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Abstract. Fat and muscle layers in the human soft-tissue causes degra-
dation of resolution and distortions of shape in ultrasound images of
organs. Novel ultrasonic applications such as registration between CT
and ultrasound images, requiring comparable levels of accuracies between
modalities could suffer from the distortions in ultrasound images. In this
work, we describe a possible method to compensate or correct for these
distortions in ultrasound images. This can be used as a pre-processing
step before registration with other modalities. We derived a model of ul-
trasound field after reflection from an interface embedded in two layers.
Experiments were performed using single-element transducers and cus-
tom made tissue mimicking phantoms of fat and muscle and a steel-block.
We fit the model to the experimental data using Levenberg-Marquardt
inversion.
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1 Introduction

In addition to diagnostic applications, ultrasound is becoming increasingly pop-
ular for novel applications such as using intra-operatively obtained ultrasound
images for registration with other modalities for computer-aided surgery. In Fig-

Intra-operative Ultrasound Image Pre-operative CT Data

Fig. 1. Ultrasound image and CT slice of human femur
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ure 1 we show an ultrasound image of a human femur bone (the semi-circular
reflection at the bottom) and a CT image of the femur. (Note that Figure 1
is shown for the purpose of illustration only – the images belong to different
patients). It is evident that the bone outline can be used for the registration of
the images. The problem with registration between these two modalities is that
while CT-data is very accurate, ultrasound has imaging artifacts. In much of
the human body there are layers of fat and muscle. These intervening layers can
cause degradation of resolution, shape distortion and other artifacts.

We describe a method to compensate for these artifacts for the case of imag-
ing the bone under fat and muscle layers. This method can be used as a pre-
processing step to modify the ultrasound images before proceeding with the
registration. We developed a forward ray-tracing model of the received ultra-
sound waves after propagation into two layers and reflecting back from a highly
reflecting interface. We chose to model this particular set-up because it closely
resembles the bone under layers of fat and muscle. Our derived model can handle
arbitrary interface geometries and aperture configurations. We also describe an
inversion process to estimate the parameters of the forward model. The main
parameters of interest in our application are the depths of the interfaces for the
case of two layers on a reflective interface.

We performed real-life experiment on uniform thickness tissue-mimicking
phantoms with known thicknesses, placed on a steel-block. This set up mimics a
fat and muscle layer on the highly reflective interface, the bone. We used a cir-
cular aperture transducer operating at 7.5 MHz. We then fit our forward model
(for a special case where the layers are planar and parallel to the aperture) to
this experimental data by iteratively updating the model parameters (the depths
of the interfaces in this case) so as to minimize the least square-errors between
the model and the data.

2 Related Work

Several authors have investigated the phase aberrations and amplitude distor-
tions in ultrasound wave caused by layers of fat and muscle in the human body
wall [1]- [11]. Some of them account for diffraction effects [1]- [4] while others
consider ray-tracing approximations, which account for only reflection and re-
fraction at the boundaries. When the organs of interest are large compared to
the wavelength, ray-tracing can be used. Effects of composite layers on beam-
formation such as defocusing and beam-shifts and imaging artifacts such as split-
image, shadowing, and enhancements have been shown in the literature [5,6,?].
In these works, ray-tracing has been used to explain these effects. While it does
not consider diffraction, the advantage of ray-tracing based modeling is that it
is highly parallelizable and fast. The cost of the implementation is particularly
important if we are considering inversions of the model. It facilitates the inver-
sion further if we have a closed form forward model. In a related work [12], we
attempted to derive a fully analytical model for the propagation of a monochro-
matic spherical wave through general media geometries and arbitrary apertures
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under ray-tracing approximations. The modeling is similar to the work of Ode-
gaard et al [10] – a main point of difference is that in the simulations described
by Odegaard et al, the amplitude spreading factors were obtained numerically
by perturbing rays in two directions, while we derived these factors in closed
form by mathematically obtaining the ratios of differential flux-tube areas [12].
In this paper, when modeling the special case of imaging the bone under layers
of fat and muscle, we used parts of our above mentioned results for propagation
of the monochromatic spherical ultrasound wave through layered media.

3 Theory: Forward Model

In Figure 2(a), we show an ultrasonic aperture and a reflective interface (Plane
2) under two media. We have broken up the interface surfaces into small planar
segments. The dimensions have to be of the order of the wavelength of the ul-
trasonic wave, about 0.2 to 0.3 mm. We want to model the reflected waveform
received at the aperture. First we consider a spherical wave emitted by a point
in the aperture and observe the reflected waves for that source. The response for
the entire aperture is the sum of the reflected waveforms received corresponding
to each point source in the aperture. For a focussed aperture we can add the ap-
propriate transmit and receive focusing delays before adding the responses from
the different parts of the aperture. To derive our model, we used ray-tracing
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(a) Ray from source to receiver (b) Rays reflected about Plane 2

Fig. 2. Ray Tracing from source to receiver

assumption. Geometrically this implies that a spherical wave remains spherical
after reflection. But refraction introduces a change in the shape of the waveform.
Calculations show that for the parameters under consideration, the ray tracing



Modeling and Analysis of Ultrasonic Echoes 485

approximation is not very restricting [12]. Other main assumptions are longi-
tudinal propagation (valid for soft-tissues). We also considered absorption loss.
Ignoring multiple reflections, the received wave at D due to a point source at O,
f(PD, t) would have two terms, f1(PD, t) and f2(PD, t). The first term, f1(PD, t)
is due to pure reflection from the interface between the first and second layer.
The second term, f2(PD, t) is the reflected wave from the second layer (it goes
through refraction at the points A and C as well).

We can straightforwardly write the first term, for which the relevant ray-paths
are those shown in dashed lines in Figure 2(a). f1(PD, t) =

∑
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′
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′
1 + L

′
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pears as the intrinsic attenuation factor (since this is pure reflection, the wave is
spherical and for a spherical wave, the attenuation is 1/r, where r is the equiv-
alent radial distance covered from the source) ; V (θ) is the reflection coefficient,
where θ is the angle of incidence of the ray. rays

′
denotes the set of rays that

reached from O to D on reflection at first interface. The exponent term is the
term due to absorption loss. µ1 is the attenuation coefficient in the first medium.

The ray O-A-B-C-D, is the ray to be considered for the second term. This
set is sufficient because of the linearity [12]. The segments OA and CD (with
path lengths L1 and L4) are in the first medium with propagation velocity C1.
AB and BC (of lengths L2 and L3) are in the second medium, with propagation
velocity C2. f2(PD, t) =

∑
e−(µ1L1+µ2(L2+L3)+µ1L4)|fD|p[t− (L1

C1
+ L2+L3

C2
+ L4

C1
)]

where Li are the lengths of the path in each media for the ray (shown in solid
lines) from each source to the point of interest in Figure 2(a). The first exponent
is the absorption loss attenuation factor [10,13,14]. µi being the attenuation
coefficients inside each medium. |fD| is the intrinsic attenuation factor, which is
not exactly 1/r anymore because of the refraction and so on.

It is an elaborate process to calculate this factor |fD|, and is out of scope
of this paper except for a brief outline. We can first simplify the rays – re-
flect ray BC and CD in Figure 2 (a) about the Plane 2, and imagine it as
continuing along AB as shown in Figure 2(b). Now we see that as far as the
derivation of |fD| is concerned, it is the same as if the wave was propagating
into three-layers, except here the first and the third layers happen to be the
same. In [12] we have formulated in detail the intrinsic attenuation factors af-
ter propagation through three (or more) media. We show the final result here,

|fD| = R(θI)|1 + V (θ)||1 + V
′
(θ

′
)| 1

L1

√
∆aa2A1
∆D1s1S1

√
cos θt

cos θ′ . In this equation, V (θ)

and V (θ
′
) are the reflection coefficients at the first and the third interface. The

angles are shown in Figure 2(a). The first factor R(θI) is a function of the in-
cident angle θI corresponding to the reflection at the second interface (plane
B in Figure 2(b)). For a perfect reflector, this factor is unity. The area ratios√

∆aa2A1
∆D1s1S1

are the ratios of flux-tube areas that constructed perpendicular to the
ray (part of the wavefront). Calculation of these areas in close-form are shown
in [12]. Briefly, the approach taken is to change the ray differentially in two in-
dependent directions and calculate the sides of the triangular areas by taking
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derivative of the points of intersection of the rays and the interfaces. The areas
of the triangles are then the magnitudes of cross-products of the sides.

The final received signal at point D in the aperture due to the source at O is
the sum of f(PD, t) = f1(PD, t) + f2(PD, t). Finally, we can apply the aperture
forward transmittance (for focusing, steering etc), if any, at each point and add
the signals arriving at D for all the point sources. Then to obtain the total
response of the entire aperture, we would add the arriving wave at all the points
in the aperture, appropriately modified by the received focusing delays, if any.
For the unfocused transducer case, we would simply add the response arriving
at all the points of the transducer, giving the final received time signal as
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∑
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where the integral over PO indicates we sum the waves arrived at D for all
the point sources, the integral over PD indicates that we then add the received
waveform at each such point in the aperture.

4 Inversion of the Model
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Fig. 3. Iterative Inversion

We wrote a simulator to obtain a synthetic output of the received signal
given in Equation 1, given the input parameters of the receiver, and the media
parameters – the interface geometries and the physical variables. This is the
forward model, denoted by block diagram F in Figure 3. We use this block
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diagram to show the inversion of the model (ignoring the dotted blocks for the
present). We start with an initial estimate of the parameter values, P0 (in this
case the depth of the two interfaces from the aperture). The initial estimate is
chosen by a simple thresholding operation on the experimental data signal. The
parameters are used by the forward model F to get a synthesized signal output
(or an ultrasound image in general). The error difference between the synthesized
output and the actual experimental data signal (or images) drives the parameters
to their next values. We adopt the Levenberg-Marquardt minimization for this
purpose. The simulated output signal from the receiver in our case is a time
signal, y = y(n;p) where n is the time sample index and p is the parameter set
used. In this case, the parameter set consists of the two depths of the planar
interfaces, given by D1 and D2. The scalar error that is minimized is given by
E(p) =

∑
n(yn − y(n;p))2 where yn and y(n;p) are the data signal and the

synthesized signal respectively.

5 Experiments and Model Fitting

5.1 Experimental Equipment and Procedure

The ultrasonic transducer used is a 7.5 MHz, single element circular aperture
transducer. We use a RiTec control box with variable amplitude and frequency
to trigger the transducer. We excite the transducer with a short square pulse
of time-duration half of the time-period at resonance, (about 67 nano-secs). We
place the transducer over the fat-phantom and obtain the return-echoes. The
echoes are captured, and then filtered by an anti-aliasing low pass (cut off 10
MHz) and a high pass filter (to remove the DC bias, cut off at 20 KHz). The
filtered signal is sampled at 25 MHz by an Sonix analog to digital converter.
The Sonix board is triggered by a synchronizing trigger source from the control
box. We use “fat” and “muscle” mimicking phantoms. These physical objects
designed from water-agar-gel mixtures mimic some ultrasound characteristics
(such as propagation velocity) in human fat and muscle. We also use a steel-
block about 5 cm thick. To create a highly reflective interface under the two
layers (fat and muscle) the phantoms are stacked on the steel-block so that the
muscle-phantom lies on the steel-block and the fat-phantom lies on top of the
muscle. To obtain good coupling between the phantom layers, they are wetted
with water.

In order to invert the forward model F in Equation 1, we need to determine
the pulse p(t) for this transducer. We do so this experimentally by a standard
method of obtaining an echo from a steel-block under-water. The pulse obtained
is observed to be nearly a Gaussian. We fit a Gaussian curve (in amplitude, mean,
standard deviation, and the carrier frequency) using the simplex algorithm. We
obtain the pulse to within a scale. The phantom parameters such as mui, Ci, ρi

are provided by the manufacturer.
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Table 1. Convergence Data

Using Demodulated Signals Using Modulated Signals

Start End Start End

Error 45306 6203 Error 32651 12702

Depth D1 15.0000mm 14.9568mm Depth D1 14.9568mm 14.9727mm

Depth D2 35.3000mm 35.4342mm Depth D2 35.4342mm 35.4220mm

5.2 Results of Inversion

A straightforward inversion of the forward model has the problem that, due to
the modulation of the signals at the carrier frequency, f0 there would be local
minima at regular intervals of roughly λ0 from the global minimum [12]. To
obtain a smoother error bowl, we first need to add a demodulator shown in
dotted lines in Figure 3, so that the envelopes of the signals should be involved
in the minimization, rather than the modulated signals themselves. The signals
are real and typically the energy is concentrated (in “humps”) around the carrier
f0. There are many techniques to demodulate signals such as using the Hilbert
Transform. We adopted simple intuitive steps described briefly as follows. The
receiver signals are real, hence the real part of their FFT is symmetric and
the imaginary part, antisymmetric. All the information of the signal is then
entirely available on one side of the spectrum. We extract the real and imaginary
“humps” of the spectrum from the positive side of frequency (humps centered
around the positive f0). We shift each of them by f0 (to baseband) to get Gr(f)
and Gi(f). The signal g(n) = IFFT (Gr(f) + jGi(f)) therefore has all the
information of the original signal and is a baseband signal. But g(n) is complex
[12] and difficult to use in the minimization as such. Hence we use the real
function sn =

√
2g(n)g∗(n). The

√
2 factor is needed such that the original

modulated signal and the baseband “envelope” signal sn has the same energy.
Some examples are given in [12].

After convergence with the envelope signals, we are roughly within λ/2 of
the global minimum, we revert back to using the raw (modulated RF) signals
again (increased sensitivity) and minimize the difference between those to do
fine-tuning of the parameter fitting.

From a rough estimate of the location of the echoes from the experimental
“data” signal, we start the iteration at D1 = 15.0mm and D2 = 35.3mm. The
starting and final errors and converged parameters are given in the second and
third columns of Table 1. After this stage the echoes seem to be slightly out of
phase (particularly the first one). This is because so far we used the envelope of
the signals for the error minimization rather than using the signals themselves.
Hence, the next obvious fine-tuning step is to eliminate the demodulation step
and run the inversion on the raw signals. The error and parameter values are
shown in the last three columns in Table 1. The starting parameters for these
sets of iterations (using the raw signals) are the end parameters arrived at by
using the demodulated signals (third column, Table 1. We observe that for the
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same parameters, the starting error is much larger for the modulated case than
for the demodulated case in Table 1. And the final error is higher than what
we obtained at the end of the runs for the demodulated case. This is not an
unexpected result. Matching of envelopes is a different criterion from matching
of the signals themselves.

As a last step, we do the scale correction between simulation and experi-
ment. We assume that the initial estimate of the scale (by energy ratio of the
signals) was near enough to the correct scale so as not to hamper the conver-
gence of the other parameters. Once we obtain a good estimate of the parameters
p = [D1, D2], we can correct for the scale factor analytically. At the correct pa-
rameters, pc, the energy is given by E(p) =

∑
n(yn − Ay(n;pc))2. The right

scale, at which this error is minimum, can be calculated by setting the deriva-

tive of E(p) with respect to A to zero. This is given by Ac =
∑

n
sns(n;pc)∑

n
s2(n;pc)

. The

original scale was A = 4.4904. After the correction, the scale is Ac = 3.9139.
The correctly-scaled simulation and the experiments are shown in Figure 4.

Figure 4 show a qualitatively good match between experiments and simula-
tions. The first echo seems to have matched well except toward end of the pulse.
The second echo seems to have matched in shape well in the midsection but not
in the beginning and the end. We note that we have not modeled the noise in our
simulations. When the signal is small (towards the beginning/end of the echoes)
the effect of the noise is higher. We calculate some quantitative ratios between
the compared experimental and simulation echoes shown in Figure 4. Consid-
ering the first echo, the RMS amplitude ratio of the experimental one to that
of the the fitted model is close to unity, 1.0353 (or 0.1507 db). For the second
echo, the RMS amplitude ratio of the experimental to that of the fitted model
is 0.9564 (or -0.1936 db). The final parameters are obtained as D1 = 14.9727
and D2 = 35.4220. Hence the layer thicknesses are within 0.03mm and .45mm
of the manufacturer specified nominal values of 15mm and 20mm.

6 Conclusions

In this work, we have modeled ultrasound echo-field reflected from a interface
embedded in two layers. We performed experiments on tissue mimicking phan-
toms and fit our model to the data. For model-fitting, we have minimized the
mean-squared-error using the Levenberg-Marquardt minimization technique. We
obtained good quantitative matches.

It is noted that ultrasound speckle has not be considered here in simulations
or experiments. The speckle is expected to add noise to the error function to be
minimized, thereby making the inversion more prone to false minima. The effect
can be reduced to some extent perhaps by using multiresolution approach – first
using smoothing functions on the envelopes and obtaining a minima roughly
close to the global minimum ; and then using the end parameters of that step as
the initial guess into the next resolution step; and so on until finally using the
original signals to fine tune the minima location.
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Finally, it is noted even though we presented results for a single-element
ultrasound transducer, the method is not fundamentally different for a linear
array aperture. Each rectangular element of the array can be first discretized to
point sources emitting spherical waves. Distortion of each emitted wave due to
layered inhomogeneity can be calculated as shown here. Then transmit/receive
focusing delays can be applied to the rectangular elements of the array and the
result summed to obtain each of the scan lines.
Acknowledgments: We would like to thank Rajesh Gopakumar and Farhana
Kagalwala for many helpful discussions and suggestions.
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