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Abstract—Due to the critical security threats imposed by email-based malware in recent years, modeling the propagation dynamics of

email malware becomes a fundamental technique for predicting its potential damages and developing effective countermeasures.

Compared to earlier versions of email malware, modern email malware exhibits two new features, reinfection and self-start. Reinfection

refers to the malware behavior that modern email malware sends out malware copies whenever any healthy or infected recipients open

the malicious attachment. Self-start refers to the behavior that malware starts to spread whenever compromised computers restart or

certain files are visited. In the literature, several models are proposed for email malware propagation, but they did not take into account

the above two features and cannot accurately model the propagation dynamics of modern email malware. To address this problem, we

derive a novel difference equation based analytical model by introducing a new concept of virtual infected user. The proposed model

can precisely present the repetitious spreading process caused by reinfection and self-start and effectively overcome the associated

computational challenges. We perform comprehensive empirical and theoretical study to validate the proposed analytical model. The

results show our model greatly outperforms previous models in terms of estimation accuracy.

Index Terms—Network security, email malware, propagation modeling
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1 INTRODUCTION

IN the real world, email is a basic service for computer
users, while email malware poses critical security threats.

For a number of years, the propagation of email malware has
followed the same modus operandi. A viral email is sent to
the victim and appears as though it was sent by somebody
the recipient trusts. The subject is also related to the recipi-
ent’s business area. Once the victim is tricked into either
clicking themalicious hyperlinks or opening the attachments
inside such an email, the computer will be compromised.
Then, the compromised computer will start to infect new tar-
gets found in its email address lists immediately. To prevent
email malware, scientists have spared no effort to dissuade
people from opening unexpected hyperlinks and email
attachments. However, the success of recent new email mal-
ware, such as “Here you are” [1], indicates that those educa-
tion measures are not very successful. A key reason is
because social engineering is a tried-and-true technique in
the context of security. For example, by convincing computer
users that the received emails with malicious hyperlinks
and attachments were from a trusted source, the technique

of email-borne malware will be highly effective and is still
widely adopted by currentmalware authors [2].

Current research on email malware [3], [4], [5], [6], [7]
focuses on modeling the propagation dynamics which is a
fundamental technique for developing countermeasures
to reduce email malware’s spreading speed and preva-
lence. There are a few works reported to model email mal-
ware propagation. Previous works [4], [5], [6], [8] assume
that a user can be infected and send out malware copies
only once, no matter whether or not the user visits a mali-
cious hyperlink or attachment again. Real instances are
those early email malware like Melissa in 1999 [9] and
Love letter in 2000 [10], which will check whether a victim
has been compromised before the infection. However,
modern email malware is far more aggressive to spread in
network than before by introducing two new propagation
features [7], [11], [12], [13]. First feature is “reinfection”,
i.e., an infected user sends out malware copies whenever
this user visits the malicious hyperlinks or attachments.
Second feature is “self-start”, i.e., an infected user sends
out malware copies when certain events (like PC restart)
are triggered. Researchers in [3] stated that a user can be
infected multiple times. However, their model assumes
that an infected user could send out only one malware
copy each time the user checks emails, even if the user vis-
its more than one malicious hyperlinks or attachments. In
short, previous works [3], [4], [5], [6] did not take the two
new features into account, and hence, cannot accurately
estimate the propagation of modern email malware. An
empirical study to support our argument will be intro-
duced later in Section 2.

It is a big challenge to investigate modern email mal-
ware through mathematical modeling. In fact, most email
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malware in the last decade, such as Sircam in 2001 [14],
Sobig in 2003 [15], Mydoom in 2004 [16], Nyxem in 2006
[17], “Here you are” in 2010 [1] and recent unnamed email
malware [2] belong to the modern email malware. The pre-
vious analytical model [4] presented the spreading proce-
dure by an susceptible-infected-susceptible (SIS) process,
while it does not consider the new features of modern e-
mail malware. These observations become the motivation
of our work to develop a new analytical model that can
precisely present the propagation dynamics of the modern
email malware. Since the spreading procedure can be char-
acterized by an susceptible-infected-immunized (SII) pro-
cess, we name our proposed model as SII.

The major contributions of this paper are listed below:

� We propose a new analytical model to capture the
interactions among the infected email users by a set
of difference equations, which together describe the
overall propagation of the modern email malware.

� We introduce a new concept of virtual nodes to
address the underestimation in previous work,
which can represent the situation of a user sending
out one more round of malware copies each time
this user gets infected.

� We perform empirical and theoretical study to inves-
tigate why and how the proposed SII model is supe-
rior to existing models.

The rest of the paper is organized as follows. Section 2
states the problems in modeling modern email malware. In
Section 3, a new SII analytical model is presented in detail.
Section 4 reports a series of experiments to validate the pro-
posed model, followed by the theoretical justification in Sec-
tion 5. Further discussion and related work are presented in
Sections 6 and 7. Finally, Section 8 concludes this paper.

2 PROBLEM STATEMENT

Choosing email as the spreading carrier of malware is not a
new technique in the last decade. Early versions of email
malware, such as Melissa and Love letter, work in a “naive”
way. That is, a compromised user will send out malware
emails only once, after which the user will not send out any
further malware copies, even if she visits the malicious
hyperlinks or attachments again. Take Melissa for example,
the malware first checks a specific registry key in the Win-
dow OS and the malware will not do anything further when
the value of this key suggests that the user has been infected
before. In the following, we name this spreading mecha-
nism as nonreinfection.

However, modern email malware is far more aggressive
in spreading throughout email networks than before.
Without checking if a computer has been infected before,
modern email malware makes use of every chance to spread
itself. We characterize its propagation with two kinds of
new mechanisms, namely reinfection and self-start.

2.1 Problem from Technical Perspective

Reinfection, as the name suggests, indicates a user may get
infected whenever the user visits malicious hyperlink or
attachments. The reinfection outperforms the nonreinfection
in two aspects: 1) a user can be infected again even if the user

has been infected before; 2) a user will send out a malware
copy each time the user gets infected. Thus, a recipient may
repeatedly receive malware emails from the same compro-
mised user.

We illustrate the reinfection process in Fig. 1. Suppose an
email user i gets infected and sends out malware email cop-
ies to another email user j. In case 1 of the nonreinfection,
although user i reads two malware emails at t8, the user will
get infected and send only one malware copy to user j at t8.
The malware email arrives at user j at t9. Then, when user j
checks mailbox at t13 and reads the malware email from user
i, user j gets infected. User j will not receive any more mal-
ware emails from user i after t9. Nevertheless, in case 3 of the
reinfection, user jwill receive two malware copies from user
i at t9. Furthermore, after user j gets infected at t13, when
user i reads another two malware emails, user j receives
another two malware copies from user i at t17. Compared
with case 1 of the nonreinfection, user j in case 3 of the rein-
fection receives totally fourmalware emails.

Generally, it is common for the malware emails to reuse
the themes but with slight variations on the body of the
message and the attachment names. This trick increases the
possibility for a user to be infected and particularly prompts
the spreading efficiency of the modern reinfection email
malware. In Table 1, we list some types of email malware

Fig. 1. Recipient user j’s behavior for different types of malware emails.
User i reads two of three malware emails at t8 and another two malware
emails at t16, and then restarts at t20. Case 1: nonreinfection; Case 2:
reinfection in the work [3]; Case 3: reinfection of modern email malware;
Case 4: both self-start mechanism in modern email malware. We
assume a user will visit the malicious hyperlink or attachment if the user
reads emails in this figure.
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with the number of their themes. In this paper, we assume
every malicious email has different themes.

In fact, reinfection is also not enough to describe the prop-
agation of modern email malware [12]. In many cases, they
modify registry entries in Windows OS and the spreading
process can be triggered whenever compromised computers
restart or certain files are opened by infected users. Take
Mydoom for example, it runs every timeWindows starts.

We also illustrate the outperformance of the self-start in
Fig. 1, case 4. User i has been infected at t8. When the user
restarts the computer at t20, a malware email copy will be
sent to user j in case 4 of the self-start. Compared with the
nonreinfection and the reinfection, user j receives totally
five malware emails. Thus, this maneuver has promoted the
spreading efficiency of modern email malware.

2.2 Problem from Empirical Perspective

Currently, many models have been presented to model the
propagation of email malware. For example, the works [3],
[4], [5], [6], [7] present the nonreinfection; the works [3], [13]
model the reinfection and the work [7] also discusses the
self-start. However, the previous models are not appropri-
ate for the modeling. We explain the reasons in the follow-
ing. It is composed of two questions:

First, can we use the models of the nonreinfection to pres-
ent the propagation dynamics of modern email malware?
Compared with the reinfection and the self-start, to model
the nonreinfection is simple. By using simulations [3], [5], [7]
or analyticalmethods [4], [6], previousmodels have precisely
presented the propagation dynamics of the nonreinfection.
However, as stated in [7], [12], most real email malware is
the self-start email malware. We simulate various spreading
mechanisms and provide their differences (D) to the nonrein-
fection in the inset figure of Fig. 2. We can see that the self-
start has a peak difference of 4� 104 infected incidents.
Thus, the self-start can spreadmuch faster than the nonrein-
fection and the previous nonreinfection models cannot be
used to present the propagation of modern email malware.

Second, can we use the previous models of the reinfection
and the self-start to describe the propagation of modern e-
mail malware? The differential equation model adopted in
[13] has been proven by the earlier work [3] to overestimate
the spreading speed by 20 percent. Because the work [7]
does not provide enough details in modeling the reinfection
and the self-start, we mainly refer to the work in [3]. The
model is illustrated in case 2 of Fig. 1 on the basis of
their implementation [19]. We can see that user i always
sends out only one malware copy to user j even if the
user is infected by two malware emails at both t8 and t16.
Compared with the reinfection discussed in Section 2.1,
user j receives totally two malware emails in this case. We

also present the numerical results from the simulations of
the reinfection [3] in Fig. 2. We can see that the reinfection
presented in [3] has noticeable differences to the self-start
and the reinfection discussed in Section 2.1. Thus, the previ-
ous models of the reinfection and the self-start cannot be
used in the propagation of modern email malware.

3 SII MODEL

In order to overcome the inaccuracy of previous models, we
extend our previous SII model [8] for modern email mal-
ware. SII model is different from SIS and SIR models [20]
because both susceptible and infected users can be immu-
nized and never become susceptible again.

3.1 Modeling Nodes, Topology and Events of User

Nodes and topology information are the basic elements for
the propagation of modern email malware. A node in the
topology represents a user in the email network. Let ran-
dom variable XiðtÞ denote the state of a node i at discrete
time t. Then, we have

XiðtÞ ¼
HeaHea:; healthy

Sus:;Sus:; susceptible
Imm:;Imm:; immunized

�

Inf:;Inf:; infected
Act:;Act:; active
Dor:;Dor:; dormant:

�

8

>

>

<

>

>

:

ð1Þ

The state transition graph of an arbitrary node i in an e-
mail network is shown in Fig. 3. All nodes in networks are
initially susceptible. Since infected users will send out mal-
ware copies when they are compromised, node i transits
from the susceptible state to the active state after the user of
node i gets infected. The infection probability is denoted by
vði; tÞ. The user is infectious at the active state. When a user
is infected but not infectious, the node of this user transits
to the dormant state. Besides, any user can be compromised
again even if the user has been infected before. We represent
the infection probabilities of an arbitrary node being at the

TABLE 1
The Number of Themes in Some Email Malware

The statistical results come from Symantec Security Response [18].

Fig. 2. The propagation of email malware in an email network with 106

users. The results are averaged from simulations of 100 times. The inset
figure provides the differences (D) of various spreading mechanisms to
the nonreinfection mechanism.
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dormant state and the active state as gði; tÞ and hði; tÞ respec-
tively. Whatever the state an arbitrary node is at, it may
transit to the immunized state. The probability of immuniza-
tion is denoted by rðtÞ. In fact, if the values of gði; tÞ and
hði; tÞ are equal to zero, any infected node i will stay at the
dormant state until the user of this node is immunized. In
this scenario, Fig. 3 will be simplified as the state transition
representation of the nonreinfection email malware. For the
convenience of readers, we list major notations of this paper
in Table 2.

In our SII model, we propose employing an M by M
square matrix with elements pij to describe a topology con-
sisting ofM nodes, as in

p11 � � � p1M
..
.

pij
..
.

pM1 � � � pMM

0

B

@

1

C

A
pij 2 ½0; 1�; (2)

wherein pij represents the probability of user j visiting a
deceptive malware email received from user i. If pij is equal
to zero, it means the email address of user j is not in the
contact list of user i. Therefore, the matrix reflects the topol-
ogy of an email network. In this paper, we assume the states
of neighboring nodes are independent. This assumption has
been adopted by previous models [7], [21], [22], [23]. In

Section 6.3, we will analyze the impact of the independence
assumption. Readers can refer to the work [4], [24] for more
information of this assumption.

We have noticed that the infection of email malware
depends on unwary email users checking new emails and
visiting those malicious ones. In fact, this process involves
two components in the modeling. First, we introduce a flag
variable openiðtÞ. We have openiðtÞ ¼ 1 if the user is check-
ing new emails at time t, otherwise openiðtÞ ¼ 0. Let Ti

denote the email checking period of user i, then we have

P ðopeniðtÞ ¼ 1Þ ¼
0; otherwise
1; t mod Ti ¼ 0:

�

(3)

Note that different users have different values of Ti.
Readers can find more discussions about Ti at Section 6.4.
An email user may receive multiple emails at different time
but read all of them at one time when the user checks the
mailbox. Supposing that an arbitrary user i checks new
emails at time t, then those emails which will be checked at
time t are the ones which arrived at user i after the user’s
last checking action of her mailbox. It is significant to obtain
the number of such emails for our modeling. Thus, we intro-
duce a variable t to indicate an arbitrary time between the
time of user i’s last email checking action and the current
time t (excluding t). As shown in Fig. 4, the value of t has
two forms depending on if user checks emails at current t or
not. Then, we have

t� Ti � t < t; if openiðtÞ ¼ 1
t� ðt mod TiÞ � t < t; otherwise:

�

(4)

A compromised user can only spread malware to the
neighboring users in email networks. Thus, for each email
user in networks, we record and accumulate every newly
arrived malicious email from neighboring users at each t,
and finally obtain the joint infection probability of each user
who checks those emails.

3.2 Modeling Propagation Dynamics

We use the values 0 and 1 to substitute the healthy state and
the infected state, respectively. Given a topology of an email
network with M nodes, the expected number of infected
users at time t, nðtÞ, is computed as in

nðtÞ ¼ E

"

X

M

i¼1

XiðtÞ

#

¼
X

M

i¼1

E½XiðtÞ� ¼
X

M

i¼1

P ðXiðtÞ ¼ 1Þ

¼
X

M

i¼1

P ðXiðtÞ ¼ InfÞ:

ð5Þ

TABLE 2
Major Notations Used in This Paper

(a) (b)

Fig. 4. Different cases of variable t. (a) User checks new emails at cur-
rent time t; (b) user does not check emails at current time t.

Fig. 3. State transition graph of a node in email topology. “Sus.”: healthy
but susceptible; “Act.”: a user is infectious and will send out malware e-
mail copies; “Dor.”: a user is infected but not yet infectious; “Imm.”:
healthy and will never be infected again.
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The expected number of infected nodes, nðtÞ, is ascribed to
the sum of the probability of each node being infected at
time t, P ðXiðtÞ ¼ Inf:Þ. As shown in Fig. 3, a susceptible
node can be compromised and be at the infected state, and
an infected node can be recovered and be at the immunized
state. The state transitions help us derive the computation
of P ðXiðtÞ ¼ Inf:Þ by difference equations as follows:

P ðXiðtÞ ¼ Inf:Þ ¼ ð1� rðtÞÞ � P ðXiðt� 1Þ ¼ Inf:Þ

þ vði; tÞ � P ðXiðt� 1Þ ¼ Sus:Þ:
(6)

For the computation of P ðXiðtÞ ¼ Sus:Þ, we have

P ðXiðtÞ ¼ Sus:Þ ¼ 1� P ðXiðtÞ ¼ Inf:Þ

� P ðXiðtÞ ¼ Imm:Þ:
(7)

Moreover, for the computation of P ðXiðtÞ ¼ Imm:Þ, we
have

P ðXiðtÞ ¼ Imm:Þ ¼ P ðXiðt� 1Þ ¼ Imm:Þ þ rðtÞ�

½1� P ðXiðt� 1Þ ¼ Imm:Þ�:
(8)

Once we obtain the values of vði; tÞ and rðtÞ, the value of
P ðXiðtÞ ¼ Inf:Þ can be computed by the iteration of the
above equations (6), (7), (8).

In fact, there are three preconditions for an arbitrary user
being infected by email malware: 1) the user has not been
immunized; 2) the user checks mailbox for new emails; 3)
the user unwarily visits one received malware emails.
When the first and the second preconditions are satisfied,
we use sði; tÞ to represent the probability of user i visiting
malware emails from neighboring nodes. Then, the infec-
tion probability vði; tÞ can be derived as in

vði; tÞ ¼ sði; tÞ � P ðopeniðtÞ ¼ 1Þ � ½1� rðtÞ�: (9)

In our SII model, an arbitrary user i visits malicious hyper-
links or attachments with probability pji when reading mal-
ware emails from a neighboring user j. We use Ni to denote
the set of neighboring nodes of node i. Then, we can com-
pute sði; tÞ as in

sði; tÞ ¼ 1�
Y

j2Ni

ð1� pji � P ðXjðtÞ ¼ Act:ÞÞ; (10)

wherein the eventXjðtÞ ¼ Act:means node j is infected and
sends out a malware email copy to neighboring nodes at
time t. Considering different values that the variable t may
take, we disassemble the equation (10) by excluding t� 1
from the range of value t. There are two cases. First, as
shown in Fig. 5a, user does not check new emails in the
mailbox at time t� 1. Thus, we have

Y

j2Ni

ð1� pji � P ðXjðtÞ ¼ Act:ÞÞ

¼
Y

j2Ni ;t 6¼t�1

ð1� pji � P ðXjðtÞ ¼ Act:ÞÞ

�
Y

j2Ni

ð1� pji � P ðXjðt� 1Þ ¼ Act:ÞÞ

(11)

¼ ½1� sði; t� 1Þ� �
Y

j2Ni

ð1� pji � P ðXjðt� 1Þ ¼ Act:ÞÞ:

(12)

Second, as shown in Fig. 5b, user checks new emails in the
mailbox at time t� 1. Thus, the malware email copies
received at time t are those sent at time t� 1 by the infected
neighboring users. The variable t only takes the value t� 1.
In this case, we have

Y

j2Ni

ð1� pji � P ðXjðtÞ ¼ Act:ÞÞ

¼
Y

j2Ni

ð1� pji � P ðXjðt� 1Þ ¼ Act:ÞÞ:
(13)

Actually, the difference of equations (12), (13) is caused by
user checking newly arrived emails at time t� 1. We then
unify the computation of sði; tÞ as in

sði; tÞ ¼ 1� f1� sði; t� 1Þ � ½1� P ðopeniðt� 1Þ ¼ 1Þ�g�
Y

j2Ni

ð1� pji � P ðXjðt� 1Þ ¼ Act:ÞÞ:

(14)

In equation (14), different measures of P ðXjðt� 1Þ ¼ Act:Þ
and Ni may lead to different spreading performance. We
show the algorithm of our SII model in the supplementary
file, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TDSC.2013.49 (Algorithm 1).

3.3 Virtual Nodes

For modern email malware, recall that a compromised user
may send out malware email copies to neighbors every time
the user visits those malware hyperlinks or attachments.
Malware emails are also sent out when certain events like
computer restart are triggered. Thus, at an arbitrary time t,
a user may receive multiple malware email copies from an
identical neighboring user who has been compromised. In
order to represent the repetitious spreading process of the
reinfection and the self-start, we introduce virtual nodes to
present the kth infection caused by infected users opening
the kth malware email copy.

As shown in Fig. 6, node 1, 2, 3 send malware emails to
node 4. When the user of node 4 visits those emails, the user
gets infected. If the user of node 4 visits two malware
emails, node 4 will send malware email copies twice to
node 6. If the user of node 4 visits three malware emails,
node 4 will send treble malware email copies to node 6. The
spreading process of extra malware email copies is equiva-
lent to two virtual nodes sending a malware copy to node 6.

(a) (b)

Fig. 5. Different cases for the computation of sði; tÞ. User in (b) checks
new emails at time t� 1, but user in (a) does not.
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We introduce virtual node 7 to denote the possible spread-
ing if user 4 visits the second malware email. We also use
virtual node 8 to denote the possible spreading if user 4 vis-
its the third malware email. Moreover, when the user of the
infected node 5 restarts computer or some specific events
are triggered, this user will also send out a malware email
copy to the user of node 6. It is also equivalent to a virtual
node sending a malware copy to node 6. We introduce vir-
tual node 9 to denote this process.

In order to represent the spreading process of virtual
nodes, we extend Ni into a new set of neighboring nodes,
Hi, which contains three subsets: NijN , NijR and NijS . Then,
we revise the equation (14) for modeling the propagation of
modern email malware as in

sði; tÞ ¼ 1� f1� sði; t� 1Þ � ½1� P ðopeniðt� 1Þ ¼ 1Þ�g�
Y

j2NijN

ð1� pji � P ðXjðt� 1Þ ¼ Act:ÞÞ�

Y

j2NijS

ð1� pji � P ðXjðt� 1Þ ¼ Act:ÞÞ�

Y

j2NijR

ð1� pji � P ðXjðt� 1Þ ¼ Act:ÞÞ:

(15)

First, the subset NijN includes the real neighboring nodes
of user i (e.g. N6jN ¼ node 4, node 5). In fact, the nodes in
NijN represent the neighboring users who visit the first mal-
ware email copy and get infected. Since the states of neigh-
boring nodes are independent, each node is infected
by neighboring nodes regardless of the state of this node
[4]. Thus, we simply consider vði; tÞ ¼ gði; tÞ ¼ hði; tÞ
(See Section 6.3 for discussion). Then, the value of P ðXjðt�
1Þ ¼ Act:Þ for user j inNijN can be derived as

P ðXjðt� 1Þ ¼ Act:Þ ¼ vðj; t� 1Þ � P ðXjðt� 2Þ ¼ Sus:Þ

þ gðj; t� 1Þ � P ðXjðt� 2Þ ¼ Dor:Þ

þ hðj; t� 1Þ � P ðXjðt� 2Þ ¼ Act:Þ

ð16Þ

¼ vðj; t� 1Þ � ½1� P ðXjðt� 2Þ ¼ Imm:Þ�: (17)

Second, the subset NijS includes the virtual nodes which
present the extra spreading processes caused by certain
events triggered in infected nodes (i.e., N6jS=node 9). In this
case, we introduce another flag variable startiðtÞ. We have
startiðtÞ ¼ 1 if the events happen at time t, otherwise
startiðtÞ ¼ 0. Assuming the events are periodically triggered
and Ri is the event triggering period of user i, we have

P ðstartiðtÞ ¼ 1Þ ¼
0; otherwise
1; t mod Ri ¼ 0:

�

(18)

Then, we can compute the value of P ðXjðt� 1Þ ¼ Act:Þ for
user jwho belongs to NijS as in

P ðXjðt� 1Þ ¼ Act:Þ ¼ P ðstartjðt� 1Þ ¼ 1Þ�

P ðXjðt� 1Þ ¼ Inf:Þ:
(19)

Third, the subset NijR includes the virtual nodes which
present the extra spreading processes caused by users visit-
ing more than one malware copies when they check new
emails (i.e.,N6jR ¼ node 7, node 8). In fact, this is a permuta-
tion problem. For example, node 7 in Fig. 6 presents the
spreading process caused by user 4 visiting the second mal-
ware email. Thus, the value of P ðX7ðt� 1Þ ¼ Act:Þ indicates
the probability of user 4 visiting any two or three malware
emails from user 1, 2 and 3. We use bjiðtÞ to present the
probability of user i being infected by user j at time t and
bjiðtÞ to indicate the negation of bjiðtÞ as in

bjiðtÞ ¼ pji � P ðXjðtÞ ¼ Act:Þ � P ðopeniðtÞ ¼ 1Þ

bjiðtÞ ¼ 1� pji � P ðXjðtÞ ¼ Act:Þ � P ðopeniðtÞ ¼ 1Þ:

�

(20)

We then derive the value of P ðX7ðt� 1Þ ¼ Act:Þ as in

P ðX7ðt� 1Þ ¼ Act:Þ ¼ b14ðt� 1Þb24ðt� 1Þb34ðt� 1Þ

þ b14ðt� 1Þb24ðt� 1Þb34ðt� 1Þ

þ b14ðt� 1Þb24ðt� 1Þb34ðt� 1Þ

þ b14ðt� 1Þb24ðt� 1Þb34ðt� 1Þ

¼ P ðX4ðt� 1Þ ¼ Act:Þ � b14ðt� 1Þb24ðt� 1Þb34ðt� 1Þ

� b14ðt� 1Þb24ðt� 1Þb34ðt� 1Þ

� b14ðt� 1Þb24ðt� 1Þb34ðt� 1Þ:

Node 8 in Fig. 6 presents the spreading process caused by
user 4 visiting the third malware email. Similarly, we com-
pute the value of P ðX8ðt� 1Þ ¼ Act:Þ as in

P ðX8ðt� 1Þ ¼ Act:Þ ¼ b14ðt� 1Þb24ðt� 1Þb34ðt� 1Þ

¼ P ðX7ðt� 1Þ ¼ Act:Þ

� b14ðt� 1Þb24ðt� 1Þb34ðt� 1Þ

� b14ðt� 1Þb24ðt� 1Þb34ðt� 1Þ

� b14ðt� 1Þb24ðt� 1Þb34ðt� 1Þ:

If a user is popular, the node of this user may have many
neighbours. For popular users, the permutation problem
may become very complex. For example, we assume an
arbitrary node i hasm neighbours, to compute the probabil-
ity of user i opening the second malware email from those
m neighbours, we have to run C2

m combinations of multipli-
cation of bjiðtÞ. If the user of each node opens at most k
emails, the computation for each run each node is totally

Fig. 6. An example to explain virtual nodes in the reinfection case and
the self-start case. Node 1, 2, 3 send a malware copy to node 4.
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Pk¼d
k¼1 C

k
m. Noticeably, it is computationally too expensive to

obtain the result. Thus, we introduce Bernoulli approxima-
tion. The Bernoulli experiment is widely used to model the
number of successes in a sample drawn from a large popu-
lation. We can see that virtual nodes provide us a series of
easy-derived equations which can then be used to compute
the probabilities of multiple infections using the Bernoulli
approximation. This helps us solve the combination prob-
lem. We use ziðtÞ to denote the average value of bjiðtÞ for
each neighboring node j (j 2 Hi, Hi ¼ NijNþ NijR þNijS).
Then, we have

ziðtÞ ¼
1

k Hi k

X

j2Hi

bjiðtÞ: (21)

Moreover, we use k to denote the order of the malware
emails that user j visits, such as k ¼ 2 when the user visits
the second malware email and k ¼ 3 when user j visits the
third one. We have the value of P ðXj kðt� 1Þ ¼ Act:Þ for
user jwho belongs toNijR as in

P ðXj 1ðt� 1Þ ¼ Act:Þ ¼ P ðXjðt� 1Þ ¼ Act:Þ ðk ¼ 1Þ;

(22)

P ðXj kðt� 1Þ ¼ Act:Þ ¼ P ðXj ðk�1Þðt� 1Þ ¼ Act:Þ

�

 

Y

k

j¼1

bjiðtÞ
Y

kHik

j¼kþ1

bjiðtÞ þ � � � þ
Y

kHik�k

j¼1

bjiðtÞ
Y

kHik

j¼kHik�kþ1

bjiðtÞ

!

:

(23)

� P ðXj ðk�1Þðt� 1Þ ¼ Act:Þ

� Ck
kHik

½ziðtÞ�
k½1� ziðtÞ�

kHik�k ðk 	 2Þ:
(24)

In fact, the value of k also reflects the vigilance of email
users for opening malicious hyperlinks or malware attach-
ments. If the email malware becomes more deceptive, the
value of k becomes larger. We will carry out extensive dis-
cussion about k in Section 6.2. We use equations (15), (17),
(19), (22) and (24) to model the propagation. Particularly,
we show the iteration of sði; tÞ and the computation of vir-
tual nodes in the supplementary file, available online (Algo-
rithm 2 and 3 respectively).

4 MODEL EVALUATION

4.1 Experiment Environment

In this field, all existing research adopts simulation to evalu-
ate analytical models, such as [4], [6]. We follow this
approach to evaluate the proposed SII model based on sim-
ulations. In real-world scenarios, the spread of most email
malware is typically impossible to track given the directed,
topological manner in which they spread. Some email mal-
ware, like Nyxem [17], once compromising a computer, will
automatically generate a single http request for the URL of
an online statistics page. However, as the report [17] said,
the statistics of Nyxem also cannot present a precise investi-
gation on the spread of email malware due to the legitimate
access, repeated probes and DDoS attacks to the web page.
It should be pointed out that there is no real data set avail-
able for the evaluation of models of modern email malware.

The email topology is a key component of simulation.
Some existing work [3], [4], [20] shows that topological fac-
tors have strong impact on the speed and scale of the mal-
ware propagation. In this paper, we build the topology
according to the previous analysis of real email networks
[25], [26], which exhibit “semi-directed”, scale-free and
small-world properties. The topology has 100,000 nodes. We
reproduce the degree for each node by the Power-law distri-
bution [27]. Moreover, the probability of users being infected
by their friends (pij), the email checking period (Ti) and the
event triggering period (Ri) are mainly decided by human
factors. Similar to [19], these parameters will follow the
Gaussian distribution. Note that the Gaussian distribution
generator may provide unrealistic values, such as pij < 0
and Ti < 1. In our experiment, we replace these values with
the minimums of their realistic range. Thus, if pij < 0,
Ti < 1 andRi < 1, we let pij ¼ 0, Ti ¼ 1 andRi ¼ 1.

We draw an SII-compatible propagation simulator from
existing simulation models [3], [5], [28], [29]. The implemen-
tation is in C++ and Matlab 7. The random numbers in the
experiments are produced by the C++ TR1 library exten-
sions. We run each simulation 100 times for an average
result. The number 100 comes from the discussion “how
many simulation runs are needed before we obtain a steady
curve? [3]”. Each run of the spread begins with two infected
nodes, which are randomly chosen from the topology.
These two nodes keep a topology distance of 6 (the number
of edges between them) so that certain clustering coefficient
[25] is implicitly implemented. For the convenience of read-
ers, we have put the source codes of the SII model and the
simulator online [30].

4.2 Comparison with Previous Models

To evaluate the accuracy of our model, we conduct experi-
ments with different parameter settings. Most values in the
settings come from previous works [3], [25], [26].

We compare our SII model with previous models [3],
[4], [5], [6]. The work in [3] presents the modeling of
the reinfection without virtual nodes. The models in [4],
[5], [6] present the propagation of the nonreinfection. In
this experiment, the topology has the properties: the
power-law exponent a ¼ 2:5, the average degree
EðDÞ ¼ 5:5. The values of pij follow Gaussian distribu-
tion Nð0:5; 0:22Þ. In order to exclude the impact of
recovery processes, the experiment is carried out with
rðtÞ ¼ 0. We let Ti and Ri follow Gaussian distribution
Nð40; 202Þ. The vigilance k of email users is set to be 5.
As shown in Fig. 7, our SII model is far more accurate
than previous models. We exhibit the differences D in
the inset of Fig. 7. We can see that the results of previ-
ous models deviate from simulations by 80 thousands
less infections at maximum. There is also a minor
divergence between the results of SII model and simula-
tions. As explained in [4], this difference is caused by
the independent assumption. We have presented an
extensive discussion on the impact of this assumption
in Section 6.3.

4.3 Impact of Parameters in the Modeling

We also evaluate the impact of various parameters on the
accuracy of the modeling.
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First, we evaluate the accuracy with different distribu-
tions of Ti and Ri. In this experiment, the topology has the
same settings as in Fig. 7. As shown in Fig. 8, the curves of
our SII model are close to the simulations even if the distri-
butions of Ti and Ri are different.

Second, we also evaluate the accuracy with different dis-
tributions of pij. The same topologies are used in this experi-
ment. We let Ti and Ri follow Gaussian distribution
Nð40; 202Þ. As shown in Fig. 9, the results of our SII model
are close to the results of simulations. In the inset figure of
Fig. 9, we can also see that the SII model achieves better per-
formance in accuracy when the infection probabilities pij
are averagely higher. For the same reason of the indepen-
dent assumption, we can achieve better accuracy once we
relax this assumption in the future modeling.

Third, we evaluate the accuracy in different topologies.
In this experiment, we let Ti and Ri follow Gaussian

distribution Nð40; 202Þ and the infection probability pij fol-
low Nð0:5; 0:22Þ. As shown in Fig. 10, our SII model is effec-
tive in various topologies with different power-law
exponents a and means of degrees EðDÞ.

Finally, we evaluate the accuracy with recovery func-
tions rðtÞ. We consider two recovery functions: 1) constant
recovery rate r ðrðtÞ ¼ rÞ; 2) Qualys rate. According to the
statistics of Qualys Inc. [31], after detection, the number of
susceptible and infected users decreases by 50 percent of
the remaining every 30 days in 2003 and 21 days in 2004.
We use a variable d1 to denote the temporal span from the
malware starting spreading to scientists having found this
malware on the Internet. During the temporal period d1,
modern email malware can spread freely on the Internet
ðrðtÞ ¼ 0Þ. We introduce another variable d2 to denote the
temporal span of 50 percent decreasing. Then, we have the
Qualys rate of the recovery functions as in

rðtÞ ¼
0; t < d1

1� 0:5
t�d1
d2 ; t 	 d1:

�

(25)

In this experiment, the topology has the properties: the
power-law exponent a ¼ 2:5, the average degree EðDÞ ¼
5:5. The values of pij follow Gaussian distribution
Nð0:5; 0:22Þ. The values of Ti and Ri follow Nð40; 202Þ. We
can see in Fig. 11 that our SII model are accurate compared
with the simulations. This means the SII model is suitable
for the propagation modeling of modern email malware.

5 THEORETICAL JUSTIFICATION

The empirical study has shown our SII model is superior to
previous models [3], [4], [5], [6]. We further provide the the-
oretical justification in modeling the spreading mechanism
and state transition of the propagation.

5.1 Superiority in the Spreading Mechanisms

Recall that modern email malware has two aggressive
spreading mechanisms. The first one is caused by the

Fig. 7. The comparison between SII model and previous models.
pij 
 Nð0:5; 0:22Þ, a ¼ 2:5, EðDÞ ¼ 5:5, k ¼ 5. D denotes the differences
between the results of SII model, previous models and the simulations.

Fig. 8. The accuracy with different distributions of Ti and Ri.
pij 
 Nð0:5; 0:22Þ, a ¼ 2:5, EðDÞ ¼ 5:5. D denotes the differences
between the results of our SII model and the simulations.

Fig. 9. The accuracy with different distributions of pij. Ti 
 Nð40; 202Þ,
Ri 
 Nð40; 202Þ, a ¼ 2:5, EðDÞ ¼ 5:5. D denotes the differences
between the results of our SII model and the simulations.
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reinfection: any user can be infected again even if this
node has been infected before. The second one is the
repetitious spreading process caused by the reinfection
and the self-start: any infected user spreads malware e-
mail copies every time the user visits malware emails or
the infected computer restarts.

For the first mechanism, we have the equation (17) in SII
model. We can also present previous models [4], [5], [6]
by setting the probabilities gði; tÞ and hði; tÞ to be zero.
Considering the number of infected nodes nðtÞ, we have
nðtÞ / P ðXjðtÞ ¼ Act:Þ for 8j 2 Ni; i 2 ½1;M� by equations
(5), (6), (9), (14). We use v1 and v2 to denote P ðXiðtÞ ¼ Act:Þ
for previous models [4], [5], [6] and the SII model respec-
tively. Then, we have

v1 ¼ vði; tÞ � P ðXiðt� 1Þ ¼ Sus:Þ; (26)

v2 ¼ vði; tÞ � ½1� P ðXiðt� 1Þ ¼ Imm:Þ�: (27)

Obviously, we have

v2 � v1 ¼ vði; tÞ � P ðXiðt� 1Þ ¼ Inf:Þ > 0: (28)

Given an email network and a spreading case of modern e-
mail malware on it, we investigate the divergence of nðtÞ
caused by v2 � v1 > 0. In order to eliminate the impact of
the second mechanism, we set NijR; NijS ¼ F. As shown in
Fig. 12, we can see the divergence caused by modeling the
first spreading mechanism reaches more than 20 thousands.

For the second mechanism, we have the equation (15) in
SII model. In order to present the repetitious spreading pro-
cesses, we extend the set of neighboring users by virtual
nodes. Note that we have Hi > Ni. In model [3], no matter
how many malware emails an infected user visits, only one
malware email copy will be sent out. Thus, we have
NijR; NijS ¼ F and Hi ¼ Ni for the model [3]. We use v3, v4

and v5 to denote the impact of modeling the spreading in
[3], the reinfection process and the self-start process as in

v3 ¼
Y

j2NijN

ð1� pji � P ðXjðt� 1Þ ¼ Act:ÞÞ; (29)

v4 ¼
Y

j2NijR

ð1� pji � P ðXjðt� 1Þ ¼ Act:ÞÞ; (30)

v5 ¼
Y

j2NijS

ð1� pji � P ðXjðt� 1Þ ¼ Act:ÞÞ: (31)

Then, we can have

v3 > v3 � v4 > v3 � v4 � v5: (32)

According to the equation (15), this means nodes in the net-
work are easier to be infected and become infectious if the
nodes have larger neighboring sets.We investigate the diver-
gence of nðtÞ caused by the inequality (32) in modeling the

Fig. 10. The accuracy in different topologies (a and EðDÞ).
pij 
 Nð0:5; 0:22Þ, Ti 
 Nð40; 202Þ, Ri 
 Nð40; 202Þ. D denotes the differ-
ences between the results of our SII model and the simulations.

Fig. 11. The accuracy with recovery functions rðtÞ. Ti 
 Nð40; 202Þ,
Ri 
 Nð40; 202Þ, a ¼ 2:5, EðDÞ ¼ 5:5, k ¼ 5. D denotes the differences
between the results of our SII model and the simulations.

Fig. 12. The divergence of nðtÞ for modeling various mechanisms.
Ti 
 Nð40; 202Þ, Ri 
 Nð40; 202Þ, a ¼ 2:5, EðDÞ ¼ 5:5, k ¼ 5, rðtÞ ¼ 0.
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reinfection. As shown in Fig. 12, we can see the maximal
divergence of modeling the second mechanism reaches
35,000. Particularly, by modeling the self-start, the diver-
gence reaches 95,000.

On the basis of above analysis, we can see that our SII
model is able to present the propagation of modern email
malware. The divergence between nðtÞ and its estimation is
large in previous models [3], [4], [5], [6]. Thus, previous
models cannot be used in modeling the propagation of
modern email malware.

5.2 Superiority in Modeling State Transitions

We compare our SII model with SIS models [4], [21], [22],
[23], [32], [33] and SIR models [20], [34]. The difference
among these models is caused by different considerations
on the state transition of nodes. SIS models assume infected
nodes become susceptible again after recovery. If infected
nodes cannot become susceptible again once they are cured,
the models are called SIR models. Considering the propaga-
tion of modern email malware, after users clean their
infected computers or become more vigilant against a type
of malware, they are unlikely to be infected any more.
Therefore, SIS models are not appropriate to model the
propagation of modern email malware. SIR models may
suit for modern email malware, but the real case is that a
susceptible user can be immunized directly without being
infected at first. Thus, the state transition of our SII model is
similar to SIR model except nodes at the susceptible state
can directly transit to the immunized state.

In order to exclude the impact of other factors, we derive
the SIS and SIR models on the basis of the SII model. First, a
susceptible user can be immunized in SII model, but not in
SIR model. Thus, we can revise equation (8) to obtain an SIR
model as in

P ðXiðtÞ ¼ Imm:Þ ¼ P ðXiðt� 1Þ ¼ Imm:Þ þ rðtÞ�

P ðXiðt� 1Þ ¼ Inf:Þ:
(33)

Second, an SIS model does not have the immunized state.
We can have it by setting P ðXiðtÞ ¼ Imm:Þ ¼ 0 and revising
equation (7) as in

P ðXiðtÞ ¼ Sus:Þ ¼ ð1� vðtÞÞ � P ðXiðt� 1Þ ¼ Sus:Þ

þ rðtÞ � P ðXiðt� 1Þ ¼ Inf:Þ:
(34)

As shown in Fig. 13, the results of SII model decrease more
rapidly than SIR and SIS models. Thus, we cannot use tradi-
tional SIS and SIR models to model the propagation of mod-
ern email malware.

6 FURTHER DISCUSSION AND LIMITATIONS

In this section, we will discuss the limitations of our pro-
posed model. The experiments adopt typical settings:
pij 
 Nð0:5; 0:22Þ, Ti 
 Nð40; 202Þ, Ri 
 Nð40; 202Þ. More-
over, the recovery functions will not be considered in this
section (rðtÞ ¼ 0).

6.1 Test of Bernoulli Approximation

It is computationally too expensive to calculate the real
value of the probability of virtual nodes being infectious,
particularly when the number of virtual nodes is large.
Thus, we use the average value ziðtÞ to substitute each bjiðtÞ
(j 2 Hi) and apply the Bernoulli approximation on this
probability. In this section, we adopt the variance of bjiðtÞ,
variðtÞ, to investigate the accuracy of the Bernoulli approxi-
mation, as in

variðtÞ ¼
X

kHik

j¼1

½bjiðtÞ � ziðtÞ�
2=kHik: (35)

When the values of variðtÞ are small, the values of bjiðtÞ are
close to the average value ziðtÞ, which means the Bernoulli
approximation is accurate.

In our experiment, we examine the node which has maxi-
mal degree, since it has a large number of virtual nodes in
the modeling. As shown in Fig. 14, it turns out that the val-
ues of the variance variðtÞ are rather small, on the order of
10�3. Thus, we can approximate values of bjiðtÞ using the
average value ziðtÞ.

6.2 The Effect of Users’ Vigilance (the Value kk)

Modern email malware infects unwary users when they
open malicious email attachments or visit infectious hyper-
links in the email content. Users’ vigilance determines the
number of malicious emails that are opened by the users.
The higher a user’s vigilance is, the less malware emails are
opened. As discussed in this paper, the vigilance of users

Fig. 13. The difference of SII, SIR and SIS models. pij 
 Nð0:5; 0:22Þ,
Ti 
 Nð40; 202Þ, Ri 
 Nð40; 202Þ, Qualys recovery function: d1 ¼ 80,
d2 ¼ 40.

Fig. 14. The variance of b on the node with maximal degree. pij 

Nð0:5; 0:22Þ, Ti 
 Nð40; 202Þ, Ri 
 Nð40; 202Þ.
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determines the number of virtual nodes for each user in the
modeling, which greatly affects the spreading speed and
scale. In this section, we analyze and quantify the effect of
users’ vigilance (the value k).

The value k presents the maximal number of malware
emails that each user may visit. We run the SII model from
k ¼ 1 to k ¼ 5 in self-start case. As shown in Fig. 15, the dif-
ferences of nðtÞ are large with varied values of k. For exam-
ple, at time tick 100, the difference reaches about 10,000 for
each increment in the value of k. Besides, we statistically
investigate the number of virtual nodes that the method
will add in computing the model’s numerical results. We
use vnðtÞ to denote the number of virtual nodes at each time
t. As shown in Fig. 16, larger values of k leads to an incre-
ment in the values of vnðtÞ. In practical terms, both the
experiments suggest that lower vigilance of real-world
users may speed up the outbreak of modern email malware
on the Internet.

6.3 The Independent Assumption

We can see from Fig. 3 that the values vðj; tÞ, gðj; tÞ and
hðj; tÞ denote the conditional probabilities as in

vðj; tÞ ¼ P ðXjðtÞ ¼ Act: j Xjðt� 1Þ ¼ Sus:Þ
gðj; tÞ ¼ P ðXjðtÞ ¼ Act: j Xjðt� 1Þ ¼ Dor:Þ
hðj; tÞ ¼ P ðXjðtÞ ¼ Act: j Xjðt� 1Þ ¼ Act:Þ:

8

<

:

(36)

Take vðj; tÞ for example, we derive the equation as in

vðj; tÞ ¼ P ðopenjðtÞ ¼ 1Þ � ½1� rðtÞ��
�

1�
Y

i2Nj

ð1� pij � P ðXiðt� 1Þ ¼ Act: j Xjðt� 1Þ ¼ Sus:ÞÞ

�

:

(37)

However, in the above modeling, we assume the states of
nodes are independent of each other. The infection of a
node depends only on its neighboring nodes regardless of
the state of this node. Thus, we can derive the following

approximation in the equations (10) and (17) as in

vðj; tÞ ¼ gðj; tÞ ¼ hðj; tÞ ¼ P ðopenjðtÞ ¼ 1Þ � ½1� rðtÞ��
�

1�
Y

i2Nj

ð1� pij � P ðXiðtÞ ¼ Act:ÞÞ

�

:
(38)

We can see the essence of the independent assumption is
usingmarginal probability P ðXiðt� 1Þ ¼ Act:Þ to substitute
the conditional probabilities P ðXiðt� 1Þ ¼ Act:jXjðt� 1Þ ¼
Sus:Þ, P ðXiðt� 1Þ ¼ Act:jXjðt� 1Þ ¼ Act:Þ and P ðXiðt�
1Þ ¼ Act:jXjðt� 1Þ ¼ Dor:Þ. As stated in [4], this approxi-
mation may cause the inaccurate estimation in the model-
ing. In Section 4.2, we have seen the analytical results still
deviate from simulations.

In order to show how many errors will be caused by the
independent approximation, we introduce a variable
diffða; bÞ to denote the difference between the marginal
and the conditional probabilities as in

diffða; bÞ ¼ P ðXiðt� 1Þ ¼ aÞ

� P ðXiðt� 1Þ ¼ a jXjðt� 1Þ ¼ bÞ
(39)

¼ P ðXiðt� 1Þ ¼ aÞ �
P ðXiðt� 1Þ ¼ a;Xjðt� 1Þ ¼ bÞ

P ðXjðt� 1Þ ¼ bÞ
;

(40)

whereas a ¼ Act:,b 2 fAct:; Sus:;Dor:g. The node that has
larger degree is easier to be affected by the independent
assumption. Thus, we examine diffða; bÞ on a pair of neigh-
boring nodes, one of which has maximal degree in the net-
work. The probabilities in equation (40) are averaged by
simulation of 1,000 individual runs. As shown in Fig. 17,
diffða; bÞ is not equal to zero. Thus, the independent approx-
imation may cause errors in the modeling. In addition, we
examine the symmetric Kullback-Leibler divergence [35],
DKL, between themarginal and conditional probabilities.We
can see in Table 3 that the result of DKL (b=“Sus.”) is much
larger than the ones when b=“Act.” or “Dor.”. This means

Fig. 15. The effect of users’ vigilance. pij 
 Nð0:5; 0:22Þ, Ti 
 Nð40; 202Þ,
Ri 
 Nð40; 202Þ. DD denotes the differences with varied values of k.

Fig. 16. The number of virtual nodes vnðtÞ for different k.
pij 
 Nð0:5; 0:22Þ, Ti 
 Nð40; 202Þ, Ri 
 Nð40; 202Þ.
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the case of using P ðXiðt� 1Þ¼Act:Þ instead of P ðXiðt� 1Þ ¼
Act:jXjðt� 1Þ ¼ Sus:Þ will cause larger errors than another
two cases.

In fact, the conditional probabilities are too expensive
to obtain mathematically. Thus, most analytical models
and analysis, such as [7], [21], [22], [23], assume nodes
are independent of each other. In this paper, we follow
the independent assumption, and mainly focus on
presenting the reinfection and the self-start in the model-
ing. We plan to investigate how to relax the independent
assumption in modeling the reinfection and the self-start
in the future. Readers could refer to [4], [24] for possible
solutions.

6.4 The Periodical Assumption on TT i and RRi

A premise of the above modeling is that user checks newly
arrived emails and certain events, such as the restart of com-
puters, are triggered at regular periods (Ti andRi). However,
in real-world situations, users may check new emails and
trigger certain events at any time. Indeed, some people may
check emails at 7 o’clock in the morning but at 17 o’clock in
the afternoon of the next day. Nevertheless, most people
may follow a long-term period of email checking time
denoted by Ti. We can also assume a long-term period of Ri.
The values of Ti and Ri depend only on users’ own patterns.
In the analytical modeling, it is reasonable to adopt long-
term regular periods of Ti and Ri instead of varied checking
time values and triggering time values for each user.

We plan to incorporate irregular checking time into our
analytical SII model in the future. A possible solution is to
assign new values of Ti for each user after the user checking
new emails at current time t. The same operation can also
be applied to the value of Ri. Then, our SII model could pos-
sibly be compatible with varied Ti and Ri for each user.

6.5 Discussion of Modeling Repetitious Infections

In this paper, we introduce virtual nodes in order to address
the modeling of reinfection and self-start. Readers could

also think of dividing the infected state into several sub-
infected states. The kth sub-infected state indicates user
having received k email malware copies (0 < n < kHik).
However, this method is too computationally expensive as
the infection probability will be calculated by

Pk¼d
k¼1 C

k
m com-

binations (m ¼ Ni). Moreover, the sub-infected states are
difficult to be implemented when kHik are large. On the
contrary, the virtual node, which indicates user opening the
kth malware email copy, can be easily derived and approxi-
mated. Currently, this is still an on-going work in our
research. We plan to simplify the modeling the multiple
infections in the future.

7 RELATED WORK

There have been substantial efforts in modeling the propaga-
tion dynamics of Internet malware in the last decade. First,
to model the epidemic spreading on topological networks,
early researchers adopt differential equations to present the
propagation dynamics of malware. However, as discussed
in [3], the differential models [20], [32], [34] greatly overesti-
mate the spreading speed due to the “homogeneousmixing”
assumption. Additionally, Zou et al. [3] and Gao et al. [5]
rely on simulations to model the spread of email malware.
Their simulation models avoid the “homogeneous mixing”
problem but cannot provide analytical propagation studies.
The works [4], [8], [21], [23] propose mathematical models,
which have captured the accurate topological information.
Wen et al. [8] further addressed the temporal dynamics and
the spatial dependence problem in the propagation model-
ling. However, all these models cannot present the reinfec-
tion and self-start processes of modern email malware. The
works in [21], [22], [23] focus on threshold conditions for
malware fast extinction on the Internet. Their works study
the final stable state of epidemic spread based on SISmodels,
whereas we study the transient propagation dynamics of
modern email malware.

Second, there are some works which characterize the
propagation dynamics of isomorphic malware, such as P2P
malware [33], mobile malware [36], [37] and malware on
online social networks [28], [29]. R. Thommes and M. Coates
[33] adopt differential equations to present the propagation
of P2P malware through a P2P network. The models [36],
[37] are proposed for the mobile environment by presuming
nodes meet each other with a probability. These works
assume all individual devices are homogeneously mixed,
and thus, they are unlikely to work in the real mobile envi-
ronment. The models [28], [29] present the propagation of
online social malware by simulations. Since these models
[28], [29], [33], [36], [37] are based on nonreinfection, they
cannot be adopted to present the propagation of modern e-
mail malware.

8 CONCLUSION

In this paper, we have proposed a novel SII model for the
propagation of modern email malware. This model is able

Fig. 17. The errors diffða; bÞ for the independent assumption.
pij 
 Nð0:5; 0:22Þ, Ti 
 Nð40; 202Þ, Ri 
 Nð40; 202Þ.

TABLE 3
KL Divergence in the Independent Assumption
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to address two critical processes unsolved in previous mod-
els: the reinfection and the self-start. By introducing a group
of difference equations and virtual nodes, we presented the
repetitious spreading processes caused by the reinfection
and the self-start. The experiments showed that the result of
our SII model is close to the simulations. For the future
work, there are also some problems needed to be solved,
such as the independent assumption between users in the
network and the periodic assumption of email checking
time of users.
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