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ABSTRACT The stiffness distribution (SD) of robot has a great influence on the robot pose accuracy, but
the calculation efficiency and accuracy of stiffness distribution are still low.This study presents a finite
element fitting method with an extremely small number of computational cells. It was developed based on
experimental results of robot stiffness. This method can be employed to establish single- and multi-source
fitted SD (FSD) (S-FSD and M-FSD) models for host–parasite (H–P) robots. The computational efficiency
and correctness of the FSD models were verified by case studies.The configurations of six evolutionary
mechanisms of an H–P robot were subjected to an SD analysis. A comparison of the six configurations
shows that adding parasitic branched chains can improve the SD of the H–P robot to varying degrees. In
particular, the most notable improvement was for H–P mechanism. Specifically, by averaging the stiffness
of all positions, the average-stiffnesses of H–P mechanism in the x-, y-, and z-directions were 104.10%,
1427.78%, and 1101.62% of those of the host mechanism, respectively. In the SD diagram, the medium-
and high-stiffness regions of mechanism F are large and distributed in a banded pattern between the highest
pose point and the furthest pose point, whereas its low-stiffness region is small and concentrated near the
nearest pose point .

INDEX TERMS Finite element method, fitting method,host–parasite mechanism, robot, stiffness.

I. INTRODUCTION
The different working loads applied to the end of a robot
arm are the primary external loads to which the robot is
subjected and have the most significant and direct impact
on its working accuracy. The stiffness of a robot reflects the
mapping relationship between the deformation of its end
and the external load and is an important factor that
determines its position accuracy. For a robot, a high
stiffness suggests that it has a high resistance to
deformation caused by external loading and a high working
accuracy. Portman devised new stiffness performance
indices and used the minimal collinear stiffness value to
evaluate the stiffness of mechanisms and robots.[1]

Industrial robots, which are primarily serial mechanisms,
are extensively used for material handling, spraying,
welding, and assembling.[2] The research on the motion
error and positioning accuracy of robot has attracted much
attention.[3-5]Compared to numerically controlled machine
tools, industrial robotic manipulators have a relatively low
stiffness due to their cantilever position. The stiffness of a
large industrial robot is generally lower than 1 N/μm,

whereas the stiffness of a numerically controlled machine
tool is usually greater than 50N/μm.[6] Liu et al.[7] proposed
a new passive, power-source-free, stiffness-self-adjustable
mechanism. Orekhov and Simman[8] examined the use of a
combination of kinematic redundancy and variable-stiffness
actuators to adjust stiffness in real time. Chen et al.[9]

investigated the negative active stiffness produced by a
redundantly actuated planar rotational parallel mechanism.
Jin et al.[10] presented an optimal design of a redundantly
actuated symmetrical parallel mechanism with five revolute
joints developed based on structural stiffness. Li et al.[11]

formulated a design method to prevent negative stiffness in
redundant planar rotational parallel mechanisms.
Manifestly, improving the stiffness of a mechanism is
vitally important for enhancing its performance.

The stiffness distribution (SD) of a robot refers to the
distribution of the stiffnesses of the end of its arm in all the
poses within its working space. The joints of robot
considered rigid and no clearance in the joint.The SD is a
theoretical basis for the structural design and optimization
of a robot.[12] Wu et al.[13] studied the stiffness of a hybrid



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3063296, IEEE Access

VOLUME XX, 2021 1

machine tool with five degrees of freedom (DOFs) and
actuation redundancy and established an accurate stiffness
model for the machine tool using the assembly method after
deriving stiffness matrices for all the components of the
machine tool. Huang and Schimmels[14] performed an
eigenscrew decomposition of spatial stiffness matrices.
Wu[15] analyzed and optimized the stiffness of a coaxial
spherical parallel manipulator. Li et al.[16] analyzed a soft
robotic fish with variable-stiffness decoupled mechanisms.
He et al.[17] proposed a new general stiffness model, which
includes linear and nonlinear stiffness models, for serial
mechanisms. Yu et al.[18] calculated and analyzed the
dynamic stiffness of a symmetrical crank slider mechanism
with a variable-stiffness joint. Lu et al.[19] suggested a new
method for calculating the stiffness of bolted connectors
and analyzed the effects of joint surface stiffness on the
overall stiffness. Liu et al.[20] developed an exact dynamic
stiffness method for multi-body systems composed of
beams and rigid bodies.There are two main types of robot
stiffness modeling, namely, finite element (FE)[21] and
analytical[22] methods. FE methods can describe aspects,
such as the structural geometric dimensions, physical
material properties, contact conditions, and load
distribution, of robots in a comprehensive and detailed
manner. However, when the pose of a mechanism changes,
it is necessary to reimport its geometric model, regenerate a
mesh, and set the contact parameters and external loading.
Modeling complex configurations is computationally
expensive in terms of time. In contrast, analytical methods
are characterized by their high computational speed.
However, analytical methods are unable to reflect the actual
stiffness of a mechanism comprehensively and accurately
due to their simplifications.

The host-parasite (H-P) phenomenon is ubiquitous in
both the plant and animal kingdoms.[23, 24] Inspired by the
parasitism between trees and rattans, Wei et al.[25] proposed
an H-P structure that can characterize the hierarchical
relationships between the DOFs of the sub-mechanisms of a
mechanism. The local DOFs are modeled as H-P
relationships like those in the biological world. A new
industrial H-P robot, developed by Wei et al.,[25] is able to
reach gravitational equilibrium and had notably improved
stiffness.

In summary, there has been measurable and valuable
progress in the FE and analytical methods used for
modeling robot stiffness. However, there are deficiencies in
FE (e.g., long computational times) and analytical (e.g.,
oversimplification) methods. The external loads to which a
robot is subjected consist primarily of the various working
loads on the end of its arm. To analyze the effects of adding
different parasitic branched chains on the SD of an H-P
robot, this study presents an FE fitting method that uses an
extremely small number of mesh cells in modeling. An
attempt was made to calculate SD patterns efficiently and
accurately for different evolutionary configurations of an
H–P robot using SD modeling through multiple fitting

operations for multiple poses. The configurations of six
evolutionary mechanisms of an H–P robot were subjected
to an SD analysis.Analyzing the SD of a robot not only can
determine its high-stiffness working regions, which can be
used for tasks with relatively high accuracy requirements,
but can also provide a foundation for the structural design
and optimization of new robots.For example,a design of
flexible joint robot manipulator or PAM(Pneumatic
Artificial Muscle) actuated manipulator.

II. STRUCTURAL AND KINEMATIC ANALYSIS OF H-P
ROBOTS
A. STRUCTURE AND DOF DISTRIBUTION OF H-P
ROBOTS
Hybrid mechanisms that are composed of host and parasitic
mechanisms and display H–P relationships are referred to as
H–P mechanisms.[25] An H–P relationship includes two types
of precedence relationship, namely, one in which a host
mechanism precedes the parasitic mechanisms and one in
which the parasitic branched chains of a previous level
precede those of a secondary level. For an H–P mechanism
that satisfies such an H–P relationship, its internal host and
parasitic mechanisms can be divided in multiple ways. Wei
et al.[25] proposed a new H–P palletizing robot. Figure 1
shows a three-dimensional (3D) diagram of this robot and a
photograph of a prototype.[25] Based on the differences in
geometric dimensions as well as real-world motion and stress
conditions, the composition of the branched chains of the
host and parasitic mechanisms of this H–P robot was
adjusted in this study.

FIGURE 1. H-P robot.
The new H–P robot consists of one host branched chain (i.e.,
branched chain A) and six parasitic branched chains (i.e.,
branched chains B–G). Figure 2 is a structural diagram of
this robot. The branched chain of the host mechanism has
multiple components that have a relatively large geometrical
cross-sectional area. It has independent DOFs, plays a major
load-bearing role, and is subject to axial and shear forces,
bending moments, and torques. The six parasitic branched
chains have links with a relatively small geometric cross-
sectional area. They each have no independent DOFs and
rely on the host branched chain or the parasitic branched
chain of the previous level to exist and play a driving role.
The links comprising the parasitic branched chains are
subject primarily to axial forces and bending moments.
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FIGURE 2. Structural diagram of the new H-P robot.
Wei et al.[25] detailed a method for calculating the number

of DOFs of a H–P mechanism. The total number of DOFs of
a H–P mechanism is given by:

HP H PF F F  (1)
where FH and FP are the numbers of DOFs for the host and
parasitic mechanisms, respectively.

The number of DOFs of the host mechanism is given by:
6( 1)H H H H HF n g f      (2)

where nH is the number of components, gH is the number of
motion joints, fH,j is the number of DOFs of the jth motion
joint, and μH is the number of overconstraints of the
mechanism, which consists of the number of general
constraints λH and the number of redundant constraints (i.e.,
virtual constraints) vH:

 1H H H H Hn g      (3)
The number of DOFs of a parasitic mechanism is given by:

6( 1 1)

    6( )
P P P P P

P P P P

F n g f

n g f





     

   



(4)

and
   1 1P P P P P P P P Pn g n g            (5)

where nP is the number of components, gP the number of
motion joints, fP,j the number of DOFs of the jth motion joint,
and μP the number of overconstraints of the mechanism,
which consists of the number of general constraints λP and
the number of redundant constraints (i.e., virtual constraints)
vP. In addition, the 1 in the term nP+1 in the above equations
means that the parasitized mechanism is treated as a
component. This is the key to correctly calculating the
number of DOFs of a parasitic mechanism. A parasitized
mechanism is generally the parasitic mechanism of the
previous level or the host mechanism.

Table I summarizes the calculation of the numbers of
DOFs of different branched chains of an H–P robot. Based
on (1), the total number of DOFs of the new H–P robot is as
follows:F=3+0+0+0+0+1+0=4 . Let θ1, θ2, θ3, and θ4, be the
drive angles of the four drive motors of the H–P robot,
respectively.

TABLE I
NUMBER OF DOFS OF DIFFERENT BRANCHED CHAINS OF AN H-P ROBOT

Chain Color n g u v λ Equations used
for calculation Fi

A Blue 4 3 0 0 3 (2) and (3) 3
B Pink 4 6 6 0 3 (4) and (5) 0
C Yellow 2 3 3 0 3 (4) and (5) 0
D Green 2 3 3 0 3 (4) and (5) 0
E Orange 4 6 6 0 3 (4) and (5) 0
F Red 9 13 12 0 3 (4) and (5) 1
G Black 2 3 3 0 3 (4) and (5) 0

B. KINEMATIC MODEL OF THE ROBOT
First, a kinematic model is established for the host

branched chain (i.e., branched chain A). The spatial
coordinates of each motion joint of branched chain A are as
follows:

1 ,

1 ,
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 

 

 

(6)

where x0,Ai, y0,Ai , andz0,Ai are the spatial coordinates of node
Ai (0 means that this node belongs to the parasitized branched
chain of level 0, i.e., the host branched chain). lAi is the
projected length of the link with Ai as its starting point on the
corresponding plane, and θAx,i, θAy,i, and θAz,i are the angles
between the projections of the link with Ai as its starting
point on the corresponding planes and the coordinate axes. It
is possible to establish the functional relationships of θAx,i,
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θAy,i, and θAz,i with the drive angles based on the geometric
relationships.

Next, a kinematic model is established for each parasitic
branched chain (i.e., branched chains B–G). The spatial
coordinates of each motion joint of a parasitic branched chain
are given by:

1 ,

1 ,

1 ,
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(7)

where xj,Wi, yj,Wi, and zj,Wi are the spatial coordinates of node
Wi of a certain parasitic branched chain W∈[B,C,D,E.F,G]
and j means that this node belongs to the parasitized
branched chain of the jth level. Node Wi-1 is the parasitic joint
of the link where node Wi is located and belongs to the
parasitized branched chain of the (j – 1)th level. lWi is the
projected length of the link with Wi as its starting point on the
corresponding plane, and θWx,i, θWy,i, and θWz,i are the angles
between the projections of the link with Wi as its starting
point on the corresponding planes and the coordinate axes. It
is possible to establish the functional relationships of θWx,i,
θWy,i, and θWz,i with the drive angles based on the geometric
relationships.

C. WORKING SPACE OF THE ROBOT
The working space of the robot is composed of a
combination of all the spatial points that its end can reach
and is expressed with vertical and horizontal projections. The
working space of the robot on the xz plane (i.e., the
horizontal plane) is an annular area. The inner and outer radii
of this annular area are the contraction and extension limits
of the manipulator, respectively. The range of the angle of
rotation of the ring is θ1∈[300°,420°]. The position of joint
point F8 at the end of the robot within the xz plane is given by:

8 8 1cos( )F Fx z  (8)
Within the yz plane (i.e., the vertical plane), because the

host mechanism has independent DOFs but the parasitic
mechanisms have no independent DOFs, a position analysis
of the robot is equivalent to an analysis of the host
mechanism (i.e., the serial mechanism composed of branched
chain A and link A5F8), as shown in Figure 2. The position of
joint point F8 within the yz plane is given by:

8 1 2 2 3 3 4 4 52 3sin( ) sin( )F A A A A A A A Ay l l l l     (9)

8 3 4 4 5 5 82 3cos( ) cos( )F A A A A A Fz l l l    (10)
where lA1A2, lA2A3, lA3A4, lA4A5, and lA5F8 are the lengths of the
links of branched chain A and the end link of branched chain
B, respectively (lA1A2 = 0.155 m, lA2A3 = 0.585 m, lA3A4 = 0.776
m, lA4A5 = 0.420 m, and lA5F8 = 0.622 m), and θ2 and θ3 are the
working angles of rotation of links A3A4 and A4A5,
respectively.

To avoid interference between the parasitic branched
chains as well as singular configurations, the angles of
rotation of the manipulator of the H–P robot are limited as
follows: θ2∈[352.51°,397.44°], θ3∈[290.00°,341.97°], and

θ2-θ3≥52.17°. A total of 30,000 robot poses were randomly
generated using the Monte Carlo method. Subsequently, the
projection of the working space of the robot on the yz plane
was calculated, as shown in Figure 3. The working area of
the robot is enclosed by four extreme pose points, namely,
the highest point P1 (1.638 m, 1.229 m), the furthest point P2
(1.7076 m, 0.901 m), the lowest point P3 (1.538 m, 0.396 m),
and the nearest point P4 (1.384 m, 0.966 m), which
correspond to poses P′p1 , P′p2 , P′p3 , and P′p4 , respectively.

FIGURE 3. Projection of the working space of the robot on the yz plane.

III. FITTED SD MODELS OF H–P ROBOTS
A. DIFFERENT FITTED SD MODELS
For the stiffness at a single node (e.g., the output node at the
end of a robot) in a single pose, based on the significant
results for the deformation of the mechanism under a specific
unidirectional external load, comprehensive fitting factors aA,
aIy, aIz ,and aJ are introduced for the characteristic boundary
conditions (cross-sectional area A, cross-sectional moments
of inertia Iy and Iz, and polar moment of inertia J ) composing
the stiffness matrix of the mechanism. The SD of a robot
refers to the distribution of its stiffnesses in all the poses
within its working range.

Mechanism stiffness models can be categorized into three
types based on the goodness of fit: (1) non-fitted SD (FSD;
e.g., an ANSYS Workbench simulation model), (2) single-
source FSD (S-FSD), and (3) multi-source FSD (M-FSD)
models.

1. ADVANTAGES OF A NON-FSD MODEL
Computer hardware resources permitting, it is possible to
obtain a stiffness matrix relatively close to an actual rigid-
frame structure through a large number of mesh cells that
restore the details of the geometric model. The following is
the fitting factor matrix of a non-FSD model:

[      ] [1  1  1  1]  
y z

T T
A I I Ja a a a a  (11)

The following is the characteristic boundary parameter
matrix:

[           ]

  [           ]       
y z

T
A I y I z J

T
y z

R a A a I a I a J

A I I J

   

   
(12)

where A′ is the cross-sectional area of the element, I′y is the
cross-sectional moment of inertia within the xz coordinate
plane, I′z is the cross-sectional moment of inertia within the
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xy coordinate plane, and J′ is the polar moment of inertia of
the element.

2. ADVANTAGES OF AN S-FSD MODEL
Based on the stiffness values calculated by the non-FSD
model for single poses, the fitting factors are subjected to a
single-source fitting procedure. A fitted stiffness model with
an extremely small number of computational cells (i.e., an S-
FSD model) is, thus, obtained. The stress-induced
deformation calculated by the S-FSD model is basically
consistent with that calculated by the non-FSD model, which
contains an extremely large number of computational cells.
The S-FSD model can accurately calculate the stress-induced
deformation of the robot in a single pose under any load and
requires significantly less computational time for a single
pose.

3. ADVANTAGES OF AN M-FSD MODEL
Following on from the S-FSD model, based on the
experimental stiffness measurements for multiple poses as
well as the distribution of the DOFs of each branched chain
of the mechanism, the link and beam elements are
differentiated. Subsequently, the fitting factors are fitted
based on the type of element. The results of the analysis of

the stress-induced deformation are basically consistent with
the experimental stiffness measurements. Finally, an accurate
SD that is basically consistent with the actual SD of the
physical prototype is obtained.

B. M-FSD MODELING STEPS FOR AN H–P ROBOT
Figure 4 is a flowchart of the M-FSD modeling of an H–P
robot. The following details the steps:

Step 1: Determine the objective of analysis, which is to
establish an M-FSD model for the H–P robot.

Step 2: Select a single pose of the robot and establish a
non-FSD model and a preliminary S-FSD model based on
the beam elements.

Step 3: Determine a fitting sequence for the fitting factors
(aA, aIy, aIz ,and aJ) based on the preliminary S-FSD model
and the significant results for the deformation of the
mechanism under unidirectional external loading.

Step 4: Fit the stress-induced deformation in various
directions based on the non-FSD model and the fitting
sequence determined in Step 3. Determine the fitting factors
using the Monte Carlo method. Thus, establish a single-pose
S-FSD model.

FIGURE 4. Flowchart of the M-FSD modeling of an H–P robot.
Step 5: Differentiate the link and beam elements based on

the distribution of the DOFs of each branched chain of the
mechanism (the beam elements include the links of the host
and parasitic branched chains where the drive motors are
mounted, while the other links are categorized as link
elements).

Step 6: Perform a significance analysis on the beam
elements alone based on the preliminary M-FSD model and
determine a fitting sequence for the beam elements. Use
fitting factors aA and aIz of the S-FSD model for the link
elements (for the link elements, because of their very small
distortional deformation and bending deformation in the y-
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direction, their deformation is approximately simplified by a
100-fold reduction, i.e., aJ=100 and aIy=100).

Step 7: Fit the stress-induced deformation in different
directions in succession based on the S-FSD model and the
fitting sequence determined in Step 6. Determine the fitting
factors using the Monte Carlo method. Thus, establish a
single-pose M-FSD model.

Step 8: Select multiple poses of the robot and repeat Steps
2–7 to obtain the corresponding fitting factors for different
poses. Establish a multi-pose M-FSD model through a
weighted integration of the fitting factors for multiple
different poses.

Step 9: Validate the correctness of the multi-pose M-FSD
model.

C. STIFFNESS MODEL OF THE NEW H–P ROBOT
Based on its structural diagram in Figure 2, the H–P robot,
which is composed of connecting links, can be divided into
36 two-node beam elements. In a local coordinate system for
elements, the nodal variables are given by:

1 1 1 1 1 1 2 2 2 2 2 2[            ]e T
x y z x y zu v w u v w       (13)

where ui,vi,and wi are the displacements at node i along the
local coordinate directions and θxi, θyi ,and θzi are the angles
of rotation of the cross section at node i around the three
coordinate axes (specifically, θxi is the angle of rotation of the
cross section and θyi and θzi are the angles of rotation of the
cross section within the xz and xy coordinate planes,
respectively).

The nodal forces are given by:
1 1 1 1 1 1 2 2 2 2 2 2[            ]e T

x y z x y zF U V W M M M U V W M M M            (14)
where U′i is the axial force at node i and V′i and W′i are the
shear forces at node i within the xz and xy coordinate planes,
respectively, M′xi is the torque at node i, and M′yi and M′zi are
the bending moments within the xz and xy coordinate planes,
respectively.

For the non-FSD model, the characteristic boundary
parameters (A′,I′y,I′z,J′) of its stiffness matrix can be
represented by r:

[       ]Ty zr A I I J    (15)
where A′ is the cross-sectional area of the element, I′y and I′z
are the cross-sectional moments of inertia of the element
within the xz and xy coordinate planes, respectively, and J′ is
the polar moment of inertia of the element.

For the FSD models, fitting factors aA, aIy, aIz , and aJ are
introduced for the four characteristic boundary parameters of
the stiffness matrix, respectively. These fitting factors can be
represented by matrix a:

[      ]  
y z

T
A I I Ja a a a a (16)

The fitted characteristic boundary parameters of the
stiffness matrix can be represented by matrix R:

  [       ]

  [           ]
y z

T
y z

T
A I y I z J

R ra
A I I J

a A a I a I a J





   

(17)

where A is the fitted cross-sectional area of the element, Iy
and Iz are the fitted cross-sectional moments of inertia within
the xz and xy coordinate planes, respectively, and J is the
fitted polar moment of inertia of the element.

Table II summarizes the characteristics of the
characteristic boundary parameters of the three types of
model that significantly affect mechanism deformation.

TABLE II
CHARACTERISTICS OF THE CHARACTERISTIC BOUNDARY PARAMETERS OF

THE THREE TYPES OF MODEL

Non-FSD
model

S-FSD
model M-FSD model

Mechanism Mechanism Mechanism H–P robot
Element Beam Beam Link Beam
Source of
fitting Non Non-FSD

model
Non-FSD
model

Experiment

Parameter 1 A′ aAA′ aAA′ a′AaAA′
Parameter 2 J′ aJJ′ aJJ′ ,aJ=100 a′JaJJ′
Parameter 3 I′y , I′z aIyI′y , aIzI′z aIyI′y , aIzI′z,

aIy=100
a′IyaIyI′y
a′IzaIzI′z

The following is the stiffness matrix of the elements of the
H–P robot mechanism when using Euler–Bernoulli beams:
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(18)

The following is the transformation matrix between the
local and global coordinate systems for the elements of the
H–P robot mechanism:

0 0 0
0 0 0
0 0 0
0 0 0

t
t

T
t

t

 
 
 
 
 
 

(19)

where
cos( , ) cos( , ) cos( , )
cos( , ) cos( , ) cos( , )
cos( , ) cos( , ) cos( , )

x x x y x z
t y x y y y z

z x z y z z

 
   
  

(20)

The first row of submatrix t can be calculated based on the
coordinates of the node in the (x, y,z )global coordinate
system:

2 1

2 1

2 1

2 2 2
2 1 2 1 2 1

cos( , )

cos( , )

cos( , )

( ) ( ) ( )

x x
x x

l
y y

x y
l

z z
x z

l
l x x y y z z










     

(21)

An auxiliary reference coordinate system (x′,y′,z′) is
required to determine the other rows of submatrix t.

The following is the transformation matrix between the
(x′,y′,z′) auxiliary reference coordinate system and the (  x,
y,z) global coordinate system:

1 0

l m n
m lt
l
nl mn




 

 
 
 
  
 
 
  
  

(22)

Where

2 2

cos( , )

cos( , )

cos( , )

j i

j i

j i

x x
x x l

L
y y

x y m
L

z z
x z n

l
l m


 


 


 

 

(23)

and
2 2 2( ) ( ) ( )j i j i j iL x x y y z z      (24)

The following is the transformation matrix between the
(x′,y′,z′) auxiliary reference coordinate system and the (x,y,z)
local coordinate system:
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2

1 0 0
0 cos sin
0 sin cos

t  
 

 
   
  

(25)

where α is the angle between the y-axis of the local
coordinate system and the y′-axis of the auxiliary coordinate
system. Submatrix t can be expressed as follows:

2 1

1 0 0
0 cos sin 0
0 sin cos

l m n
m lt t t
l
nl mn

 


 


 

 
 

   
        
    

  
  

(26)

If the element is perpendicular to the global coordinate
system (i.e., the x-axis of the element is parallel to the z-axis
of the global coordinate system), then the transformation
matrix is transformed to

2

0 0 1
sin cos 0
cos sin 0

t  
 

 
   
   

(27)

Thus, the relationship between the element node
displacements in the local and global coordinate systems can
be expressed as:

e eT  (28)
By substituting (28) into the FE equation and pre-

multiplying the equation by , a characteristic element matrix
in the global coordinate system is obtained:

e T eK T K T (29)
The force vector is given by:

e T eF T F (30)
By integrating the element matrix and the vector, a

stiffness model is obtained for the H–P robot:
FK


 (31)

D. SIGNIFICANCE ANALYSIS OF DEFORMATION
RESPONSE AND FITTING SEQUENCE
Stiffness matrix K is composed of the characteristic matrices
of the axial-force, bending, and torsional elements, which are

independent of each another. aAA′ and aJJ′ are the
characteristic boundary parameters of the axial-force and
torsional elements and determine their tensile/compressive
deformation and torsional deformation, respectively. aIyI′y
and aIzI′z are the characteristic boundary parameters of the
bending elements and determine their bending deformation in
two different planes.

Here, the pose of the H–P robot at point P1 is selected. In
addition, a unidirectional load of –50N is applied in
succession to the target node along each of the negative x-, y-,
and z-directions:

 50, 50,0,0 Te
xF    ,  e

50, 0, 50,0 T
yF    ,and

 50, 0,0, 50 Te
zF    .

Let δ-50,x, δ-50,y, and δ-50,z be the deformation displacements
at the node in the x-, y-, and z-directions, respectively. The
fitting factors are set to 1 and 100 for the characteristic
boundary parameters, respectively:

1 [      ] [1  1  1  1]
y z

T T
A I I Ja a a a a  ,

2 [100  1  1  1]Ta  ,
3 [1  100  1  1]Ta  ,

4 [1  1  100  1]Ta  ,

and 5 [1  1  1  100]Ta  .
The significance of each fitting factor to the deformation

response is determined by comparing the percentage changes
in δ-50,x, δ-50,y, and δ-50,z . The fitting sequence for the fitting
factors is determined based on the characteristics of the
significance of the deformation response. Table III
summarizes the significance analysis of the deformation
response of the stiffness model of the H–P robot. When aA is
increased 100-fold, the deformation displacements in the x-,
y-, and z-directions become 12.94%, 103.27%, and 103.04%
of the respective original values. Evidently, aA has a
significant and approximately inversely proportional impact
on the x-direction. Similarly, aIy has a highly significant and
approximately inversely proportional impact on the y-
direction and a relatively weakly significant impact on the x-
and z-directions. aIz has a relatively significant and
approximately inversely proportional impact on the z-
direction and a relatively weakly significant impact on the x-
and y-directions. aJ has no significant impact on the x-, y-, or
z-directions. By combining these findings, the following
fitting sequence should be adopted: aIy, aIz,aA ,and aJ.

TABLE III
SIGNIFICANCE ANALYSIS OF THE DEFORMATION RESPONSE OF THE STIFFNESS MODEL OF THE H–P ROBOT

a Case δ-50,x
(μm)

δ-50,y
(μm)

δ-50,z
(μm)

Significance analysis
on the x-direction

Significance analysis
on the y-direction

Significance analysis
on the z-direction

aA = aIy = aIz = aJ = 1 [1, 1, 1, 1] 1 -0.48 -9.00 -4472.00 / / /
Only aA = 100 [100, 1, 1, 1] 2 -0.06 -9.29 -4608.00 / / /
Only aIy = 100 [1, 100, 1, 1] 3 -0.42 -0.15 -5513.00 / / /
Only aIz = 100 [1, 1, 100, 1] 4 -0.42 -9.92 -155.00 / / /
Only aJ = 100 [1, 1, 1, 100] 5 -0.48 -8.97 -4358.00 / / /

aA % of case
2/1 2/1 12.94 103.27 103.04 Highly significant No significant No significant

aIy % of case
3/1 3/1 87.43 1.64 123.28 Significant Highly significant Significant

aIz % of case
4/1 4/1 87.94 110.31 3.47 Significant Significant Relatively significant

aJ % of case
5/1 5/1 99.85 99.68 97.45 No significant No significant No significant
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IV. CASE STUDIES AND VALIDATION
A. SINGLE-POSE S-FSD MODEL AND ITS VALIDATION
Relatively reliable and accurate results can be obtained for a
mechanism by FE simulation (i.e., establishing a non-FSD
model). These results can be used to examine the correctness
of theoretical calculation methods.[26] In this study, the 3D
model of the H–P robot was imported into the ANSYS
Workbench FE analysis software. Corresponding boundary
conditions were then set. The H-P robot was fabricated with
aluminum alloy. The joint bearings of the robot were made
with bearing steel. The base of the robot was fixed onto the
ground. A unidirectional external load was independently
applied to the end of the robot in succession along each of the
x-, y-, and z-directions. Tetrahedrons and hexahedrons were
combined. The H–P robot was divided into 1,261,386 cells
using the automatic mesh generation technique. “Bonded”
contact conditions were applied to the robot mechanism.[27]

First, the fitting factors for the S-FSD model of the H–P
robot were determined. Based on its structural composition,
the H–P robot was divided into 36 cells. The pose of the H–P
robot at point P1 was selected. A unidirectional load of –50 N
was applied to node F8 at the end of the robot in succession
along each of the negative x-, y-, and z-directions, i.e.,

 50, 50,0,0 Te
xF    ,  e

50, 0, 50,0 T
yF    , and

 50, 0,0, 50 Te
zF    .

Let δ-50,x, δ-50,y, and δ-50,z be the deformation displacements
at node F8 in the x-, y-, and z-directions, respectively. The
following results were obtained from FE simulation: δ-50,x=-
2622μm, δ-50,y=-424.40μm, and δ-50,z =-57.25μm, as shown in

Table IV. Based on the results produced by the non-FSD
model, aIy, aIz,aA , and aJ were fitted, in this sequence, using
the Monte Carlo method. The following fitted values were
obtained:aIy=0.0273,aIz=2.12,aA=0.00645 ,and aJ=1.

Second, the results produced by the S-FSD model were
verified against those produced by the non-FSD model.
Unidirectional loads of –100N, –300N, and –500N were
applied to the target node in succession along each of the
negative x-, y-, and z-directions, i.e.,

 100, 100,0,0 Te
xF    ,  e

100, 0, 100,0 T
yF    ,

 100, 0,0, 100 Te
zF    ,  300, 300,0,0 Te

xF    ,

 e
300, 0, 300,0 T

yF    ,  300, 0,0, 300 Te
zF    ,

 500, 500,0,0 Te
xF    ,  e

500, 0, 500,0 T
yF    , and

 e
500, 0,0, 500 T

zF    .
Table IV summarizes the results produced by the S-FSD

and non-FSD models. Compared to the non-FSD model,
which has 1,261,386 computational cells, the single-pose S-
FSD model of the H–P robot has 99.9971% fewer
computational cells—only 36 computational cells. In
addition, compared to the non-FSD model, the S-FSD model
requires at least 99.32% less computational time. The
maximum difference between the deformation of the
mechanism calculated by the S-FSD and that calculated by
the non-FSD model is only 0.61%. The results produced by
the S-FSD model are highly consistent with those produced
by the non-FSD model. This validates the correctness of the
S-FSD model.

TABLE IV
RESULTS FOR THE SINGLE-POSE S-FSD AND NON-FSD MODELS

Direction Results Case δ-50 (μm) δ-100 (μm) δ-300 (μm) δ-500 (μm) t′-50 (s) t′-100 (s) t′-300 (s) t′-500 (s)

x Non-FSD model 1 -2622 -5240.9 -15698 -26134 724 864 1161 1309
S-FSD model 2 -2624 -5248.2 -15745 -26241 3.33 3.27 3.27 3.34

y Non-FSD model 3 -421.44 -842.81 -2526 -4211 561 564 563 564
S-FSD model 4 -421.40 -842.93 -2529 -4215 3.38 3.55 3.34 3.3

z Non-FSD model 5 -57.59 -115.18 -345.55 -575.91 494 491 496 497
S-FSD model 6 -57.25 -114.8 -343.44 -572.4 3.27 3.34 3.36 3.33

x % of case 2/1 2/1 100.08 100.14 100.30 100.41 0.46 0.38 0.28 0.26
y % of case 4/3 4/3 99.99 100.01 100.12 100.09 0.60 0.63 0.59 0.59
z % of case 6/5 6/5 99.43 99.67 99.39 99.39 0.66 0.68 0.68 0.67

B. MULTI-POSE S-FSD MODEL AND ITS VALIDATION
First, poses P′p1 and P′p3 of the H–P robot were selected for
comprehensive fitting. Subsequently, poses P′p2 and P′p4 were
selected to verify the results produced by the S-FSD model
by comparison with those produced by the non-FSD model.
Let KP1, KP2, KP3, and KP4 be the stiffnesses of the H–P robot
in the four extreme poses, respectively.

First, the fitting factors for the stiffness models of the H–P
robot in the two poses were determined through simulation.
The fitted values obtained in the previous section for the
stiffness model of the H–P robot in pose P′p1 are as follows:
aIy=0.0273,aIz=2.12,aA=0.00645, and aJ=1. The following are
the fitted values obtained for the stiffness model of the H–P

robot in pose P′p3 using the same method:
aIy=0.0300,aIz=1.95,aA=0.00571,and aJ=1. By combining the
fitted values for the fitting factors for poses P′p1 and P′p3, the
fitting factors were determined as follows:
aIy=0.0285,aIz=2.025,aA=0.00608 , and aJ=1.

Second, the S-FSD model was verified. Based on the non-
FSD model, poses P′p2 and P′p4 of the H–P robot were
selected. A unidirectional load of –50 N was applied to node
F8 at the end of the robot in succession along each of the x-,
y-, and z-directions. The deformation displacements at the
node at the end of the robot were calculated. Figures 5–7
show the deformation along the x-, y-, and z-directions,
respectively, as obtained by the simulation.
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(a) Pose P′p1 (b) Pose P′p2

(c) Pose P′p3 (d) Pose P′p4

FIGURE 5.  Deformation along the x-direction.

(a) Pose P′p1 (b) Pose P′p2

(c) Pose P′p3 (d) Pose P′p4

FIGURE 6.  Deformation along the y-direction.
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(a) Pose P′p1 (b) Pose P′p2

(c) Pose P′p3 (d) Pose P′p4

FIGURE 7.  Deformation along the z-direction.
Table V summarizes the results produced by the S-FSD

and non-FSD models. For the four poses of the H–P robot,
the results produced by the non-FSD model are treated as
reference values. For a unidirectional load applied along the
x-direction, the values of KP1,x, KP2,x, KP3,x, and KP4,x
calculated by the S-FSD model are 95.19%, 104.80%,
105.40%, and 97.81% of those calculated by the non-FSD
model, respectively. For a unidirectional load applied along
the y-direction, the values of KP1,y, KP2,y, KP3,y, and KP4,y
calculated by the S-FSD model are 106.04 %, 113.75%,
83.06%, and 108.69% of those calculated by the non-FSD

model, respectively. For a unidirectional load applied along
the z-direction, the values of KP1,z, KP2,z, KP3,z, and KP4,z
calculated by the S-FSD model are 96.06 %, 95.58%,
102.59%, and 98.07% of those calculated by the non-FSD
model, respectively. The maximum difference between the
stiffnesses calculated by the S-FSD and non-FSD models is
16.94%. Evidently, the stiffnesses calculated by the S-FSD
model are relatively close to those calculated by the non-FSD
model. This validates the correctness of the multi-pose S-
FSD model.

TABLE V
RESULTS FOR THE S-FSD AND NON-FSD MODELS

Direction Results Case δP1 (μm) δP2 (μm) δP3 (μm) δP4 (μm) KP1 (N/μm) KP2 (N/μm) KP3 (N/μm) KP4(N/μm)

x Non-FSD model 1 -57.59 -59.63 -67.92 -61.07 0.8682 0.8385 0.7362 0.8187
S-FSD model 2 -60.50 -56.90 -64.44 -62.44 0.8264 0.8787 0.7759 0.8008

y Non-FSD model 3 -421.44 -461.17 -354.72 -456.32 0.1186 0.1084 0.1410 0.1096
S-FSD model 4 -397.44 -405.44 -427.07 -419.82 0.1258 0.1233 0.1171 0.1191

z Non-FSD model 5 -2622.00 -2455.90 -1800.20 -1556.30 0.0191 0.0204 0.0278 0.0321
S-FSD model 6 -2729.57 -2569.42 -1754.70 -1586.85 0.0183 0.0195 0.0285 0.0315

x % of case 2/1 2/1 105.05 95.42 94.88 102.24 95.19 104.80 105.40 97.81
y % of case 4/3 4/3 94.31 87.92 120.40 92.00 106.04 113.75 83.06 108.69
z % of case 6/5 6/5 104.10 104.62 97.47 101.96 96.06 95.58 102.59 98.07

C. EXPERIMENT ON THE STRESS-INDUCED
DEFORMATION OF THE H–P ROBOT IN MULTIPLE
POSES
A prototype of the robot was fabricated with aluminum alloy.
The joint bearings of the robot were made with bearing steel.
The stiffness of the H–P robot in each pose was determined

by applying a unidirectional load to the end of the H–P robot
and measuring its deformation.

Figure 8 shows the experimental test platform. It is
composed primarily of the H–P robot, a screw jack, a
tension–compression dynamometer and its display, and a
digital dial gauge. The jack was used to apply a
unidirectional external load. One end of the jack was fixed
onto a wall, while its other end was connected to the end of
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the H–P robot via the dynamometer. The dynamometer was
used to measure the magnitude of the applied load. In
addition, the dial gauge was used to measure the deformation
at the end of the robot along the direction in which the
unidirectional load acted. Subsequently, the corresponding
stiffness of the robot was calculated.

FIGURE 8. Experimental system to measure the end deformation of the
H-P robot.

The H–P robot was set in succession in poses P′p1 , P′p2 ,
P′p3 , and P′p4.Unidirectional loads of 0N, –10N, –20N, –
30N, –40N, –50N, –60N, and –70N were applied to the
target node in succession along each of the negative x-, y-,
and z-directions. The experimental steps were as follows:

(1) Select the pose. The pose of the robot was adjusted to
allow its end to reach the selected location.

(2) Select the direction. The base of the robot was fixed
onto the ground. One end of the jack was fixed onto a wall.
The pose of the robot was adjusted and locked.

(3) The dynamometer was mounted, and the dial gauge
was initialized. Based on the first deformation (static
deformation) caused by gravity, the second deformation
(dynamic deformation) caused by external load is measured
by experiment.Specifically, the jack and the dynamometer
were mounted horizontally and slightly pressed against the
robot. The reading of the dial gauge was zeroed.

(4) Select the unidirectional external load.The deformation
at the end of the robot was measured. An external load was
applied five times. For each direction and unidirectional load,
five measurements were taken and were subsequently
averaged and analyzed using error bars.

(5) Select the next unidirectional load(–10N to –70N) of
the robot and repeat Step 4 .

(6) Select the next direction(x-, y-, and z-directions) of the
robot and repeat Steps 2–5 .

(7) Select the next pose( P′p1 to P′p4) of the robot and
repeat Steps 1–6.

Figures 9 show the relationship between the external load
and the deformation at the end of the robot along each
direction at each location. As the external load increased,
there was a gradual increase in the deformation of the H–P
robot along each of the x-, y-, and z-directions. However,
overall, the deformation along the z-direction was the least
significant, the deformation along the x-direction was the
most significant, and the deformation along the y-direction
was between that along the x-direction and that along the z-

direction. The stiffness of the robot was calculated based on
the experimental data. For each direction,the seven values of
the stiffness of the robot under the seven applications of the
external load were averaged.Table VI summarizes the
measured stiffnesses of the robot in the four poses (KP1, KP2,
KP3, and KP4) along the three directions.

(a) Pose P′p1

(b) Pose P′p2

(c) Pose P′p3
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(d) Pose P′p4

FIGURE 9. Relationship between the external load and the deformation
at the end of the robot.

D. MULTI-POSE M-FSD MODEL AND ITS VALIDATION
Poses P′p1 and P′p3 of the H–P robot were selected for
comprehensive experimental fitting. Subsequently, poses P′p2
and P′p4 were selected to verify the results produced by the
M-FSD model by comparison with the experimental results.

The fitted values of the fitting factors obtained for the
beam elements of the robot in pose P′p1 are as follows:
aIy=0.006341,aIz=0.921375,aA=0.004134 ,and aJ=1. The
fitted values of the fitting factors for the beam elements of
the robot in pose P′p3 are as follows: aIy=0.003374,
aIz=1.007063, aA=0.00168 , and aJ=1. By combining the
fitted values of the fitting factors for poses P′p1 and P′p3, the
fitting factors for the beam elements of the robot were
determined as
follows:aIy=0.004857,aIz=0.964219,aA=0.002997 ,and aJ=1.
The fitting factors for the link elements of the robot are as
follows: aIy=100,aIz=2.025,aA=0.00608 ,and aJ=100.

The M-FSD model was verified. Poses P′p2 and P′p4 of the
H–P robot were selected for verification. Table VI
summarizes the results produced by the M-FSD model and
the experimental results. For the four poses of the H–P robot,
the experimental results are treated as reference values. For a
unidirectional load applied along the x-direction, the values
of KP1,x, KP2,x,KP3,x ,and KP4,x calculated by the M-FSD model
are 91.59%, 86.82%, 110.57%, and 115.34% of their
experimental values, respectively. For a unidirectional load
applied along the y-direction, the values of KP1,y,
KP2,y,KP3,y ,and KP4,y calculated by the M-FSD model are
99.19%, 111.79%, 115.85%, and 95.48% of their
experimental values, respectively. For a unidirectional load
applied along the z-direction, the values of KP1,z,
KP2,z,KP3,z ,and KP4,z calculated by the M-FSD model are
105.08%, 78.33%, 86.49%, and 123.66% of their
experimental values, respectively. The maximum and second
maximum differences in stiffness are 23.66% and 22.67%,
respectively. In all the other cases, the difference in stiffness
is within 15.85%. Manifestly, the results produced by the M-
FSD model of the H–P robot are relatively close to the

experimental results. This validates the correctness of the
multi-pose M-FSD model.

TABLE VI
RESULTS FROM THE M-FSD MODEL AND THE EXPERIMENTAL RESULTS

Results Case KP1
(N/μm)

KP2
(N/μm)

KP3
(N/μm)

KP4
(N/μm)

x Experiment 1 0.29181 0.33622 0.23271 0.22576
M-FSD
model 2 0.26727 0.29190 0.25730 0.26038

y Experiment 3 0.02698 0.02365 0.02191 0.02187
M-FSD model 4 0.02676 0.02644 0.02538 0.02542

z Experiment 5 0.00902 0.01324 0.01485 0.01457
M-FSD model 6 0.00948 0.01037 0.01284 0.01802

x % of case 2/1 2/1 91.59 86.82 110.57 115.34
y % of case 4/3 4/3 99.19 111.79 115.85 95.48
z % of case 6/5 6/5 105.08 78.33 86.49 123.66

V. COMPARATIVE ANALYSIS AND DISCUSSION OF
THE STIFFNESS OF THE H–P ROBOT
A. EVOLUTIONARY PROCESS FOR CONFIGURING
THE H–P ROBOT MECHANISMS
To facilitate a comparative analysis of the effects of different
branched chains on the stiffness of the H–P robot, six
mechanisms (A, B, C, D, E, and F) were derived from an
evolutionary process for configuring the H–P robot prototype,
as shown in Figure 10. Each mechanism has four DOFs,
achieved through a combination of axes 1, 2, 3, and 4, which
correspond to actuators M1, M2, M3, and M4, respectively.
The evolution of the configuration of the H–P robot involves
two processes:

(1) Movement of the actuators: The drive motors that are
originally on the right side of the host mechanism gradually
move to the left side of the robot mechanism to compensate
for gravity.

(2) Addition of parasitic branched chains: Adding parasitic
branched chains gradually increases the structural stiffness of
the mechanism to varying degrees.[25]

The fitting factors of the multi-pose M-FSD model of
mechanism F were used for all six configurations. A total of
50,000 poses of the H–P robot within its working range were
generated using the Monte Carlo method. The SD was
analyzed based on the x-, y-, and z-directions.

Mechanism A is a serial mechanism with no parasitic
branched chains and can serve as a host mechanism.
Mechanism B is formed by adding a balancing parasitic
branched chain (branched chain B) to mechanism A.
Mechanism C is formed by adding a branched chain
(branched chain C) that can drive axis 3 to mechanism B.
Mechanism D is formed by adding a branched chain
(branched chain D) that can drive axis 2 to mechanism C.
Mechanism E is formed by adding branched chains
(branched chains E and G) that can drive axis 1 to
mechanism D. Mechanism F is formed by adding a branched
chain (branched chain F) that can drive axis 4 to mechanism
E.
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FIGURE 10. The six mechanisms of the H–P robot.

B. COMPARISON OF THE SDS IN THE X-DIRECTION
The characteristic parameters of the SDs of the six
mechanisms in the x-direction include the minimum stiffness
Kmin,x, the maximum stiffness Kmax,x, the difference in

stiffness ∆Kx, and the average stiffness Kx (Table VII). A
comparison of mechanisms B–D with mechanism A shows
that the four characteristic parameters increase slightly as the
number of branched chains increases. The most significant
increase in the four characteristic parameters is for
mechanism F. Kmin,x, Kmax,x, ∆Kx, and Kx of mechanism F are
104.44%, 104.05%, 103.61%, and 104.1% of those of
mechanism A, respectively.

TABLE VII
COMPARISON OF THE SDS IN THE X-DIRECTION

Case Kmin,x
(N/μm)

Kmax,x
(N/μm)

∆Kx
(N/μm)

Kx

(N/μm)
Mechanism A 1 0.0090 0.0173 0.0083 0.0122
Mechanism B 2 0.0091 0.0178 0.0086 0.0124
Mechanism C 3 0.0094 0.0182 0.0088 0.0128
Mechanism D 4 0.0094 0.0182 0.0088 0.0128
Mechanism E 5 0.0090 0.0172 0.0081 0.0120
Mechanism F 6 0.0094 0.0188 0.0086 0.0127
% of case 2/1 2/1 101.11 102.89 103.61 101.64
% of case 3/1 3/1 104.44 105.20 106.02 104.92
% of case 4/1 4/1 104.44 105.20 106.02 104.92
% of case 5/1 5/1 100.00 99.42 97.59 98.36
% of case 6/1 6/1 104.44 104.05 103.61 104.10

Figures 11–16 are 3D and two-dimensional (2D) SD
diagrams of the six mechanisms. There are considerable
similarities between their SDs. The high-stiffness region is
concentrated near the nearest pose point P4. The low-stiffness
region is concentrated near the highest pose point P1 and the
furthest pose point P2. The medium-stiffness region is
relatively large. Adding parasitic branched chains only
slightly improves the SD of the H–P robot in the x-direction.

FIGURE 11. SDs of the mechanism A robot in the x-direction.

FIGURE 12. SDs of the mechanism B robot in the x-direction.
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FIGURE 13. SDs of the mechanism C robot in the x-direction.

FIGURE 14. SDs of the mechanism D robot in the x-direction.

FIGURE 15. SDs of the mechanism E robot in the x-direction.

FIGURE 16. SDs of the mechanism F robot in the x-direction.

C. COMPARISON OF THE SDS IN THE Y-DIRECTION
The characteristic parameters of the SD of the six
mechanisms in the y-direction include the minimum stiffness

Kmin,y, the maximum stiffness Kmax,y, the difference in
stiffness ∆Ky, and the average stiffness Ky (Table VIII). A
comparison of mechanisms B–F with mechanism A shows
the following. Of the four characteristic parameters, Kmax,y
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and ∆Ky decrease as the number of branched chains increases.
The most significant decreases in Kmax,y and ∆Ky are for
mechanisms C and D. Specifically, Kmax,y and ∆Ky for
mechanisms C and D are 5.82% and 1.85% of those of
mechanism A, respectively. In contrast, Kmin,y increases
significantly as the number of branched chains increases. The
most significant increase in Kmin,y is for mechanism F.
Specifically, Kmin,y and Ky of mechanism F are 5456.52%
and 1427.78% of those of mechanism A, respectively.

TABLE VIII
COMPARISON OF THE SDS IN THE Y-DIRECTION

Case Kmin,y
(N/μm)

Kmax,y
(N/μm)

∆Ky
(N/μm)

Ky

(N/μm)
Mechanism A 1 0.00046 0.0275 0.0271 0.0018
Mechanism B 2 0.00054 0.0015 0.0010 0.0010
Mechanism C 3 0.00110 0.0016 0.0005 0.0013
Mechanism D 4 0.00110 0.0016 0.0005 0.0013
Mechanism E 5 0.00130 0.0038 0.0025 0.0018
Mechanism F 6 0.02510 0.0265 0.0150 0.0258
% of case 2/1 2/1 117.39 5.45 3.69 55.56
% of case 3/1 3/1 239.13 5.82 1.85 72.22
% of case 4/1 4/1 239.13 5.82 1.85 72.22
% of case 5/1 5/1 282.61 13.82 9.23 100.00
% of case 6/1 6/1 5456.52 96.73 55.35 1427.78

Figures 17–22 are the 3D and 2D SD diagrams of the six
mechanisms. The SD of mechanism A is not ideal.

Specifically, the SD of mechanism A varies significantly.
The high-stiffness region of mechanism A is small and
concentrated near the nearest pose point P4, whereas its low-
stiffness region is large. Both the low- and high-stiffness
regions of mechanism B are relatively small and
concentrated near the lowest pose point P3 and the furthest
pose point P4, respectively. The medium-stiffness region of
mechanism B is relatively large. The SDs of mechanisms C
and D vary insignificantly. For mechanisms C and D, the
high-stiffness region is concentrated near the highest pose
point P1, and the medium-stiffness region is relatively large.
The high-stiffness region of mechanism E is concentrated
near the lowest pose point P3, and its low-stiffness region is
large. Mechanism F has the most ideal SD and the highest
average stiffness. Mechanism F has a relatively large high-
stiffness region, which is distributed in a banded pattern
between the furthest pose point P2 and the highest pose point
P1 and extends to near the lowest pose point P3. In addition,
mechanism F has a relatively large medium-stiffness region.
This suggests that adding parasitic branched chains can
significantly improve the SD of the H–P robot in the y-
direction and that branched chain F, in particular, produces
the most significant improvement.

FIGURE 17. SDs of the mechanism A robot in the y-direction.

FIGURE 18. SDs of the mechanism B robot in the y-direction.
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FIGURE 19. SDs of the mechanism C robot in the y-direction.

FIGURE 20. SDs of the mechanism D robot in the y-direction.

FIGURE 21. SDs of the mechanism E robot in the y-direction.

FIGURE 22. SDs of the mechanism F robot in the y-direction.

D. COMPARISON OF THE SDS IN THE Z-DIRECTION
The characteristic parameters of the SD of the six
mechanisms in the z-direction include the minimum stiffness

Kmin,z, the maximum stiffness Kmax,z, the difference in stiffness
∆Kz, and the average stiffness Kz (Table IX). A comparison
of mechanisms B–F with mechanism A shows the following.
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Of the four characteristic parameters, Kmin,z and Kz increase
significantly as the number of branched chains increases. The
most significant increase in Kmin,z and Kz is for mechanism F.
Specifically, Kmin,z andKz of mechanism F are 1923.31% and
1101.62% of those of mechanism A, respectively. In contrast,
∆Kz decreases significantly as the number of branched chains
increases. The most significant decreases in ∆Kz are for
mechanisms C and D. Specifically, ∆Kz for mechanisms C
and D is 1.39% of that of mechanism A. Kmax,z increases or
decreases slightly as the number of branched chains increases.

TABLE IX
COMPARISON OF THE SDS IN THE Z-DIRECTION

Case Kmin,z
(N/μm)

Kmax,z
(N/μm)

∆Kz
(N/μm)

Kz
(N/μm)

Mechanism A 1 0.0133 0.2648 0.2515 0.0247
Mechanism B 2 0.2354 0.2480 0.0126 0.2456
Mechanism C 3 0.2446 0.2482 0.0035 0.2463
Mechanism D 4 0.2446 0.2482 0.0035 0.2463
Mechanism E 5 0.2435 0.2856 0.0422 0.2556
Mechanism F 6 0.2558 0.2905 0.0347 0.2721
% of case 2/1 2/1 1769.92 93.66 5.01 994.33
% of case 3/1 3/1 1839.10 93.73 1.39 997.17
% of case 4/1 4/1 1839.10 93.73 1.39 997.17
% of case 5/1 5/1 1830.83 107.85 16.78 1034.82
% of case 6/1 6/1 1923.31 109.71 13.80 1101.62

Figures 23–28 are the 3D and 2D SD diagrams of the six
mechanisms. The SD of mechanism A is again unideal.
Specifically, mechanism A is deficient as its SD pattern
varies significantly. Its high-stiffness region is small and
concentrated near the lowest pose point P4, and it has a large
low-stiffness region. The SD of mechanism B is relatively
ideal. Mechanism B has a low-stiffness region that is small
and concentrated near the lowest pose point P4, a relatively
large high-stiffness region, and a notably higher average
stiffness than mechanism A. For mechanisms C, D, and E,
the SD varies insignificantly, the low-stiffness region is small
and concentrated near the lowest pose point P3, the high-
stiffness region is concentrated near the highest pose point P1,
and the medium-stiffness region is relatively large. The SD
of mechanism F is the most ideal. Mechanism F has the
highest average stiffness, a high-stiffness region that is
relatively large and distributed in a banded pattern near the
furthest pose point P2 and the highest pose point P1, and a
relatively large medium-stiffness region. The stiffness of
mechanism F decreases slightly near the highest pose point
P1. This suggests that adding parasitic branched chains can
significantly improve the SD of the robot in the z-direction.

FIGURE 23. SDs of the mechanism A robot in the z-direction.

FIGURE 24. SDs of the mechanism B robot in the z-direction.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3063296, IEEE Access

W Wei et al.: Modeling and analysis of the stiffness distribution of host–parasite robots

VOLUME XX, 2021

FIGURE 25. SDs of the mechanism C robot in the z-direction.

FIGURE 26. SDs of the mechanism D robot in the z-direction.

FIGURE 27. SDs of the mechanism E robot in the z-direction.

FIGURE 28. SDs of the mechanism F robot in the z-direction.

E. COMPARISON OF THE STIFFNESSES IN
DIFFERENT DIRECTIONS

The SD in the x-direction varies relatively insignificantly
between the six mechanism (Table X). Thus, the average
stiffness in the x-direction Kx is selected as a reference for
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comparison. Ky and Kz for mechanism A are 14.75% and
202.46% of its Kx, respectively. Adding parasitic branched
chains considerably increases  Kz, as evidenced for
mechanisms B, C, D, and E. Specifically, Kz of mechanisms
B, C, D, and E is 1980.65%, 1924.22%, 1924.22%, and
2130.00% of Kx, respectively. Ky of mechanisms B, C, D,
and E is close to that of mechanism A.  Ky of each of

mechanisms B, C, D, and E is 8.06%, 10.16%, 10.16%, and
15.00% of its Kx, respectively. Adding parasitic branched
chain F significantly increases bothKy andKz, as evidenced
in mechanism F. Ky and Kz of mechanism F are 202.36%
and 2142.52% of its  Kx, respectively. Clearly, adding
parasitic branched chains can improve the average stiffnesses
of the mechanism in the y- and z-directions to varying
degrees.

TABLE X
COMPARISON OF THE STIFFNESSES IN DIFFERENT DIRECTIONS

Case Mechanism A Mechanism B Mechanism C Mechanism D Mechanism E Mechanism F

Kx (N/μm) 1 0.0122 0.0124 0.0128 0.0128 0.012 0.0127
Ky (N/μm) 2 0.0018 0.001 0.0013 0.0013 0.0018 0.0257
Kz (N/μm) 3 0.0247 0.2456 0.2463 0.2463 0.2556 0.2721
% of case 2/1 2/1 14.75 8.06 10.16 10.16 15.00 202.36
% of case 3/1 3/1 202.46 1980.65 1924.22 1924.22 2130.00 2142.52

VI. CONCLUSIONS
Accurately calculating the stiffnesses at the end of a complex
robot for all of its poses is relatively expensive in terms of
time cost. This study presents an FE fitting method that uses
an extremely small number of mesh cells in modeling. This
method was used to establish FSD models for an H–P robot,
which facilitated an efficient and accurate calculation and
analysis of the SD of its different evolutionary mechanisms.

(1) The link and beam elements of an H–P robot are
identified and classified as well as fitted in different
ways.The S-FSD and M-FSD modeling methods proposed in
this study can be used to facilitate a parallel calculation of the
stiffnesses at the end of a complex robot in almost all the
poses within its working range.

(2) Compared to the conventional non-FSD model, the S-
FSD model requires at least 99.32% less computational time.
The multi-pose M-FSD model established in this study
contains significantly fewer computational cells and requires
significantly less computational time while being able to
produce results that agree relatively well with the
experimental results.

(3) The locations and sizes of the low-, medium-, and
high-stiffness regions of the six H–P mechanisms can be
directly determined from the SD diagrams produced by the
M-FSD model.Adding parasitic branched chains can
improve the SD of the H–P robot. In particular, the most
notable improvement was for mechanism F.

(4) This method can provide a foundation for the
structural design and optimization of new robots.For
example,a design of flexible joint robot manipulator or
PAM(Pneumatic Artificial Muscle) actuated
manipulator,DLCC (Dynamic Load Carrying Capacities)
analysis of robot,and pose accuracy analysis of robot under
different working loads.
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