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Abstract. The brake subsystem is one of the most signi�cant parts of a vehicle with
respect to safety. A computer controlled brake system has the capability of acting faster
than the human driver during emergencies, and therefore has the potential of improving
safety.
In this paper we consider the problem of modeling and control of a computer controlled
brake system. The brake model is developed using a series of experiments conducted on
a test bench which contains the full scale brake subsystem of a Lincoln town cary and a
computer controlled actuator designed by Ford Motor Company. The developed model
has the form of a �rst order nonlinear system with the system nonlinearities lumped in
the model coe�cients. The unknown model parameters are identi�ed by applying curve
�tting techniques to the experimental data. The major characteristics of the system
input-output curves such as time delay, e�ect of static friction, transient and steady
state parts, have been identi�ed in terms of model parameters. The brake controller
design makes use of a standard feedback linearization technique along with intuitive
modi�cations to meet the closed loop performance speci�cations. The simulation re-
sults show that the proposed controller guarantees no overshoot and zero steady state
error for step inputs. Test of the same controller using the experimental bench setup
demonstrates its e�ectiveness in meeting the performance requirements.

Keywords: Modeling, Brake System, Discrete Time Control, Feedback Linearization, Ad-
vanced Vehicle Control Systems, Automated Highway Systems.
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Executive Summary

In this paper the problem of modeling and control design of a computer controlled brake
system is addressed. The brake system under consideration is a test bench designed by Ford
Motor Company, which contains the full scale brake subsystem of Lincoln Town car and a
computer controlled actuator.

A nonlinear model for the brake system is developed by analyzing the input-output data
obtained from the test bench. The model identi�es the major characteristics of the brake
system, such as time delay, transient and steady state behavior. The model can be used in
designing and testing vehicle brake controllers and in calculating safe inter-vehicle spacings
by tking into account the time delay of the brake system.

A controller for the brake system is designed by applying feedback linearization technique
along with intuitive modi�cations to meet the closed loop performance speci�cations. The
simulation results show that the proposed controller guarantees no overshoot and zero steady
state error for step inputs. Test of the same controller using the experimental bench setup
demonstrates its e�ectiveness in meeting the performance requirements.
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1 Introduction

With an ever-increasing number of vehicles on the limited highways, it has become urgent to
develop sophisticated technical solutions to today's surface transportation problems. Intel-
ligent Transportation Systems (ITS) is an area whose purpose is to improve the e�ciency
of the current transportation system through the use of advanced technologies. These
technologies will be used to automate vehicles, infrastructure and improve the intelligence
of decision making. An important part of ITS is the Advanced Vehicle Control Systems
(AVCS) whose purpose is to improve safety and vehicular tra�c ow rates by automating
some or all of the basic functions of the vehicle, i.e., throttle, brake and steering control.

In this paper we consider the computer controlled brake subsystem function. The ob-
jective is to understand the dynamics of the braking function by modeling its behavior as
a dynamic system and to design and test control algorithms for controlling it in order to
meet given performance requirements.

During the past few years, several attempts have been made by di�erent research groups
to develop models of the brake subsystem for AVCS applications. One such important
contribution is the work of Gerdes et. al. [6]. A bond graph method for modeling the
components of manual brake system is considered in the paper by Khan, Kulkarni and
Yocef-Toumi [7]. In these studies the emphasis was given on identifying the dynamics asso-
ciated with each brake component. A comprehensive dynamic model of the brake subsystem
for AVCS applications, which identi�es the mapping from input to output, has not been
addressed. The main purpose of this paper is to develop a model and a controller for brake
subsystem that can be used in AVCS applications.

The brake model is developed using an experimental set up on a bench of the full scale
Lincoln town car brake subsystem. The block diagram of the brake subsystem under study
is shown in Figure 1. The test bench has all the conventional brake components, in addi-
tion, it contains an auxiliary hydraulic module (AHM) which consists of a hydraulic pump,
control valves and an actuator. It has been designed by Ford speci�cally for automatic
brake applications. This design allows the driver to override at any time.

The dynamic system or model describing the input-output behavior of the brake sub-
system is developed by using a series of experiments and curve �tting techniques to identify
the unknown parameters. The resulting model is a �rst order nonlinear dynamic system
that accurately describes the dynamics of the actual brake subsystem.

The brake model is used to design a controller that can meet the given performance
and reliability requirements. The controller employs feedback linearization to cancel the
nonlinearities and a modi�ed proportional integral (PI) compensator to achieve the de-
sired control action. The modeling and control techniques used in this paper can be easily
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applied to other types of brake subsystems with minor modi�cations. Other brake control
strategies which are used as part of vehicle longitudinal controllers can be found in [10]-[11].

The paper is organized as follows:
Section 2 describes briey the structure of the brake subsystem components. For more de-
tailed descriptions the reader is referred to [8], [6]. The brake subsystem model is developed
in section 3. In section 4 we consider the problem of identi�cation of the unknown model
parameters. This is followed by simulation results and model validation. The control design
with the modi�cation logic for the PI compensator is given in section 5. In section 6 the
stability properties of the controller and some robustness issues are discussed briey. The
controller implementation and simulation results are given in section 7.

2 Brake System Components

The main components of the brake subsystem shown in Figure 1 are discussed below.

Pressure

Sensor
Data

Acquisition

Vacuum

Pump

Booster
Master

Cylinder

Actuating

Element

Micro-

Controller

Hydraulic

Pump

Control

Valves
Actuator

Input Manual

Auto

PWMOn-Off

On-Off

Line Pressure

Auxiliary Hydraulic Module

*

*  Brake pedal alongwith an actuator acts as a mechanical switch indicated in the block

Figure 1: Block Diagram of the Brake Subsystem

2.1 Auxiliary Hydraulic Module

The function of the AHM is to provide an input force to the vacuum booster through an
actuator and brake pedal. The AHM takes the control input in the form of a pulse width
modulated (PWM) signal and generates a pressure to be applied to the brake pedal through
an actuator. The PWM signal is in the form of a square wave of �xed frequency but varying
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Valve
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Valve
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On-Off

Actuator

To Brake Pedal

Control Valves

Valve open
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Figure 2: Block Diagram of the Auxiliary Hydraulic Module

duty cycle. The output pressure of the actuator and hence the brake line pressure can be
controlled by changing the duty cycle of the PWM signal.

As shown in Figure 2 the AHM consists of a hydraulic pump, an arrangement of valves
and an actuator. When a constant amount of uid is pumped through the valves by the
hydraulic pump, no pressure is developed inside the cylinder of the actuator if the valves
are open. Whereas a sudden rise of pressure is obtained if the valves are closed completely.
Hence an average amount of pressure can be maintained inside the cylinder of the actuator
by switching the valves at high frequency (typically 100 Hz) with changeable duty cycle
(percentage of valve open time in one switching period). This pressure pushes the piston of
the actuator and applies force to the brake pedal.

When the duty cycle is changed, the pressure inside the cylinder of the actuator changes
too. Hence the force applied to the brake pedal can be controlled by varying the duty cycle
of the PWM signal. It should be noted that the maximum value of duty cycle corresponds
to valves being open for most of the time and hence no force is applied to the brake pedal,
which results in minimum brake line pressure at the output of the master cylinder. From
the overall system point of view any permissible pressure value at the output of the master
cylinder can be obtained by some particular value of duty cycle. The model developed in
this paper identi�es the mapping from duty cycle to the line pressure.
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Figure 3: Block Diagram of the Vacuum Booster

2.2 Vacuum Booster

A simpli�ed diagram of the vacuum booster is shown in Figure 3. The force ampli�cation
is caused by a pressure di�erential between the apply and vacuum chambers. Ideally, the
ampli�cation ratio between the input and output forces should be constant over the recom-
mended range of operation. However, due to booster dynamics this ratio is not constant.
According to the operation of the booster each brake application operation can be broken
down into three basic stages: stage 1: apply; stage 2: hold or lap; stage 3: release. These
stages are shown in Figure 4.

� In the apply stage control valve moves forward, the atmospheric valve is opened and
the vacuum valve is closed, hence a pressure di�erential is created, causing the diaphragm
to move forward.
� When the diaphragm travels further, the valve housing catches up with the control valve.
This movement also closes the atmospheric valve. The diaphragm and the valve body are
now in the hold stage.
� When the brake pedal is released, the control valve moves back due to the spring force,
the apply and vacuum chambers are connected and the pressure di�erential is reduced to
zero.

Since the inertia of the push rod and diaphragm is quite signi�cant, the associated
dynamics can not be neglected. Furthermore, the changes of pressure in the apply and
vacuum chambers also give rise to thermodynamics. For more detailed discussion of these
e�ects, see [6].
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2.3 Master Cylinder
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Primary
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Port

Booster Input

Primary PistonReturn SpringPrimary Brake

Line

Secondary

Brake Line
Secondary

Piston

Figure 5: Block Diagram of Master Cylinder

The block diagram of a tandem master cylinder is shown in Figure 5. The input force,
after being ampli�ed by the vacuum booster, is applied through a push rod to the primary
piston. The secondary piston, however, is pushed by the hydraulic force built up by the
primary piston.

Each portion of the master cylinder has its own separate reservoir, compensating port
and outlet port. When an input force is large enough to move the primary piston to close
the compensating port, pressure begins to build up between the primary and secondary
piston. When the secondary compensating port is closed, pressure buildup occurs in the
secondary portion too. At the same time hydraulic pressure developed during this operation
is transferred through the primary and secondary brake lines to the brake pads.

As discussed in [6], since the masses of the pistons are negligible, the dynamics associated
with them can be neglected.

3 Proposed Brake Model

A series of experiments are conducted on the test bench of the brake subsystem. Some of
the results of the experiments with step inputs of di�erent magnitudes (corresponding to
inputs of di�erent duty cycle) are shown in Figures 6 and 7. These �gures portray two
basic modes of operation of the system: building and bleeding pressure modes. Another
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important system feature, which can be observed from these �gures, is the variable time
delay associated with di�erent inputs and operating modes.

Since, the time delay is an important factor in braking operations, a special attention
was given to it in this study. A large time delay of the order of 0.2 second is observed for
the relaxed system, i.e., when the line pressure is zero. This time delay becomes negligibly
small (� 0:01sec) for any line pressure other than zero. Hence this leads to the following
theoretical relation:

td =

(
0:2 if x = 0

0:01 if x > 0
(1)

where td and x denote the delay time and brake line pressure respectively. The system
response in Figure 8 shows the time delays for the two cases discussed above.

The experimental results shown in Figure 6 and 7 suggest the presence of dominant
�rst order dynamics. These results together with intuition motivate the following nonlinear
dynamic model:

_x(t) = f1(x(t); u(t
�); u(t�� T )) (2)

The variables in (2) are:
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x : system state (brake line pressure)

u : system input (duty cycle of the PWM signal)

f1 : unknown function to be identi�ed

where x; u 2 R1, t� = t � td, td is the time delay de�ned in (1), T is some small number
(taken to be equal to the sampling period) and u(t� � T ) denotes the previous input. As
given in (1), the value of td is negligibly small except when the system is relaxed. Hence
td can be safely assumed to be zero in (2). Since, in this study we use the input-output
data which is obtained at sampling instants only, instead of the continuous model in (2),
we propose the discrete time model:

x(k+ 1) = f(x(k); u(k); u(k� 1)) (3)

where k denotes the number of the sample, i.e., the time t = kT . The shape of the response
for each �xed input, shown in Figures 6 and 7, can be approximated by a �rst order system
given as:

x(k + 1) = x(k) + Tb(a� x(k)) (4)

where a; b 2 R+. The parameters a and b in (4) may be used to characterize the steady
state value and the speed of transient response respectively, for a given input u(k). These
parameters are nonlinear functions of the input u and state x of the system. The experiments
show that the steady state value of the pressure a can be modeled as:

a = g(x(k); u(k)) (5)

The speed of transient response (time constant) b vary signi�cantly for di�erent initial
conditions and is sensitive to the previous history of the system, i.e., depends not only on
the current input u(k), but also on the previous input u(k � 1). This phenomenon can
be explained in terms of nonlinear uid dynamics. The change in pressure is signi�cantly
slow if an input change occurs near a steady state pressure condition. Hence the system
time constant represented by b depends on the current pressure relative to the steady state
pressure for the previous input. This suggests a functional form for the parameter b, which
is given as:

b = h(x(k); u(k); u(k� 1)) (6)

In (5) and (6), g and h are unknown functions to be identi�ed.

4 Parameter Identi�cation

The identi�cation of the unknown parameters (functions) a, b was done in two steps.
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Step 1: Fixed step inputs were used to identify the steady state value a and time constant
1=b for each input.

Step 2: A series of staircase signals are used to modify the results of step 1.

The motivation of breaking down the identi�cation process into two steps follows from
the fact that the system response shown in Figures 6 and 7, for a �xed input, can be ap-
proximated by the response of a linear system to a step input. Hence standard results
from linear system identi�cation can be used to estimate the parameters. In the step 2 the
nonlinear behavior of these parameters is explored by using staircase signals. These signals
cover the possible changes in the input that excite the building and bleeding modes of the
system and enable us to study the switching process between these modes. The results from
these experiments are used to modify the parameters a and b so that their values are valid
for possible input variations applied to the system.

Finally it is shown that with these parameters, identi�ed by using step and staircase
signals, a fairly accurate matching between the model and the actual system can be achieved
for continuously varying inputs. This is due to the fact that any continuous signal can be
approximated by a staircase signal, where the accuracy of the approximation depends on
the chosen step size. This approximation can be represented as:

u(t) = u(kT ) kT � t < (k + 1)T (7)

Where T is the sampling time and should be su�ciently small compared with the band-
width of the input signal u(t) and system dynamics.

4.1 Step Inputs

The step response curves shown in Figures 6 and 7 for each �xed input u can be approx-
imated as a solution to the �rst order linear di�erential equation, discretized at time step
kT , i.e.,

x(k) = x(0)(1� Tb)k + a(1� (1� Tb)k) (8)

where

a : steady state value

1=b : time constant

x(0) : initial condition

10



This simpli�cation helps us to identify the parameters a and b for each input separately, by
using standard curve �tting techniques. It should be noted that the approximation given
in (8) which uses a single exponential function does not accurately describe the system
response for inputs with duty cycle greater than 68 % in low pressure region. Hence the
deviation between the predicted system response using the model and actual system is large
for small line pressures. However, line pressures below 60 psi, corresponding to the afore-
mentioned inputs, have little or no signi�cance in actual braking. Hence this approximation
has no e�ect on model accuracy within the range of line pressures of interest.

The steady state value of the line pressure, a, in the building mode is found to be
relatively insensitive to the state x of the system. Furthermore, the two modes of operation
shown in Figures 6 and 7 have di�erent steady state values and slopes for the same inputs.
The reason is the hysteresis produced due to friction, pre-loaded spring inside the vacuum
booster and dead zone associated with the master cylinder and booster. Hence separate
mappings for the two modes are required. The experimental results in Figure 6 suggest
that for the building mode both a and b depend only on the current input, i.e.,

a = g(u(k)) ; b = h(u(k)) (building) (9)

On the other hand for the bleeding mode a is a function of the current input whereas b
depends also on the current state x, i.e.,

a = g�(u(k)) ; b = h�(u(k); x(k)) (bleeding) (10)

These mappings g, h, g� and h� are given in Tables 3 and 4 respectively.

4.2 Staircase Inputs

Another series of experiments was conducted with inputs changing from one value to a
di�erent value and these changes were made to occur at di�erent line pressures. Results
show that the values of a calculated in these cases are consistent with those given in Table
3. The values of b, however, vary signi�cantly and are found to be a function of the current
pressure, x, at which the input was changed. Experiments show that the change in the value
of b is noticeable if the input is changed at a pressure which is more than 50% of the steady
state value of the previous input. This change shows a monotonically decreasing behavior,
with a maximum reduction of around 25% at a pressure approximately equal to the steady
state value. The change in the value of b as a function of the current line pressure for two
di�erent �u is shown in Figure 9. Guided by the experimental results, the following linear
approximation was introduced to model this change:

b = h(u(k))

�
5

4
�

x(k)

2g(u(k� 1))

�
when x(k) � g(u(k�1))

2 (11)

The experimental results also indicate that the change in b occurs only if the input
changes, since b corresponds to the dynamics associated with the system which do not

11
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Figure 9: Change in b for change in input from 56% to 50% (�u = 6) and from 68% to
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signi�cantly change for a constant input. Whereas, the relation given in (11) updates the
value of b at each sampling instant, which can be handled by introducing b as a state of the
system as follows:

b(k+ 1) =

(
b(k) if �u = 0

pbb(k) + zb�(k) else
(12)

�(k) =

8<
: h(u(k)) if x(k) < g(u(k�1))

2

h(u(k))
�
5
4 �

x(k)
2g(u(k�1))

�
if x(k) � g(u(k�1))

2

(13)

Where �u = u(k)� u(k� 1), pb and zb are design parameters to smooth out the e�ects
of switching, which is justi�able since the system dynamics do not show sudden changes.
As explained later, this �ltering would also help in the control design.

From Table 3, it is obvious that due to hysteresis, g�(u(k)) � g(u(k)). From the
experiments it was found that if a change in the input causes the system state to be switched
from building to bleeding mode with g�(u(k)) > g(u(k � 1)) then a = x(k), and the line
pressure x would maintain its previous value. Hence for the bleeding mode, a, in (10) can
be rewritten as:

a = min(x(k); g�(u(k))) (14)

The condition for determining the current mode of operation is:

x < g(u(k)) ) pressure is building (15)
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This means that if the current pressure is strictly less than the steady state value for the
current input, then the system is in the building mode. On the other hand if the current
pressure is greater than or equal to the steady state pressure for the current input, then
the system is in the bleeding mode. Hence by using the condition (15) the results given in
(10), (14), (12) and (13) can be combined to give the �nal form of the model as:

x(k+ 1) = x(k) + Tb(k)(a(k)� x(k)) (16)

a(k) =

(
g(u(k)) if x(k) < g(u(k))

min(x(k); g�(u(k))) if x(k) � g(u(k))
(17)

b(k+ 1) =

(
b(k) if �u = 0

pbb(k) + zb�(k) else
(18)

�(k) =

8>><
>>:

h(u(k)) if x(k) < g(u(k�1))
2

h(u(k))
�
5
4 �

x(k)
2g(u(k�1))

�
if x(k) � g(u(k�1))

2

h�(u(k); x(k)) if x(k) � g(u(k))

(19)

The model described by (16)-(19) was simulated for di�erent inputs and its response
compared with that of the actual system. The results are shown in Figures 14 and 15. From
Figure 15, we see that the actual system and model output di�er for low pressure values
(� 60 psi). However, as discussed before, due to the less signi�cant e�ects of these pressure
values on actual braking, this error is not severe.

It can also be seen form Figure 15 that for pressure values greater than 60 psi the error
is within �8 psi. These error values are not large considering the fact that the pressure
sensor used in the actual system has resolution of 4 psi. Furthermore, from Figure 15 it
is obvious that the model output for staircase approximation of continuous signals is the
same as that of the original signal. Hence, the estimates of the parameters a and b which
were calculated as though the input signal is made up of �nite steps hold even when the
step width T is reduced to zero.

The limitations of the model (16)-(19) are the following:

1. The model accuracy depends mainly on the accuracy of identi�cation of the parameters
a and b.
2. The modi�cation for b given by (11) holds only if x < g(u(k�1)), i.e., steady state is not
attained. When steady state is actually achieved, the value of b shows a further decrease as
time increases. In other words, the longer the system stays at one steady state value, the
harder it is for the system to change the state. It was found by experiments that for a �xed
input the steady state is not attained for a step width of less than 5 seconds, hence in this
case the approximation given by (11) holds true. This is not a severe limitation considering
the fact that actual braking commands do fall into this category.
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5 Control Design

The nonlinearity of the model of the brake subsystem under consideration is in the form
of a hysteresis and variable time delay. The main objective of the controller design in this
paper is to make the performance of the brake subsystem as uniform and robust as possible
throughout the range of operation. One way to achieve this objective is to use feedback
linearization to cancel the nonlinearities of the system.

The design of the brake controller in this paper follows the guidelines provided by the
feedback linearization techniques given in [12]. The brake model given in (16) has no explicit
control input term. Since the parameter a in the brake model is a nonlinear function of the
control input u and state x and the inverse mapping

u(k) = g�1(a(k); x(k)) (20)

is guaranteed to exist for all values of a and x within the operating range (So;Uo) of the
system, where,

So = fy 2 R : jyj � Pmaxg U0 = fu 2 R : umin � u � umaxg (21)

8a; x 2 So ) g�1 exists and u 2 Uo

where Pmax is the maximum allowable pressure, umin and umax represent the minimum
and the maximum allowable control input respectively. Hence with the condition given in
(21), we can consider a to be the virtual control input. This assumption would help us to
linearize the system by using standard input-output feedback linearization techniques. The
controller design proceeds by �rst linearizing the brake model (16), with output x(k) and
input a, without changing the internal state dynamics b(k) given in (18).

We �rst let

a(k) =
1

Tb(k)
(�x(k) + !(k)) +

�
1�

1

Tb(k)

�
x(k) (22)

where � is some design constant and ! is the new input. The resulting system is:

x(k + 1) = �x(k) + !(k) (23)

Since a is given by (22) for some constant � and ! is a signal to be computed, the control
input u can be calculated using the inverse mapping (20). The feedback linearized system
is given by (23), whose transfer function is:

G
0

(z) =
x(z)

!(z)
=

1

z � �
(24)
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0

(z)

1
z��

D(z)

KT (z��)
z�1

Figure 10: Block diagram of the closed loop system.

The input ! can now be selected to meet the control objective for the feedback linearized
system (23). In general ! could be of the form:

! = D(z)(r� x)

as shown in Figure 10, whereD(z) will be chosen to meet the control objective. For example,
for:

D(z) = KP +
KIT

z � 1
=

KP (z � 1) +KIT

z � 1
(25)

we have a PI compensator whose parameters KP , KI can be chosen for stability and zero
steady state error. The loop transfer function with the addition of the PI compensator
becomes:

L(z) = KP

(z � 1) + KIT
KP

(z � 1)(z � �)
(26)

Hence with the addition of a PI compensator the order of the closed loop system has
increased. This, however, can be avoided by carefully selecting the gains KP and KI . One
such combination is given by:

KP = KT KI = K(1� �)

where K > 0 is a design constant to place the closed loop pole at a desired location. Hence
the input ! in (23) becomes:

! =
KT (z � �)

z � 1
(r � x) (27)

The closed loop transfer function T (s) shown in Figure 10 is given by:

T (z) =
x(z)

r(z)
=

KT

z � 1 +KT
(28)

The control law is summarized in Table 1 and is represented by the block diagram shown
in Figure 11.
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!(k) =
KT (z��)

z�1 (r(k)� x(k))

a(k) = 1
Tb(k)(�x(k) + !(k)) +

�
1� 1

Tb(k)

�
x(k)

u(k) = g�1(a(k); x(k))

Table 1: Summary of Control Law

KT (z��)
z�1

P !
�x+ !

a
g
�1(a; x)

u
G

xr +

-

� 1
Tb

� + (1� 1
Tb
)x

Figure 11: Block diagram for implementation of the feedback linearized control system.

5.1 Controller Modi�cations

The control input generated by the feedback linearization shown in Table 1 is calculated
based on the assumption that there is no saturation of the control input. However, from
the safety point of view a limited control authority is available in the given system. Hence
to avoid performance deterioration, some additional logic is embedded within the standard
PI compensator. These modi�cations along with some justi�cation are presented below:

� In order to avoid the integration wind up problems a limited integrator is used in place
of the ideal integrator.

� In order to avoid overshoot while maintaining swiftness of response, the logic shown in
Figure 12 is added to the PI compensator. Since the brake subsystem under consideration
has a large delay, � 0:2sec. at start up, the branch labeled delay kill in Figure 12 stops
integrator accumulation during this interval. This reduces the saturation of the control
input during the delay period and helps to avoid overshoot at low operating pressures.

� To reduce overshoot at high pressure, the branch labeled shoot kill cuts o� integrator
when either:
- the nonlinear function a, used as linearization input, exceeds the maximum steady state
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pressure value and the actual pressure x is less than the desired one - or when a is negative and
the brake pressure is greater than the desired. This modification results in minimum possible
overshoot for normal and high pressure regions. Hence during initial startup time and at the
time when the controller output is saturated, this logic avoids excessive integrator accumulation,
that may cause subsequent overshoots. The output of the PI compensator is now given as:

Figure 12: Block diagram of the modified integrator.

where Pmin is the minimum line pressure in idle state, when the time delay is large. Since the
inverse mapping, u = g-1(a, x), is guaranteed to exist when the inputs a, x are within the physical
constraints imposed by the equipment, a saturation function p(.) is introduced at the output of
a.

(30)

(30)

where amin = 0 and amax =  Pmax, Pmax is the maximum allowable pressure. Some simulation
results before and after addition of this logic are shown in Figure 16. A comparison
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of the attainable performance using this modi�cation, with the standard PI compensator is
given in Table 2.

controller rise time settling time s:s: error overshoot

Standard PI 1.0 sec 3.5 sec � 0 10 %

Modi�ed PI 1.1 sec 2.5 sec � 0 0

Table 2: Comparison of performance

With the proposed modi�cation, the main characteristics of the closed loop system are
summarized as follows:

� The step response is fast enough to meet the AVCS performance speci�cations [2]

� There is no overshoot or undershoot.

� The steady state error for step inputs is equal to zero.

6 Stability Analysis

We �rst discuss the stability properties of the open loop system. The nonlinear functions
a = g(x; u) and b = h(x; u) in (17) and (18) are guaranteed to be bounded, i.e.,

g(x; u) 2 C1 = fy1 2 R : amin � y1 � amaxg (31)

h(x; u) 2 C2 = fy2 2 R : bmin � y1 � bmaxg 8u; x(0) 2 L1 (32)

where amin � 0 and bmin > 0. Hence for any bounded initial condition, any bounded
input to the system would result in a bounded state, i.e.,

u; x(0) 2 L1 ) x 2 L1 8t � 0

Furthermore, u 2 Uo ) x 2 So, where Uo and So are as de�ned in (21). As discussed
before, the nonlinear function a is used in place of the control input u for linearization of
open loop plant (16). As given by condition (21), if we guarantee that a; x 2 So then it im-
plies that u 2 L1, rather u 2 Uo, where Uo forms the set of acceptable inputs to the system.

Theorem 1 If the controller given in Table 1 with the modi�cation (29) is initialized such
that u(k0) 2 Uo, then the closed loop signals !, �, a, u and x are bounded and u 2 Uo,
x 2 So 8k � k0.
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Proof: The assumption that at t = k0T , u 2 Uo is not restrictive as the controller
would be initialized with some acceptable input. To establish the boundedness of all the
signals in closed loop, we begin as follows:

We have that u(k0) 2 Uo ) x(k0) 2 So. Considering the PI compensator, we can write:

!(k) = W (z)(r(k)� x(k)) (33)

) k!k2 � kW (z)k1kr � xk2 (34)

where r(k) is the desired output trajectory, obviously r(k) 2 So,) (r(k0)�x(k0)) 2 O(So)
�.

Since W (z) is a stable proper transfer function, hence for (r(k0)� x(k0)) 2 O(So)\ L2, we
have !(k0) 2 O(So) \ L2. Denoting �x(k) + !(k) in (22) by �(k), we have:

k�(k0)k2 � j�j kx(k0)k2 + k!(k0)k2 (35)

where � is a �nite design constant chosen earlier, ) �(k0) 2 O(So) \ L2. Also from (22)
we can write:

ka(k0)k2 � jc1j k�(k0)k2 + jc2j kx(k0)k2 (36)

where c1 =
1

Tb(k0)
and c2 = (1 � c1) are �nite constants as b(k) � bmin > 0 8k, ) a(k0) 2

O(So) \ L2. Finally the saturation function p(:) de�ned in (30) ensures that a(k0) 2 So.

Hence, from (21) we get u(k0 + 1) 2 Uo ) x(k0 + 1) 2 So. Now by induction we can
show that closed loop signals are bounded and u(k) 2 Uo, x(k) 2 So for all k � k0: 2

7 Simulation and Implementation Results

The modi�ed control law given in (29), (22), (30) and (20) is simulated using Matrixx and
the nonlinear brake model. The block diagram of the closed loop system is shown in Figure
13. The simulation results of typical braking scenarios are shown in Figures 17a-19a. The
simulation results con�rm the claims made about performance in terms of zero steady state
error, no overshoot and su�ciently fast response (limited by the equipment constraints).

The controller given in Figure 13 is also implemented on the actual brake system. The
results obtained from the actual closed loop system are shown in Figures 17b-19b. The
simulation results in Figures 17a-19a are almost identical to the actual closed loop system
response shown in Figures 17b-19b. Furthermore, one of the design objectives to make
the system behave linearly is proved by comparing the actual closed loop system response
with that of the equivalent linear system ( KT

z�1+KT
). The comparison for the three inputs

considered before is shown in Figure 21.

�A function f(x) is O(x) if there exists a �nite constant c > 0, such that jf(x)j � cjxj 8x.
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(a>260 and e>0) g

KT (z��)
z�1 else

!e � 1
Tb

� + (1� 1
Tb
)x p(.)

a u
G

x
g
�1(x; a)�x+ !

Figure 13: Block diagram of the feedback linearized control system.

8 Conclusion

A nonlinear model that describes the input output behavior of the brake subsystem of a
Lincoln town car is developed. The model is simpli�ed to resemble a �rst order linear sys-
tem with nonlinear coe�cients and time delays. The unknown parameters are identi�ed
by applying the standard curve �tting techniques to the data obtained by conducting ex-
periments on the test bench. The hysteresis phenomenon is modeled by isolating the two
operating modes, that is the building and bleeding modes, and identifying separate sets
of parameters for each one. The worst case modeling error was found to be less than 5%
within the range of interest.

A brake controller is developed using standard feedback linearization techniques on the
nonlinear validated model. A PI compensator with intuitive modi�cations is introduced
in the closed loop to meet the performance speci�cations. The controller has been shown
to meet the possible performance requirements in an AVCS application by applying to the
actual brake subsystem mounted on a bench.
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A Lookup Tables

u (%) a = g(u) (psi) b = h(u) a = g�(u) (psi)

48 253 1.8 253

50 226 1.7 253

52 202 1.6 252

54 181 1.4 251

56 159 1.2 245

58 140 1.0 233

60 124 0.9 219

62 108 0.75 194

64 94 0.65 182

66 83 0.50 170

68 70 0.35 157

70 60 0.20 148

72 48 0.1 138

74 30 0.1 129

76 5 0.1 116

78 0 0.1 107

80 0 0.1 94

82 0 0.1 79

84 0 0.1 65

86 0 0.1 57

88 0 0.1 40

90 0 0.1 29

Table 3: Least square �t values of functions g, h and g� for the curves in Figures 6 and 7
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u nx 0 30 60 80 95 105 125 145 160 180 200 225 253

48 X X X X X X X X X X X X 1.8

50 X X X X X X X X X X X 1.7 1.8

52 X X X X X X X X X X 1.6 1.7 1.8

54 X X X X X X X X X 1.4 1.6 1.7 1.9

56 X X X X X X X X 1.2 1.4 1.6 1.8 1.9

58 X X X X X X X 1.0 1.2 1.4 1.7 1.8 2.0

60 X X X X X X 0.9 1.0 1.2 1.5 1.7 1.9 2.1

62 X X X X X 0.75 0.9 1.0 1.3 1.5 1.8 1.9 2.2

64 X X X X 0.65 0.75 0.9 1.1 1.3 1.6 1.8 2.0 2.3

66 X X X 0.5 0.65 0.75 1.0 1.1 1.4 1.6 1.9 2.0 2.4

68 X X X 0.5 0.65 0.8 1.0 1.2 1.4 1.7 1.9 2.1 2.5

70 X X 0.2 0.5 0.7 0.8 1.0 1.2 1.5 1.8 2.0 2.2 2.6

72 X X 0.2 0.5 0.7 0.8 1.1 1.3 1.5 1.8 2.0 2.3 2.6

74 X 0.1 0.2 0.6 0.7 0.9 1.1 1.3 1.6 1.9 2.1 2.4 2.7

76 X 0.1 0.2 0.6 0.7 0.9 1.1 1.4 1.6 1.9 2.2 2.5 2.7

78 0.1 0.1 0.3 0.6 0.7 0.9 1.2 1.4 1.7 2.0 2.3 2.5 2.8

80 0.1 0.1 0.3 0.6 0.7 0.9 1.2 1.5 1.7 2.0 2.3 2.6 2.8

82 0.1 0.1 0.3 0.7 0.7 1.0 1.2 1.5 1.8 2.1 2.4 2.6 2.9

84 0.1 0.1 0.4 0.7 0.8 1.0 1.3 1.5 1.8 2.1 2.4 2.7 2.9

86 0.1 0.1 0.4 0.7 0.8 1.0 1.3 1.6 1.9 2.2 2.5 2.7 3.0

88 0.1 0.1 0.4 0.7 0.8 1.0 1.3 1.6 1.9 2.2 2.5 2.7 3.0

90 0.1 0.1 0.4 0.7 0.8 1.0 1.3 1.6 1.9 2.2 2.5 2.7 3.0

Table 4: Least square �t values of b = h�(u; x) for the curves in Figure 7. An X as a table
entry indicates an invalid state for bleeding mode.
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Figure 14: A comparison of the actual and model output for a step input of 52% is shown
in the top portion of the Figure. Whereas in the bottom one input changes from 48% to
90% at t=30 sec.
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Figure 15: The top left portion of the Figure shows the input signal being applied to actual
system and brake model for comparison. The system and model outputs are shown in top
right position for given input signal. A staircase approximation of the same input signal is
shown in bottom left graph. The comparison of outputs is shown in bottom right graph.
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Figure 16: Comparison of closed loop response for PI compensator with and without mod-
i�cations.

26



0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

time (sec)

Simulation for step input

p
re

ss
u

re
(p

si
),

u
(%

)

input

output

control input

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

time (sec)

Closed loop brake system output for step input

p
re

ss
u

re
(p

si
),

u
(%

)

input

output

control input

Figure 17: Simulation and actual system response for step input, corresponding to a desired
pressure of 200 psi.
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Figure 18: Simulation and actual system response for exponential input.
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Figure 19: Simulation and actual system response for sinusoidal input.
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Figure 20: Closed loop system response for sinusoidal input of 0.25 Hz. (top) and 0.5 Hz.
(bottom). The desired pressure is step input of 100 psi from 0 to 10 sec, from 10 sec to 20
sec a sinusoidal input with amplitude of 25 psi is superimposed on the step input. It should
be noted that system bandwidth is around 0.5 Hz.
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Figure 21: Comparison of the feedback linearized system response with the equivalent linear
system response for two di�erent inputs.
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