
B. Wangler, L. Bergman (Eds.): CAiSE 2000, LNCS 1789, pp. 247-263, 2000
© Springer-Verlag Berlin Heidelberg 2000

Modeling and Composing Service-Based
and Reference Process-Based Multi-enterprise Processes

Hans Schuster, Dimitrios Georgakopoulos, Andrzej Cichocki, and Donald Baker

MCC, 3500 West Balcones Center Drive, Austin, Texas 78759
{schuster, dimitris, andrzej, dbaker}@mcc.com

Abstract. Multi-enterprise processes (MEPs) are workflows consisting of a set
of activities that are implemented by different enterprises. Tightly coupled Vir-
tual Enterprises (VEs) typically agree on abstract MEPs (reference MEPs), to
which each enterprise contributes single-enterprise processes (SEPs) that im-
plement and refine the activities in the reference MEP. On the other end of the
spectrum, loosely coupled VEs use service-based MEPs that fuse together het-
erogeneous services implemented and provided by different enterprises. Exist-
ing process models usually couple activities with their implementation. There-
fore, they cannot effectively support such MEPs. In this paper, we introduce a
Polymorphic Process Model (PPM) that supports both reference process- and
service-based MEPs. To accomplish this, PPM decouples activity interface
from activity implementation, and provides process polymorphism to support
their mapping. In particular, PPM determines activity types from the activity in-
terfaces, permits activity interface subtyping, and provides for the mapping of
MEP activity types to concrete implementations via interface matching. We il-
lustrate that these key PPM capabilities permit the late binding and use of mul-
tiple activity implementations within a MEP without modifying the MEP at run
time or enumerating the alternative implementation at specification time.

1 Introduction

A Virtual Enterprise (VE) appears like a traditional enterprise to its customers but
provides services and products that rely on the core business processes and the re-
sources of multiple constituent enterprises. The enterprises that comprise a VE may
be participating in a long-term strategic alliance or collaborate only for the duration of
one electronic commerce transaction. Just like traditional enterprises, VEs realize
business objectives by defining and implementing (multi-enterprise) business proc-
esses. These are abstract process descriptions, consisting of a set of activities that
must be performed by the members of the VE.

Multi-enterprise business processes are implemented by multi-enterprise workflow
processes we refer to as multi-enterprise processes (MEPs). Unlike traditional work-
flow processes where all activities are implemented by the same enterprise, each
enterprise in a VE implements only a subset of the MEP activities. Furthermore, the
same MEP activity may be implemented by multiple enterprises, and the provider of
the implementation of this MEP activity may vary in different instances of the same
MEP. Finally, each participating enterprise may have multiple implementations of the
same MEP activity. For example, a telecommunications service provider implements

248 H. Schuster et al.

an activity informing the customer that the service has been established. The provider
may have multiple implementation alternatives for this activity, including notify the
customer by phone, mailing a letter, sending a fax or email.

Current workflow models [10, 13, 16] couple activities with their implementation.
This is similar to a procedure call in a traditional programming language. Therefore,
when designing a process consisting of activities that have multiple implementations,
the process designer has to choose one of the alternative implementations. However,
this precludes the use of any other implementation of the same activity that may be
more appropriate in another processes instance or another part of the process that
repeats this activity. For example, the method of notifying a client that the requested
service has been performed may depend on the client’s location, time of the day, cost,
etc. To permit alternative implementations the designers of traditional workflow proc-
esses often expand each activity to a subprocess that captures all possible
implementation alternatives as separate activities and allows choice of
implementation via decision activities, normal control, and data flow. This solution
introduces additional activities in the original process and the structure of the
resulting process will differ significantly from the business process it implements.
Therefore, this solution complicates the maintenance of the business process as it
evolves and additional activity implementations become available.

These problems are alleviated in VEs that use reference processes. Such processes
typically capture standard business activities within a certain industry, such as tele-
communications [15]. A reference process is public and its purpose is to specify how
multiple enterprises can work together. Therefore, reference processes provide activ-
ity decomposition and coordination “guidelines” that improve the ability of enter-
prises to form effective VEs. At the same time, each participating enterprise maintains
considerable flexibility in determining how to implement activities in a reference
process. The implementation of such a reference MEP must be able to hook up the
various heterogeneous implementations of its activities as provided by the participat-
ing enterprises. In situations where the enterprises that participate in a VE maintain
their autonomy to a level that reference MEPs cannot be used, the participating enter-
prises usually provide services that are not targeted to a specific MEP, i.e., they are
implemented and maintained in isolation. In this case, service-based MEPs must inte-
grate these heterogeneous services, e.g., as proposed in [4].

In this paper we introduce a Polymorphic Process Model (PPM) that generalizes
the process model presented in [4]. PPM supports both service- and reference process-
based MEPs. To accomplish this, PPM decouples activity interface from activity
implementation. This permits PPM activity types to be determined by the activity
interfaces. Activity interfaces are modeled as state machines that include application-
specific operations and states, and have input/output parameters. Application-specific
operations provide an abstraction of an activity’s behavior, while application-specific
states provide an abstraction of the activity state resulting from the execution of the
activity operations or internal processing. In addition, activity interfaces allow (ab-
stract) activity types to be mapped to concrete activity implementations by matching
their interfaces. To support such mappings PPM introduces process polymorphism.
This includes a mechanism for activity interface subtyping and a mechanism for late
binding that enables the use of multiple implementations within a process without
modifying this process at run time or enumerating the alternative implementation at

Modeling and Composing Multi-enterprise Processes 249

specification time. These permit supporting MEPs in both reference process- and
service-based VEs.

The rest of this paper is organized as follows: In the following section, we present
examples of MEPs using a reference process and services and discuss key require-
ments for their modeling, implementation, and enactment. Section 3 introduces activ-
ity types and interfaces. The mapping of activity interfaces that provides the basis for
developing interchangeable implementations of abstract activities is discussed in
Section 4. Activity polymorphism is discussed in Section 5. Section 6 gives an over-
view on related work. Conclusions are presented in Section 7.

2 Multi-enterprise Processes

To illustrate key requirements in supporting multi-enterprise processes (MEPs), we
describe two alternative MEPs for universal telecommunications service provisioning:
reference process-based MEPs and service-based MEPs. We illustrate that these
MEPs can satisfy the requirements of virtual telecommunications enterprises using
contrasting business models. In particular, we first introduce a reference process-
based MEP. Such MEPs are appropriate for tightly coupled VEs where participating
enterprises internally employ business models and corresponding core processes (sin-
gle-enterprise processes, or SEPs), that are designed to accommodate each other. This
is accomplished by agreeing on abstract VE processes, or reference MEPs, to which
each enterprise contributes SEPs that implement and refine its (abstract) activities.
Reference process-based MEPs are appropriate for relatively long-lived VEs with
cooperating partners that are willing to adapt their SEPs to implement the parts of the
MEP reference processes they are supposed to perform. An example of reference
process-based MEP is discussed in Section 2.1.

The contrasting solution to reference process-based MEPs are service-based MEPs.
These are appropriate for loosely-coupled VEs, i.e., VEs consisting of enterprises that
want to hide their internal SEPs from their partners in the VE and cannot (or choose
not to) introduce changes to their SEPs. Therefore, service-based MEPs are appropri-
ate for relatively short-lived VEs, such as those that last only for the duration of a
single electronic commerce transaction, and VEs consisting of competitors that occa-
sionally join forces. An example of service-based MEP is described in Section 2.2. In
this paper we do not discuss VEs using MEPs that combine both reference processes
and services. Such MEPS must address the combination of the problems described in
this paper.

2.1 Reference Process-Based MEP

A reference MEP is a process that consists of abstract subprocesses, i.e., subprocesses
that lack implementation. The abstract subprocesses and the MEP process itself are
implemented by SEPs provided by the enterprises in the VE.

As an example of a reference MEP consider a universal telecommunications ser-
vice provisioning process that allows clients to request local, long distance, wireless,
and internet service from a universal service provider. This reference MEP is depicted

250 H. Schuster et al.

in Figure 1. It specifies that the process starts when a customer of the universal ser-
vice provider requests a universal telecommunications service. Subprocess Exchange
Info involves an operator collecting information from the customer, or a customer
directly providing the information via a web browser. When sufficient customer data
are collected, subprocess Order Service is performed to (1) verify that the information
provided by the customer is accurate, and (2) create a corresponding universal service
order record. When Order Service is completed, the top process starts Provide Local
Exchange Service, Provide Long Distance Service, Provide Wireless Service, and
Provide Internet Service.

These abstract subprocesses are implemented by SEPs provided by different enter-
prises, i.e., the local, long distance, wireless, internet, and universal service providers.
When all selected subprocesses are completed, subprocess Bill is preformed to create
a single bill for all telecommunications services in the universal service. Finally, Care
for Customer involves a human operator who verifies that the provided service meets
the customer needs.

Fig. 1. Reference MEP for universal telecommunications service provisioning

The universal service provider in Figure 1 may be a distinct enterprise from the local,
long distance, wireless, and internet providers. However, in our example VE the uni-
versal service provider may be any of the providers of the component services. In
particular, the provider of the universal service is determined by the customer who
decides which of enterprise to contact for universal service. All enterprises in our
example VE have a top level SEP that implements the reference MEP in Figure 1, i.e.,
they can provision universal service. In addition, large VEs may have multiple enter-
prises that implement and provide the same component service.

Reference processes are emerging in both industry [15] and academia [9]. Indus-
trial reference processes capture standard business processes within a certain industry
branch, e.g., reference processes for the telecommunication industry are proposed by
the TeleManagement Forum [15]. Reference processes developed by academic re-
search, such as the process handbook project [9], also stay on a declarative business
process level. Therefore, existing reference process concepts provide no solutions for
implementation and enactment of reference process-based MEPs.

Modeling and Composing Multi-enterprise Processes 251

2.2 Service-Based MEP

A service-based MEP is a process that fuses together services provided by different
enterprises. Such services may encapsulate SEPs implemented by commercial work-
flow management systems (WfMSs), CORBA servers, basic programs, legacy infor-
mation systems, etc. However, from the perspective of the MEP that integrates them,
services are black boxes that provide only a set of service operations to control them
and determine their state.

To integrate a service, a service-based MEP must use service activities. These are
service proxies that convert the operations and/or states of each service to the behav-
ior of an activity that is incorporated in the MEP. In VEs with multiple providers of
the same service, service-based MEP must provide abstract activities that can have
multiple implementations. The execution of an abstract activity involves selecting one
particular implementation during run-time, binding it to the abstract activity, and run-
ning it. An example of a service-based MEP for a universal telecommunications ser-
vice provisioning is depicted in Figure 2.

Fig. 2. Service-based MEP for universal telecommunications service provisioning

Service-based MEP must deal with service autonomy and heterogeneity. In reference-
based MEPs, this problem is mitigated by the agreement of the participating enter-
prise to comply with reference MEPs. However, in service-based MEPs no such
agreement exists. Furthermore, service designers typically have no direct knowledge
of the service models and implementations used by other enterprises. Therefore, ser-
vice-based MEP requirements include:
1. service activities that can effectively model and control heterogeneous services,

and
2. activity polymorphism, i.e., ability to associate and bind service activities at vari-

ous degrees of specialization to the MEP activities/processes they implement.
Modeling heterogeneous services involves enhancing traditional workflow activity
types [16, 6] with application-specific operations and states. Controlling a service
encapsulated in a service activity requires support for conversations between the
activity that needs to control a service activity (the service client), and service activity
itself. Such conversations involve multiple interactions where clients perform multi-

252 H. Schuster et al.

ple invocations and receive intermediate results that may be used in further invoca-
tions. The Local Exchange Service illustrated in Figure 2 is a simplified service that
provides operations to request local exchange service installation, determine its status,
and cancel it. The service activity that serves as the proxy of the Local Exchange
Service is a conversational activity. In particular, suppose that the Order Service in
Figure 2 needs to query the Local Exchange Service to determine whether it failed to
complete installing the service within the agreed time frame. In this case, the Order
Service may cancel the Local Exchange Service or do necessary adjustments, e.g.,
notify the universal service customer. To support such conversation, the service activ-
ity for the Provide Local Exchange Service provides the following application-
specific operations: request service(), status(), and cancel(). In addition, the service
activity has application-specific activity states that indicate the progress, success, or
failure of the service installation.

Conversational activities cannot be captured directly by existing service activities/
proxies [13, 10] and existing process models [16, 6] which assume that activities are
invoked once, enter their running state, and produce no data until they are completed
or terminated (stopped). For example, if we use an existing process model to capture
the cancellation of the local exchange service we must add a Cancel Local Exchange
Service activity after the Provide Local Exchange Service activity in the MEP in Fig-
ure 2. Therefore existing process models have the following limitations in capturing
service request and cancellation: (1) the cancellation activity can only be invoked
after the Local Exchange Service request operation is completed, i.e., cancellation of
a service request in progress is not possible, and (2) the Local Exchange Service and
corresponding service operations in Figure 2 cannot be modeled as a single traditional
activity. The model we propose in this paper, i.e., PPM, allows implementation of
activities in a MEP with services that require conversations as described above. PPM
also provides activity polymorphism that permits subtyping and late binding of ser-
vice activities to MEP activities/processes. PPM activity interfaces, implementations,
and polymorphism are discussed in the following sections.

3 Activity Types and Interfaces

To allow application modeling, process models, e.g., [16], provide types for activities,
resources, and dependencies. Activity types are either basic activity types or processes
(composite activity) types. These types are used to develop application models that
are instantiated during enactment.

To support the requirements of service- and reference process-based MEPs dis-
cussed in Section 2, we have developed a Polymorphic Process Model (PPM) that
decouples activity types from activity implementations. Just like in CORBA™ [11]
and Java™ [14], the type of an activity in PPM is determined by the activity interface.
Therefore, to avoid confusion by using the term “activity” with different meanings, in
the rest of this paper we distinguish the activity type (represented by an activity inter-
face), the activity implementation, and the use of an activity within a process called
activity variable. This is analogous to object oriented programming languages, e.g.,
Java™ [14], which also distinguish object interfaces and abstract classes
(corresponding to activity types), concrete classes (corresponding to activity
implementations), and typed variables (such as activity variables) that may hold

Modeling and Composing Multi-enterprise Processes 253

tions), and typed variables (such as activity variables) that may hold references to
object (activity) instances.

In PPM a process activity type consists of an activity interface, activity variables,
resource variables, and dependency variables. Activity variables represent the subac-
tivities of a process. Resource variables describe the resources needed during process
execution. Dependency variables define the data and control flow rules for the subac-
tivities of the process. In contrast, basic activity types are restricted to an activity
interface and resource variables.

PPM requires that both activity types and implementations have activity interfaces.
In PPM, activity interfaces are used to map activity types to activity implementations
The interface of an activity type captures its implementation requirements at an ab-
stract level, while the interface of an implementation captures the capabilities of the
implementation at a concrete level. In PPM, both abstract and concrete activity inter-
faces are state machines that capture:
• application-specific activity states and operations that cause activity state transi-

tions
• input and output parameters
These are discussed in Sections 3.1 and 3.2.

3.1 Activity State Machine Types

In the initial paragraphs of Section 3, we noted that in PPM activity types are deter-
mined by their interfaces that consist of an activity state machine type (ASMT) and
activity input/output. An ASMT determines the possible activity states for instances
of the respective activity interface and corresponding state transitions. Formally, an
ASMT is a tuple (S, T) whereby S is the set of states and T is the set of transitions t =
(s1, s2), where s1, s2 ∈ S and t ∈ T. State transitions may be caused by invoking explicit
activity operations. In the following sections we describe ASMTs in detail.

Activity Operations. Activity operations, such as start and terminate, drive the
execution of activities and the corresponding state transitions in a process. Our PPM
supports two types of explicit activity operations: generic operations and application-
specific operations. Generic operations include the application-independent
operations that are provided by the WfMC standard: create(), start(), pause(),
resume(), finish(), and terminate(). PPM complements these standard operations with
a generic state_change_of_subactivity() operation. This operation is discussed further
in Section 4.1.

In addition to generic operations, PPM permits application-specific operations that
are defined by the process designer as needed to model a specific activity type. They
represent control operations that are available on running activities. For example, an
activity that implements ordering of local exchange service may offer application-spe-
cific operations to check the status of the order, add additional items to the order (e.g.,
call waiting, caller ID, etc.), and remove items from the order. Application-specific
activity operations are supported only by few WfMSs, e.g., CMI [4] and the MOBILE
WfMS [7].

254 H. Schuster et al.

Activity states. To enable interoperability with standard WfMC activities [16], PPM
provides a set of generic activity states, i.e., Uninitialized, Ready, Running,
Suspended, and Closed with Completed or Terminated substates. These generic
activity states and state transitions constitute the generic ASMT depicted in Figure 3.

Fig. 3. Generic Activity State Type

In addition to generic states, PPM supports application-specific states. For example,
consider the ASTM of the Provide Local Exchange Service activity in the telecommu-
nications MEP in Figure 1. Suppose that this activity has two application-specific
states, Provisioning and Fulfilling. Figure 4 shows the corresponding ASMT. The
Provide Local Exchange service activity enters its Provisioning state when it starts
running and the service provider starts allocating resources needed to provide the
service, such as lines and slots in telecommunication switches. The activity state
changes to Fulfilling when all necessary resources have been allocated and the activa-
tion of the service begins.

Fig. 4. Example: ASMT for Provide Local Exchange Service activity

The Provisioning and Fulfilling states in Figure 4 are a refinement of the Running
state. The Provisioning to Fulfilling transition is labeled as internal in Figure 4. Inter-
nal is a special operation indicating that this state transition is not under the control of
the process enactment system and it is caused solely by the activity implementation.

Modeling and Composing Multi-enterprise Processes 255

Internal state changes need special treatment in a process specification (this is dis-
cussed further in Section 4.2). After service installation has been confirmed, the activ-
ity enters its Completed state. An order can be canceled as long as it has not been
fulfilled. Cancellation is represented by a transition from the Provisioning state to the
Terminated state. To keep the example simple we omit activities necessary to cancel a
service order.

Activity state machine subtyping. The ASMT shown in Figure 4 is a subtype of the
generic ASMT in Figure 3. The refined ASMT is called a subtype of the original
ASMT (referred to as the father type). When an activity state is refined, all state
transitions of the refined activity state have to be replaced by transitions involving one
or more of its substates. Such transitions are depicted as grey arcs in Figure 4.
Suppose that C is a subtype of an ASMT F. C is a valid activity state machine subtype
(ASMsubT) of F if and only if: either a transition happens between two substates of
the same parent state, or there is a corresponding transition between the parent states
in the father type.

Formally, the valid states and transitions of an activity state subtype can be defined
by considering that for each subtype C of a ASMT father type F there is a function
refine_state. This function defines how the states of the father type F are refined by
the subtype C by mapping each state of F to the corresponding set of C’s states. Thus,
assuming that SF is the set of F’s states, SF is the domain of refine_state. Similarly, if
SC is the set of C’s states, SC is the range of refine_state.

Condition for valid states: To enable an unambiguous state refinement, each state
of C must be a refinement of exactly one state of F, i.e.,
∀ s1, s2 ∈ SF: (refine_state(s1) ∩ refine_state(s2) ≠ ∅ ⇔ s1 = s2) AND

�
FSs

C sstaterefineS
∈

=)(_

Conditions for valid transitions: Assuming that TC
 and TF are the sets of transitions

in C and F, respectively, and C is a subtype of F, one of the following must hold for

each transition (s1, s2
) ∈ TC:

• both s1
 and s2

 are refinements of the same state in F, i.e.,
∃ s ∈ SF

: s1
 ∈ refine_state(s) AND s2

 ∈ refine_state(s),
• or there is a corresponding transition (sa

, sb
) in the father type F, i.e.,

∃ sa, sb
 ∈ SF

: (sa, sb
) ∈ TF

 AND s1
 ∈ refine_state(sa) AND s2

 ∈ refine_state(sb).
These conditions on building activity types ensure that application-specific extensions
can always be generalized in a meaningful way to a father type.

3.2 Input/Output Parameters

In addition to an ASMT, an activity interface includes the activity input and output
parameters. The combination of ASMTs and parameters is required by PPM to define
the activity type. PPM adopts the existing data types from standard workflow process
models [16]. In particular, in PPM the input (output) parameters of an activity A are a
set of typed data variables, denoted as IA

 (OA
). When an activity is started its input

parameters are assigned with values as specified by the dataflow dependencies of the
enclosing process. In traditional workflow models, activity output is produced when

256 H. Schuster et al.

the activity ends. PPM extends this by permitting output parameter values to be made
available when the activity enters a specific state. As a consequence, activities can
output data while they are still running.

Formally, the output behavior of an activity interface A can be defined as a func-
tion obA: OA → SA that maps each output parameter o of A to the state s of A that pro-
duces o (SA is the set of states of A). Therefore, obA(o) = s means that the value of the
output parameter o is available after the activity has reached the state s for the first
time. Therefore, if an activity writes to an output parameter after the activity has al-
ready reached the state in which this parameter becomes available, readers of the
output parameter will read the result of the latest write. For example the invoice
amount of an order is different after an additional item has been added to the order.

4 Activity Implementation and Control

Activity implementation in PPM mainly involves mapping abstract activities to SEPs
and/or services that implement them. To map abstract activities (basic activities or
subprocesses) to concrete processes and services, we introduce the notion of concrete
and abstract activity types. An activity type is concrete if it has a corresponding im-
plementation, and all state transitions in its ASMT are labeled with operations sup-
ported by this implementation. An abstract activity type does not have a cor-
responding implementation, and may contain one or more unlabeled state transitions
in its ASMT. The distinction between abstract and concrete activity types is necessary
to decouple the activity interface from the activity implementation. For example,
consider the abstract Provide Local Exchange Service activity in both Figure 1 and
Figure 2. Consider that this activity has the abstract ASMT illustrated in Figure 4. The
abstract Provide Local Exchange Service may be implemented by a SEP (e.g., as in
the reference MEP in Figure 1) or by a service activity (e.g., as in the service-based
MEP in Figure 2). These alternative implementations of Provide Local Exchange
Service are interchangeable at run-time.

In the following sections we discuss how abstract activity types are implemented
by mapping them to concrete activity types. Section 4.1 discusses abstract activity
implementation by a process (e.g., a SEP). Section 4.2 presents the implementation of
an activity by a service activity and the implementation of service activities them-
selves.

4.1 Mapping Abstract Activities to Concrete Process Activities

The mapping of an abstract activity type to a concrete SEP depends on whether the
SEP provides generic or application-specific operations in its concrete ASMT.

Modeling and Composing Multi-enterprise Processes 257

Mapping generic operations. In the following paragraphs we consider the mapping
of an abstract MEP activity to a concrete SEP type that provides only generic
operations. If an abstract MEP activity is implemented by a concrete SEP, each
operation of the abstract activity is implemented by a concrete subactivity in the SEP.
This is accomplished by mapping the operations and empty transition labels in the
ASMT of the abstract activity to generic operations of the concrete ASMT.

For example, consider the abstract Provide Local Exchange Service activity whose
ASMT is illustrated in Figure 4. This abstract MEP activity defines
get_service_status() and add_service_feature() operations that query the service
status and add additional service features, such as call waiting. Each of these opera-
tions is implemented by a subactivity in the concrete SEP whose ASMT depicted in
Figure 5. This is accomplished by mapping the operations get_service_status() and
add_service_feature() of the abstract ASMT to appropriate
state_change_of_subactivity() (or shorter sc_of_sub()) operations. In particular, while
the concrete process is in the Provisioning state, additional items may be added to an
order by invoking sc_of_sub(add_Item, any). The keyword any indicates that any
state change of the add_item subactivity is permitted in this state of the concrete proc-
ess. Assuming that the add_Item subactivity has been enabled by the normal control
flow, sc_of_sub(add_Item, any) causes the start of the add_Item subactivity.

Fig. 5. Example: Generic ASMT type of Provide Local Exchange Service activity

Mapping application-specific operations. Unlike generic activity operations, such
as create() and start(), application-specific operations must be specified by the
process designer. In contrast to methods in object-oriented programming languages
and distributed object systems, application-specific activity operations cannot be
implemented by arbitrary code. In process models such as PPM the process
subactivities and their dependency net, is a lower level specification that constitutes
the process implementation. Since application-specific activity operations provide an
abstraction of this implementation, each application-specific process activity
operation is implemented by a script that invokes one or more activity operations on
the subactivities of this process.

As an example, consider an abstract Provide Local Exchange Service activity with
the ASMT illustrated in Figure 4. Suppose that this abstract activity is implemented

258 H. Schuster et al.

by a concrete process that includes two application-specific operations: info() and
item(). Assume that the ASTM of this concrete process is depicted in Figure 6.

Fig. 6. Example: Application-specific ASMT of Provide Local Exchange Service activity

In this example, the application-specific operations info() and item() in Figure 6 are
implemented by subactivities of the concrete Provide Local Exchange Service proc-
ess. In particular, info() and item() are implemented by the get_local_status and
add_local_item subactivities and the integration script illustrated in Figure 7.

Fig. 7. Example: Fragment of a Provide Local Exchange Service Process

The info() and item() operations of the concrete ASMT are shown on the right side
of Figure 7. Info() just creates and starts an instance of the get_local_status activity.
Item() starts an instance of the add_local_item activity, waits for its termination, and
then invokes the info() operation to inform the caller about the outcome. Note the
scripts do not move data between the activities. Data flow is covered by the process
net.

4.2 Mapping Abstract Activities to Concrete Service Activities

In the following paragraphs we present how an abstract activity is implemented by a
concrete service activity, and then we discuss the implementation of the service activ-
ity itself.

Modeling and Composing Multi-enterprise Processes 259

Mapping abstract activities to concrete service activities. If the abstract Provide
Local Exchange Service activity in Figure 4 is implemented by an external service,
the abstract activity is implemented by a service activity that by definition has no
subactivities. In this case, the get_service_status() and add_service_feature()
operations of the abstract activity are implemented by service-provided operations,
say info() and item(), that retrieve status information and add additional items, e.g.,
item(CallWaiting). Figure 6 shows the concrete ASMT of such a service activity.

Implementing concrete service activities. As we discussed in Section 2.2, service
activities are proxies that convert the operations and/or states of each service to the
behavior of an activity that is incorporated in the MEP. The implementation of an
activity interface by a service activity is conducted by implementing of a
corresponding service activity proxy program (SAPP). Note, that services that support
only a single start() invocation degenerate to basic or program activities [6, 16].

In contrast to activity interfaces and process specifications, which are descriptive
specifications, the SAPP is to be coded in a traditional programming language. The
service activity program uses the process system’s API to access its input and output,
to trigger internal state transitions, and to publish its activity operations to the process
system. Hence, the SAPP is also an advanced wrapper program [12] for integrating
external software systems. The deployment of a real program for this purpose is nec-
essary, because the SAPP has to deal with the (possibly proprietary) communication
protocols and formats of the software system and translates them to the format used
by the process management system. However, generic SAPPs are provided to deal
with traditional basic activities that have only generic states and operations.

By permitting application-specific states and operations, the service activities are
far more powerful than SWAP [13] and the Workflow Management Facility [10].
Both of these propose a variant of a proxy mechanism that permit only the generic
states and operations defined by the WfMC standard [16]. Therefore, they are not
capable of capturing application semantics of services.

4.3 State-Dependent Control and Data Flow

PPM provides control flow dependencies/transitions that are similar to those provided
by traditional WfMSs, e.g., [6], and the WfMC standard [16]. PPM extends the tra-
ditional notion of control flow transitions to permit application-specific states to be
used in control flow. Such control flow transitions are denoted as (avsource, ssource) →
(avtarget, starget). They indicate that a state transition of an activity avtarget to the starget state
is permitted after activity avsource enters state ssource. To ensure that the PPM dependen-
cies can be enforced, only application-specific extensions of the Running state may be
enabled by PPM control flow transitions. Additionally, transitions to Running sub-
states that may be entered by internal operations (state transitions) are not allowed,
because such transitions cannot be controlled by the execution system.

Just like control flow, PPM extends the traditional data flow dependencies to con-
sider the states of the involved activities. In particular, in a traditional dataflow de-
pendency (avsource, outsource) → (avtarget, intarget) the value of the output parameter outsource of
an activity avsource flows to the input parameter intarget of an activity avtarget after avsource is

260 H. Schuster et al.

closed (ends). PPM extends the semantics of a (avsource, outsource) → (avtarget, intarget) data-
flow dependency by allowing the data to flow as soon as avsource has reached the ob-
source(outsource) state (ob was defined in Section 3.2). To avoid inconsistencies in the
dependency net, we adopt the strategy that dataflow has to follow control flow [8].
That is, for each dataflow dependency (avsource, outsource) → (avtarget, intarget) there must be
a control flow path from avsource to avtarget that starts at avsource from:
• state obsource(outsource), or
• a state that is reached later than obsource(outsource) in avsource’s state machine.
State-dependent control and dataflow are powerful primitives. In the activity scenario
used in the previous sections, these dependencies enable the provisioning activity to
output service activation information as soon as it has reached the Fulfilling state. A
process that uses this activity can initiate further activities (using state-dependent con-
trol flow) as soon as this info becomes available.

5 Activity Polymorphism

Activity Polymorphism is permitting an activity variable to (1) use (i.e., hold refer-
ences to) activity instances that have more specialized type than the type of the activ-
ity variable, and (2) use different implementations for the same activity variable at
process execution time. Polymorphism allows flexibility in matching and using activ-
ity types and activity implementations provided by different enterprises.

In Section 5.1, we present the PPM solution for subtyping/specializing activity in-
terfaces, by focusing on input/output subtyping and ASMT subtyping. In Section 5.2,
we introduce activity placeholder. This primitive adds late binding that is needed to
implement the selection of an activity implementation at runtime.

5.1 Activity Interface Subtyping

This extends activity state machine subtyping in Section 3.1 by considering activity
inputs and outputs. Analogously to programming languages an activity type should be
regarded as subtype AC of a father activity type AF if instances of AC show at least all
the behavioral characteristics that instances of AF show. This ensures that wherever an
instance of AF is expected an instance of AC can be used instead. However, AC may
show additional behavior that cannot be directly observed at AF as long as this addi-
tional behavior can be generalized to a behavior of AF. In terms of activity interfaces
as defined in Section 3 this means that an activity interface AC with activity operations
aopC, activity state type asmtC, and input/output parameters (IC, OC, obC) is an activity
interface subtype of AF with activity operations aopF, activity state type asmtF, and
in/output parameters (IF, OF, obF) if:
0

1. asmtC is an activity state subtype of asmtF
2. IC ⊆ IF
3. OC ⊇ OF
4. ∀ v ∈ OF: obF(v) = obC(v) or there is no path in the state machine of asmtC where

obF(v) or a substate of obF(v) can be reached before obC(v) is reached.

Modeling and Composing Multi-enterprise Processes 261

Condition (1) ensures that the observable states of the child type can be generalized to
the states of the father type. This is guaranteed by the definition of activity state sub-
types. Condition (2) prevents an interface subtype from expecting more input parame-
ters than the father type. This way, a process expecting an instance of the father type
provides also sufficient input for any subtype. Condition (3) states that a subtype has
to provide at least the output expected to be produced by the father type. The subtype
may have additional outputs that are discarded by someone expecting an instance of
the father type. Condition (4) places an additional restriction on the output behavior of
activity subtypes. Because a process can rely on an activity variable of type AF to pro-
duce output in a particular state (this is needed by state dependent dataflow discussed
in Section 4.1), an activity subtype must not produce its output later than the father
type, i.e., in a state that can be reached after the output producing state of the father
type.

Please note that there is no mandatory condition on AC’s and AF’s activity operation
sets aopC and aopF. If we assume that the process enactment system provides a work-
list that informs each client about the operations currently available on a specific work
item, a human client and also a flexible software agent that acts as a client can per-
form the right operations on every activity. However, if static programs are used as
clients that cannot analyze the operation information on a work item and rely on the
father’s operation set aopF, aopC = aopF must hold.

5.2 Activity Placeholders

Activity placeholders allow for runtime assignment (late binding) of an activity imple-
mentation to a given activity variable. The type of the placeholder is determined by its
interface. The placeholder is used instead of a concrete activity implementation in the
declaration of an activity variable within a process. An activity placeholder has a
selection policy attached, which is used at runtime to select the actual activity type for
the placeholder’s activity variable. To ensure the consistency of the process, within
which an activity placeholder is used, the set of possible activity types from which the
selection policy chooses one is the set of subtypes of the placeholders activity inter-
face type.

Activity placeholders and the corresponding selection policies can be used in many
application scenarios. For example, a generic reference process can be configured to
use the activity implementations available in a given enterprise by providing a selec-
tion policy that plugs in the enterprise’s implementation for each activity interface. If
multiple enterprises provide implementations for an activity interface, the selection
policy may use a broker to choose the implementation that offers the best quality of
service [4]. In application areas where the process designer does not have the exper-
tise to chose a particular activity implementation, e.g., in crisis mitigation applications
where only expert process participants know which concrete tests to perform, the
selection policy may permit such a participant to select which implementation to use
[5].

262 H. Schuster et al.

6 Related Work

Separation of interface and implementation as well as interface subtyping and poly-
morphism are well-known concepts in programming languages, e.g., Java™ [14], and
distributed (object) systems, e.g., CORBA [11]. They are particularly useful in het-
erogeneous environments because they enable the client of an object to be imple-
mented and maintained independently from the implementation(s) of an object. We
have adopted these ideas into the process world. Although object-oriented program-
ming languages provide useful abstractions, they are not suitable for process model-
ing, since they do not include types and classes for capturing and implementing proc-
esses. Implementing such types and classes requires considerable effort, as indicated
by current WfMS.

To the best of our knowledge current work in workflow management and process
models does not provide abstraction mechanisms as the ones presented in this paper.
The process handbook project [9] has the notions of inheritance and specialization of
processes. However, this approach stays on a declarative business process level, i.e.,
implementation and enactment of the proposed concepts stays open in [9]. Van der
Aalst et al. [1, 2] propose an inheritance mechanisms for process implementations
with the objective to deal with dynamic change and evolution in workflows. Both
approaches do not separate activity interfaces and implementation, however it is es-
sential to our approach.

7 Conclusion

In this paper we presented a novel model for multi-enterprise processes (MEPs),
namely, the Polymorphic Process Model (PPM). The main advantage of this model
lies in its ability to support both service-based MEPs and MEPs using a reference
process specification. PPM accomplishes this task by separating the activity interfaces
from activity implementations, and defining the activity interfaces in terms of activity
state machines and its input/output parameters. That in turn leads to the ability of
using multiple implementations for the same activity in MEPs without the need for
modifications of the specification or the running process. Together with strict rules of
activity type subclassing, these characteristics allow for seamless integration of ser-
vices and processes provided by multiple independent enterprises.

A prototype of a process management system based on a subset of this model has
been successfully implemented in MCC’s Collaboration Management Infrastructure
System [3]. A set of sample applications, including health care-related crisis man-
agement processes, military operation coordination, and telecommunication provi-
sioning service, have been designed, implemented, and demonstrated, proving that the
PPM fulfills its promise.

However, not all aspects of the PPM are fully developed yet. For example, the run-
time choice of a particular service to be executed as the resolution of a placeholder is
a demanding problem. We have done some initial work in this area, but many prob-
lems considered crucial for the success of Virtual Enterprises (whose core business is
choosing and composing external services) are left to be solved. Key remaining prob-
lems include the semantic description of the services, the description of the quality of

Modeling and Composing Multi-enterprise Processes 263

the services (necessary for a meaningful service comparison), and the development of
service contracts beyond the activity types we discussed in this paper.

References

1. van der Aalst, W.M.P: Generic Workflow Models: How to handle dynamic change and cap-
ture management information. In: Proc. of the Fourth IFCIS Conf. on Cooperative Informa-
tion Systems (CoopIS’99), Edinburgh, Scotland, September 1999.

2. van der Aalst, W.M.P. ; Basten, T. ; Verbeek, H.M.W. ; Verkoulen, P.A.C. ; Voorhoeve, M.:
Adaptive Workflow: An Approach Based on Inheritance. In: Ibrahim, M. ; Drabble, B.
(Eds.): Proc. Workshop Intelligent Workflow and Process Management: The New Frontier
for AI in Business, 16th. Int. Joint Conf. on Artificial Intelligence (IJCAI’99). Stockholm,
Sweden, August 1999.

3. Collaboration Management Infrastructure, http://www.mcc.com/projects/cmi, 2000.
4. Georgakopoulos, D. ; Schuster, H. ; Baker, D. ; Cichocki, A.: Managing Process and Service

Fusion in Virtual Enterprises. In: Information Systems, Special Issue on Information Systems
Support for Electronic Commerce, 24(6), 1999.

5. Georgakopoulos, D. ;Schuster, H. ; Cichocki, A.; Baker, D. : Collaboration Management In-
frastructure in Crisis Response Situations. In: Proc. 16th Int. Conference on Data Engineer-
ing (ICDE’2000), San Diego, March 2000.

6. IBM FlowMark - Managing Your Workflow. Version 2.3, IBM, 1996.
7. Jablonski, S. ; Bußler, C.: Workflow Management - Modeling Concepts, Architecture and

Implementation. International Thomson Computer Press, 1996.
8. Leymann, F. ; Altenhuber, W.: Managing Business Processes as an Information Resource.

In: IBM Systems Journal, 33(2), 1994.
9. Malone, T.W. ; Crowston, K. ; Lee, J. ; Pentland, B.: Tools for Inventing Organizations: To-

ward a Handbook of Organizational Processes. In: Proc. of the 2nd IEEE Workshop on En-
abling Technologies Infrastructure for Collaborative Enterprises, Morgantown, WV, April
20-22, 1993.

10.Object Management Group: Workflow Management Facility. Revised Submission, OMG
Document Number bom/98-06-07, July 1998.

11.Object Management Group: The Common Object Request Broker: Architecture and Specifi-
cation. Revision 2.3.1, October 1999.

12.Schuster, H. ; Jablonski, S. ; Heinl, P. ; Bußler, C.: A General Framework for the Execution
of Heterogeneous Programs in Workflow Management Systems. In: Proc. First IFCS Int.
Conf. on Cooperative Information Systems (CoopIS 96), Brussels, 1996.

13.Simple Workflow Access Protocol (SWAP). http://www.ics.uci.edu/~ietfswap/, 1999.
14.Sun Microsystems: Java™. http://java.sun.com/, 2000.
15.TeleManagement Forum: http://www.tmforum.org/, 1999.
16.Workflow Management Coalition: Interface 1: Process Definition Interchange Process Mod-

el. Document Number TC-1016-P, Document Status – Version 1.1, October 1999.

