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Abstract—Through-silicon-via (TSV) enables vertical connec-
tivity between stacked chips or interposer and is a key technology
for 3-D integrated circuits (ICs). While arrays of TSVs are needed
in 3-D IC, there only exists a frequency-dependent resistance,
inductance, conductance and capacitance circuit model for a pair
of TSVs with coupling between them. In this paper, we develop
a simple yet accurate circuit model for a multiport TSV network
(e.g., coupled TSV array) by decomposing the network into a
number of TSV pairs and then applying circuit models for each of
them. We call the new model a pair-based model for the multiport
TSV network. It is first verified against a commercial electromag-
netic solver for up to 20 GHz and subsequently employed for a
variety of examples for signal and power integrity analysis.

Index Terms—Crosstalk, 3-D integration, modeling, packaging,
power delivery, resistance, inductance, conductance and capaci-
tance (RLGC) matrices, through-silicon via (TSV).

I. Introduction

A
S THE traditional CMOS scaling pace gradually slows

down, 3-D integration offers another dimension of scal-

ing by means of stacking functional blocks vertically and

providing high integration density, fast signal transmission,

low power consumption, and heterogeneous integration oppor-

tunities in the More-than-Moore era [1], [2]. Through-silicon-

via (TSV) has been well regarded as a key component in 3-D

integration, connecting chips vertically with shortened elec-

trical delay and providing extremely dense I/O connections.

While TSV fabrication technologies have progressed [3], it

is vitally important to understand TSV electrical properties

accurately and efficiently for 3-D system-performance analysis

and subsequent design optimization.

In order to evaluate electrical behavior, including delay,

power consumption, signal integrity (SI), and power integrity

for 3-D ICs, it is desirable to have a SPICE-compatible

equivalent circuit model for TSV networks. One approach is to

employ an accurate full-wave numerical simulator. However,
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this method is slow and memory intensive. Consequently, it is

not suitable for large-scale analysis and design optimization.

The partial element equivalent circuit (PEEC) model [4], [5]

has been widely used in inductance and capacitance extraction

tools for planar on-chip traces. In a typical PEEC model, the

reference has to be defined at infinity for partial inductance

and capacitance [5], [6]. However, when applying the PEEC

model to TSV networks, the complex 3-D metal-insulator-

semiconductor (MIS) structure of TSV and the lossy silicon

substrate make it difficult to find the partial inductance and

partial capacitance efficiently.

Instead, an extensive amount of work has been done

to model a single signal-ground pair of TSVs analytically

[7]–[12]. As in [11] and [12], compact resistance, inductance,

conductance and capacitance (RLGC) models for a single pair

of TSVs are proposed for a wide frequency range, with con-

sideration of the MOS depletion region effect, the alternating-

current conduction and eddy currents in silicon, and the skin

effect in TSV metal. Though these two-port TSV pair models

are already verified against electrostatic measurements and

electromagnetic (EM) simulations, they are no longer valid

for any pairs of the TSV in the array structure, as the other

surrounding TSVs can affect the distributions of electromag-

netic fields. To model multi-port TSV networks, [13] and [14]

proposed empirical parasitic models for various TSV array

structures by dimensional analysis and curve fitting through

EM simulations. These multi-TSV models, however, are only

available for a limited number of multi-TSV arrangements and,

again, cannot be applied to general multi-port TSV networks.

In this paper, we introduce a comprehensive yet accurate

modeling methodology to expand TSV pair models for general

multi-port TSV networks based on the proposed pair-based

equivalent circuit model. An example of a multi-port TSV

network is shown in Fig. 1. In our proposed method, we

extend the PEEC method with impedance and admittance

between TSV pairs and provide a frequency-dependent SPICE-

compatible RLGC equivalent circuit for a multi-port TSV net-

work. Design studies to evaluate crosstalk and power integrity

of TSV arrays are also discussed based on our proposed multi-

TSV modeling techniques.

II. Preliminary on TSV Modeling

The characteristics of TSV are dependent on its geometrical

parameters such as TSV radius (rvia), height (H), oxide layer

0278-0070/$31.00 c© 2012 IEEE
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Fig. 1. Multi-port TSV network example: an M × N TSV array.

thickness (tox), center-to-center distance or pitch (d), and

electrical parameters such as metal conductivity (σmetal), oxide

permittivity (ǫox), and the silicon substrate permittivity (ǫSi)

and conductivity (σSi).

The conventional PEEC method, first proposed in [4] and

[5], could be applied to extract the inductance and the capaci-

tance between each conductor cylinder in TSV networks. The

partial inverse capacitance matrices (Ps) and the inductance

matrices (L) are defined as

Psij
=

1

AiAj

∫

Si

∫

Sj

Gφ(r, r′)dsds′ (1)

Lij =
1

aiaj

∫

�i

dv

∫

�j

dv′GA(r, r′)fi(r)fj(r′) (2)

where Ai, Aj are the total surface areas and Si, Sj are the sur-

faces for conductor i and j. �i, �j , ai, and aj are the volumes

and cross section areas of conductors i and j, respectively. fi

and fj are the current distribution functions over ai and aj .

Gφ(r, r′) and GA(r, r′) are dyadic Green’s functions for electric

and magnetic potentials in MIS environments. However, the

derivations of dyadic Green’s function in inhomogeneous

medias are generally difficult problems and are often solved

in spectrum domain [15]. The calculations of those Green’s

functions are time consuming as the numerical integration of

the Sommerfeld integrals has to be performed [16].

Instead, an extensive amount of work has been done to

model a single signal-ground pair of TSV analytically. In [7],

[9], and [10], a parametric and frequency-dependent equivalent

circuit model is developed by employing EM simulations. In

[8], an MIS structure signal-ground TSV equivalent circuit

model is proposed based on TSV physics and closed-form

equations. In [11], an equivalent circuit model that considers

the width of MIS depletion region for a single TSV pair

is proposed. With various models available for a TSV pair,

1-D frequency-dependent RLGC parameters can always be

extracted from a two-port network, considering one TSV as the

signal and the other as a reference as shown in Fig. 2. These

parameters are actually loop impedance and admittance. For

example, in [11], the parallel admittance and series impedance

for a single TSV pair can be expressed as

Z = 2Zmetal + jωLouter + Rsub = R + jωL (3)

Y = [2(jωC1)−1 + Y−1
2 ]−1 = G + jωC (4)

Fig. 2. Structures and dimensional variables of a single TSV pair and its
RLGC equivalent circuit model [11].

where ω is the radial frequency, and

C1 =

[

1

2πǫox

· ln

(

1 +
tox

rvia

)

+
1

2πǫSi

· ln

(

1 +
wdep

rvia + tox

)]−1

(5)

Y2 = π(σSi + jωǫSi)/arccosh(
d

2
/(rvia + tox + wdep)) (6)

where wdep is the silicon depletion width

Zmetal =
(1 − j) · J0((1 − j)rvia/δmetal)

σmetal · 2πrviaδmetal · J1((1 − j)rvia/δmetal)
(7)

where δmetal =
√

2/ωµσmetal is the damping parameter for

metal and J0 and J1 are the 0th order and 1st order Bessel

functions of the first type

Rsub=
ωµ

2
· Re

[

H
(2)
0

(

1−j

δSi

(

rvia+tox+wdep

)

)

−H
(2)
0

(

(1−j)d

δSi

)]

(8)

where δSi =
√

2/ωµ(σSi + jωǫSi) is the damping parameter

for silicon substrate. The outer inductance Louter can be

approximated by

Louter ≈
µ

π
arccosh(

d

2rvia

). (9)

In [12], the outer series impedance Rsub and Louter are further

improved from a 2-D per-unit-length model to a first-order

approximated 3-D model when the TSV height is comparable

to the TSV pitch, where

Rsub ≈
H4ω2µ2σSi

12π

√

r2
via + 169

400
H2

−
H4ω2µ2σSi

12π

√

d2 + 169
400

H2

(10)

Louter ≈
µ

π
·
[

rvia + H · arcsinh

(

H

rvia

)

−
√

r2
via + H2

]

−
µ

π
·
[

d + H · arcsinh

(

H

d

)

−
√

d2 + H2

]

. (11)

The TSV pair model proposed in [11] and [12] is used in

the rest of the paper to model each TSV pair in the multi-

port TSV network. However, as long as these impedance and

admittance between a single TSV pair can be extracted through

other modeling techniques, simulation, or even measurement,

they can directly be applied in our techniques for modeling

multi-port TSV networks.
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Fig. 3. Charge distribution and the inductance comparison of a 3-TSV
network show the proximity effect can be neglected when TSV pitch is larger
than 6× TSV radius. The equivalent inductance is calculated at 20 GHz based
on our methodology and the TSV pair model in [12]. The results are compared
to Ansoft Q3D [17] with various TSV radius and pitch/radius ratios.

III. Multi-Port TSV Network Modeling

A. Framework Overview

In this section, we propose a detailed procedure to recon-

struct S × S RLGC matrices for N TSVs with S signals

and (N − S) ground TSVs. First, the potential matrix can be

expressed as the inverse of the capacitance matrix [5] and, for

a TSV pair with two individual conductors

Ps =

[

Ps11
Ps12

Ps12
Ps11

]

=

[

C11 + C12 −C12

−C12 C11 + C12

]−1

(12)

where C11 and C12 are the partial self and mutual capacitances

defined when the reference is set to be at infinity. For sim-

plicity, we assume all the TSVs in the network are identical.

The pair-based capacitance Cp is defined as the capacitance

between two TSVs, with one TSV as the signal and the other

one as the reference, and can be expressed as

Cp = C12 + (C−1
11 + C−1

11 )−1 =
1

2(Ps11
− Ps12

)
. (13)

In a multi-TSV network, as long as the charges uniformly

distribute along the surface of the TSV conductor,1 the self

terms Psii
, Psjj

and mutual terms Psij
of two TSVs are solely

determined by the media and the geometry of TSV i and j

themselves [5]. Thus, the partial potential matrix for a general

N-TSV network can be expressed as

Ps =

⎡

⎢

⎢

⎣

Ps11
Ps11

− 1
2Cp12

· · · Ps11
− 1

2Cp1N

...
...

. . .
...

Ps11
− 1

2CpN1

Ps11
− 1

2CpN2

· · · Ps11

⎤

⎥

⎥

⎦

(14)

where Cpij
is the pair-based capacitance of a TSV pair between

TSV i and j, which can be obtained using (4), and Ps11
is the

inverse of partial self capacitance for a single TSV. We again

1The charges in TSV are uniformly distributed as long as the center-to-center distance

between TSVs is more than 6× TSV radius such that the proximity effect can be

neglected. A 3-TSV network example includes one signal TSV and two ground TSV,

as shown in Fig. 3. When the TSV pitch is larger than 6X TSV radius, the inductance

error is saturated and the proximity effect can be neglected. When the TSV pitch is less

than 6X TSV radius, the inductance error rises up dramatically due to the nonuniform

current distribution on each TSV.

Fig. 4. 2×2 TSV differential pair differential S-parameter comparison. The
TSV diameter is 25 µm and pitch is 150 µm.

assume all the TSVs in the network are identical. To obtain the

inverse of the conductance matrix, G−1, for a general N-TSV

network, the procedure is the same as the Ps matrix.

A similar procedure can also be applied to construct the

inductance matrix L and resistance matrix R of an N-TSV

network. Taking inductance as an example, the inductance

matrix L for two TSV conductors can be expressed as

L =

[

L11 L12

L12 L11

]

=

[

L11 L11 − 1
2
Lp

L11 − 1
2
Lp L11

]

(15)

where L11 is the partial self-inductance of a single TSV and

Lp is the loop inductance of a TSV pair. Fundamentally, in a

multi-conductor system, the self inductance of one conductor

is solely decided by the conductor itself, while the mutual

inductance of two conductors is solely decided by the two

conductors [4], [6]. The full partial inductance matrix for a

general N-TSV network can be expressed as

L =

⎡

⎢

⎣

L11 L11 − 1
2
Lp12

· · · L11 − 1
2
Lp1N

...
...

. . .
...

L11 − 1
2
LpN1

L11 − 1
2
LpN2

· · · L11

⎤

⎥

⎦

(16)

where Lpij
is the loop inductance between TSV i and j. Again,

for simplicity, we assume all the self terms are the same and

the loop inductance Lpij
can be obtained for each TSV pair

using (3).

For typical TSV geometry, Cpij
and Lpij

can be calculated

easily, for example, by using (4) and (3). However, it is

difficult to analytically calculate Ps11
(or 1/C11) and L11 for a

long cylinder with inhomogeneous media. Note the reference

for the full potential matrix Ps and the return path for the

full inductance matrix L are set to be at infinity. In reality,

however, ground TSVs are designed to be the return path and

reference of the high-speed signals. In Section III-B, it can be

proven that the reduced potential matrix Psr
and the reduced

inductance matrix Lr are independent of the values of Ps11

and L11 if at least one of the TSVs is set as the reference

of the network. Thus, we could simply choose both Ps11
and

L11 as 0 to simplify our procedure. Physically, this means

that the relative potential difference between any two TSVs is

independent to the selection of the reference point.

To get the reduced inductance matrix Lr and the reduced

potential matrix Psr
for an N-TSV network with (N − S)
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Fig. 5. TSV networks in silicon interposer for 2.5-D chip-to-chip commu-
nication.

reference TSVs, we need to connect those reference TSVs

in parallel and set them as the current return path for the S

signal TSVs. Take a 3-TSV network with the full inductance

matrix L as an example. Since V = jωL·I, then 1
jω

L−1 ·V = I,

or equivalently

1

jω

⎡

⎣

(L−1)11 (L−1)12 (L−1)13

(L−1)21 (L−1)22 (L−1)23

(L−1)31 (L−1)32 (L−1)33

⎤

⎦

⎡

⎣

V1

V2

V3

⎤

⎦ =

⎡

⎣

I1

I2

I3

⎤

⎦ .

(17)

Assume TSV1 is the only signal TSV and both TSV2 and

TSV3 are reference TSVs. After connecting them in parallel

and setting V2 = V3, the reduced inductance matrix L1 should

satisfy

1

jω
L−1

1

[

V1

V2(= V3)

]

=

[

I1

I2 + I3

]

(18)

with L−1
1 expressed as

[

(L−1)11 (L−1)12 + (L−1)13

(L−1)21+(L−1)31 (L−1)22+(L−1)23+(L−1)32+(L−1)33

]

(19)

or equivalently

L1 = (A(L−1)A′)−1, where A =

[

1 0 0

0 1 1

]

. (20)

We now set these parallel-connected reference TSVs as the

current return path, which means
[

V1

V2

]

= jωL1

[

I1

−I1

]

(21)

and the resulting reduced impedance matrix Lr satisfies

(V1 − V2) = jωLr · I1 (22)

where I1 = −I2 − I3. As a result, Lr can be expressed as

Lr = (L−1)11 (23)

−((L−1)12 + (L−1)13) − ((L−1)21 + (L−1)31)

+((L−1)22 + (L−1)23 + (L−1)32 + (L−1)33)

or equivalently

Lr = B(L1)B′ = B(AL−1A′)−1B′ (24)

where

A =

[

1 0 0

0 1 1

]

B =
[

1 −1
]

. (25)

This procedure can be generalized to find the reduced

impedance matrix Zr and the reduced admittance matrix Yr

Fig. 6. 4×4 TSV array RLGC comparison for self terms of TSVA, and
mutual terms between TSVA and TSV1.

Algorithm 1 Pair-based equivalent circuit method for N-TSV net-
work modeling.

for i = 1 : N do

for j = 1 : N do

if i �= j then

Zij = − 1
2
Zp;

(Y−1)ij = −1
2Yp

;

else

Zii = 0; (Y−1)ii = 0;
end if

end for

end for

Rearrange Z and Y matrix, if necessary, for reference TSVs;
Prepare matrix A and B according to (28);
Zr = B(AZ−1A′)−1B′;
Yr = (B(AYA′)−1B′)−1

for any N-TSV networks, where S of them are signal TSVs

and (N − S) of them are reference TSVs, with

Zr = B(AZ−1A′)−1B′ (26)

Yr = (B(AYA′)−1B′)−1 (27)

and

A =

[

I(S+1) 0

11×(N−S−1)

]

B =
[

IS −1S×1.
]

. (28)

Note that S < N so that at least one of the TSVs is a

reference. A is an (S + 1) × N matrix and B is an S × (S + 1)

matrix. Here, we assume that the first S TSVs in the full Z

and Y matrix are signal TSVs and the remaining (N − S)

TSVs are reference TSVs. If not, it can be rearranged to

this form by multiplying Z and Y with permutation matrices.

A summary of our proposed modeling methodology can

be found in Algorithm 1. The TSV loop impedance and

pair-based admittance Zp and Yp can be obtained through (3)

and (4) or by other TSV pair models as well.

B. Pair-Based Equivalent Circuit Model

In a typical PEEC model, partial inductance and capacitance

of a open loop are defined as the integration of the fields to
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Fig. 7. S parameters of NEXT and FEXT between TSVA and TSV1 with different pitch sizes and between TSVA and other TSVs with pitch 40 µm.

infinity. Computational methods with filament approximation

were widely developed [4]–[6] based on the concepts of those

partial elements. In some situations, however, when integral-

equation based PEEC methods cannot obtain partial elements

easily while the loop or pair-based elements among filaments

are available through other methods, a numerical scheme as

Algorithm 1 can be used to obtain circuit models for these

complex structures. The reference needs to be set on at least

one or more filaments in the network when applying Algorithm

1. The following derivations demonstrate that the resulting

equivalent circuit model for the network is only related to the

impedance and admittance between each pair of filaments. The

information for the partial self-inductance and self-capacitance

with reference at infinity has no effect on the resulting equiv-

alent circuit model. Note in the modeling of a multi-port TSV

network, we can simply take each TSV as one filament as long

as the proximity effect can be neglected, as shown in Fig. 3.

Without loss of generality, we use impedance matrix Z as an

example. For a general N-TSV system, the impedance matrix

Z can be expressed as Z = G + H where

G =

⎡

⎢

⎢

⎢

⎣

0 − 1
2
Zp12

· · · − 1
2
Zp1N

− 1
2
Zp12

0 · · · − 1
2
Zp2N

...
...

. . .
...

− 1
2
Zp1N

− 1
2
Zp2N

· · · 0

⎤

⎥

⎥

⎥

⎦

(29)

and

H =

⎡

⎢

⎣

Z11 · · · Z11

...
. . .

...

ZNN · · · ZNN

⎤

⎥

⎦
(30)

where Zpij
is the pair-based impedance between each TSV pair

(i, j) and Zii is the partial self-impedance for TSV i. All the

TSVs in the network are identical. Note that G is symmetric

and H is of rank 1. We would like to show that the choice of

Zii actually has no impact on the reduced impedance matrix

Zr as long as we set at least one of the TSVs as the reference.

To start with, from (26), we have

Zr = B(AZ−1A′)−1B′ = B(A(G + H)−1A′)−1B′ (31)

where A and B can be found in (28).

Since G is symmetric and H is of rank 1, by applying a

Lemma in [18]

Zr = B(A(G + H)−1A′)−1B′

= B(AG−1A′ +
−1

1 + g
AG−1HG−1A′)−1B′

= B(G1 + H1)−1B′ (32)

where g = tr(HG−1). H1 is still of rank 1 since rank(XY ) ≤
min(rank(X), rank(Y )) for arbitrary matrices X and Y . The

lemma in [18] can be applied again and we get

Zr = B(G−1
1 +

−1

1 + g1

G−1
1 H1G

−1
1 )B′

= B(AG−1A′)−1B′ +
1

(1 + g)(1 + g1)
· KHK′ (33)

where g1 = tr(H1G
−1
1 ) and K = B(AG−1A′)−1AG−1.

It can be shown that

KHK′ = 0 (34)

such that

Zr = B(AG−1A′)−1B′ (35)

is not related to H , and so Zr is not related to the choice of

Zii. The detailed proof can be found in the Appendix.

C. Model Validation via Simulation

From the previous section, it has been shown that by

applying our proposed methodology for general multi-port

TSV networks, the resulting RLGC models in the reduced

impedance (Zr) and admittance (Yr) matrices are only related

to the equivalent circuit model of each TSV pair within the

network. As long as the pair model for each TSV pair is

accurate, the resulting multi-port TSV network model is also

accurate without the knowledge of partial self elements. To

even further verify our method for a multi-port TSV network,

a 2 × 2 TSV array with two signal TSVs and two ground

TSVs is first simulated for its differential insertion loss (S21

magnitude) and differential return loss (S11 magnitude) and

compared to a commercial EM simulator (Ansoft Q3D [17]),

as shown in Fig. 4. The TSV diameter is 25 µm and pitch
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Fig. 8. Normalized crosstalk voltages between TSVA and TSV1. The
noise voltages are separated to capacitive and inductive couplings using
(38) and (39). The pitch size is 40 µm.

is 150 µm. The height of the TSV is 150 µm and the silicon

dioxide thickness is 0.5 µm. The resistivity of silicon substrate

is 10 �·cm. From Fig. 4, it can be shown that our model

correlates well with the commercial EM simulator up to

20 GHz for this 2 × 2 TSV differential network.

Another 4 × 4 TSV array case with 12 signal TSVs in

peripheral and 4 ground TSVs in center, as shown in Fig. 5, is

also modeled using our proposed methodology. The reduced

impedance and admittance matrices are compared to a com-

mercial EM simulator (Ansoft Q3D [17]) with its extracted

RLGC values, as shown in Fig. 6. The TSV diameter is 10 µm

and silicon dioxide thickness is 0.5 µm. The height of the

TSV is 150 µm and the pitch for this TSV array is 40 µm.

The resistivity of silicon substrate is 10 �·cm. In Fig. 6, the

self-terms (TSVA) and the mutual terms (between TSVA and

TSV1) of all the RLGC elements are compared between our

method and the extracted results. It can be shown that again

our modeling method correlates well with the commercial EM

simulator for both self and mutual RLGC values up to 20 GHz.

Note that since in the experiment our methodology is based

on an analytical model between each TSV pair without any

meshing or other computational electromagnetic procedures,

our method could achieve orders of magnitude improvement in

terms of efficiency while providing similar accuracy compared

to commercial EM simulation tools.

IV. Multi-Port TSV Network Characteristics in

Signal and Power Integrity

A. Crosstalk Analysis for Chip-to-Chip TSV Networks in Sil-

icon Interposer

Crosstalk in TSV networks is a critical issue in 3-D inte-

gration and may have significant impacts on timing margins

and signal integrity, especially for high density TSV arrays

on a lossy silicon substrate. Although the TSV arrays can be

modeled as a multi-conductor transmission line, the crosstalk

among the TSV arrays behaves differently than the crosstalk

of transmission lines with homogeneous media.

We first review the near-end crosstalk (NEXT) and far-end

crosstalk (FEXT) for electrically short transmission lines by

TABLE I

Mutual Inductance and Capacitance Between TSVA and TSV1 at

10 GHz With Different Pitch Sizes

Pitch 40 µm 80µm 100 µm 150 µm

Mutual Inductance (nH/m) 320 350 360 380

Mutual Capacitance (pF/m) 75 50 47 40

the following equations:

VNE =
RNE

RNE + RFE

jωLmIag +
RNERFE

RNE + RFE

jωCmVag (36)

VFE =
−RNE

RNE + RFE

jωLmIag +
RNERFE

RNE + RFE

jωCmVag (37)

where VNE and VFE are the near-end and far-end phasor

crosstalk voltages while RNE and RFE are terminations at

the near end and far end, respectively. Lm and Cm denote

the mutual inductance and capacitance between the aggressor

and the victim. Vag and Iag are the aggressor voltage and

current, respectively. Equations (36) and (37) assume that

the transmission lines are weakly coupled and lossless and

the crosstalk can be separated to inductive and capacitive

couplings.

TSV structures can usually be considered electrically small

and weakly coupled transmission lines below 20 GHz. Thus,

the near-end and far-end crosstalks in terms of the S-

parameters between TSV i and j can be written as

Snear = (Zm/Zref + Ym · Zref )/2 (38)

Sfar = (−Zm/Zref + Ym · Zref )/2 (39)

where Zm and Ym are the mutual impedance and admittance

between TSV i and j in the reduced impedance and admittance

matrices.

Fig. 5 shows a 4 × 4 TSV array structure, including 12

peripheral high-speed signal IOs and 4 center ground TSVs.

Crosstalk between the aggressor (TSV labeled as A in Fig. 5)

and other TSVs is evaluated using our proposed model. The

aggressor has 50 � terminations at both source and load and

all the other TSVs also have 50� terminations. Because the

TSV array needs to be aligned with package microbumps in

this 2.5-D silicon interposer integration, as shown in Fig. 5,

the pitch size for each adjacent TSV pair in this array structure

has to be identical. Both near-end crosstalk (NEXT) and far-

end crosstalk (FEXT) between aggressors TSVA and TSV1

with different pitch sizes are illustrated in Fig. 7(a), while

the crosstalks between TSVA and TSV1, TSV2, TSV3, and

TSV4 for a fixed pitch size of 40 µm are shown in Fig. 7(b).

First, compared to the crosstalk in ordinary transmission lines

with homogeneous media, the frequency responses of total

crosstalk transfer functions do not maintain 20 dB/decade. This

is mainly due to the transitions of slow mode to TEM mode

of semi-conductive media [19], which results in a frequency-

dependent mutual capacitance. At low frequencies of the

slow-mode region, as shown in Fig. 8, capacitive coupling

dominates while inductive coupling dominates at the TEM-

mode region.

Interestingly, from Fig. 7(a), it can be observed that the

crosstalk cannot be significantly reduced by increasing the
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Fig. 9. Time-domain crosstalk voltage at near and far ends between TSVA and TSV1, with 1 V signal strength and 30 ps rise time.

pitch size, especially at the high-frequency range. This is

because although capacitive coupling decreases as pitch size

increases, the mutual inductance between TSVA and TSV1

actually increases, as shown in Table I. When increasing

the pitch size, not only signal TSVs are further away from

each other, ground TSVs are also further away from signal

TSVs, which leads to more magnetic couplings between TSVA

and TSV1. Decreasing TSV pitch hurts NEXT with more

capacitive coupling but, on the other hand, benefits FEXT

at high frequency where inductive coupling dominates, as

shown in Fig. 7(a). From Fig. 7(b), for a fixed pitch size,

crosstalk from both inductive and capacitive coupling affects

the nearest victim most. This is similar to the crosstalk in

ordinary transmission lines.

Fig. 9 shows the time-domain simulations of the crosstalk

between TSVA and TSV1 with different pitch sizes. The signal

has a 1 V voltage swing and the rise time is 30 ps, which

corresponds to the knee frequency of 16.7 GHz. The TSVs are

terminated at both ends by a 50 � resistance. From Fig. 9, for

NEXT, the peak-to-peak values of the crosstalk only change

slightly with different pitch sizes, as when pitch size increases,

inductive coupling increases but capacitive coupling decreases.

For FEXT, a deep (inductive coupling) occurs first followed

by a pump (capacitive coupling). The deep increases with

the pitch size while the pump decreases with the pitch size.

Increasing TSV pitch size cannot reduce the crosstalk since

inductive coupling is dominant at 16.7 GHz and the peak-to-

peak crosstalk voltage actually increases when pitch size is

increased. On the other hand, from Fig. 9, it can be shown

that adding extra ground TSVs between two signal TSVs is a

very effective way to reduce the crosstalk.

B. Impedance Analysis for Power/Ground TSV Array in 3-D

Power Distributed Network (PDN)

In order to reduce simultaneous switching noise in a 3-D

integration PDN design, the impedance properties of the

power/ground (P/G) TSV array must be estimated and an-

alyzed [14]. Fig. 10 shows a system-level PDN with three

different P/G TSV array arrangements connecting one of the

active die and package. TSV diameter is 10 µm and the pitch

is 100 µm. The height of the TSV is 150 µm. The current

Fig. 10. Power/ground TSV array arrangements and system-level power
distribution network (PDN).

Fig. 11. P/G TSV array impedance versus: (a) different P/G TSV array
arrangements, (b) different pitch sizes, and (c) different diameters.

required by the fast switching chip is delivered from the

voltage regulation module, through the PCB, package, and

TSV P/G networks.

Fig. 11(a) shows the impedance comparison between differ-

ent array arrangements for a P/G TSV array. In the distributed

P/G TSV array, for any particular TSV, all other adjacent

TSVs have currents in a reverse direction, which results in

reduced mutual inductance and thus smaller impedance at high

frequency. The impedance at high frequency for the grouped

P/G TSV array is higher than the other two cases because

its longer distance between power and ground TSVs results

in higher loop inductance. Similar behavior can be found

if we increase the pitch in a distributed P/G TSV array, as

shown in Fig. 11(b). As pitch increases, the loop inductance
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Fig. 12. 3-D PDN impedance comparison between different P/G TSV array
arrangements.

increases and so does the high-frequency impedance. For

frequencies less than 10 MHz, the impedance is dominated by

the resistance of the P/G TSV and is not affected by the array

arrangement or the pitch. By increasing the TSV diameter,

the resistance of the P/G TSV is decreased and so is the low

frequency TSV array impedance, as shown in Fig. 11(c).

By connecting our P/G TSV array model with the extracted

package and PCB PDN models, a system-level impedance

analysis for 3-D PDN can be performed between different

P/G TSV array arrangements and the result is shown in

Fig. 12. From the figure, the PDN impedance is still gen-

erally dominated by the large off-chip inductance and on-

chip capacitance at frequencies below 10 MHz. However, with

the grouped P/G TSV array, the PDN peak impedance gets

shifted and the impedance between 20 MHZ and 100 MHz

increases significantly due to larger inductance introduced by

the grouped P/G TSV array.

V. Conclusion

In this paper, we introduced a general pair-based model for

multi-port TSV networks. Frequency-dependent RLGC equiv-

alent circuits for multi-port TSV networks can be extracted and

composed based on pair-based impedance and admittance from

the TSV pair models. The results of our proposed multi-port

TSV network modeling were validated against commercial

electromagnetic simulations up to 20 GHz. Design guidelines

for TSV arrays based on crosstalk analysis and power integrity

analysis were also investigated using the proposed modeling

technique. The proposed pair-based equivalent circuit model

can be generalized and applied to other applications as well.

Appendix

For any nonsingular N × N matrix X and rank-one N × N

matrix H , it can be shown that

KHK′ = 0 (40)

where K = B(AXA′)−1AX. A is an (S + 1) × N matrix and B

is an S × (S + 1) matrix, which can be found in (28).

To apply to our case, we can simply define H and G by

using (30) and let X = G−1 since G is symmetric.

Proof: Equation (40) can be proven true by showing that

for any nonsingular N ×N matrix X and K = B(AXA′)−1AX,

the sum of each row of K equals zero such that KHK′ equals

zero for any N × N rank-1 matrix H .

Equivalently, we want to show
∑N

j=1 kij = 0 for row

i = 1, 2, . . . , S in K. We first let Y = AX and M = (YA′)−1Y

such that K can be expressed as

K = B(AXA′)−1AX = B · (YA′)−1Y = B · M. (43)

Without loss of generality, we simply assume

Y =

⎡

⎢

⎢

⎢

⎣

y11 y12 · · · y1N

y21 y22 · · · y2N

...
...

...
...

y(S+1)1 y(S+1)2 · · · y(S+1)N

⎤

⎥

⎥

⎥

⎦

(44)

with the following equality must be satisfied:

Y = (YA′)M (45)

or equivalently as shown in (41).

As a result, M can be expressed as

M =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 · · · 0 m1(S+1) · · · m1N

0 1 · · · 0 m2(S+1) · · · m2N

...
...

...
...

...
...

...

0 0 · · · 1 mS(S+1) · · · mSN

0 0 · · · 0 m(S+1)(S+1) · · · m(S+1)N

⎤

⎥

⎥

⎥

⎥

⎥

⎦

where mij is defined in (42) for i = 1, 2, . . . , (S + 1),

j = (S + 1), . . . , N.

In other words

yi(S+j) =

S
∑

k=1

yikmk(S+j) + m(S+1)(S+j)

N
∑

l=S+1

yil (46)
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for i = 1, 2, . . . , (S + 1) and j = 1, 2, . . . , (N − S), and we

can find that the summation for each row i in (42)

N−S
∑

j=1

yi(S+j) (47)

=

N−S
∑

j=1

S
∑

k=1

yikmk(S+j) +

N−S
∑

j=1

N−S
∑

k=1

yi(S+k)m(S+1)(S+j)

=

S
∑

k=1

yik(

N−S
∑

j=1

mk(S+j)) +

N−S
∑

k=1

yi(S+k)(

N−S
∑

j=1

m(S+1)(S+j))

=

S
∑

k=1

yik	k + 	(S+1)

N−S
∑

k=1

yi(S+k). (48)

From (48), it is clear that

	k =

{

0, if k ≤ S

1, if k = S + 1
(49)

and the sum for any row k in M all equals 1 since

N
∑

j=1

mkj =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1 +

N
∑

j=N−S

mk(S+j) = 1 + 	k = 1, if k ≤ S

N
∑

j=N−S

m(S+1)(S+j) = 	(S+1) = 1, if k = S + 1.

(50)

Equivalently

N
∑

j=1

mij =

N
∑

j=1

mkj for i, k = 1, 2, . . . , S + 1 (51)

for any (S + 1) × N matrix Y and M = (YA′)−1Y .

Since B =
[

IS −1S×1

]

and K = BM, it can easily be

shown that the sum of each row in K equals to zero

N
∑

j=1

kij = 0 for i = 1, 2, . . . , S (52)

and KHK′ equals zero for any N × N rank-one matrix H ,

which proves (40).
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