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Abstract Accurate yield estimates are of great value to vineyard growers to make

informed management decisions such as crop thinning, shoot thinning, irrigation

and nutrient delivery, preparing for harvest and planning for market. Current meth-

ods are labor intensive because they involve destructive hand sampling and are prac-

tically too sparse to capture spatial variability in large vineyard blocks. Here we re-

port on an approach to predict vineyard yield automatically and non-destructively

using images collected from vehicles driving along vineyard rows. Computer vision

algorithms are applied to detect grape berries in images that have been registered

together to generate high-resolution estimates. We propose an underlying model

relating image measurements to harvest yield and study practical approaches to cal-

ibrate the two. We report on results on datasets of several hundred vines collected

both early and in the middle of the growing season. We find that it is possible to

estimate yield to within 4% using calibration data from prior harvest data and 3%

using calibration data from destructive hand samples at the time of imaging.

1 Introduction

Harvest yield prediction is critical to any vineyard grower for deciding when and

how to make adjustments to their vines to optimize growth, for preparing a grower

for the harvest operation, for shipping their crop, storing their crop and also sell-

ing their crop on the market. The typical process of estimating yield is for workers

to manually sample a small percentage of the vineyard and extrapolate these mea-
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surements to the entire vineyard. The manual practice is labor intensive, expensive,

inaccurate, spatially sparse, destructive and riddled with subjective inputs.

(a) Chardonnay vineyard used in experiments (b) Sensors used in experiments

(c) Raw images (d) Detected berries

Fig. 1: Photos of the vineyards and equipment from our experiments. Equipment

mounted on an aluminum frame fixed on the back tray of a Kawasaki Mule farm

utility vehicle. The sensing equipment used is a Nikon D300s color camera fac-

ing sideways from the vehicle detecting the fruit, an AlienBees ARB800 ring flash

mounted around the lens of the color camera illuminating the scene, a PointGrey

BumbleBee2 stereo camera facing back down the row tracking the vehicle motion.

Images collected of the vines are processed to detect and measure the vine fruit.
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Vineyard managers currently do not have the information they require to make

informed decisions on their operations with accuracy and precision. We present

technology that can make dense predictions of harvest yield efficiently and auto-

matically using cameras. Here we report results of an approach to automatically

detect and count grapes to forecast yield with both precision and accuracy. The ap-

proach is to take conventional visible light cameras through a vineyard to image the

vines and detect the crop and predict yield, see Fig. 1b.

Visually detecting grape berries is difficult because often there is a lack of color

contrast to the background, which is often similarly colored to the grapes, (Fig. 1a).

We specifically address the issues of lighting and lack of color contrast, by using

shape and texture cues for detection. Also not all berries are visible and therefore

the camera makes incomplete measurements that need to be calibrated.

Preliminary results of our approach were reported in Nuske et al. [9], where we

presented a method to detect berries and count berries to correlate against yield and

we extend our prior work in the following ways:

1. we study the underlying model relating the image measurements of the grape

berries to the harvest weight

2. we demonstrate two different approaches to calibrate our image berry measure-

ments to harvest yield

3. we present experimental results with image data collected at various stages dur-

ing the growing season and in both wine and table-grape vineyards

We deployed our method on three different vine varieties and conducted experi-

ments in which manual per-vine harvest weights were collected and used as ground

truth to evaluate our automated yield measurements. The size of the experiment in-

cludes 860 individual vines, of three different varieties and vineyards over a linear

distance of 2.5km. Our method predicts weight with approximately 4% error of the

overall actual harvest yield and approximately 8% error of the harvest weight for

individual vineyard rows.

2 Related Work

Current practices to forecast yield are inaccurate because of sampling approaches

that tend to adjust towards historical yields and include subjective inputs (Clingel-

effer et al. [2]). The calculation of final cluster weight from weights at véraison

use fixed multipliers from historic measurements, Wolpert and Vilas [12]. Unfor-

tunately, multipliers are biased towards healthier vines thus discriminating against

missing or weak vines and multipliers for cluster weights vary widely by vineyard,

season and variety.

Sensor-based yield estimation in vineyards has been attempted with trellis ten-

sion monitors, multispectral sensors, terahertz-wave imaging and visible-light im-

age processing. A dynamic yield estimation system based on trellis tension monitors

has been demonstrated (Blom and Tarara [1]) but it requires permanent infrastruc-
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ture to be installed. Information obtained from multispectral images has been used

to forecast yields with good results but is limited to vineyards with uniformity re-

quirements (Martinez-Casasnovas and Bordes [6]). A proof of concept study by

Federici et al. [5] has shown that terahertz imaging can detect the curved surfaces

of grapes and also has the potential to detect these through occluding thin canopy.

The challenge for this approach is to achieve fast scan rates to be able to deploy the

scanner on a mobile platform.

Small scale yield estimation based on simple image color discrimination has been

developed by Dunn and Martin [4]. This approach was attempted on Shiraz post-

véraison (i.e. after color development, very close to harvest) in short row segments.

The method would not be applicable for the majority of real world examples where

the fruit appears over a background of similarly-colored leaves, as is the case in

white grape varieties and in all varieties before véraison. Other recent small scale

experiments in vineyard work is Dey [3] present a method for classifying plant struc-

tures, such as the fruit, leaves, shoots based on 3D reconstructions generated from

image sequences which unlike our work is sensitive to slight wind whilst imaging.

Other crop detection based on computer vision methods using color pixel classifica-

tion or shape analysis has been attempted on various fruit types – Jimenez et al. [7]

provides a summary of fruit detection work, Singh et al. [10] present a method for

detecting and classifying fruit in apple orchards and Swanson et al. [11] use the

shading on the curved surfaces of oranges as a cue for detection.

Our prior work, Nuske et al. [9], demonstrated how to detect berries similar in

color to the background of leaves using a combination of image processing tech-

niques including a radial symmetry transform and classification of texture proper-

ties. In the previous section we list the extensions to our earlier work.

3 Modelling Harvest Yield with Image-based Measurements

Viticulturalists have long studied the process of predicting the size of the harvest

yield and have developed models of the various yield components (Clingeleffer et

al. [2]). In the most basic form, the weight of the harvest (Wh) can be expressed as a

product of the number of berries (Nb) and the mean weight of the berries (Wb).

Wh = NbWb (1)

Once berry set has passed the number of berries can be considered constant

throughout the remainder of the season, whereas the mean berry weight will sub-

stantially increase in size. The standard practice for generating accurate yield pre-

dictions is to measure the number of berries early in the season and use historic

information of the mean berry weight to project to a harvest estimate. Using histori-

cal records of mean berry weight will introduce error into the projection as the mean

berry weight at harvest will vary from year to year. However the variation is berry

weight is small and is known only to account for 10% of the year-to-year variations
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in harvest yield. The berry count contributes to the remaining 90% (Clingeleffer et

al. [2]) of year-to-year yield variations.

Our approach to predict the yield at harvest time is also focussed on measuring

the number of berries and we do so using cameras mounted on vehicles driving

collecting images of the vines. From a single input image we use our visual berry

detection algorithm detailed in Nuske et al. [9] for calculation of the number of

berries. Often the canopy of the vines visually similar to the fruit. To detect the fruit

we find possible berry locations based on their shape for robustness and classify

based on texture and color. The method is to look for radially symmetric points in

a fixed, pre-decided radius range followed by color and texture based classification.

Fig. 1d presents examples of the berries being detected by our algorithm.

The number of berries found by our visual berry detection algorithm (Nd
b ) is the

measurement that we pass to a yield forecasting function, f (·), which outputs an

estimate (N̂b) of the actual berry count:

N̂b = f (Nd
b ) (2)

Multiplying our estimated berry count by the expected berry weight at harvest

(Wb) gives our yield prediction.

To generate accurate estimates, the function f must model several biases that are

inherent to the visual detection process. In Nuske et al. [9] we treated the biases

together as a single first order linear factor (k):

N̂b = f (Nd
b ) =

1

k
Nd

b (3)

Here in this work we study the individual causes of the bias in an attempt to

better understand the system as a whole. First, we introduce three different types

of occluders that cause many berries to not be visible to the camera and bias the

counts:

1. Self-occlusions (ks): Berries hidden behind berries within the same grape cluster

2. Cluster-occlusions (kc): Berries hidden behind other grape clusters

3. Vine-occlusions (kv): Berries hidden behind the leaves and shoots of the vine

All of these physical biases can be seen in Fig. 1. There are also biases in the

visual detection process. In Nuske et al. [9] the performance of the detection algo-

rithm was analyzed to find that a fraction of the berries visible to the camera are

not detected by the algorithm and also small fraction of times the algorithm falsely

reports a berry where there was not, and these two factors combined introduces a

detection bias (kd). Further, when combining detections from several overlapping

images, the system is susceptible to errors where berries are either double-counted

or mistakenly not counted, introducing a mis-registration bias, kr.

The naive approach is to combine these bias terms as linear factors as follows:

f (Nd
b ) =

Nd
b

kskckvkdkr

(4)
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Later, in the results section, we attempt to isolate the five bias parameters aiming

to deepen our understanding of the origins of the error in our visual estimation

framework.

3.1 Estimating Self-occlusions

In our prior work (Nuske et. al [9]) we used the visible berry count as a prediction

of the cluster size, assuming the visible berry count is proportional to the total berry

count:

Nb ∝ Nd
b (5)

In the results section we study the visible berry count in controlled experiments

and also in an attempt to improve the measurement of the occluded berries in a

cluster, we propose two potential modifications.

The first alternative measurement we propose is to take the convex hull formed

by all the berries in the cluster. Assuming the cluster has uniform density, k, and an

average thickness of the grape cluster to be d, we multiply the area A to this fixed

cluster depth, and normalize with the average berry radius Rb.

Nb ∝ d
A

R2
b

(6)

The second alternative to measuring the size of a cluster is to extend the convex

hull model by predicting the berries occluded by the visible layer of berries using

an ellipsoid model. A grape cluster’s volume can be approximated with an ellipsoid

cutting off the image plane as an ellipse. We find the best fit ellipse for the berry

center locations with same normalized second central moments. Given the semi-

axes of the ellipse in pixels R1 and R2, with R1 ≥ R2, volume of the corresponding

ellipsoid would be proportional to volume occupied by the berries (Bv) in the cluster.

Using the average berry radius (Rb) of the cluster, we can hence calculate the total

number of berries occupied by the cluster:

Vc ∝

4

3
πr1r2

2

Nb =Vc/(
4

3
πr3

b) (7)

We study these three approaches to measuring grape cluster size in controlled

laboratory tests in the results section. In the vineyard experiments we focus just

on using the visible berry count will evaluate the alternatives in future vineyard

experiments once we have developed a method to accurately segment and separate

neighboring clusters.
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4 Calibrating Image Measurements to Harvest Yield

Here we take into consideration different procedures that are possible for calibrating

our image measurements. In our prior work (Nuske et al. [9]) we demonstrated that

computing a ratio between berries detected and the harvested fruit on one portion

of data is sufficient for predicting yield on another portion of data by the applying

a linear ratio to the image measurement. In practice, knowing the mean occlusion

ratio of a given vineyard would be needed at the time of imaging, because it would

defeat the purpose of predicting yield if it were necessary to wait for the harvest data

before it were possible to measure the occlusion ratio. We propose two methods for

acquiring the calibration ratio at (or before) the time of imaging, well in advance of

harvest.

4.1 Calibration of occlusion ratio from destructive hand samples at

time of imaging

One approach takes a small number of destructive hand samples in the vineyard at

the time of imaging. The vines are imaged first and then on a small sample of vines

the fruit is destructively removed and weighed. The hand fruit weight is projected

to harvest using the ratio between current berry weight and expected berry weight

at harvest. Taking the hand estimate against the image berry count for these specific

vines produces an occlusion ratio that can be estimated well in advance of harvest,

and applied to predict yield of the remaining vines that were not destructively sam-

pled.

Fig. 2a shows a satellite image of the Chardonnay vineyard, highlighted with red

to indicate the six vineyard rows that were imaged in our experiment. On bottom

row, purple marks indicate the 15 vines in which the hand samples used for cali-

bration. In Fig. 2b a graph shows the relationship between the hand fruit samples

collected the day after imaging and the image berry counts. We derive a calibration

function from this relationship and predict the crop weight based on the image berry

counts of the remaining vines that were not a part of the destructive hand sample.

4.2 Calibration of occlusion ratio from prior year harvest data

The second method we evaluate for calibrating the image measurements is to use

harvest data from prior growing seasons. We have analyzed harvest data from vines

trained and prepared in a similar manner from year to year and noticed consistencies.

The advantage of calibrating from a prior harvest season is that hand samples are

not necessary. The method simply takes a total measurement of the fruit harvested

and compared against the berry count detected in the imagery.
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(a) Satellite image of Chardonnay vineyard (b) Calibrating with destructive hand

sample

Fig. 2: Satellite image of the Chardonnay vineyard. Highlighted with red to indi-

cate rows that were imaged by our setup and marked with purple on the bottom

row to indicate where destructive hand samples were measured the day after imag-

ing. Overall six rows were imaged totaling 665 vines, and 15 vines on the bottom

row were destructively hand sampled. Graph showing calibration between the hand

sample and the corresponding image berry counts.

We compute calibration functions from datasets collected in 2010 and normalize

the calibration based on the mean berry weight at harvest. We then apply the cali-

bration to the image berry counts we collected a year later in 2011 in a vineyard of

a different varietal. In the following results section we compare the accuracy of the

various approaches to predict harvest yield.

5 Results

5.1 Vineyard Datasets

We deployed our method on three different vine varieties and conducted experi-

ments in which manual per-vine harvest weights were collected and used as ground

truth to evaluate our automated yield measurements. The size of the experiment is

significant, including 860 individual vines, totaling 2.5km vines, including follow-

ing varieties: Traminette, Riesling and Chardonnay. See Table 1 for details of the

different datasets, and see Fig. 1b for an example of the equipment we use to im-

age the vines. Equipment mounted on an aluminum frame fixed on the back tray

of a Kawasaki Mule farm utility vehicle. The sensing equipment used is a Nikon

D300s color camera facing sideways from the vehicle detecting the fruit, an Alien-

Bees ARB800 ring flash mounted around the lens of the color camera illuminating

the scene, a PointGrey BumbleBee2 stereo camera facing back down the row track-

ing the vehicle motion and a synchronization box generating pulses to keep the two
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cameras synchronized. We also collected a small dataset in controlled laboratory for

studying self-occlusions, as described in the following section.

To generate a measure for each vine we use the stereo camera using a visual

odometry algorithm (Kitt et al. [8]) to track position along the row. We reduce drift

in the odometry by detecting the stakes supporting the trellis infrastructure which

are fixed at known spacings and provide an extra source of positioning. We detect

the stakes by simple image processing searching for near verticle lines in the images.

Finding the stakes in neighboring frames enable us to triangulate the stakes location

and depth from the camera. We assume the fruiting zone lies in a single plane at the

depth of the stakes. Using this assumption we can compute the overlapping content

of the images and crop images to avoid double counting the fruit.

Table 1: Vineyard Dataset Description

Variety Location Date Trellis Time before Mean berry Num.

harvest at weight at vines

imaging imaging

Traminette Fredonia, NY Sep. 2010 VSP 10 days 1.6g 88

Riesling Fredonia, NY Sep. 2010 VSP 10 days 1.5g 124

Chardonnay Modesto, CA June 2011 Semi-VSP 90 days 0.15g 648

5.2 Evaluating Berry Self-occlusion

First, we evaluate the occlusion of berries within a cluster by the outer layer of

clusters (kb) and study some approaches to potentially improve the estimate of the

number of hidden berries. For this specific study, we use a controlled laboratory

environment where we collected images individually of 56 grape clusters. We use

ripe clusters of the Thompson Seedless variety. For each cluster we collected sev-

eral images from different orientations, at a fixed distance, and collected a weight

and a count of the number of berries. In the laboratory dataset we do not use our

automatic detection algorithm and instead hand mark all berries visible within the

images to replicate a perfect detection algorithm and remove any bias from errors

in the detection algorithm (kd and kr). Also, in the laboratory dataset there are no

biases from the vine (kv) or from other clusters (kc) and hence we can isolate and

study the bias from self-occlusions (kb).

Initially we compare the total berry count (gathered manually) of each cluster

against its weight, Table 2. The correlation score for total berry count to weight is

r2 = 0.95 and mean squared error from least squares fit of 9.3%. We consider this an

upper bound for the yield predictions as the best yield prediction we could achieve

is accurately knowing the berry count.
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Table 2: Measurement Correlation to Fruit Weight

Measure-type r2 correlation Mean squared error

Total berry count 0.95 9.3%

Visible berry count (Eq. 5) 0.88 15.4%

Ellipsoid model (Eq. 7) 0.85 17%

Convex hull model (Eq. 6) 0.92 13.7%

Next we study different image measurements starting with the visible berry count

and present the results in Table 2. The visible berry count correlates with r2 = 0.88

which provides a mean squared error of 15.4%. The error is just 6% greater than

the total berry count and indicates a similar fraction of visible berries is present

for small clusters as with large. The ellipsoidal model has a correlation score of

r2 = 0.88 and the lowest mean squared error of 17%. Even though the ellipsoidal

model attempts to predict the occluded berries behind the visible layer of berries, it

correlates with a lower score than the visible berry measure. The ellipsoidal model

could be less accurate because it violates one of our assumptions; the clusters do not

have uniform density or the clusters are not ellipsoidal, or the model could suffer

from errors in the designation of the cluster contour.

The final image measurement model we evaluate is the convex hull in Tab. 2. The

correlation measures at r2 = 0.92 which is the best of the three image measurements

we study. One possible reason for the high correlation is because it encompasses the

entire cluster contour, therefore it includes a measure of the partially visible berries

as well as the completely visible berries, thus being more accurate than visible berry

count alone. Despite finding that the contour area in the image is more accurate mea-

sure other than visible berry count, we do not yet deploy this measure outside the

laboratory environment. In the datasets collected in the vineyards, several clusters

are visible in each image and we have yet to develop a technique for successful seg-

menting one cluster from another – a requirement of the ellipsoid and convex hull

models. Hence, at present we have only been able to demonstrate precise detection

of individual berries, regardless of which cluster they belong, and therefore in the

following vineyard results we consider just the visible berry count that our algo-

rithm provides. However, we have indicated with these laboratory tests an avenue

for future improvement of our fielded system.

5.3 Biases in Visual Measurement

Here we take data both collected in the vineyard and laboratory we attempt to seg-

regate the biases involved in the visual detection process. Table 3 presents a study

of the different visual estimation biases measured in the various datasets. The lab-

oratory dataset was used to estimate the self-occlusion parameter ks by manually

counting visible berries in the images and hand counting the total number of berries
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physically pulling apart the clusters. The dataset showed that 46% of the berries are

visible to the camera.

Table 3: Biases in Visual Yield Estimation (Sec. 3). Bias parameters are unit-less

and standard deviations where applicable are presented as percentages in brackets.

Missing entries for the self-occlusion parameter (ks) are due to data not collected in

a controlled environment in the vineyard datasets, the other missing entries are for

the biases not applicable to the laboratory dataset.

Dataset Mean berry ks kd kr kv ∗ kc

name weight at harvest

Riesling 1.5g - 0.74 (13.4%) 1.0 0.29

Traminette 1.6g - 0.75 (10.7%) 1.0 0.24

Chardonnay 0.9g - 0.65 (12.3%) 1.03 (8.7%) 0.31

Laboratory - 0.46 (22%) - - -

The visual detection bias kd was estimated by manually assessing false positive

and false negative detections of berries in images with the marked output of the

detection algorithm. The false positive and false negatives combined with the true

berry detections gave us the parameter kd . The detection algorithm is biased towards

under-counting the berries which was discovered in our prior work Nuske et. al [9]

and here we see between 25% and 35% fewer berries than are visible are reported

by the algorithm. The algorithm detected about 10% fewer of the visible berries in

the Chardonnay 2011 dataset which captured around 90 days from harvest when the

berries were much smaller. Similarly we take images marked by the detection and

image alignment algorithm and manually assess double-counting and mis-counting

berries between overlapping images. In the 2011 Chardonnay dataset the automatic

aligning algorithm was biased to slightly over-count berries by 3%. In the 2010

datasets (Riesling and Traminette) we did not deploy our automatic alignment algo-

rithm, and instead manually cropped images to have zero overlap and hence we list

a bias of 1.0 here.

Finally, the bias from vine and cluster occlusions we have not experimentally

determined, but we combine the other bias factors, assume a similar self-occlusion

rate to the laboratory, use the mean berry weight at harvest and deduce the combined

effect of the terms kv and kc indirectly. We see here that there are significant occlu-

sions from the vine leaves, shoots and clusters occluding clusters with between two

thirds and three quarters of the fruit being occluded by these factors.

5.4 Yield Prediction Results

Now we present yield prediction results by applying our calibration approaches de-

scribed in Section 4, including calibration from destructive hand samples at the time
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of imaging and also calibration from prior harvest data and compare average error

for the prediction of the individual vine weights of the Chardonnay dataset. After

discovering in the previous section that the visible berry count has the most accurate

correlation to yield in the vineyard datasets we use this as our image measure for the

following results. We take the Traminette and Riesling datasets, collected in 2010,

(a) Comparison of Traminette and Chardon-

nay datasets – normalized for berry weight

(b) Predicting Chardonnay 2011 yield from

2010 calibration (lbs)

Fig. 3: Graphs demonstrating calibration from prior harvest data. After normalizing

for berry weight there is a trend between the 2010 and 2011 datasets. The calibration

functions computed from the 2010 datasets applied to the Chardonnay image berry

counts produces harvest predictions 12 weeks prior to harvest.

compute a calibration between image measure and yield, and apply to the Chardon-

nay dataset from 2011. Fig. 3a shows a comparison between the data collected in the

two vineyards after normalizing for respective berry weights. The graph shows that

the Traminette and Riesling vines despite holding much less fruit, do have a trend

between the image berry counts in the Chardonnay data. We apply the Traminette

and Riesling calibration to the Chardonnay data and show the predicted weight in

Fig. 3b. This result demonstrates the prediction of harvest yield 12 weeks out from

harvest. We also evaluate calibrating using hand samples collected in the vineyard

at the time of imaging, see Fig. 2b.

The results of the calibration on the Chardonnay dataset are presented in Fig. 4a.

The errors are between 17 and 19% for the different calibration approaches, with

the calibration from destructive hand samples slightly more accurate. We see that

some of the error averages out when comparing yield of entire rows, where the error

is now between 7% and 8%. In Fig. 4b we present the error for prediction of the

entire yield of the vines in the dataset. The hand calibration was most accurate at

3% error and using calibration from the 2010 Traminette dataset had 4% error. We

see an under-prediction of overall weight by 4.5% using the 2010 Riesling dataset
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(a) Vine and Row Mean Error (b) Overall Prediction Error

Fig. 4: Results on the prediction of harvest yield in the Chardonnay dataset. We

evaluate the prediction accuracy when calibrating using a destructive hand sample

at the time of imaging compared to calibrating using prior harvest data. We present

two statistics in (a); the average absolute error computed for individual vine pre-

dictions and the average absolute error for the estimate of row weights. In (b) we

present the error for prediction of the entire yield of the vines in the dataset. The

calibration from hand samples is slightly more accurate than the calibration from

prior harvest data. For comparison we present the estimate taken by extrapolating

the hand samples alone, with is the least accurate estimate with 13% error.

calibration. It is apparent that despite average absolute per-vine errors of around

18% for all approaches, the overall error is below 5% indicating the individual vine

errors are well distributed and average out. For comparison in Fig. 4b we present

the estimate taken by extrapolating the hand samples alone, which is the traditional

industry practice, and was found to be the least accurate estimate with -13% error.

6 Conclusion and Future Work

We have demonstrated a method to automatically generate non-destructive, high-

resolution, yield predictions vineyards and shown practical approaches to calibrate

the measurements. We evaluate the system at both 10 days from harvest and 90 days,

finding similar results, with the algorithm detecting only slightly less of the visible

berries earlier in the season. Of the two methods of calibrating image measurements

– using destructive hand samples at the time of imaging was slightly more accu-

rate at giving predictions within 3% of harvest yield. Nevertheless calibration from

prior harvest data from a different varietal, albeit grown in a similar vine trellis and

training structure, gave only 4% error.

In future work we will look to develop an approach to count grape clusters early

in the season, even before berries have formed, to give vineyard managers informa-

tion with maximum time before harvest to make the necessary adjustments to their
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vines. We also look at extending the experimentation to more varietals and trellis

structures.
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