2

)

.

We consider the sizing of the storage using the above closed-

from expression. The effectiveness of storage with capacity

Smax in reducing the fast-ramping generation can be measured

by the derivative
∣

∣

∣

∣

∂J0(π
∗)

∂Smax

∣

∣

∣

∣

=
αd(1 − e−λGmax)(1 − α)2e−(1/αc−αd)λSmax/2

4
(

1− αe−(1/αc−αd)λSmax/2
)2 ,

which decreases close to exponentially in Smax. Hence only

a small power storage capacity is sufficient to achieve most
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of the reduction in fast-ramping generation. For example, for

typical round-trip storage efficiency 60%–80% (e.g., see [17]),

80% of this reduction can be achieved with power storage

capacity less than 4 standard deviations of the prediction error.

Stationary distribution of stored power: Note that under the

optimal policy in Theorem 1, the stored power sequence

is a homogeneous Markov process. In the following, we

find the stationary distribution for this Markov process under

the Laplace assumption. Furthermore, using this stationary

distribution, we can find the distribution of the fast-ramping

generation.

Proposition 3: The cdf of the stationary distribution of the

stored power under the optimal policy in Theorem 1 and the

Laplace assumption is

FS(s) =
1− 0.5(1 + α)e−(1/αc−αd)λs/2

1− αe−(1/αc−αd)λSmax/2

for 0 ≤ s < Smax, FS(s) = 0 for s < 0, and FS(s) = 1 for

s ≥ Smax. The corresponding distribution of the fast-ramping

generation is

FG(g) = 1− 1− α

2(1− αe−(1/αc−αd)λSmax/2)
e−λg

for 0 ≤ g < Gmax, FG(g) = 0 for g < 0, and FG(g) = 1 for

g ≥ Gmax.

Expected average loss of load probability: Using the stationary

distribution of the stored power sequence in Proposition 3,

we can readily find the following expression for the expected

average loss of load probability

J1(π
∗) =

1

2
e−λGmax

(

1− α

1− αe−(1/αc−αd)λSmax/2

)

.

For no storage, J1(π
∗) = (1/2)e−λGmax . As Smax tends to

∞, J1(π
∗) = ((1 − α)/2)e−λGmax . Thus, using the optimal

policy for (ρ0, ρ1) = (1, 0), storage can reduce the expected

average loss of load probability by as much as the round-trip

storage inefficiency.

B. (ρ0, ρ1) = (0, 1) Case

When (ρ0, ρ1) = (0, 1), we wish to minimize the expected

average loss of load probability. To minimize this probability,

we would like to keep the stored power as high as possible.

This turns out to be the optimal policy in this case.

Theorem 2: For (ρ0, ρ1) = (0, 1), the optimal policy π∗

minimizing the expected loss of load probability is given in

Table II, and it is stationary.

Since there is no cost of fast-ramping generation, in some

cases the optimal policy charges the storage with fast-ramping

generation to minimize the loss of load probability. In the

following, we show that the benefits of storage to the loss of

load probability can be unbounded.

Proposition 4: Using the optimal policy for (ρ0, ρ1) =
(0, 1), if F∆ and Gmax satisfy lim supx→∞ xF∆(−x) ≤ c
for some constant c ≥ 0 and

E
[

αc(Gmax +∆)+ − (1/αd)(Gmax +∆)−
]

> 0, (1)

where x+ = max{x, 0} and x− = max{−x, 0}, then the

expected average loss of load probability tends to 0 as Smax

tends to ∞.

Unlike the case of (ρ0, ρ1) = (1, 0), we are not able to

find closed form expressions for the optimal cost functions

or the stationary distributions under the Laplace assumption.

However, it can be verified that for α > e−λGmax , Laplace(λ)
satisfies the sufficient conditions in Proposition 4, and thus

the expected average loss of load probability tends to 0 as

Smax tends to ∞. When there is no fast-ramping generation,

i.e., Gmax = 0, the sufficient condition in Proposition 4 given

by (1) does not hold. However, the optimal policy reduces

to a special case of the optimal policy in Theorem 1. Thus,

storage can only reduce the expected loss of load probability

by a factor no smaller than the round-trip storage inefficiency.

C. Two-threshold policy

For the general average cost with weights ρ0, ρ1 ≥ 0, we

propose the following stationary two-threshold policy.

Two-threshold Policy: Let 0 ≤ Sc ≤ Sd ≤ Smax. The two-

threshold policy is parameterized by a “charging threshold”

Sc and a “discharging threshold” Sd as given in Tables III.

When the prediction error δ ≥ 0, the storage is charged as

much as possible using the excess in renewable generation. If

the stored power after this charging is above Sc, then the fast-

ramping generation is not used. However, if it is below Sc, then

the storage is charged as close to Sc as possible using fast-

ramping generation. When the prediction error δ < −Gmax,

the storage must be discharged to balance the prediction error.

If there is still unbalanced prediction error after the storage is

discharged to Sd, then fast-ramping generation is used such

that the the stored power is as close to Sd as possible. When

the prediction error −Gmax ≤ δ < 0, the case where the stored

power is either lower than Sc or higher than Sd is similar to

the above cases. When the stored power is between Sc and

Sd, only the fast-ramping generation is used to balance the

prediction error, and the stored power is unchanged.

Note that the optimal policies for the two extreme cases in

Theorem 1 and 2 are two-threshold policies with parameters

(0, 0) and (Smax, Smax), respectively.

TABLE II
OPTIMAL POLICY IN THEOREM 2 FOR (ρ0, ρ1) = (0, 1).

π∗

i
(s) g∗

i
(s, δ) c∗

i
(s, δ) d∗

i
(s, δ)

0 ≤ δ −
Smax − s

αc

0
Smax − s

αc

0

−Gmax ≤ δ −
Smax − s

αc

< 0
Smax − s

αc

− δ
Smax − s

αc

0

0 ≤ δ +Gmax <
Smax − s

αc

Gmax Gmax + δ 0

−αds ≤ δ +Gmax < 0 Gmax 0 −δ −Gmax

δ +Gmax < −αds Gmax 0 αds
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TABLE III
TWO-THRESHOLD POLICY PARAMETERIZED BY (Sc, Sd).

(a) 0 ≤ s < Sc

π∗

i
(s) g∗

i
(s, δ) c∗

i
(s, δ) d∗

i
(s, δ)

(1/αc)(Smax − s) ≤ δ 0 (1/αc)(Smax − s) 0

(1/αc)(Sc − s) ≤ δ < (1/αc)(Smax − s) 0 δ 0

(1/αc)(Sc − s)−Gmax ≤ δ < (1/αc)(Sc − s) (1/αc)(Sc − s)− δ (1/αc)(Sc − s) 0

−Gmax ≤ δ < (1/αc)(Sc − s)−Gmax Gmax Gmax + δ 0

−Gmax − αds ≤ δ < −Gmax Gmax 0 −Gmax − δ

δ < −Gmax − αds Gmax 0 αds

(b) Sc ≤ s ≤ Sd

π∗

i
(s) g∗

i
(s, δ) c∗

i
(s, δ) d∗

i
(s, δ)

(1/αc)(Smax − s) ≤ δ 0 (1/αc)(Smax − s) 0

0 ≤ δ < (1/αc)(Smax − s) 0 δ 0

−Gmax ≤ δ < 0 −δ 0 0

−Gmax − αds ≤ δ < −Gmax Gmax 0 −Gmax − δ

δ < −Gmax − αds Gmax 0 αds

(c) Sd < s ≤ Smax

π∗

i
(s) g∗

i
(s, δ) c∗

i
(s, δ) d∗

i
(s, δ)

(1/αc)(Smax − s) ≤ δ 0 (1/αc)(Smax − s) 0

0 ≤ δ < (1/αc)(Smax − s) 0 δ 0

−αd(s− Sd) ≤ δ < 0 0 0 −δ

−αd(s− Sd)−Gmax ≤ δ < −αd(s− Sd) −δ − αd(s− Sd) 0 αd(s− Sd)

−Gmax − αds ≤ δ < −αd(s− Sd)−Gmax Gmax 0 −Gmax − δ

δ < −Gmax − αds Gmax 0 αds

IV. NUMERICAL RESULTS

We compare the theoretical results in the previous section

with numerical results using the simulated Western wind

dataset from NREL [10], which is based on numerical weather

prediction (NWP) models. This dataset recreates the potential

wind power generation of more than 30 000 wind turbines in

the western U.S. from 2004 to 2006, and the wind power data

are sampled every 10 minutes. We select 50 offshore sites in

California with highest power densities. Figure 2a depicts the

total power output of these 50 sites in every 10 minutes over a

two weeks period. Since this dataset does not include forecast

data, we illustrate our results using the following simple 10-

minute-ahead linear predictor with maximum likelihood (ML)

estimator for the Laplace parameter. Other more sophisticated

predictors can be readily used with the ML estimator to

obtain more refined results. Let ri, i = 1, 2, . . . , n be the

simulated wind power generation sequence. We consider a

10-minute-ahead linear predictor of the wind power at time

i based on the 6 samples of the generation in the past hour

r̂i = c0 +
∑6

j=1 cjri−j . The coefficients c0, c1, . . . , c6 chosen

minimize the squared error of the data of 2004 used as

a training set. Let δi = ri − r̂i, i = 1, 2, . . . , n be the

prediction error. Figures 2b and 2c depict the 10-minute-ahead

prediction and the prediction error sequences for the two-week

period, respectively. Based on the Laplace assumption, the ML

estimate of parameter λ is λ = n/
∑n

i=1 |δi|. Figure 3 plots the

empirical pdf of the prediction error and the best fit Laplace

pdf. The maximum absolute difference between the empirical

cdf of the prediction error and the Laplace cdf is 0.018.

A. Results for (ρ0, ρ1) = (1, 0)

Figure 4 compares the minimum average costs in Proposi-

tion 2 and using the three-year simulated wind data for various

values of power storage capacities and round-trip storage

efficiencies α = 60% and 80%. The maximum absolute

difference between the theoretical and the simulated costs

normalized by the theoretical cost is less than 6% and 8%

for α = 60% and α = 80%, respectively. Thus, the Laplace

distribution appears to be an acceptable approximation of the

simulated wind generation data from NREL.

Figure 5a compares the empirical pdf of the stored power of

the simulated wind generation data to the stationary pdf under

the Laplace distribution assumption in Proposition 3. The

corresponding empirical pdf of the fast-ramping generation

and its stationary pdf are shown in Figure 5b. Note again the

simulation results corroborate well with the theory.

B. Results for general (ρ0, ρ1)

To demonstrate the two-threshold policy, we implemented a

dynamic programming method by discretizing the state space

and then running the value iteration [18]. For the values of

Gmax, Smax, ρ0, and ρ1 used in the following numerical

examples, we find that the policy obtained from the value

iteration is a discretized two-threshold policy.
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Fig. 2. Figures (a), (b), and (c) show the wind power, 10-minute-ahead
prediction, and prediction error sequences for two weeks, respectively. The
average wind power is 560.26 MW, the mean absolute value of the prediction
error is 13.99 MW, and the standard deviation of the prediction error is 20.88
MW.
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Fig. 3. The empirical pdf of the 10-minute-ahead wind power prediction
error for three years versus the Laplace(λ) pdf with 1/λ = 13.99.

Tradeoff between J0 and J1: Figure 6 shows the tradeoff

between the fast-ramping generation and the loss of load

probability for no storage and for storage capacities Smax = 50
MW and Smax = 100 MW with fast-ramping generation

capacity Gmax = 160 MW. Note that the results for the

Laplace pdf corroborate very well with the simulated wind

generation data. As shown in the figure the loss of load

probability is improved by more than two orders of magnitude

by using power storage capacity less than 5 standard deviations
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Fig. 4. The optimal expected average fast-ramping generation for the wind
data versus power storage capacity for round-trip efficiencies α = 60% and
80% and Gmax = 160 MW.
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(a) Fast-response storage
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Fig. 5. Figures (a) and (b) show the pdfs of the stored power and the
fast-ramping generation, respectively, for α = 60%, Smax = 100 MW, and
Gmax = 160 MW.

of the prediction error.

Empirical distribution of stored power: The empirical pdf of

the stored power for (ρ0, ρ1) = (10−6, 1) is shown in Figure 7.

We expect the probability concentrates at 0, Sc, Sd, and Smax.

The empirical pdf in Figure 7 indeed has two peaks at Sd and

Smax. The probability that the stored power is below Sd is

very small since the transition probability of the stored power

from a value above Sd to below Sd is less than F∆(−Gmax) =
5.4 · 10−6.

Tradeoff between Smax and Gmax: In Figure 8, we compare
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the two ways of mitigating renewable energy variability;

using fast-ramping generation and using fast-response storage.

We fix the expected average fast-ramping generation at 3.6
MW (corresponding to 80% maximum reduction in the fast-

ramping generation) and the loss of load probability at 2·10−6

(corresponds to one loss of load event every 10 years). To

achieve these goals with minimum power storage capacity,

we need Gmax = 170 MW and Smax = 60 MW. To reduce

the fossil fuel generation and to achieve the same goals, we

can replace 1 MW of Gmax with 1.3 MW of Smax.
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Fig. 6. The tradeoff between the fast-ramping generation and the loss of
load probability for Gmax = 160 MW under two-threshold policies.

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18

 0  20  40  60  80  100

Stored power (MW)

P
ro

b
ab

il
it

y
d
en

si
ty

Wind dataset
Laplace(λ)

Fig. 7. The pdfs of the stored power under the two-threshold policy with
α = 60%, Gmax = 160 MW, Smax = 100 MW, Sc = 12 MW, and
Sd = 38 MW.
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