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A mathematical model of a 4-wheel skid-steering mobile robot is presented in a systematic way. The robot is considered as

a subsystem consisting of kinematic, dynamic and drive levels. Next, a designing process of a kinematic controller based

on the algorithm introduced by (Dixon et al., 2001) is shown. An extension of the kinematic control law at the dynamic and

motor levels using the Lyapunov analysis and the backstepping technique is developed. To validate the designed algorithm,

extensive simulation results for trajectory tracking and set-point cases are discussed. Some deliberations concerning the

tuning of the controller are presented, too.
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1. Introduction

In recent years there has been observed a growing inter-

est in the mobile robotics area. A lot of research concen-

trates on the description of kinematic models of mobile

robots and designing feedback control laws for nonholo-

nomic systems. Researchers typically consider wheeled

platforms with nonholonomic constraints white assuming

perfect rolling. An excellent overview concerning differ-

ent types of these robots can be found in (Campion et al.,

1996).

Although significant research has been focused to

path planning and motion control of nonholonomic vehi-

cles, see, e.g., (Dixon et al., 2001; 2003; Morin and Sam-

son, 2003), research that examines and accommodates it

for skid steering effects is sparse. Therefore, so far lit-

tle has been written about the control of vehicles where

a slippage phenomenon is necessary because of the drive

mechanism. Such wheeled robots called skid-steering mo-

bile robots (SSMRs) are considered as all-terrain vehicles

because of the robust nature of the mechanical structure.

They can work in hard environmental conditions and can

be used, e.g., to explore space.

The steering of an SSMR is achieved by differen-

tially driving wheel pairs on each side of the robot. Al-

though the steering scheme yields some mechanical bene-

fits, the control of an SSMR is a challenging task because

the wheels must skid laterally to follow a curved path. If

the projection of the instantaneous center of rotation (ICR)

of the vehicle along the longitudinal axis becomes large,

† This work was supported by a statutory grant no. DS 93/121/04.

the vehicle can lose motion stability as a result of skid-

ding. In contrast, this phenomenon is not important for

traditional vehicles if only the no-slip assumption is satis-

fied.

Because of lateral skidding, velocity constraints oc-

curring in SSMRs are quite different from the ones met

in other mobile platforms where wheels are not supposed

to skid. This implies that the control of this robot at the

kinematic level only is not sufficient and, in general, de-

mands the use of a properly designed control algorithm at

the dynamic level, too.

Recently, Caracciolo et al. (1999) considered the

motion stability problem of SSMRs and imposed an ar-

tificial operational constraint on the vehicle to limit the

projection of the ICR onto the longitudinal axis to be

confined to the wheelbase. They resolved the trajectory

tracking case using a dynamic linearization of the SSMR

model. However, due to the restriction imposed by the

condition considered in (Brockett, 1983), the regulation

problem was not solved. Robustness to unknown interac-

tion ground forces of the designed controller was proved

only for a straight line motion.

In this paper, the results obtained in (Caracciolo

et al., 1999) are extended to a new time differentiable and

time-varying control scheme based on Dixon’s kinematic

controller. It allows us to solve both trajectory tracking

and regulation problems and it is based on the strategy of

forcing some transformed states to track an exogenous ex-

ponentially decaying signal produced by a tunable oscil-

lator. This algorithm yields a global exponentially stable

result for the transformed states and a global uniformly
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ultimately bounded (GUUB) result for the actual position

and orientation tracking or regulation errors. It gives prac-

tical stabilization in the sense considered in (Morin and

Samson, 2003), and combines good performance and ro-

bustness to disturbances. An excellent survey concerning

various algorithms to control nonholonomic systems can

be found in (Morin and Samson, 2002).

Motivated by practical issues such as a desire to ac-

commodate for unknown ground interaction forces, a ro-

bust controller is developed that incorporates the uncertain

dynamic model of an SSMR. Additionally, the control law

which takes into account electrical properties of the drive

system is obtained. The result of stability is proved using

the Lyapunov technique. It is important to note that, in

contrast to the previous work done by (Caracciolo et al.,

1999; Kozłowski and Pazderski, 2003; Pazderski et al.,

2004), the kinematic model of the SSMR is reformulated

to make it more practical for control purposes.

The paper is organized as follows: In Section 2 an

SSMR is decomposed into three subsystems which con-

sist of kinematic, dynamic and drive levels. Next, in a

systematic way, a model of the vehicle is presented. Sec-

tion 3 focuses on the development of the controller us-

ing the backstepping method. A detailed calculation con-

cerning the transformation of the SSMR kinematics into

a new space is presented, too. Next, the control scheme

on the dynamic level is obtained to ensure robustness to

the uncertainty of dynamical parameters. Further, electri-

cal properties of DC motors are included. Next, extensive

simulation results considering trajectory tracking and set-

point cases are given. Finally, some remarks concerning

the tuning of this controller are presented.

2. Model of an SSMR

In this section a mathematical description of an SSMR

moving on a planar surface is formulated. To facilitate the

analysis and subsequent control development, the vehicle

is divided into three parts including kinematics, dynam-

ics and drive subsystems. This approach is quite natural

for most mobile robots powered by electrical motors (see

Fig. 1). Additionally, it offers a possibility to develop a

controller based on the backstepping technique.

e l e c t r i c a l
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s u b s y s t e m

d y n a m i c

s u b s y s t e m
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Fig. 1. Decomposition of an electrically driven mobile robot.

2.1. Kinematic Model

To consider the kinematic model of an SSMR, it is as-

sumed that the robot is placed on a plane surface with the

Xg

xl

yl
zl

Yg

Y

X

Z

Zg

q

COM

Fig. 2. SSMR in the inertial frame.

inertial orthonormal basis (Xg, Yg, Zg), see Fig. 2. A lo-

cal coordinate frame denoted by (xl, yl, zl) is assigned to

the robot at its center of mass (COM). According to Fig. 2,

the coordinates of COM in the inertial frame can be writ-

ten as COM = (X, Y, Z). Since in this paper the plane

motion is considered only, the Z-coordinate of COM is

constant (Z = const).

Suppose that the robot moves on a plane with

linear velocity expressed in the local frame as v =
[ vx vy 0 ]T and rotates with an angular velocity vec-

tor ω = [ 0 0 ω ]T . If q = [ X Y θ ]T is

the state vector describing generalized coordinates of the

robot (i.e., the COM position, X and Y , and the orienta-

tion θ of the local coordinate frame with respect to the

inertial frame), then q̇ = [ Ẋ Ẏ θ̇ ]T denotes the

vector of generalized velocities. From Fig. 3 it can be

noted that the variables Ẋ and Ẏ are related to the coor-

dinates of the local velocity vector as follows (see Carac-

Fig. 3. Free body diagram.
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Fig. 4. Velocities of one wheel.

ciolo et al., 1999):

[
Ẋ

Ẏ

]
=

[
cos θ − sin θ

sin θ cos θ

][
vx

vy

]
. (1)

Furthermore, because of the planar motion, one can write

θ̇ = ω.

It is obvious that Eqn. (1) does not impose any re-

strictions on the SSMR plane movement, since it describes

free-body kinematics only. Therefore it is necessary to an-

alyze the relationship between wheel velocities and local

velocities.

Suppose that the i-th wheel rotates with an angular

velocity ωi (t), where i = 1, 2, . . . , 4, which can be seen

as a control input. For simplicity, the thickness of the

wheel is neglected and is assumed to be in contact with

the plane at point Pi as illustrated in Fig. 4. In con-

trast to most wheeled vehicles, the lateral velocity of the

SMRR, viy , is generally nonzero. This property comes

from the mechanical structure of the SSMR that makes

lateral skidding necessary if the vehicle changes its orien-

tation. Therefore the wheels are tangent to the path only

if ω = 0, i.e., when the robot moves along a straight line.

In this description we consider only a simplified case

of the SSMR movement for which the longitudinal slip

between the wheels and the surface can be neglected. Ac-

cording to this assumption based on work done by (Pacej-

ka, 2002), the following relation can be developed:

vix = riωi, (2)

where vix is the longitudinal component of the total ve-

locity vector vi of the i-th wheel expressed in the local

frame and ri denotes the so-called effective rolling radius

of that wheel.

To develop a kinematic model, it is necessary to take

into consideration all wheels together. In Fig. 5, the radius

vectors di = [ dix diy ]T and dC = [ dCx dCy ]T
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Fig. 5. Wheel velocities.

are defined with respect to the local frame from the instan-

taneous center of rotation (ICR). Consequently, based on

the geometry of Fig. 5, the following expression can be

deduced:
‖vi‖

‖di‖
=

‖v‖

‖dC‖
= |ω| (3)

or, in a more detailed form,

vix

−diy

=
vx

−dCy

=
viy

dix

=
vy

dCx

= ω, (4)

where the symbol ‖·‖ denotes the Euclidean norm.

Defining the coordinates of the ICR in the local frame

as

ICR = (xICR, yICR) = (−dxC ,−dyC) (5)

allows us to rewrite (4) as follows:

vx

yICR

= −
vy

xICR

= ω. (6)

From Fig. 5 it is clear that the coordinates of vectors di

satisfy the following relationships:

d1y = d2y = dCy + c,

d3y = d4y = dCy − c,

d1x = d4x = dCx − a,

d2x = d3x = dCx + b,

(7)

where a, b and c are positive kinematic parameters of

the robot depicted in Fig. 3. After combining Eqns. (4)

and (7), the following relationships between wheel veloc-

ities can be obtained:

vL = v1x = v2x,

vR = v3x = v4x,

vF = v2y = v3y,

vB = v1y = v4y,

(8)
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where vL and vR denote the longitudinal coordinates of

the left and right wheel velocities, vF and vB are the

lateral coordinates of the velocities of the front and rear

wheels, respectively.

Using (4)–(8) it is possible to obtain the follow-

ing transformation describing the relationship between the

wheel velocities and the velocity of the robot:




vL

vR

vF

vB


 =




1 −c

1 c

0 −xICR + b

0 −xICR − a




[
vx

ω

]
. (9)

In accordance with (2) and (8), assuming that the effective

radius is ri = r for each wheel, we can write

ωw =

[
ωL

ωR

]
=

1

r

[
vL

vR

]
, (10)

where ωL are ωR are the angular velocities of the left

and right wheels, respectively.

Combining (9) and (10), the following approximated

relations between the angular wheel velocities and the ve-

locities of the robot can be developed:

η =

[
vx

ω

]
= r




ωL + ωR

2

−ωL + ωR

2c


 , (11)

where η is a new control input introduced at the kine-

matic level.

From the last equation it is clear that, theoretically,

the pair of velocities ωL and ωR can be treated as a con-

trol kinematic input signal as well as velocities vx and ω.

However, the accuracy of the relation (11) mostly depends

on the longitudinal slip and can be valid only if this phe-

nomenon is not dominant. In addition, the parameters r
and c may be identified experimentally to ensure a high

validity of the determination of the angular robot velocity

with respect to the angular velocities of the wheels.

To complete the kinematic model of the SSMR, the

following velocity constraint introduced in (Caracciolo

et al., 1999) from (6) can be considered:

vy + xICRθ̇ = 0. (12)

The last equation is not integrable. In consequence, it de-

scribes a nonholonomic constraint which can be rewritten

in the Pfaffian form:

[
− sin θ cos θ xICR

] [
Ẋ Ẏ θ̇

]T
=A (q) q̇ = 0,

(13)

where Eqn. (1) has been used. Since the generalized ve-

locity q̇ is always in the null space of A, we can write

q̇ = S (q) η, (14)

where

ST (q) AT (q) = 0 (15)

and

S (q) =




cos θ xICR sin θ

sin θ −xICR cos θ

0 1


 . (16)

It should be noted that since dim (η) = 2 < dim (q) = 3,

Eqn. (14) describes the kinematics of the robot, which is

underactuated. Additionally, this is a nonholonomic sys-

tem because of the constraint described by (12). It is in-

teresting to see that the analysed kinematic model of the

SSMR is quite similar to the kinematics of the two-wheel

mobile robot presented by (Kozłowski and Majchrzak,

2002).

From (6) and (9) it can be seen that control of the vy

and vyi velocity coordinates is not possible without the

knowledge of the xl-axis projection of the ICR. There-

fore, considering the linear velocity vx and the angular

velocity ω as control signals seems to have an advantage

over the previous propositions presented by (Kozłowski

and Pazderski, 2003; Caracciolo et al., 1999), where in-

stead of ω, the velocity vy is used.

2.2. Dynamic Model

In this section the dynamic properties of the SSMR are de-

scribed, since the dynamic effects play an important role

for such vehicles (see Caracciolo et al., 1999). It is caused

by unknown lateral skidding ground interaction forces.

First, the wheel forces depicted in Fig. 6 are examined.

Fig. 6. Forces acting on one wheel.

The active force Fi and reactive force Ni are related

to the wheel torque and gravity, respectively. It is clear
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Fig. 7. Active and resistive forces of the vehicle.

that Fi is linearly dependent on the wheel control input

τi, namely,

Fi =
τi

r
. (17)

According to (Pacejka, 2002) we assume that the vertical

force Ni acts from the surface to the wheel. Considering

the four wheels of the vehicle (Fig. 7) and neglecting addi-

tional dynamic properties, we obtain the following equa-

tions of equilibrium:

N1a = N2b,

N4a = N3b, (18)
4∑

i=1

Ni = mg,

where m denotes the vehicle mass and g is the gravity

acceleration. Since there is symmetry along the longitudi-

nal midline, we obtain

N1 = N4 =
b

2 (a + b)
mg,

(19)

N2 = N3 =
a

2 (a + b)
mg.

Assume that the vector Fsi results from the rolling

resistant moment τri and the vector Fli denotes the lat-

eral reactive force. Based on (Caracciolo et al., 1999)

these reactive forces can be regarded as friction ones.

However, it is important to note that friction modeling is

quite complicated since it is highly nonlinear and depends

on many variables. Therefore, in most cases only a simpli-

fied approximation describing the friction Ff as a super-

position of Coulumb and viscous friction is considered. It

can be written as

Ff (σ) = µcN sgn (σ) + µvσ, (20)

where σ denotes the linear velocity, N is the force per-

pendicular to the surface, while µc and µv denote the

coefficients of Coulumb and viscous friction, respectively.

Since for the SSMR the velocity σ is relatively low, espe-

cially during lateral slippage, the relation µcN ≫ |µvσ|
is valid, which allows us to neglect the term µvσ to sim-

plify the model. It is very important to note that the func-

tion (20) is not smooth when the velocity σ equals zero,

because of the sign function sgn (σ). It is obvious that

this function is not differentiable at σ = 0. Since a con-

tinuous and time differentiable model of the SSMR should

be obtained, the following approximation of this function

is proposed:

ŝgn (σ) =
2

π
arctan (ksσ) , (21)

where ks ≫ 1 is a constant which determines the approx-

imation accuracy according to the relation

lim
ks→∞

2

π
arctan (ksσ) = sgn (x) . (22)

Based on the previous deliberations, the friction

forces for one wheel can be written as

Fli = µlcimg ŝgn (vyi) , (23)

Fsi = µscimg ŝgn (vxi) , (24)

where µlci and µsci denote the coefficients of the lateral

and longitudinal forces, respectively.

Using the Lagrange-Euler formula with Lagrange

multipliers to include the nonholonomic constraint (12),

the dynamic equation of the robot can be obtained. Next,

it is assumed that the potential energy of the robot

PE (q) = 0 because of the planar motion. Therefore the

Lagrangian L of the system equals the kinetic energy:

L (q, q̇) = T (q, q̇) . (25)

Considering the kinetic energy of the vehicle and neglect-

ing the energy of rotating wheels, the following equation

can be developed:

T =
1

2
mvT v +

1

2
Iω2, (26)

where m denotes the mass of the robot and I is the mo-

ment of inertia of the robot about the COM. For simplicity,

it is assumed that the mass distribution is homogeneous.

Since vT v = v2
x + v2

y = Ẋ2 + Ẏ 2, Eqn. (26) can be

rewritten in the following form:

T =
1

2
m
(
Ẋ2 + Ẏ 2

)
+

1

2
Iθ̇2. (27)
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After calculating the partial derivative of kinetic energy

and its time-derivative, the inertial forces can be obtained

as

d

dt

(
∂Ek

∂q̇

)
=




mẌ

mŸ

Iθ̈


 = Mq̈, (28)

where

M =




m 0 0

0 m 0

0 0 I


 . (29)

Consequently, the forces which cause the dissipation

of energy are considered. According to Fig. 7, the follow-

ing resultant forces expressed in the inertial frame can be

calculated:

Frx (q̇) = cos θ

4∑

i=1

Fsi (vxi)−sin θ

4∑

i=1

Fli (vyi) , (30)

Fry (q̇) = sin θ
4∑

i=1

Fsi (vxi)+cos θ
4∑

i=1

Fli (vyi) . (31)

The resistant moment around the center of mass Mr can

be obtained as

Mr (q̇) = −a
∑

i=1,4

Fli (vyi) + b
∑

i=2,3

Fli (vyi)

+ c


−
∑

i=1,2

Fsi (vxi)+
∑

i=3,4

Fsi (vxi)


 . (32)

To define generalized resistive forces, the vector

R (q̇) =
[

Frx (q̇) Fry (q̇) Mr (q̇)
]T

(33)

is introduced. The active forces generated by the actua-

tors which make the robot move can be expressed in the

inertial frame as follows:

Fx = cos θ
4∑

i=1

Fi, (34)

Fy = sin θ
4∑

i=1

Fi. (35)

The active torque around the COM is calculated as

M = c (−F1 − F2 + F3 + F4) . (36)

In consequence, the vector F of active forces has the fol-

lowing form:

F =
[

Fx Fy M
]T

. (37)

Using (17), (34)–(36) and assuming that the radius of

each wheel is the same, we get

F =
1

r




cos θ
4∑

i=1

τi

sin θ
4∑

i=1

τi

c (−τ1 − τ2 + τ3 + τ4)




. (38)

To simplify the notation, a new torque control input τ is

defined as

τ =

[
τL

τR

]
=

[
τ1 + τ2

τ3 + τ4

]
, (39)

where τL and τR denote the torques produced by the

wheels on the left and right sides of the vehicle, respec-

tively. Combining (38) and (39), we get

F = B (q) τ , (40)

where B is the input transformation matrix defined as

B (q) =
1

r




cos θ cos θ

sin θ sin θ

−c c


 . (41)

Next, using (28), (33) and (40), the following dynamic

model is obtained:

M (q) q̈ + R (q̇) = B (q) τ . (42)

It should be noted that (42) describes the dynamics of

a free body only and does not include the nonholonomic

constraint (13). Therefore a constraint has to be imposed

on (42). To this end, a vector of Lagrange multipliers,

λ, is introduced as follows (see Caracciolo et al., 1999;

Gutowski, 1971):

M (q) q̈ + R (q̇) = B (q) τ + AT (q)λ. (43)

For control purposes it would be more suitable to

express (43) in terms of the internal velocity vector η.

Therefore, (43) is multiplied from the left by ST (q),
which results in

ST (q) M (q) q̈ + ST (q)R (q̇)

= S (q)
T

B (q) τ + ST (q) AT (q)λ. (44)

After taking the time derivative of (14), we obtain

q̈ = Ṡ (q)η + S (q) η̇. (45)

Next, using (45) and (14) in (43), the dynamic equations

become

M̄η̇ + C̄η + R̄ = B̄τ , (46)
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where

C̄ = ST MṠ = mxICR

[
0 θ̇

−θ̇ ẋICR

]
(47)

M̄ = ST MS =

[
m 0

0 mx2

ICR
+ I

]
, (48)

R̄ = ST R =

[
Frx (q̇)

xICRFry (q̇) + Mr

]
, (49)

B̄ = ST B =
1

r

[
1 1

−c c

]
. (50)

2.3. Drive Model of the SSMR

In this section a model of the SSMR drive is developed. It

is assumed that the robot is driven by four DC brushed

motors with mechanical gears. In Fig. 8 a simplified

scheme of the drive on the right side of the robot is de-

picted. Considering only one drive and assuming for sim-

Fig. 8. Drive system on the right side of the vehicle.

plicity that the torque τmi produced by the i-th motor is

linearly dependent on the rotor current iai, we can write

τmi = kiiai, (51)

where ki denotes a motor torque constant. The voltage

equation of the armature can be approximated by the fol-

lowing linear relationship:

uiva = La

d

dt
iai + Raiai + keωmi, (52)

where La and Ra denote the series inductance and resis-

tance of the rotors, respectively, ke is the electromotive

force coefficient, while ωmi denotes the angular velocity

of the rotor. Since the i-th actuator is equipped with gears

characterized by a ratio n > 1, we get

τi = nkiiai, (53)

ωmi = nωi, (54)

where some additional dynamic effects concerning inertia

and backlash of gears have been neglected. According to

Fig. 8, a new input control signal uva on the voltage level

is defined as

uva =
[

uvaL uvaR

]T
, (55)

where uvaL and uvaR denote the motor voltage signals

on the left and right sides of the vehicle, respectively.

Since each pair of motors is electrically and mechanically

coupled, we have

[
uvaL

uvaR

]
=

[
uva1 + uva2

uva3 + uva4

]
(56)

and
[

ωL

ωR

]
=

1

n

[
ωm1

ωm3

]
=

1

n

[
ωm2

ωm4

]
. (57)

Assuming that all motors and gears have the same param-

eters and using (51)–(57), the following voltage-current

equations are developed:

τ = 2kinia, (58)

uva = 2La

d

dt
ia + 2Raia + 2kenωw. (59)

3. Control Law

In this section an algorithm which solves the regulation

and trajectory tracking problem is considered. First, ac-

cording to (Caracciolo et al., 1999), an operational non-

holonomic constraint (see Gutowski, 1971) is introduced

to limit the magnitude of lateral slippage in open loop con-

trol. Second, the idea of a kinematic oscillator proposed

by (Dixon et al., 2001) is used. Finally, the proposed con-

trol scheme consists of kinematic, dynamic and motor lev-

els, which ensures a better performance of the overall al-

gorithm.

3.1. Operational Constraint

It is easy to observe that the ICR position influences the

motion of the SSMR. In contrast to most mobile robots

where the wheels are not supposed to skid, the ICR of the

SSMR is not fixed. Therefore, theoretically, it can move
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during the robot motion. However, it can be seen from

Fig. 5 and Eqn. (9) that if the xICR coordinate goes out,

of the robot wheelbase, then the robot skids into a lateral

direction and loses its stability.

To solve this problem, Caracciolo et al. (1999) pro-

posed to include an operational nonholonomic constraint

(mathematical constraint) which is based on (12). This

constraint can be written as

vy + x0θ̇ = 0, (60)

where x0 denotes a fixed coordinate of the ICR which

should be selected as

x0 ∈ (−a, b) . (61)

It can be interpreted as a programmable limitation of the

SSMR lateral skidding that is done by imposing the con-

straint on the kinematic and dynamic model of the vehi-

cle. To this end, xICR in (16), (47)–(50) is replaced by

x0 and it is assumed that ẋICR = 0. In consequence, the

matrix S (q) becomes

S (q) =




cos θ x0 sin θ

sin θ −x0 cos θ

0 1


 . (62)

The value of x0 is arbitrarily chosen and belongs to the

set defined by (61). It is not related to any structural prop-

erties of the SSMR. It is just a coefficient which allows

us to approximate the relation between the angular and

linear lateral velocities of the robot. It is interesting to see

that selecting x0 = 0 makes the SSMR kinematics model

similar to the kinematics of a typical two-wheel robot.

3.2. Control Objective

The vector of the position and orientation error q̃ is de-

fined as follows:

q̃ = q − qr =
[

X̃ Ỹ θ̃
]T

, (63)

where qr = [ Xr Yr θr ]T denotes the desired posi-

tion, Xr and Yr, of the COM and the desired orientation

θr. It should be noted that in the case of the regulation

problem we have qr = const. However, for the trajec-

tory tracking problem, qr (t) is a vector function which

depends explicitly on time. In the second case, qr (t)
denotes a reference trajectory, generated by a reference

kinematic model with an operational constraint (60) as

follows:

q̇r (t) = S
[
qr (t)

]
ηr (t) , (64)

where S (·) is defined by (16), and ηr (t) =

[ vrx (t) ωr (t) ]T denotes the reference velocity vec-

tor. All reference signals and their derivatives are assumed

to be bounded for all times:

ηr (t) , η̇r (t) , qr (t) , q̇r (t) ∈ L∞. (65)

The control objective is formulated as a practical stabiliza-

tion of the position and the orientation of the robot consid-

ered in (Morin and Samson, 2003) in the sense that

lim
t→∞

‖q̃ (t)‖ ≤ ǫ, (66)

where ǫ denotes an arbitrary small positive constant.

3.3. Kinematic Transformation

In this section we introduce a kinematic transformation

which will be used later on in designing a control law.

Calculating a time derivative of (63), we obtain the fol-

lowing kinematic error equation:

˙̃q = q̇ − q̇r. (67)

Using (14) and (64), we get

˙̃q = S (q) η − S (qr)ηr. (68)

Taking into account (62), we reformulate (68) as follows:

˙̃q = g0 + g1 (q) vx + g2 (q)ω, (69)

where vx and ω are control inputs, g0 is a drift of the

system, g1 (q) and g2 (q) are vector field generators:

g0 (qr) = −S (qr) ηr, (70)

g1 (q) =




cos θ

sin θ

0


 , (71)

g2 (q) =




x0 sin θ

−x0 cos θ

1


 . (72)

From (70) it is clear that the drift is caused by the refer-

ence kinematics signals and for ηr = 0 (i.e., when the

regulation problem is considered) the system has no drift.

Furthermore, the system expressed by (69) is underactu-

ated since dim (η) = 2 < dim (q̃) = 3.

In order to build a kinematic controller based on

(Dixon et al., 2001), (68) is transformed into a form which

is similar to the nonholonomic integrator considered in

(Brockett, 1983):

ẇ = uT JT z + f, (73)

ż = u, (74)
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where w and z = [ z1 z2 ]T denote auxiliary vari-

ables, u is an input signal and f denotes the drift, while

J is the following skew-symmetric matrix:

J =

[
0 −1

1 0

]
. (75)

It should be noted that the systems described by (68),

(73) and (74) are first-order systems (see Murray and Sas-

try, 1993). It is possible to find the following global dif-

feomorfism that preserves the origin:

Z =
[

w z1 z2

]T
= P

(
θ, θ̃
)

q̃. (76)

The variables w and z can be interpreted as a new aux-

iliary state vector of the system (68) described in a three-

dimensional space.

To develop the transformation matrix P (θ, θ̃), the

regulation problem is considered first, i.e., qr (t) =
const. Then (73) can be rewritten as

ẇ = z2u1 − z1u2. (77)

Based on (De Luca and Oriolo, 1995), the following

change of coordinates is proposed:

z1 = θ̃, (78)

z2 = X̃ cos θ + Ỹ sin θ. (79)

Observe that both of the new variables have a nice geo-

metric interpretation: z1 is the orientation error and |z2|

denotes the length of projection of the vector [ X̃ Ỹ ]T

onto the direction determined by the actual orientation θ
(see Fig. 9).

R

q
r

q

~

X

~

Y

q
~

Xcos

z2

R'

controlled robot

reference robot

q
~

Ysin

Fig. 9. Geometrical interpretation of the z2 variable.

Taking the time derivative of (78) and (79), we can

write

ż1 =
˙̃
θ, (80)

ż2 =
d

dt

(
X̃ cos θ + Ỹ sin θ

)
. (81)

Next, using (74), (80) and (81) in (77), it follows that

ẇ =
˙̃
θ
(
X̃ cos θ + Ỹ sin θ

)
− θ̃

d

dt

(
X̃ cos θ + Ỹ sin θ

)

(82)

or

ẇ =
d

dt

[
−θ̃
(
X̃ cos θ + Ỹ sin θ

)]

+ 2
˙̃
θ
(
X̃ cos θ + Ỹ sin θ

)
. (83)

Therefore the variable w can be expressed as

w = −θ̃
(
X̃ cos θ + Ỹ sin θ

)

+ 2

∫
˙̃
θ (t)

[
X̃ (t) cos θ (t)+Ỹ (t) sin θ (t)

]
dt. (84)

To calculate the integral in (84), it is convenient to con-

sider the expression

d

dt

(
X̃ sin θ − Ỹ cos θ

)

= θ̇
(
X̃ cos θ + Ỹ sin θ

)
+ ˙̃X sin θ − ˙̃Y cos θ. (85)

Using the error kinematics given by (68) and assuming

that vrx = 0 and ωr = 0, we see (note that it is just

Eqn. (13) in the case of regulation) that

˙̃X sin θ − ˙̃Y cos θ = x0

˙̃
θ. (86)

Then (85) can be rewritten as

d

dt

(
X̃ sin θ − Ỹ cos θ − x0θ̃

)
= θ̇

(
X̃ cos θ + Ỹ sin θ

)

=
˙̃
θ
(
X̃ cos θ + Ỹ sin θ

)
.

(87)

Finally, according to (84), the variable w has the fol-

lowing form:

w = −θ̃
(
X̃ cos θ + Ỹ sin θ

)

+ 2
(
X̃ sin θ − Ỹ cos θ − x0θ̃

)
. (88)
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Next, we calculate the term f which appears in (73). To

this end, the trajectory tracking case is considered. Taking

again the time derivative of (88), we conclude that

ẇ = −
˙̃
θ
(
X̃ cos θ + Ỹ sin θ

)

+ θ̃

[
θ̇
(
X̃ sin θ − Ỹ cos θ

)
− ˙̃X cos θ − ˙̃Y sin θ

]

+ 2θ̇
(
X̃ cos θ + Ỹ sin θ

)

+ 2
(

˙̃X sin θ − ˙̃Y cos θ
)
− 2x0

˙̃
θ. (89)

Using (68), (78) and (79) in (89), we have

ẇ = −
˙̃
θz2 − z1ż2 + 2θ̇z2

+ 2
(
x0θ̇ − vrx sin z1 − x0ωr cos z1

)

− 2x0θ̇ + 2x0ωr

= θ̇z2 + θ̇rz2 − 2θ̇rz2 + 2θ̇rz2 − z1ż2

+ 2 (x0ωr − vrx sin z1 − x0ωr cos z1)

=
˙̃
θz2 − z1ż2 + 2θ̇rz2

+ 2 (x0ωr − vrx sin z1 − x0ωr cos z1)

= ż1z2 − z1ż2 + 2z2ωr

+ 2 (x0ωr − vrx sin z1 − x0ωr cos z1) . (90)

Next, substituting (74) into Eqn. (90) results in

ẇ = u1z2 − z1u2

+ 2 (z2ωr + x0ωr − vrx sin z1 − x0ωr cos z1)

= u1z2 − z1u2

+ 2 [−vrx sin z1 + ωr (x0+z2−x0 cos z1)], (91)

and therefore

f = 2
[
− vrx sin z1 + ωr (x0 + z2 − x0 cos z1)

]
. (92)

Summarizing, the matrix P in (76), which

transforms (68) into (73)–(74), can be written as

P
(
θ, θ̃
)

=



−θ̃ cos θ+2 sin θ −θ̃ sin θ−2 cos θ −2x0

0 0 1

cos θ sin θ 0


 .

(93)
One can easily check that this matrix is nonsingular.

The velocity transformation can be obtained

from (74) and (80)–(81) as follows:

u = T−1η −

[
ωr

vrx cos z1 − x0ωr sin z1

]
, (94)

where

T−1 =

[
0 1

1 −l

]
or T =

[
l 1

1 0

]
(95)

and l = X̃ sin θ − Ỹ cos θ is an auxiliary variable that

has the meaning of a distance. Based on (94), the velocity

vector η can be expressed as

η = Tu + Π, (96)

where

Π =

[
vrx cos z1 + ωr (−x0 sin z1 + l)

ωr

]
(97)

is an auxiliary velocity vector which is nonzero only for

the trajectory tracking problem when the reference veloc-

ity vector ηr 6= 0.

3.4. Kinematic Control Law

In this section a kinematic control structure based on

(Dixon et al., 2001) which solves a unified tracking and

regulation problem is proposed.

The control law has the following form:

u = ua − k2z, (98)

where ua, which introduces a time-varying feedback to

overcome Brockett’s obstruction (see Brockett, 1983), is

defined as

ua =
k1w + f

δ2

d

Jzd + Ω1zd. (99)

From (99) it is clear that the signal ua is modulated by an

auxiliary signal zd generated by the tunable oscillator de-

scribed by the following linear non-stationary differential

equation:

żd =
δ̇d

δd

zd +

(
k1w + f

δ2

d

+ wΩ1

)
Jzd, (100)

where zd = [ zd1 zd2 ]T , Ω1 and δd are auxiliary

terms defined as

Ω1 = k2 +
δ̇d

δd

+ w
k1w + f

δ2

d

, (101)

δd = α0 exp (−α1t) + ǫ1, (102)

while k1, k2, α0, α1 and ǫ1 are positive constant design

parameters.

It is easy to show that the envelope of ‖zd (t)‖ is

determined by the scalar function δd. In order to prove it,
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we calculate the time derivative of the quadratic norm of

the vector zd (t) and next use (100) to obtain

d

dt

(
zT

d zd

)
= 2

δ̇d

δd

zT
d zd. (103)

The solution of (103) can be written as

zd (t)
T

zd (t) = zd (0)
T

zd (0) = δ2

d (t) . (104)

Assuming that zd (0)
T

zd (0) = δ2

d (0), the envelope of

‖zd (t)‖ is described by

∀t ≥ 0 ‖zd (t)‖ = δd (t) . (105)

Theorem 1. Provided that the reference trajectory is se-

lected to be bounded for all times t > 0 (see (65)) and

assuming that the kinematic model satisfies the constraint

given by (60), the kinematic control law given by (98)–

(102) ensures that the position and orientation errors de-

fined by (63) are globally uniformly ultimately bounded as

follows:

‖q̃‖ ≤ κ0 exp (−κ1t) + κ2ǫ1, (106)

where ǫ1 can be made arbitrarily small, and κ0, κ1 and

κ2 are some positive constants.

A detailed proof of exponential stability to a small

neighborhood of the equilibrium point is given by (Dixon

et al., 2001) and is based on the Lyapunov stability the-

ory. The proposed Lyapunov function candidate has the

following form:

V1 (w, z̃) =
1

2
w2 +

1

2
z̃T z̃, (107)

where z̃ = zd − z is an auxiliary error signal.

The derivation of differential equation errors govern-

ing w and z̃ for the closed-loop kinematic controller can

be found in (Dixon et al., 2001). Using it, we get

V̇1 (w, z̃) = −k1w
2 − k2z̃

T z̃. (108)

Since all signals of the controlled system are bounded

(Dixon et al., 2001), it can be proved that the errors w
and z̃ are exponentially driven to zero. This means that

the signal z tends to an oscillator signal zd whose norm

approaches the constant ǫ1 (c.f. (102)).

Remark 1. The parameters α0, α1 and ǫ1 play a

very important role in the controller tuning process.

Since (105) is satisfied and limt→∞ z (t) = zd (t), the

scalar function δd (t) allows us to influence all transient

states. In this way, δd (t) can be seen as a function used

for motion planning. It is essential if the initial error is

quite high and the vehicle has velocity limitations. A sim-

ilar meaning is attributed to the relation between the os-

cillator signals zd1 and zd2, which determine the phase

condition. According to (105), it is convenient to intro-

duce the following parametrization:

zd (0) = δd (0)

[
cos ϕ

sin ϕ

]
, (109)

where ϕ ∈ (−π, π].

3.5. Dynamic Control Law

In this section an extension of the presented kinematic

control law is developed by considering a dynamic model

of the SSMR. It is motivated by the desire to improve

the robustness of the control design. In this case, using

a method which relies on linearizing the dynamic equa-

tions is not possible because of unknown lateral skidding

forces. Instead, a controller which is robust to the dynamic

unmodelled disturbances is designed. Since all kinematic

signals are time differentiable, it is possible to incorporate

dynamical properties using a Lyapunov analysis and the

backstepping technique.

First, to facilitate the subsequent development and

analysis, the dynamic equation (46) is transformed by sub-

stituting every occurrence of η, η̇ by u, u̇, respectively.

Next, multiplying (46) from the right by T T , we get

¯̄Mu̇ + ¯̄Cu + ¯̄R = ¯̄Bτ , (110)

where

¯̄M =T T M̄T , ¯̄C =T T
(
C̄T +M̄Ṫ

)
,

¯̄R=T T
(
C̄Π+M̄Π̇+R̄

)
, ¯̄B=T T B̄.

(111)

Remark 2. Based on the Rayleigh-Ritz theorem (Dixon

et al., 2003) and using the fact that ¯̄M is a symmetric

and positive definite matrix, the following inequality can

be written:

1

m1 (w,z)
ξT ξ ≤ ξT ¯̄M−1ξ ≤

1

m2 (w,z)
ξT ξ, (112)

where ξ ∈ R
2, m1 (w,z) and m2 (w,z) are positive

scalar functions dependent on the actual tracking errors

which denote the actual minimum and maximum eigen-

values of ¯̄M .

Since the transformed velocity signal u (t) is no

longer a control input, a desired velocity signal, denoted

by ud (t), is designed based on (98) as follows:

ud = ua − k2z. (113)
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Because the dynamic model (110) can be expressed

in terms of ud (t) and then linearly parametrized, we see

that

¯̄Mu̇d + ¯̄Cud + ¯̄R = Yd (ud, u̇d, q̃, θ,ηr) ϑ, (114)

where

ϑ =
[

m I µsm µlm
]T

(115)

is a vector of dynamical parameters and

Yd (ud, u̇d, q̃, θ,ηr) =

[
yd11 yd21 yd31 yd41

yd12 yd22 yd32 yd42

]
(116)

denotes a known regression matrix which is a function of

the desired transformed velocity and acceleration. To sim-

plify the control law, it is assumed that the friction coef-

ficients are the same for each wheel, i.e., µli = µl and

µsi = µs.

It is clear that since the dynamical parameters of the

SSMR are not precisely determined, the actual vector ϑ is

uncertain. Defining the difference between this parameter

vector and the parameter vector ϑ0 that denotes the best-

guess estimate for the unknown parameters in (115), we

deduce that

ϑ̃ = ϑ0 − ϑ, (117)

where

ϑ0 =
[

m0 I0 µs0m0 µt0m0

]T
. (118)

Assuming that ϑ̃ is bounded it is possible to find a coef-

ficient ρ which fulfils the following inequality:

∥∥ϑ̃
∥∥ ≤ ρ. (119)

To develop a control law on the dynamic level, a new ve-

locity signal error is defined (Dixon et al., 2001; Mazur,

2001; Kozłowski and Majchrzak, 2002; Kozłowski and

Pazderski, 2003):

ũ = ud − u. (120)

The differential equations governing the transformed

errors w and z̃ for the closed-loop system have the fol-

lowing form:

ẇ = −k1w + uT
a Jz̃ + ũT Jz, (121)

˙̃z = −k2z̃ + wJua + ũ. (122)

A detailed derivation of the closed-loop error system can

be found in (Dixon et al., 2001).

For stability analysis, the following Lyapunov func-

tion candidate is proposed:

V2 (w, z̃, ũ) =
1

2
w2 +

1

2
z̃T z̃ +

1

2
ũT ¯̄Mũ. (123)

Taking the time derivative of V2 yields

V̇2 (w, z̃, ũ) = wẇ+ z̃T ˙̃z+ũT ¯̄M ˙̃u+
1

2
ũT ˙̄̄

Mũ. (124)

Calculating the term ¯̄M ˙̃u from (110) and using (121),

(122) and then (108) in (124), we conclude that

V̇2 (w, z̃, ũ)

= V̇1 (w, z̃) + ũT
(
wJz + z̃ + ¯̄Mu̇d

+ ¯̄Cu + ¯̄R − ¯̄Bτ +
1

2
˙̄̄

Mũ
)
. (125)

It is easy to prove that
˙̄̄

M = ¯̄C + ¯̄CT . Using this re-

lationship and adding and subtracting the term 1

2
ũT ¯̄Cũ

to the right-hand side of (125), the following equation is

obtained:

V̇2 (w, z̃, ũ)

= − k1w
2 − k2z̃

T z̃

+ ũT
(
wJz+z̃+ ¯̄Mu̇d+ ¯̄Cud+ ¯̄R− ¯̄Bτ

)

+
1

2
ũT
(

¯̄CT − ¯̄C
)

ũ. (126)

Since ¯̄CT − ¯̄C is a skew-symmetric matrix, we see that

ũT
(

¯̄CT − ¯̄C
)

ũ = 0. (127)

Using (127), the time derivative of the Lyapunov function

can be rewritten as

V̇2 (w, z̃, ũ)

= − k1w
2 − k2z̃

T z̃

+ ũT
(
wJz+z̃+ ¯̄Mu̇d+ ¯̄Cud+ ¯̄R− ¯̄Bτ

)
. (128)

Now, making use of (114) in (128) results in

V̇2 (w, z̃, ũ) = −k1w
2 − k2z̃

T z̃

+ ũT
(
wJz + z̃ + Ydϑ − ¯̄Bτ

)
. (129)

To achieve robustness to the parametric uncertainty

ϑ̃, an additional control input τa is introduced. Based

on (128), the following control law is proposed:

τ = ¯̄B−1 (wJz + z̃ + Ydϑ0 + τa + k3ũ) . (130)

According to (Spong, 1992; Dixon et al., 2001), the term

τa is defined as

τa = Yd

ρ2Y T
d ũ∥∥Y T

d ũ
∥∥ ρ + ǫ2

, (131)

where ǫ2 is a positive constant scalar which can be set up

as arbitrarily small.
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Remark 3. It is clear that the function τa in (131) is

always time differentiable if so is ‖Y T
d ũ‖. This property

is different from the typical robust control term used in

(Spong, 1992) and allows us to limit the chattering of the

control signal. It is an important property because it offers

a possibility to use a classical backstepping approach.

Using (130) and (117) in (129), we have

V̇2 (w, z̃, ũ)

= − k1w
2 − k2z̃

T z̃ − ũT k3ũ

+
(
Y T

d ũ
)T
(

ϑ̃ −
ρ2Y T

d ũ∥∥Y T
d ũ
∥∥ ρ + ǫ2

)
. (132)

After some simple calculations, we can prove the follow-

ing inequality:

V̇2 (w, z̃, ũ) ≤ −k1w
2 − k2z̃

T z̃ − k3ũ
T ũ

+

∥∥Y T
d ũ
∥∥ ρǫ2∥∥Y T

d ũ
∥∥ ρ + ǫ2

. (133)

Since the last term in (133) is bounded,

0 ≤

∥∥Y T
d ũ
∥∥ ρǫ2∥∥Y T

d ũ
∥∥ ρ + ǫ2

≤ ǫ2, (134)

we finally get

V̇2 (w, z̃, ũ) ≤ −k1w
2 − k2z̃

T z̃ − ũT k3ũ + ǫ2. (135)

3.6. Control Law on the Motor Level

In this section the control law considering the drive model

which was presented in Section 2.3 is developed.

Calculating ia from (58) and then taking its time

derivative, we get

d

dt
ia = (2kin)

−1
τ̇ . (136)

Next, using (136) in (59), we obtain

uva = La (kin)
−1

τ̇ + 2Raia + 2kenωw. (137)

Rearranging the terms in (137), we have

τ̇ = L−1

a kin (uva − 2Raia − 2kenωw) . (138)

Here it is assumed that the voltage is the control signal of

the drive system. Therefore, based on (130), the following

desired torque signal τd is designed:

τd = ¯̄B−1 (wJz + z̃ + Ydϑ0 + τa + k3ũ) , (139)

where τa is defined by (131).

The next step of the backstepping procedure consists

in defining an error torque signal (see Kozłowski and Maj-

chrzak, 2002; Kozłowski and Pazderski, 2003) as follows:

τ̃ = τd − τ , (140)

where τ denotes the actual torque signal. To determine

the voltage control law on the motor level, the following

Lyapunov function candidate is proposed:

V3 (w, z̃, ũ, τ̃ ) =
1

2
w2 +

1

2
z̃T z̃ +

1

2
ũT ¯̄Mũ +

1

2
τ̃T τ̃

= V2 +
1

2
τ̃T τ̃ . (141)

Calculating its time derivative and using (125), (140)

and (141), we get

V̇3 (w, z̃, ũ)

= V̇1 (w, z̃)

+ ũT
(
wJz + z̃ + ¯M̄ u̇d + ¯̄Cud + ¯̄R − ¯̄Bτd

)

+ ũT ¯̄Bτ̃ + τ̃T ˙̃τ . (142)

In order to design the control voltage uva, it is imposed

that the following inequality is satisfied:

ũT ¯̄Bτ̃ + τ̃T ˙̃τ ≤ 0. (143)

Next, using (138) in (143), we get

ũT ¯̄Bτ̃

+ τ̃T
[
τ̇d−L−1

a kin (uva−2Raia−2kenωw)
]
≤ 0.

(144)

Based on (144), the following control law on the volt-

age level is proposed:

uva = La (kin)
−1
(
τ̇d + k4τ̃ + ¯̄BT ũ

)
+Raia+kenωw,

(145)

where k4 is an adjustable positive coefficient.

Using (145) in (141), we obtain

V̇3 (w, z̃, ũ, τ̃ ) = V̇2 (w, z̃, ũ) − k4τ̃
T τ̃ . (146)

After the substitution of (135) in (146), the following in-

equality can be obtained:

V̇3 (w, z̃, ũ) ≤ −k1w
2−k2z̃

T z̃−k3ũ
T ũ−k4τ̃

T τ̃ + ǫ2.
(147)
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Now choose the parameter k3 high enough such that

∀t > 0 k3 ≥ max {k1, k2, k4}
1

m2

, (148)

where m2 is an upper bound of the function m2 (w,z)
which appears in (112). We have

kmin

(
k1

kmin

w2+
k2

kmin

z̃T z̃+
k3

kmin

ũT ũ+
k4

kmin

τ̃T τ̃

)

≥ kmin

(
w2+z̃T z̃+ũT ¯̄Mũ+τ̃T τ̃

)
, (149)

where kmin = min {k1, k2, k4}. Next, combining (141)

and (147) gives

V̇3 (w, z̃, ũ, τ̃ ) ≤ −γV3 (w, z̃, ũ, τ̃ ) + ǫ2, (150)

where γ = 2min {k1, k2, k4}. Since all signals in the

controller and the vehicle model are bounded (it is proved

by Dixon et al., 2001; Kozłowski and Majchrzak, 2002),

we have V̇3 ∈ L∞. Consequently,

V3 (w, z̃, ũ, τ̃ )

≤ V3 (0,0,0,0) exp(−γt) +
ǫ2
γ

[
1 − exp (−γt)

]
.

(151)

Using the fact that the transformation matrix P is always

invertible, the following result was proved:

Theorem 2. Assuming that the desired trajectory is se-

lected to be bounded (cf. (65)) for all times t ≥ 0 and

the conditions (60), (119) are fulfilled, the proposed con-

trol law given by (98)–(102), (139) and (145) ensures the

position and orientation tracking error to be globally uni-

formly ultimately bounded as follows:

‖q̃‖ ≤
√

β1 exp (−γ1t) + ǫ2β2 + β3 exp (−γ2t) + β4ǫ1,
(152)

where γ1, γ2, β1, β2, β3 and β4 are positive constants.

4. Simulation Results

To validate the performance of the developed control law,

simulation results using the Matlab/Simulink environment

are presented. The model of the SSMR is based on a real

construction of a small experimental mobile robot consist-

ing of two MiniTracker-3 robots designed by Jedwabny et

al. (2004). The friction surface is characterized by the

functions µs (X, Y ) and µt (X, Y ) describing the fric-

tion coefficients. The values of the friction coefficients

are related to the actual position of the COM of the robot

(see Fig. 10). All parameters of the model and the default

parameters of the controller are collected in Table 1.
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Fig. 10. Friction coefficients: (a) µl (X, Y ), (b) µs (X, Y ).

Table 1. Model and controller parameters.

Kinematic a = b = 39 [mm], c = 34 [mm], r = 26.5 [mm]

Dynamic m = 1 [kg], I = 0.0036 [kg · m2]

Motors La = 0.22 [mH], Ra = 3.9 [Ω], ke = 8.52
[

mV·s
rad

]

,

ki = 8.55
[

mN·m
A

]

, n = 12, |ia max| = 1.2 [A],

|uva max| = 12 [V]

Surface µl ∈ 〈0.2, 0.8〉 , µs ∈ 〈0.02, 0.18〉

Default k1 = 1, k2 = 1, k3 = 5, k4 = 2, α1 = 0.5,

controller ǫ1 = 0.01, ǫ2 = 0.02, x0 = −15 [mm], ρ = 2,

parameters µl0 = 0.5, µs0 = 0.1, m0 = 1.2 [kg],

I0 = 0.0054 [kg · m2]

First, the regulation problem is examined for a kine-

matic and a dynamic controller (without a motor model).

The torque signal is limited and cannot achieve a value

greater than 0.25 [Nm]. The worst case is assumed when

the robot should reach the posture qr = [ 0 0 0 ]T

parallel to its initial position q (0) = [ 0 1 0 ]T , i.e.,

z1 = 0, z2 = 0 and w 6= 0.

In Fig. 11(a) the obtained paths are illustrated with

respect to the initial value of the oscillator signal zd. It

shows that the phase shift between zd1 and zd2 plays

a very important role and influences the transient stages.
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Fig. 11. Examination of the controller with respect to zd (0): (a) Performed path with respect to ϕ, (b) Performed path

with respect to δd (0), (c) Torque signal for δd (0) = 2.5, and (d) Torque signal for δd (0) = 1.

Therefore, the initial value zd (0) can be tuned to obtain

the best regulation performance from an energetic point

of view, which results in the minimization of the number

of changes in the direction movement. From Fig. 11(b)

it can be seen that the initial value of δd (0) should not

be too low, since it demands high values of control sig-

nals (cf. (98)–(100)). The limitation of the control signal

results in signal chattering with a high frequency and, as

a consequence, the regulation goal may not be reached

(for example, see the path for δd (0) = 1 presented in

Fig. 11(b) and the torque signal for δd (0) = 1 and

δd (0) = 2.5 in Figs. 11(c) and 11(d)). It is not sensi-

ble to force the controller to reduce the regulation error

too fast by assuming a high value of α1.

Second, a full dynamic model with motors is exam-

ined. The following parameters of the controller have

been changed with respect to the default settings: k1 =
0.5, α1 = 0.3, δd (0) = 2, ϕ = −7π/12. In Fig. 12(a)

the path and a series of postures of the robot at every 1 [s]

of the simulation process are presented. From Fig. 12(b)

it can be seen that the initial regulation error is highly re-

duced. The steady-state position and orientation errors are

bounded as follows:

for t > 25 [s] :
∣∣X̃
∣∣ < 1 [mm],

∣∣Ỹ
∣∣ < 0.5 [mm]

and
∣∣θ̃
∣∣ < 0.01 [rad].

In Fig. 12(c) a comparison of signals zd (0) and

z (0) is presented in the three dimensional space. It can

be observed that z (t) approaches the trajectory gener-

ated by the oscillator, i.e., zd (t) indirectly determines the

actual position and the orientation error. The voltage con-

trol signal for simulation is illustrated in Fig. 12(d): small

chattering appears only during the initial stage of simula-

tion when an auxiliary error z̃ (t) is relatively high (see

Fig. 12(c)).
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Fig. 12. Regulation case for q̃(0) =
[

0 1 0
]T

: (a) Performed path, (b) Regulation errors,

(c) Auxiliary error and oscillator signal, and (d) Voltage signal.

The results of the next simulation are obtained for

qr = [ 0 0 0 ]T , q (0) = [ 0 1 −π ]T , k1 = 1,

α1 = 0.5, δd (0) = 3.2, ϕ = π. In Figs. 13(a)–(d),

the path, regulation errors, auxiliary signals and voltage

signals are shown. The regulation errors are bounded as

follows:

for t > 25 [s] :
∣∣X̃
∣∣ < 10 [mm],

∣∣Ỹ
∣∣ < 1 [mm]

and
∣∣θ̃
∣∣ < 0.05 [rad].

It is easy to observe that if z̃ (0) is relatively small, this

controller allows us to obtain good transient states and to

rapidly limit motion changes. Therefore, choosing zd (0)
should be considered for a practical implementation of the

control law.

Next, numerical simulations concern the trajectory

tracking problem. For the results presented in Figs. 14(a)–

(e) the following parameters were assumed: k1 = 2,

α1 = 0.3, δd (0) = 1.7, ϕ = π/12. The reference trajec-

tory is as follows:

Xr (t) =

(
1

1 + 0.2t
cos 0.2t − 1

)
[m],

Yr (t) =
1

1 + 0.2t
sin 0.2t [m],

while θr (t) is calculated by the reference model (64).

The steady-state tracking errors are bounded as follows:

for t > 30 [s] :
∣∣X̃
∣∣ < 5 [mm],

∣∣Ỹ
∣∣ < 4 [mm]

and
∣∣θ̃
∣∣ < 0.04 [rad].

In Fig. 14(e) the friction coefficients are illustrated, but

according to Figs. 14(b) and 14(c) it is clear that the error

and velocity signals are almost invariant to disturbances.
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Fig. 13. Regulation case for q̃(0) =
[

0 1 −π
]T

: (a) Performed path, (b) Regulation errors,

(c) Auxiliary error and oscillator signal, and (d) Voltage signal.

In the next simulation experiment for the trajectory

tracking problem the following reference trajectory was

assumed:

Xr (t) = [(1 + 0.2 sin 0.9t) cos 0.15t − 1] [m], (153)

Yr (t) = (1 + 0.2 sin 0.9t) sin 0.15t [m]. (154)

The parameters of the controller different from their de-

fault values are k3 = 10, k4 = 10, α1 = 0.3, δd (0) = 1.5,

ϕ = −2π/3. In this simulation experiment the following

steady-state errors are recorded (cf. Fig. 15(b)):

for t > 20 [s] :
∣∣X̃
∣∣ < 12 [mm],

∣∣Ỹ
∣∣ < 11 [mm]

and
∣∣θ̃
∣∣ < 0.02 [rad].

It can be seen that the tracking errors are higher compared

with previous simulations, since the dynamic properties

concerning the inertia of the vehicle play an important

role. In this case friction coefficients change in a sig-

nificant range, too. Therefore it is necessary to increase

the coefficient k3 to improve the performance of the con-

troller. It is interesting to see that although a trajectory

tracking error exists, the reference and actual paths are

almost the same (cf. Fig. 15(e)) in the final stage of simu-

lation. The controlled robot is delayed with respect to the

reference vehicle.

5. Conclusion

In this paper a new algorithm considering the kinematic,

dynamic and drive model of a 4WD skid-steering mobile

robot has been presented. To solve the kinematic prob-

lem we used the idea of a kinematic oscillator that gives
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Fig. 14. Trajectory tracking case for q̃(0) =
[

0.5 0.5 −π/2
]T

: (a) Performed path, (b) Tracking errors,

(c) Linear and angular velocities, (d) Voltage signal, and (e) Friction coefficients.
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Fig. 15. Trajectory tracking case q̃(0) =
[

− 1 0 −π/4
]T

: (a) Performed path, (b) Tracking errors,

(c) Linear and angular velocities, (d) Voltage signal, and (e) Friction coefficients.
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a possibility to obtain practical stabilization in trajectory

tracking and regulation problems. It was proved that the

overall controller stabilizes the system asymptotically to

certain bounds of the position and orientation tracking er-

rors. The obtained convergence is exponential. In contrast

to the previous work done by Caracciolo et al. (1999), the

presented approach is characterized by better robustness

to dynamic parameters uncertainty. Theoretical delibera-

tions are illustrated by discussion how to tune the param-

eters of the controller.

Future work is devoted to the extension of this ap-

proach to other classes of nonholonomic systems which

have the size of the state vector greater than three (e.g., a

typical car drive kinematic model).
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