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This book is dedicated to all the people that

worked in the GEOPLEX project and to all

the students and researchers that joined the

GEOPLEX public events: their enthusiasm

deeply motivated us to prepare this book



Foreword

The story behind this book begins during the International Conference on Robotics

and Automation 2001 which took place in Seoul, Korea in May of 2001. During the

farewell reception I had a nice talk with Henrik Christensen, founder and scientific

director of EURON, the European Robotic Network. Henrik mentioned that during

some discussion with the European commission it came out that there was interest

for good fundamental projects for the last call of FP5 related to the KA 4, Action

Line IV2.1 on Advance Control Systems. At the end of August, after discussions

with Arjan van der Schaft also at the University of Twente, it was decided to work

on a proposal related to the great potentials of port-Hamiltonian systems initially in-

troduced by Arjan van der Schaft and Bernhard Maschke. The deadline for the Sub-

mission was October 17th 2001 and it was at that stage not even clear who would be

involved in the consortium. Around the end of September the real writing began and

the consortium was formed by the University of Twente (NL) as a coordinator under

my responsibility, Control Lab Products (NL) who with the 20-sim modeling and

simulation program should have provided the tools implementing the new ideas in

the project, Université Claude Bernard Lyon 1 (F) under the leadership of Bernhard

Maschke, Universitat Politècnica de Catalunya (SP) under the leadership of Enric

Fossas Colet, Supelec (F) under the leadership of Romeo Ortega, Johannes Kepler

Universitat Linz (A) under the leadership of Kurt Schlacher, Katholieke Universiteit

Leuven (B) under the leadership of Ir. Herman Bruyninckx, l’Università degli Studi

di Bologna (I) under the leadership of Claudio Melchiorri and finally the CNRS (F)

with Francoise Couenne: a great consortium was born.

During an incredible active period and difficult moments in which I did not be-

lieve we were going to make it, many sleepless nights and hard work brought us

to a successful submission before the deadline. The project name was “Geomet-

ric Network Modeling and Control of Complex Physical Systems” with Acronyms

GEOPLEX proposed by Herman Bruyninckx on an email dated 7th September 2001.

During the project preparation we decided to have as a deliverable a book which

would collect some of the major results of the project. This volume is the final result

of this effort. Many people have contributed to this volume and tough decisions have
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viii Foreword

been made in what to include and what to leave out in order to have a volume with

didactic value and with a reasonably homogeneous notation.

The official “book deliverable” was a draft and a lot of work still needed to be

done in order to get it to a useful publishable volume. The initial editorial efforts

where done by Vincent Duindam, Herman Bruyninckx and myself during many

meetings and discussions about the structure, the homogeneity and the various pos-

sibilities. After the end of the project, due to many obligations, the book has been

in stand-by for a while until I kindly asked the help and support of Alessandro

Macchelli (Alex) from the University of Bologna who has been also extremely sci-

entifically (and not only) active during the project. Thanks to Alex this major group

effort has finally become a real book and I can speak for the all consortium that we

are really proud of this result.

The four years of the project beside having been scientifically productive and

brought us to many new results, have created a wonderful interpersonal synergy

which is still bringing fruits to this beautiful field. The GEOPLEX journey has been

a great one and even if not all of you have enjoyed the great atmosphere and sci-

entific discussions, I hope you will enjoy the result of this successful project and

wonderful theory on port-Hamiltonian systems.

Enschede (NL), March 2009 Stefano Stramigioli



Preface

This preface gives a “bird’s eye” view on the paradigm of port-Hamiltonian sys-

tems [137] for modelling and control of complex dynamical systems, which will

be explained in detail in the rest of this book. The mentioned complexity comes,

in the first place, from the scale of the systems, which is too large to be captured

and controlled reliably by the traditional “block-diagram” approaches. This pref-

ace explains why this paradigm has a large potential to be successful in tackling

some of the big challenges in modern control theory and engineering. Three of the

paradigm’s major features are:

i) its scalability to very large interconnected multi-physics systems;

ii) its ability for incorporating non-linearities while retaining underlying conser-

vation laws;

iii) its integration of the treatment of both finite-dimensional and infinite-dimen-

sional components.

But also for more traditional control problems, the port-Hamiltonian systems pa-

radigm provides a solid foundation, which suggests new ways to look at control

problems and offers powerful tools for analysis and control.

The port-Hamiltonian systems paradigm has, over the last decade, succeeded in

matching the “old” framework of port-based network modeling of multi-domain

physical systems with the “new” framework of geometric dynamical systems and

control theory. It provides a very systematic approach to modelling, analysis and

control, via

i) the separation of the network interconnection structure of the system from the

constitutive relations of its components;

ii) the emphasis on power flow and the ensuing distinction between different kind

of variables;

iii) the analysis of the system through the properties of its interconnection structure

and the component constitutive relations;

iv) the achievement of control by interconnection, by means of stabilization by

Casimir generation and energy shaping , energy routing control (transferring

energy between components in the system), and port and impedance control.

ix



x Preface

Some familiarity with ‘geometry’, in particular ‘coordinate-free’ thinking and the

identification of physically different types of variables with different mathematical

objects, is the price to pay for a complete understanding of the paradigm: while port-

Hamiltonian systems may at first sight make things “unnecessarily complicated” for

the most simple systems, it can reach much further than traditional paradigms, with

not much more than the same set of concepts that are used for these simple systems.

This book’s major ambition is to convince its readers that

i) the extra mathematical complexity introduced in port-Hamiltonian systems is

the necessary minimum to represent the essential inherent properties of large-

scale interconnected physical systems;

ii) understanding these mathematical concepts drastically reduces the human effort

to master the intellectual “curse of dimensionality” created by tackling complex

dynamical systems by only the traditional “block-diagram” control approaches.

Complex dynamical systems

Modern control engineering is continuously challenged to provide modelling, anal-

ysis and control for ever more complex systems:

• Complexity in the sense that the modern consumer expects to see more ‘intelli-

gent’, better performing, and yet more miniaturized and/or lighter products. Most

of the current sensing and actuation components do not scale well towards these

meso- and milli-scales; at least, much less than the computational components.

Inevitably, this evolution requires the development of sensor/actuator compo-

nents that are integrated into the mechanical structure of the products. This will

most certainly lead to components that cannot be modelled (and produced !) any-

more as traditional finite-dimensional, i.e. “lumped parameter”, systems.

• Complexity in the sense that production, logistics and service facilities evolve

towards more distributed systems, with more decentrally controlled degrees of

freedom, more interactions between various controlled subsystems, less possi-

bilities to define, let alone measure, all relevant variables in the system, etc.

Continental-scale power grids are a nice example: electricity is often produced

further and further away from the final consumer; new energy sources (e.g., wind,

biomass, energy recuperation) require more flexibility and bring higher load and

source irregularities in the grid control system. Experience has shown that the

traditional “optimized” control of the power grids has quite some problems with

robustness against sudden transient effects, such as line breakage.

The traditional control approaches have, up to now, to a very large extent been

focusing on “human-scale” systems, where one single control engineer can compre-

hend the whole system, one centralized controller can do the whole job, and one

“Simulink” block diagram suffices to model the whole system dynamics to the re-

quired level of detail and to optimize its control to the required level of performance.
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This approach, however, seldom scales well in the above-mentioned evolution to-

wards more complex systems. Some of the major scaling problems are:

• Block diagram modeling of physical systems lacks compositionality: whenever

interconnecting a physical system to additional components the block diagram

modeling usually needs to be redone completely.

• The presence of fundamental physical properties such as conservation laws and

energy balance is not reflected in the block diagram structure, and easily gets out

of sight when the scale of the system grows.

• Block diagram causality: the large majority of control engineers is only familiar

with the “Simulink”-like block diagram approach. Most of them don’t even real-

ize that, for modelling and computational simplicity, this approach imposes one

specific physical and computational causality (i.e., a fixed choice of what is input

and what is output) onto the system model and onto its controller, while the real

physical system does not have these causal constraints.

• Non-linearities: the more nonlinear components appear in the system, the more

difficult it gets to provide stable, efficient and optimized controllers with the tra-

ditional linear state space control theory that most engineers are trained in.

• Integration of finite-dimensional and infinite-dimensional components: no mod-

elling and control paradigm has yet achieved the breakthrough in this domain.

• Network size: when the number of components in the system under control

grows, the number of state variables also grows, as well as the communication

delays between actuators, plant and sensors, the transmission line effects, etc.

This means that a traditional centralized controller will not work anymore.

• Robustness: the traditional state space control paradigm has a big focus on opti-

mized control, and the algorithms for designing robust controllers are still (im-

plicitly) targeted at centralized systems. However, all the above-mentioned com-

plexities drastically reduce the robustness of any optimal controller, if it has to

work on a real-world complex system.

The port-Hamiltonian systems paradigm

Port-Hamiltonian systems represent a control paradigm, in the sense that they pro-

vide a set of models, thought patterns, techniques, practices, beliefs, systematic pro-

cedures, terminology, notations, symbols, implicit assumptions and contexts, values,

performance criteria, . . . , shared by a community of scientists, engineers and users

in their modelling, analysis, design and control of complex dynamical systems. Be-

ing a coherent paradigm by itself does not mean that port-Hamiltonian systems have

nothing in common with other control paradigms. The name “port-Hamiltonian”

systems, for example, refers to the two major components of the paradigm, which

exist for quite some time already:
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• Port: the modelling approach is port-based, more in particular it builds upon the

successful multi-domain Bond Graph way of composing complex systems by

means of power-preserving interconnections.

• Hamiltonian: the mathematical framework extends the geometric Hamiltonian

formulation of mechanics, by emphasizing the geometry of the state space and

the Hamiltonian function (total stored energy) as basic concepts for modelling

multi-physics systems.

Because of its roots in port-based modeling he port-Hamiltonian systems paradigm

extends the geometric Hamiltonian formulation of physics by generalizing the ge-

ometry of the classical phase space to the geometry of the state space of energy

variables which is determined by the (power-conserving) interconnection structure.

Furthermore, it allows for the incorporation of energy-dissipating1 components, and

the presence of open ports modelling interaction with an (unknown) environment

or accessible for controller interaction. Port-Hamiltonian systems theory relies on a

rather limited amount of concepts from geometry. Geometry, in particular geometric

linear algebra in the linear case and differential geometry in the nonlinear case, has

proven to be a very appropriate mathematical formalism whenever one wants to sep-

arate generic, coordinate-free and (hence) intrinsic descriptions of systems from the

details and particularities of specific representations, and if one wants to capture the

physical characteristics of the variables involved in the mathematical description.

Port-Hamiltonian systems shares this sympathy for geometry with, among others,

the geometric nonlinear control theory paradigm [93, 156], and geometric mechan-

ics [24, 40].

The systematic procedure for the modelling and control of complex dynamical

systems, as it is beginning to materialize in the port-Hamiltonian systems theory, is

as follows:

i) Model the system as energy storing and energy dissipating components, con-

nected via ports to power conserving transmissions and conversions.

ii) Separate the network structure from the constitutive relations of the compo-

nents.

iii) (Optionally) reduce the order of the system model while respecting the invariant

structure of the system dynamics.

iv) Identify the Casimir functions (conservation laws) in the system, in order to use

them in the design of the controller.

v) Control the system by interconnecting it to energy shaping and/or damping

injection components, and by adding energy routing controllers.

The first focus of a port-Hamiltonian controller is to achieve a feasible, stable and

robust control, instead of being driven by performance optimization from the start.

As motivated above, this focus is already difficult enough when controlling increas-

ingly complex dynamical systems.

1 Of course, from a thermodynamical perspective energy is not dissipated but converted from,

say, the mechanical or electrical domain to, e.g., the thermal domain. It would therefore be more

appropriate to speak of ‘free energy’ that is dissipated.
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Fig. P.1 The logo of the

GEOPLEX project.

The GEOPLEX project

The last few years, significant progress has been made in the port-Hamiltonian sys-

tems paradigm, to a large extent thanks to the concerted efforts of the GEOPLEX

project [1], whose logo is displayed in Fig. P.1. Some of the major evolutions are:

the port-Hamiltonian approach has excellent results in the systematic separation

(conceptually, as well as in the mathematical representation) of the interconnection

structure and the dynamical properties of interconnected system; finite-dimensional

systems and infinite-dimensional systems can be described with unified concepts

and mathematical representations, and one is nearing the above-mentioned break-

through towards unified control of both domains; the energy shaping and damping

injection, as well as the energy routing, control approaches begin to mature and

show their advantages for the construction of safe and predictable controllers for

complex systems.

GEOPLEX does not only have theoretical developments, but also real-world ex-

perimental verifications of the port-Hamiltonian systems approach: walking robots,

teleoperated and haptic devices, piezo-controlled beams and plates, chemical engi-

neering of reaction processes, electrical grids with sources and flywheels, etc..

Port-based modelling

Port-based modelling as in the Bond Graph formalism [165] models a physical sys-

tem as the interconnection of (possibly a large amount) of components from a rather

small set of dynamic elements: energy storage, energy dissipation, energy trans-

portation or energy conversion. Each element interacts with the system via a port,

that consists of a couple of “dual” effort and flow quantities, whose product gives the

power flow in and out of the component. For example, force and velocity for a me-

chanical system, or current and voltage for an electric network. The network allows

(loss-less) power exchange between all components and describes the power flows

within the system and between the system and the environment. Some advantages

of the Bond Graph approach are:

• It focuses on energy (in all its instantiations) as the fundamental physical concept

to appropriately model the real world.



xiv Preface

• It is multi-domain: the same concepts and mathematical representations are used

for mechanical, electrical, hydraulic, pneumatic, thermo-dynamical, . . . , compo-

nents.

• It is multi-scale: components can be decomposed hierarchically in smaller inter-

connected components.

• Its models are acausal: each component contains only “constitutive relation-

ships” which describe the dynamic relations between the port variables, without

imposing which ones are inputs and which ones are output.

The Bond Graph approach has proven to be very successful in the modelling of

complex systems, at least in the lumped parameter domain.

Differential geometry for systematic structuring

The above-mentioned system model networks, derived from port-based network

modelling, can be mathematically described and analysed by means of the con-

cept of a Dirac structure [54, 59, 183], at least for “lumped parameter” (finite-

dimensional) systems. A Dirac structure can be regarded as a generalization of the

well-known Kirchhoff laws of electrical circuit theory. It separates the (power con-

serving) network topology (“interconnection”) from the (power storing or dissipat-

ing) dynamics of the components; both together provide a complete model of the dy-

namical system under study. The Dirac structure allows to bring all possible system

models, however complex, into the same mathematical form, strongly facilitating a

highly systematic treatment.

This systematic treatment has been extended to infinite-dimensional systems, for

which the Dirac structure is generalized into the Stokes-Dirac structure, by incorpo-

rating Stokes theorem applied to the underlying conservation laws. Again, the same

concepts are being reused.

Control by interconnection

The port-Hamiltonian systems paradigm uses the system’s interconnection structure

and its Hamiltonian (i.e., its total energy) as the primary vehicles for modelling and

control. If one wants to steer the system to one of its stable equilibrium states, it

is easy to do so: the Hamiltonian of the system assumes its minimum at this state,

so, by introducing dissipation in the controller (“damping injection”), the energy

in the system decreases until the minimum of energy, or, equivalently, the desired

equilibrium configuration is reached.

However, the natural equilibrium states of the system seldom correspond to the

desired system state. So, “energy shaping” is necessary, i.e., one has to add a con-

trol component to the system network, in such a way that the desired state in one

way or another corresponds to a stable equilibrium of the new system. In summary,
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the port-Hamiltonian approach to set-point control is “control by interconnection”:

the controller components that one adds to the plant network are the same kind of

components as the ones that make up the model of the plant itself. In doing so, the

first emphasis is on getting the controlled system robustly stable, possibly giving up

on “optimal performance” of some of the subsystems.

How is this energy-shaping achieved? Clearly, the Hamiltonian of the control

components may be chosen arbitrarily, but do not directly influence the shape of

the Hamiltonian with respect to the state variables of the original system. One way

to achieve energy-shaping is to add controller components in such a way that con-

served quantities (Casimirs) are enforced involving the state variables of the original

system and the controller states. Interestingly enough, these conserved quantities are

determined by the Dirac structure of the interconnected system (original system plus

controller system), thus leading to the problem of how to ‘shape’ or manipulate this

Dirac structure by the interconnection with a controller Dirac structure. The total

closed-loop energy function is then shaped by combining the Hamiltonian of the

original system with the Casimirs and suitably chosen Hamiltonians for the con-

troller systems. This procedure is systematic, but not explicit (that is, it still requires

insight from the control designer), and it is not guaranteed to be applicable in all sit-

uations. Another (but very much related !) approach to stabilization, which in princi-

ple offers more options, is the Interconnection-Damping-Assignment methodology,

where the energy function, the interconnection structure, as well as the damping

structure, are directly modified by state feedback

Software support

The GEOPLEX project consists of some academic research institutions, plus one

company: Controllab Products, which develops and markets the 20-sim [51] sim-

ulation and control software. 20-sim has Bond Graph modelling tools under the

hood, but can also provide more user-friendly (because domain-specific) iconic dia-

grams; it has extensive algorithmic support for causality determination, for solving

the differential equations governing a particular model (including controller), and

for transforming the control design into code for embedded control computers. In

addition, the software is being extended with some of the differential-geometric

concepts and tools that are developed by the academic GEOPLEX partners.

Who should read this book?

The target public of this book consists of “traditional” control engineers, confronted

with complex, multi-domain control problems, and graduate students in Systems and

Control. This book can extend their knowledge and understanding of advanced mod-

elling, analysis and control methods using the port-Hamiltonian systems paradigm,
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because port-Hamiltonian systems bring the systems’ inherent structure to the sur-

face explicitly. This is an advantage because every additional structure that the en-

gineer knows about its systems helps to improve their analysis and control.

• Better insight into complex systems, via the explicit distinction between the in-

herent, coordinate-free physical properties of the systems, and the artificial, non-

physical “properties” that often show up in the specific coordinate-based algo-

rithms that are used to implement analysis and control;

• The acausal description of components is very appropriate for the modelling,

analysis and control of open systems, i.e., systems that can be interconnected to

other open systems;

• The port-Hamiltonian approach can interconnect finite-dimensional and infinite-

dimensional systems;

• Scalability: port-Hamiltonian structure is preserved by interconnection of mul-

tiple components modeled as port-Hamiltonian systems, also when components

come from different domains;

• “Re-use” of the same theory for finite- and infinite-dimensional systems;

• More modular, structured, and re-usable software framework, leading to more

user-friendly and more reliable modelling, simulation and design software tools;

• More structure means more “constraints” that make the “solution search space”

smaller, hence leading to potentially more efficient and more precise algorithms.

Outline of the book

This book aims at presenting a unified framework for modelling, analysis, simula-

tion and control of complex dynamical systems based on the port-Hamiltonian for-

malism. Background and concepts of a port-based approach to integrated modelling

and simulation of physical systems and their controllers are illustrated in Chap-

ter 1. These important notions are the conceptual motivation from a physical point

of view of what is elaborated mathematically and applied to particular cases in the

remaining chapters. In fact, in Chapter 2, it is shown how the representation of

a lumped-parameter physical system as a bond graph naturally leads to a dynam-

ical system endowed with a geometric structure, called port-Hamiltonian system.

The notion of Dirac structure is here introduced as the key mathematical concept

to unify the description of complex interactions in physical systems. Moreover, it is

shown how the port-Hamiltonian structure is related, among others, to the classical

Hamiltonian structure of physical systems. Furthermore, different representations

of port-Hamiltonian systems are discussed, as well as the ways to navigate between

them, and tools for analysis are introduced.

Port and port-Hamiltonian concepts are the basis of the detailed examples of

modelling in several domains illustrated in Chapter 3. Here, it is shown how port-

Hamiltonian systems can be fruitfully used for the structured modelling of elec-

tromechanical systems, robotic mechanisms and chemical systems. As far as the

chemical domain is concerned, expressions of the models representing momentum,
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heat and mass transfer as well as chemical reactions within homogeneous fluids

are reported in the port-based formalism. Furthermore, some insights are also given

concerning the constitutive equations and models allowing to calculate transport and

thermodynamic properties.

These last concepts serve as a starting point for the generalization of the port-

Hamiltonian description of lumped parameter systems towards the distributed pa-

rameter ones. This is accomplished in Chapter 4 by extending the definition of

Dirac structure. In fact, it is shown how the Dirac structure and the port-Hamiltonian

formulation arise from the description of distributed parameter systems as systems

of conservation laws. In case of systems of two conservation laws, which describe

two physical domains in reversible interaction, they may be formulated as port-

Hamiltonian systems defined on a canonical interconnection structure, called canon-

ical Stokes-Dirac structure. Several examples of physical systems are provided in

order to illustrate the power of the proposed approach.

In the remaining chapters, it is shown how the port-Hamiltonian formulation

offers powerful methods for control of complex multi-physics systems. In Chap-

ter 5, a number of approaches to exploit the model structure of port-Hamiltonian

systems for control purposes is illustrated. Formulating physical systems as port-

Hamiltonian systems naturally leads to the consideration of impedance control prob-

lems, where the behavior of the system at the interaction port is sought to be shaped

by the addition of a controller system. As an application of this strategy of control

by interconnection within the port-Hamiltonian setting, the problem of stabilization

of a desired equilibrium by shaping the Hamiltonian into a Lyapunov function for

this equilibrium is considered. The mathematical formalism of port-Hamiltonian

systems provides various useful techniques, ranging from Casimir functions, Lya-

punov function generation, shaping of the Dirac structure by composition, and the

possibility to combine finite-dimensional and infinite-dimensional systems.

In this respect, the control problem of distributed parameter port-Hamiltonian

systems is discussed in Chapter 6. This chapter aims at extending some of the well-

established control techniques developed for finite dimensional port-Hamiltonian

systems illustrated in Chapter 5 to the infinite dimensional case. First result concerns

the control by damping injection, which is applied to the boundary and distributed

control of the Timoshenko beam. Then, the control by interconnection and energy

shaping via Casimir generation is also discussed, giving particular emphasis to the

stabilization of mixed finite and infinite dimensional port Hamiltonian system and

to the dynamical control of a Timoshenko beam.

March 2009 Herman Bruyninckx, Arjan J. van der Schaft
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