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ABSTRACT

Many kinetic relaxation models have been proposed for the study of rarefied flows. Based on the single relaxation time model, a discrete
velocity method-based unified gas-kinetic scheme (UGKS) has been constructed. The UGKS models the gas dynamics on the discretized
space directly on account of accumulating flow evolution from particle transport and collision within a time step. Under the UGKS frame-
work, a unified gas-kinetic wave-particle (UGKWP) method has been further developed for non-equilibrium flow simulation, where the time
evolution of the gas distribution function is composed of analytical wave and individual particles. In the highly rarefied regime, the flow
evolution is mainly described by the particle transport and collision. Because of the use of single relaxation time for particle collision, there
is a noticeable discrepancy between the UGKWP solution and the full Boltzmann or direct simulation Monte Carlo (DSMC) result, such as
the temperature distribution inside a shock layer at high Mach numbers. In this Letter, a modification of the particle collision time according
to the particle velocity will be implemented in the UGKWP. As a result, the new model greatly improves the performance of the UGKWP
in the capturing of non-equilibrium flows. There is an excellent match between UGKWP and DSMC or Boltzmann solution in the highly
rarefied regime. In the continuum flow regime, due to the absence of particles, the modification of the particle collision time will not take
effect and the UGKWPwill get back to the hydrodynamic Navier–Stokes flow solver with correct dissipative coefficients at small cell Knudsen
numbers.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0036203

According to the Knudsen number, defined as the ratio of the
particle mean free path over a characteristic length scale, the flow
regime can be classified into the continuum, transition, and rarefied
one. In many engineering applications, such as hypersonic flows
around a vehicle in near space flight, multiple regimes can co-exist
in a single computation, where the local Knudsen number can vary
widely on many orders of magnitude.1 The development of a mul-
tiscale method for all flow regimes becomes necessary.2 The Boltz-
mann equation resolves the flow dynamics on the kinetic particle
mean free path and collision time scale.3 Many Boltzmann solvers
based on the discrete velocity method (DVM) have been constructed
with the requirement on the cell size and time step at the kinetic
scale.4–8 Instead of solving the complicated collision term of the
Boltzmann equation, the direct simulation Monte Carlo (DSMC)
mimics the Boltzmann transport and collision process using

stochastical particles and achieves great success for the rarefied
flow study.9 Same as the direct Boltzmann solver, the DSMC also
requires the cell size and time step to be less than the particle mean
free path and collision time. In the study of rarefied flows, many
kinetic relaxation models and the corresponding schemes have been
proposed.10–16

Based on the gas-kinetic relaxation models and DVM dis-
cretization, a unified gas-kinetic scheme (UGKS) has been devel-
oped for the rarefied and continuum flows.17,18 The evolution of
the gas distribution function in the UGKS is based on the inte-
gral solution of the kinetic model equation, where the accumulat-
ing effect from particle transport and collision within a numerical
time step is used in the construction of the multiscale method. The
integral solution is basically composed of the hydrodynamic evolu-
tion from the integration of the equilibrium state and the kinetic
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particle-free transport from the initial non-equilibrium gas distribu-
tion. The weights between dynamics of these two scales depend on
the cell’s Knudsen number. Therefore, the integral solution can give
an accurate representation for both continuum and free molecule
flows and is used in the construction of the multiscale scheme. In the
continuum flow regime at a high Reynolds number, the UGKS gets
back to the standard Navier–Stokes (NS) flow solver with a numer-
ical time step being much larger than the particle collision time.2

In order to improve the efficiency and reduce the memory cost,
the DVM-based gas distribution function in the UGKS is replaced
by a particle and wave formulation in the newly developed unified
gas-kinetic wave-particle (UGKWP) method.19–21 The evolution of
particle transport and the hydrodynamic wave propagation in the
UGKWP is still controlled by the integral solution of the kinetic
relaxation model. Even though accurate solutions can be obtained
from the UGKWP in all flow regimes, especially in the near contin-
uum and continuum regimes, there are still solution discrepancies
in the highly non-equilibrium flow regime, such as the temperature
distribution inside the shock layer at a high Mach number. The rea-
son for the difference mainly comes from the single relaxation time
for all speed particles in the kinetic model equation, while the phys-
ical relaxation time varies in the Boltzmann collision term and the
DSMC according to the particle velocity. In fact, based on the kinetic
theory, the particle collision time τ is related to the mean free path
ℓ and particle velocity ∣v⃗∣, such as τ ≙ ℓ/∣v⃗∣. The Bhatnagar-Gross-
Krook (BGK) model with velocity-dependent collision frequency
was briefly introduced in Ref. 22. With a similar idea, a generaliza-
tion of the linearized BGK model with velocity-dependent collision
frequency was considered in Ref. 23. The original numerical study of
modifying the BGKmodel with velocity-dependent collision time in
an explicit form was presented by Struchtrup in 199724 and further
developed by Mieussens and Struchtrup in 2004.25 Later in 2005, the
velocity-dependent BGKmodel was improved further by Zheng and
Struchtrup.26 The current research is along the same line of reason-
ing. Due to the wave-particle decomposition in the UGKWP, in the
highly rarefied regime, the flow evolution is mainly controlled by
particles. Therefore, the particle collision time in the UGKWP can
be easily modified according to the particle velocity. Since this only
affects the free transport distance of a few very high speed particles,
the mass, momentum, and energy in the scheme are fully conserved.
This direct modeling on particle transport greatly improves the per-
formance of the UGKWP in capturing the non-equilibrium solu-
tion. In the near continuum regime, the particles in the UGKWP
disappear, and a continuum Navier–Stokes flow solver is recovered.

The kinetic relaxation model for the evolution of gas distribu-
tion function f is

∂ f

∂t
+ v⃗ ⋅ ∇x⃗ f ≙

M − f

τ
, (1)

where M is the equilibrium state, v⃗ is the particle velocity, and τ is
the relaxation or collision time. For monatomic and diatomic gases,
the BGK, Ellipsoidal Statistical (ES), Shakhov, and Rykovmodels can
be formulated in the above relaxation form.10–13 For a local constant
collision time τ, the integral solution of Eq. (1) can be written as17,27

f (x⃗, t, v⃗, ξ⃗) ≙ 1

τ∫
t

0
e
−(t−t′)/τ

M(x⃗′, t′, v⃗, ξ⃗)dt′ + e−t/τ f 0(x⃗ − v⃗t),
(2)

where ξ⃗ is the internal variable and f0 is the initial gas distribution
function at t ≙ 0. In both equilibrium state and initial distribution,
the particle transports along characteristics x⃗′ ≙ x⃗ + v⃗(t′ − t).

The UGKWP is constructed on a discretized physical space

∑iΩi ⊂R
3 and discretized time tn ∈R+.19–21 Initially, at the begin-

ning of each time step, the distributions of macroscopic flow vari-
ables and microscopic gas distribution function inside each control
volume are known. The cell averaged conservative flow variables,
such as W⃗ i ≙ (ρi, ρiU⃗ i, ρiEi) in a physical control volume Ωi, are
defined as

W⃗
n
i ≙

1

∣Ωi∣∫Ωi

W⃗
n(x⃗)dx⃗,

and the corresponding distribution of particles is given by f0, with
the condition

W⃗
n
i ≙ ∫ f 0ψ⃗dΞ,

where ψ⃗ ≙ (1, v⃗, 1
2
(v⃗2 + ξ⃗2))T is the vector of moments for the

conservative flow variables and dΞ ≙ dv⃗dξ⃗.
The UGKWP updates both the macroscopic flow variables and

the gas distribution function. Themacroscopic variables are updated
in a conservative form as follows:

W⃗
n+1
i ≙ W⃗

n
i +

Δt

∣Ωi∣ ∑ls∈∂Ωi

∣ls∣F⃗s, (3)

where ls ∈ ∂Ωi is the cell interface with center x⃗s and outer unit nor-
mal vector n⃗s. The flux function for the macroscopic variables at the
cell interfaces is constructed from Eq. (2),

F⃗s ≙
1

Δt∫
Δt

0
∫ f (x⃗s, t, v⃗, ξ⃗)v⃗ ⋅ n⃗sψ⃗dΞdt

≙
1

Δt∫
Δt

0
∫ [1τ∫

t

0
e
(t′−t)/τ

M(x⃗′s , t′, v⃗, ξ⃗)dt′
+ e
−t/τ

f 0(x⃗s − v⃗t)]v⃗ ⋅ n⃗sψ⃗dΞdt, (4)

with the characteristic line x⃗′s ≙ x⃗s + v⃗(t′ − t). The equilibrium flux
from the integration of Maxwellian distribution is denoted as F⃗eq,s,

F⃗eq,s
def
≙

1

Δt∫
Δt

0
∫ 1

τ∫
t

0
e
(t′−t)/τ

M(x⃗′s , t′, v⃗, ξ⃗)dt′v⃗ ⋅ n⃗sψ⃗dΞdt, (5)

which can be evaluated analytically from the distribution of macro-
scopic flow variables W⃗n through the gas-kinetic formulation.27 The
flux coming from the free transport of f 0 is given by F⃗ f r,s,

F⃗ f r,s
def
≙

1

Δt∫
Δt

0
∫ e

−t/τ
f 0(x⃗s − v⃗t)v⃗ ⋅ n⃗sψ⃗dΞdt, (6)

which is evaluated by tracking the particles from the initial distribu-
tion f 0.

19–21 Then, the updates of macroscopic variables will become

W⃗
n+1
i ≙ W⃗

n
i +

Δt

∣Ωi∣ ∑ls∈∂Ωi

∣ls∣F⃗eq,s +
Δt

∣Ωi∣W⃗ f r,i, (7)

where W⃗ f r,i is the net free streaming flow of cell i calculated by
counting the particles passing through the cell interfaces during a
time step. One of the outstanding features of the UGKWP is that
the gas distribution function f0 is composed of collisional particles
and collisionless particles in the evolution process within a time step
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Δt. The flux in W⃗ f r,i from the collisional particle can be evaluated
analytically. The number of collisionless particles is proportional to
e−Δt/τ . In the continuum flow regime, all fluxes from f0 can be eval-
uated analytically and the UGKWP will become a NS solver without
particles. The detailed formulation is given next.

The evolution of particle Pk(mk, x⃗k, v⃗k, ek, t f ,k) is represented by
its mass mk, position coordinate x⃗k, velocity coordinate v⃗k, internal
energy ek, and free streaming time t f ,k. The particle evolution follows
the same integral solution as Eq. (2) of the kinetic model equation,
which results in

f (x⃗, t, v⃗, ξ⃗) ≙ (1 − e−t/τ)M+(x⃗, t, v⃗, ξ⃗) + e−t/τ f 0(x⃗ − v⃗t). (8)

The above M+ is named as the hydrodynamic distribution func-
tion with analytical formulation, i.e., the wave formulation of the gas
distribution function. The initial particle distribution f0 has a prob-
ability of e−t/τ to free streaming and a probability of (1 − e−t/τ) to
colliding with other particles, and the post-collision distribution fol-

lows the distribution M+(x⃗, t, v⃗, ξ⃗). The time for the free streaming
to stop and follow the distributionM+ is called the first collision time
tc. The cumulative distribution function of the first collision time is

F(tc < t) ≙ 1 − exp(−t/τ), (9)

fromwhich tc can be sampled as tc ≙ −τ ln(η)with η generated from
a uniform distribution U(0, 1). For a particle Pk, the free streaming
time is given by

t f ,k ≙

⎧⎪⎪⎨⎪⎪⎩
−τ ln(η), if − τ ln(η) < Δt
Δt, if − τ ln(η) ≥ Δt, (10)

where Δt is the time step. In a numerical time step from tn to tn+1,
all simulating particles in the UGKWP method can be categorized

into two groups: the collisionless particle P f and the collisional

particle Pc. The categorization is based on the relation between the
free streaming time t f and the time step Δt. Specifically, the colli-
sionless particle is defined as the particle whose free streaming time
t f is longer than or equal to the time step Δt, and the collisional par-
ticle is defined as the particle whose free streaming time t f is shorter
than Δt. For the collisionless particle, its trajectory is fully tracked
during the whole time step. For the collisional particle, the particle
trajectory is tracked until t f . Then, the particle’s mass, momentum,
and energy are merged into macroscopic quantities in that cell, and
the simulation particle gets eliminated. Those eliminated particles
may get re-sampled once the updated total macroscopic quanti-

ties W⃗n+1 and the fraction from the eliminated particles W⃗n+1,h are
obtained.

Now, the particle will take free streaming for a period of t f ,k,

x⃗
n+1
k ≙ x⃗

n
k + v⃗kt f ,k. (11)

The net free streaming flow of cell i within a time step Δt can be cal-
culated by counting the particles passing through the cell interface,
which can be written as

W⃗ f r,i ≙
1

Δt

⎛⎜⎝ ∑k∈P
∂Ω
+

i

W⃗Pk − ∑
k∈P

∂Ω
−

i

W⃗Pk

⎞⎟⎠, (12)

where W⃗Pk ≙ (ωkmk,ωkmkv⃗k,
1
2
mk(ωkv⃗

2
k + κkek))T , P∂Ω+i is the

index set of the particles streaming into cell Ωi during a time
step, and P∂Ω−i is the index set of the particles streaming out of
cell Ωi. Then, the update of the total macroscopic flow variables
in Eq. (7) is fully determined. The updated hydrodynamic flow
variables originating from the eliminated particles are

W⃗
n+1,h
i ≙ W⃗

n+1
i − W⃗

n+1,p
i ,

where W⃗
n+1,p
i is macroscopic flow quantities of all remaining par-

ticles in the cell i, which can be evaluated by adding their mass,
momentum, and energy together.

Theoretically, we can go to the next time step by sampling par-
ticles from the distribution M+ with a total mass, momentum, and
energy of W⃗n+1,h and get the particle representation of f0 with the

condition W⃗n+1
i ≙ ∫ f 0ψ⃗dΞ again for the next time step evolution.

This is the so-called unified gas-kinetic particle (UGKP)method.19,20

In the UGKP, the initial distribution f 0 in cell i is composed of the
newly sampled particles and the remaining particles from the pre-
vious time step. However, the UGKWP is further developed from

the UGKP in the following. Not all particles from W⃗n+1,h
i need to

be sampled because some sampled particles will become collisional
hydro-particles in the next time step from tn+1 to tn+2 and disap-
pear again by collision. Therefore, only collisionless hydro-particles

from W⃗n+1,h
i need to be sampled with t f ,k ≙ Δt. Based on the cumu-

lative distribution function of the first collision time in Eq. (9), the

collisionless hydro-particles sampled from M+(W⃗n+1
i ) take a total

mass of e−Δt/τi ∣Ωi∣ρn+1,hi . The collisional hydro-particles have a total

mass (1 − e−Δt/τi)∣Ωi∣ρn+1,hi with a corresponding distribution M+.
The flux contribution in f 0 from collisional hydro-particles can be

evaluated analytically, which is denoted as F⃗h
f r,s.

19 Therefore, the flux

contribution from f 0 in Eq. (6) can be evaluated as

∑
s

∣ls∣F⃗ f r,s ≙∑
s

∣ls∣F⃗h
f r,s + W⃗

p

f r,i
,

where W⃗
p

f r,i
is the flux contribution of all the remaining particles

from the previous time step and the newly sampled collisionless
particles,

W⃗
p

f r,i
≙

1

Δt

⎛⎜⎝ ∑k∈P
∂Ω
+

i

W⃗Pk − ∑
k∈P

∂Ω
−

i

W⃗Pk

⎞⎟⎠.
So, in the UGKWP, the macroscopic flow variables in Eq. (7)
evolve as

W⃗
n+1
i ≙ W⃗

n
i +

Δt

∣Ωi∣
⎛
⎝ ∑ls∈∂Ωi

∣ls∣F⃗eq,s + ∑
ls∈∂Ωi

∣ls∣F⃗h
f r,s + W⃗

p

f r,i

⎞
⎠. (13)

In the UGKWP, the number of particles used in the evolution
depends on the cell Knudsen number Knc ≙ τ/Δt and takes a frac-

tion of macroscopic variables e−1/KncW⃗ inside each control volume.
In the continuum flow regime with Δt ≫ τ, the particle will gradu-
ally disappear, and the UGKWP will become a gas-kinetic scheme
for the Navier–Stokes equations.27

The above UGKWP is based on the single relaxation time
kinetic model τ, even though the viscosity and heat conduction
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coefficients can be correctly defined through the Shakhov or Rykov
models. In physical reality, the particle mean free path ℓ has a clear
definition, such as the hard sphere molecule,9

ℓ ≙
16

5
( m

2πkT
)1/2 μ

ρ
,

where μ is the dynamic viscosity coefficient, ρ is the density, and T is
the temperature. The particle collision time is related to the particle
velocity ∣v⃗∣ through ℓ/∣v⃗∣. In order to incorporate this physical real-
ity, a direct modification of the particle collision time in the UGKWP
can be constructed along a similar idea in Ref. 25. For those particles
with a relative high velocity, the newly modeled τ∗ has the following
form:

τ∗ ≙

⎧⎪⎪⎪⎨⎪⎪⎪⎩
τ if ∣v⃗ − U⃗∣ ≤ bσ

1

1 + a∗∣v⃗ − U⃗∣/σ τ if ∣v⃗ − U⃗∣ > bσ, (14)

where σ ≙
√
RT and a and b are two parameters to be determined.

Based on numerical experiments, the values of a ≙ 0.1 and b ≙ 5 give
satisfactory results in all cases we tested at different Knudsen and
Mach numbers. These fixed values are used in all numerical exam-
ples in this paper. After the determination of τ∗, for the particle,
the free streaming time is still determined by t f ≙ −τ∗ ln(η). For
high speed particles, the collision time will be reduced according to
their velocity. For other particles, the free steaming time remains the
same, and their dynamics has been taken into account properly by
the kinetic relaxation model, such as recovering the viscosity and
heat conduction coefficients. The above modification of the particle
collision time will not affect the conservation of the scheme. For a
specific particle, its mass, momentum, and energy will remain the
same, and the only modification is about the distance it travels. The
modification of the particle-free streaming time can be done directly
in the UGKWP. This simple modification only takes effect on the
high speed particle in the highly rarefied regime. The equilibrium
flux remains the same as the original UGKWPmethod. For the flow
in the continuum regime, the particles in the UGKWP will disap-
pear without any effect from the above modification on the particle
collision time, and accurate NS solutions with correct transport coef-
ficients can be obtained. The idea of τ∗ modification in the UGKWP
has also a similar consideration to the previous effort for general-
ization of the Chapman–Enskog expansion in the non-equilibrium
flow study.28

The above UGKWP is tested in both 1D and 2D cases at dif-
ferent Mach and Knudsen numbers. One of the simplest and most
fundamental non-equilibrium gas-dynamic phenomena that can be
used for the model validation is the internal structure of a normal
shock wave. There are mainly two reasons for this. First, the shock
wave represents a flow condition that is far from thermodynamic
equilibrium. Second, the shock structure is unique and it separates
fluid dynamics from the effect of the boundary condition. Since the
1950s, the computation of the shock structure has played a dominant
role in validating kinetic theory and numerical schemes in the non-
equilibrium flow study.29,30 In order to validate the UGKWPmodel-
ing, the shock structure at different Mach numbers for monatomic
and diatomic gases will be calculated. In the shock structure calcu-
lations, the reference length is the upstream mean free path, and the

computational domain is [−25, 25] with 100 cells. Besides the density
and temperature distributions, the stress and heat flux are presented
in some cases as well and compared with the reference solutions of
the Boltzmann equation and DSMC. In the following calculations,
the viscosity coefficient is given by

μ ≙ μre f ( T

Tre f

)ω, (15)

with the reference value

μre f ≙
15
√
π

2(5 − 2ω)(7 − 2ω)
ℓ

L
, (16)

where L is the characteristic length and ω is the temperature-
dependent index.

First, the shock structure of a monatomic gas is presented.
Comparisons of the UGKWP results are made with the solutions
computed by Ohwada,31 where the full Boltzmann equation for the
hard sphere molecule was solved. For the hard sphere molecule, ω is
set to be 0.5. Figure 1 shows the density, temperature, stress, and heat
flux inside a shock layer at Mach number M ≙ 3 computed by both
the current and the original single relaxation time UGKWP, where
better agreement has been obtained from the updated UGKWP.

Figure 2 shows the argon shock structures for a viscosity coef-
ficient of μ ∼ T0.72 at Mach number 9, where the comparisons are
among the original, current UGKWP, and DSMC solutions. Good
agreement has been obtained between the UGKWP and DSMC
solutions.

In addition to the monatomic gas, the shock structure in a
diatomic gas is presented as well. The diatomic gas UGKWPmethod
is presented in Ref. 21. For the diatomic gas, besides the translational
relaxation, the rotational relaxation is included as well. The relax-
ation time between the rotational and translation energy exchange is
determined by the rotational collision number Zrot . For the nitro-
gen gas, the viscous coefficient follows Eqs. (15) and (16) with
the temperature-dependent index ω ≙ 0.74. The rotational collision
number used in the UGKWP is Zrot ≙ 2.4. The normalized tem-
perature and density comparisons between UGKWP and DSMC at
M ≙ 1.53, 4.0, 5.0, and7.0 are plotted in Fig. 3. With the modification
of the particle collision time, the UGKWP avoids the early temper-
ature rising problem and presents good agreement with the DSMC
results. In comparison with the Rykov model-based UGKS results,32

significant improvement has been observed.
As tested in Ref. 25, the plane Couette flow was calculated

here as well for argon gas with ω ≙ 0.81. The Knudsen num-
ber is defined by Kn ≙ μ0

√
2πRT0/(2p0L) with the reference tem-

perature T0 ≙ 273K, viscosity μ0 ≙ 2.1173 × 10
−5Ns/m2, pressure

p0 ≙ ρ0RT0, and characteristic length L ≙ 1m. With a fixed bottom
wall, the top wall moves at a speed uw ≙ 1000m/s in the horizontal
direction. The temperatures at the bottom and top walls are fixed at
Tw ≙ T0 ≙ 273K. The cases withKn ≙ 0.01199, 0.1199, and1.199 are
computed. The initial temperature of the gas in all cases is set to be
T0, and the initial density is set as ρ0. In the computation, the phys-
ical domain is ∥0, 1∥ with 200 cells in the y direction. The velocity
and temperature profiles calculated by the UGKWP and DSMC are
shown in Fig. 4. Reasonable agreements have obtained between the
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FIG. 1. M = 3 shock structure for a hard sphere molecule calculated by the original UGKWP, the updated UGKWP, and the direct Boltzmann solver. The x-coordinate is
normalized by ℓ. The symbols are the results from Ref. 31. (a) Density and temperature distributions; (b) stress and heat flux.

FIG. 2. M = 9 shock structure for argon gas calculated by the original and updated UGKWP and the DSMC. The x-coordinate is normalized by ℓ. The symbols are the
results from Ref. 30. (a) Density and temperature distributions; (b) heat flux; (c) stress.
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FIG. 3. Comparison of the UGKWP and DSMC results of nitrogen shock wave at different Mach numbers for nitrogen gas. (a) M = 1.53; (b) M = 4.0; (c) M = 5.0; (d)
M = 7.0. The x-coordinate is normalized by ℓ. The symbols are the results from Ref. 32.

UGKWP and DSMC except for the temperature profile in the case
of Kn ≙ 1.199, where deviation has been observed.

In order to further validate the current UGKWP method in
the high speed rarefied flow regime, the flow of argon gas passing
through a circular cylinder at Mach number 20 and Knudsen num-
ber Kn ≙ 0.1 is calculated. The Knudsen number is defined as the
ratio of the mean free path over the cylinder radius. The radius of
the cylinder is given by R ≙ 0.01m. The incoming argon gas has
a velocity U∞ ≙ 6155.174m/s, temperature T∞ ≙ 273K, molecu-
lar number density n∞ ≙ 1.2944 × 10

21/m3, and reference viscos-
ity μ

∞
≙ 2.117 × 10−5Ns/m2. The viscosity is calculated by Eq. (15)

with ω ≙ 0.81. The cylinder has a constant surface temperature Tw ≙

273K, and the diffusive boundary condition is adopted here. The
simulation results from the current UGKWP are compared with the
solutions of theDSMC and theUGKS-Shakhov.33 Figure 5 shows the
density, x-velocity, and temperature along the central symmetric line
in front of the stagnation point, where both UGKWP and UGKS-
Shakhov solutions agree well with the DSMC solutions, except that
the temperature in UGKS-Shakhov solutions rises a little bit earlier.
The comparisons of the heat flux, shear stress, and pressure along the

surface of the cylinder are shown in Fig. 6, where better agreement
between the solutions from the current UGKWP and the DSMC is
obtained.

In this Letter, a newly modified UGKWPmethod has been pro-
posed for modeling and computation of non-equilibrium flows. The
main idea is to adjust the particle collision time according to the par-
ticle velocity, which is more consistent with the kinetic theory than
the single relaxation time kinetic models. The modeling in the cur-
rent UGKWP is more physically realistic than that in the traditional
BGK-type kinetic models. With the implementation of the particle
velocity-dependent collision time, accurate non-equilibrium solu-
tion can be obtained, such as the shock structure. Based on the sim-
ulation results, no obvious discrepancy between the UGKWP and
DSMC results can be observed. Since the dynamic effect from most
particles around the average velocity has been taken into account in
the kinetic model equation, only the collision time for these parti-
cles with extremely relative high speed needs to be modified. The
UGKWP method is fully conservative. The only modification is
the distance traveled by the very high-speed particles. In the con-
tinuum flow regime, the UGKWP will automatically recover the
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FIG. 4. Couette flow solutions from UGKWP and DSMC at different Knudsen numbers. The symbols are the DSMC results from Ref. 25. (a) Velocity distributions; (b)
temperature distributions.

FIG. 5. Flow distributions for argon gas along the central symmetric line in front of the stagnation point at M = 20 and Kn = 0.1. (a) Density; (b) x-velocity; (c) temperature.
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FIG. 6. Flow distributions along the surface of the cylinder for argon gas at M = 20 and Kn = 0.1. (a) Heat flux; (b) shear stress; (c) pressure.

gas-kinetic scheme for the Navier–Stokes solutions in the absence
of particles. For the flow simulation with the co-existing multiple
flow regimes, the UGKWP method can achieve high efficiency and
present accurate solution in all flow regimes.
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