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Abstract

Industrial robot manipulators are general-purpose machines used for industrial
automation in order to increase productivity, flexibility, and product quality. Oth-
er reasons for using industrial robots are cost saving, and elimination of hazard-
ous and unpleasant work. Robot motion control is a key competence for robot
manufacturers, and the current development is focused on increasing the robot
performance, reducing the robot cost, improving safety, and introducing new
functionalities. Therefore, there is a need to continuously improve the mathemat-
ical models and control methods in order to fulfil conflicting requirements, such
as increased performance of a weight-reduced robot, with lower mechanical stiff-
ness and more complicated vibration modes. One reason for this development of
the robot mechanical structure is of course cost-reduction, but other benefits are
also obtained, such as lower environmental impact, lower power consumption,
improved dexterity, and higher safety.

This thesis deals with different aspects of modeling and control of flexible, i.e.,
elastic, manipulators. For an accurate description of a modern industrial manip-
ulator, this thesis shows that the traditional flexible joint model, described in
literature, is not sufficient. An improved model where the elasticity is described
by a number of localized multidimensional spring-damper pairs is therefore pro-
posed. This model is called the extended flexible joint model. The main contri-
butions of this work are the design and analysis of identification methods, and of
inverse dynamics control methods, for the extended flexible joint model.

The proposed identification method is a frequency-domain non-linear gray-box
method, which is evaluated by the identification of a modern six-axes robot ma-
nipulator. The identified model gives a good description of the global behavior
of this robot.

The inverse dynamics problem is discussed, and a solution methodology is pro-
posed. This methodology is based on the solution of a differential algebraic equa-
tion (DAE). The inverse dynamics solution is then used for feedforward control
of both a simulated manipulator and of a real robot manipulator.

The last part of this work concerns feedback control. First, a model-based non-
linear feedback control (feedback linearization) is evaluated and compared to a
model-based feedforward control algorithm. Finally, two benchmark problems
for robust feedback control of a flexible manipulator are presented and some pro-
posed solutions are analyzed.
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Populärvetenskaplig sammanfattning

Industrirobotar används inommånga industrigrenar där bilindustrin är den stör-
sta robotkunden. Andra industrier som har stora behov av robotar är halvledar-
och elektronikindustrin, flygindustrin och livsmedelsindustrin. Exempel på nya
tillämpningar för robotar är hantering av skärmar till platt-TV, tillverkning av sol-
celler och solpaneler, samt sortering och paketering av läkemedel. Några typiska
arbetsuppgifter för robotar i traditionell tillverkningsindustri är svetsning, mål-
ning, montering, laserskärning ochmaterialbearbetning. Industrirobotar förekom-
mer även inom nöjesindustrin, där de bland annat använts vid filminspelningar
(Terminator Salvation), vid rock-konserter (Bon Jovi) och som avancerade nöjes-
fältsattraktioner (RoboCoaster). Det finns även exempel på att industrirobotar
används inom sjukvården, t.ex. för rehabilitering av strokepatienter. Industrirob-
otar är med andra ord universalmaskiner och bara användarens fantasi begrän-
sar möjligheterna! Totalt har mer än 2 miljoner industrirobotar levererats sedan
introduktionen i slutet av 1960-talet och idag är mer än 1 miljon robotar i drift.
Användning av robotar kan förstås minska antalet anställda inom industrin, men
kan också skapa nya arbeten med ett bättre arbetsinnehåll och ta bort farliga, tu-
nga och tråkiga arbetsuppgifter. Andra motiv för att använda robotar är ökad och
jämn produktkvalitet och en effektivare produktion till en lägre kostnad. Efter-
som robotar är omprogrameringsbara får man också, i jämförelse med fast aut-
omation, flexibilitet och möjligheter att ändra produktionen.

Robotens hjärna är styrsystemet, vars datorer står för robotens intelligens och
bland annat styr robotens rörelser. Den del av robotstyrsystemet som styr robotens
rörelser brukar kallas rörelsestyrning, och dess huvuduppgift är att styra vrid-
momenten i robotens elektriska motorer så att de rörelser som robotanvändaren
programmerat utförs med största möjliga snabbhet och precision. Vridmomenten
styrs i sin tur genom reglering av strömmarna till de motorer som är driver
robotarmarna via växellådor. För att kunna beräkna det vridmoment som be-
hövs för att röra t.ex. en svetspistol på önskat sätt används matematiska mod-
eller. Denna styrprincip kallas modellbaserad framkopplingsreglering. Eftersom
modeller aldrig kan vara helt perfekta, och eftersom vissa saker inte kan modell-
eras, t.ex. att någonting stöter till roboten, krävs det också kunskap om robotens
verkliga rörelse. En vanligt sätt att få denna kunskap är att mäta motorvinklarna.
Denna mätning används av styrsystemet för att korrigera de vridmoment som
modellerna räknat fram. Denna styrprincip kallas återkopplingsreglering. Även
återkopplingsregleringen kan använda sig av styrsystemets modeller. Rörelses-
tyrningen för en robot kan liknas vid den mänskliga hjärnans styrning av grov-
och finmotorikenmed hjälp av erfarenhet och instinkt (framkoppling) och sinnes-
intryck (återkoppling).

En trend inom industriell robotutveckling är att robotarna görs vigare och att
dess vikt minskar relativt den last som roboten ska hantera. Detta ökar robotens
användbarhet och minskar kostnader och energiförbrukning, men det gör också
rörelsestyrningen betydligt svårare eftersom roboten totalt sett blir vekare. De
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dominerande vekheterna (elasticiteterna) i en modern industrirobot finns hos
växellådor, lager och robotarmar, men även underlaget som roboten är monterad
på kan vara vekt. Problemet att styra en vek robot kan liknas vid att snabbt svin-
ga ett metspö och att få toppen av metspöt att följa en viss bana och slutligen
stanna på önskat ställe utan att svänga. En ökad intelligens i robotens rörelse-
styrning är för dessa veka robotar helt avgörande för att kunna styra rörelserna
med snabbhet och precision. Detta innebär att rörelsestyrningens intelligens ock-
så är avgörande för att kunna minska robotens tillverkningskostnad.

Denna avhandling handlar om modellering och reglering av moderna industri-
robotar. Det som behandlas är hur man med hög noggrannhet matematiskt skall
beskriva veka robotar, hur man skall utföra mätningar på en robot för att anpassa
de matematiska modellerna till verkligheten och hur man använder modellerna
för att med framkoppling och återkoppling kunna styra en robot. Den första de-
len av avhandlingen presenterar en matematisk modell som kan beskriva elas-
ticiteten i en modern industrirobot, samt beskriver metoder för att ta fram mo-
dellparametrar. Att ta fram värden på okändamodellparametrar kallas ofta iden-
tifiering. Metoden bygger på att man styr robotens rörelser så att de vridmoment
och rörelser som registreras kan användas för att räkna ut de okända modell-
parametrarna. Enkelt uttryckt så skakar man på roboten så att den avslöjar vär-
dena på modellens fjädrar och dämpare. De modeller och identifieringsmetoder
som redovisas i avhandlingen beskriver robotens vekhet på ett unikt bra sätt.

Den andra delen av avhandlingen beskriver hur modellen kan användas i en
modellbaserad framkopplingsreglering. Beräkningen av vridmoment, givet öns-
kad robotrörelse, innebär lösandet av en differential-algebraisk ekvation (DAE).
Denna ekvation är i detta fall mycket svår att lösa, och ett antal metoder för
att lösa denna DAE föreslås och analyseras. De framtagna metoderna är alltför
komplexa givet dagens datorkraft, men visar att problemet är lösbart. Metoderna
kan också vara en utgångspunkt för att utveckla förenklade metoder som styr-
systemets datorer har kapacitet att beräkna.

Avhandlingen avslutas med en beskrivning av två specialanpassade matematiska
robotmodeller och tillhörande krav på styrsystemet. En viktig egenskap för dessa
modeller är att endast motorernas vinklar mäts, vilket är det normala fallet för
moderna industrirobotar. Dessa s.k. benchmark-problem är tänkta att användas
för utvärdering och utveckling av alternativa metoder för återkopplingsreglering,
och att ge forskare inom området realistiska modeller med tillhörande industri-
ella krav. Det första benchmark-problemet presenterades 2004 under namnet
Svenska Mästerskapet i Robotreglering och attraherade deltagare från tre världs-
delar. Slutsatsen av denna utvärdering är att återkopplingsregleringen måste få
tillgång till mer information för att väsentligen kunna höja prestanda över dagens
nivå. Denna information kan erhållas genom mätningar av t.ex. robotarmarnas
eller verktygets positioner och accelerationer. Hur flera mätningar kan användas
för reglering är ett viktigt område för de kommande årens robotforskning.
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Notation

The same symbol can sometimes be used for different purposes. The main uses
of a symbol are listed here, any deviations are explained in the text. Vectors are
in general column vectors.

Symbols and Operators

Notation Meaning

Z The set of integers
N The set of natural numbers
R The set of real numbers
C The set of complex numbers
t Time variable
s Laplace transform variable
z z-transform variable
q Shift operator, qu(t) = u(t + Ts)
q−1 Backwards shift operator, q−1u(t) = u(t − Ts)
q Vector of motor and joint angular positions
qm Vector of motor angular positions
qa Vector of joint angular positions
qg Vector of actuated joint angular positions
qe Vector of non-actuated joint angular positions
τ Torque vector
τm Motor torque vector
τa Joint torque vector
τg Gearbox torque vector (actuated joints)
τe Constraint torque vector (non-actuated joints)
ṗ Time derivative of a variable p

p[n] The nth time derivative of a variable p, dnp
dtn

X Cartesian position and orientation of robot tool (TCP)
Z Cartesian position and orientation of robot tool (TCP)
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xviii Notation

Symbols and Operators (contd.)

Notation Meaning

u(t) Vector of input signals at time t
y(t) Vector of (measured) output signals at time t
z(t) Vector of (controlled) output signals at time t
x(t) State vector at time t
pd Reference (desired) value for a variable p
Γ(q) Forward kinematics

J(q) Velocity Jacobian ∂Γ(q)
∂q

M(q) Inertia matrix
Mm(q) Inertia matrix of motors
Ma(q) Inertia matrix of links (joints)
c(q, q̇) Vector of Coriolis and centripetal torques
g(q) Vector of gravity torques
m Mass of a rigid body
ξ Center of gravity (mass) of a rigid body
J Inertia tensor of a rigid body
K Stiffness matrix
D Damping matrix
k Spring constant, i.e., one element of K
d Damping constant, i.e., one element of D

f (q) Friction torque
η Gear ratio matrix
Υa Number of actuated joints
Υna Number of non-actuated joints
Ts Sample time
θ Vector of model parameters
θ̂ Estimated vector of model parameters

ŷ(t|t − Ts; θ) A model’s prediction of y(t) given θ and data up to
time t − Ts

ε(t, θ) Prediction error y(t) − ŷ(t|t − Ts; θ)
argminx f (x) The value of x that minimizes f (x)

Q Number of operating points
N Number of samples
M Number of experiments (or blocks of experiments for

MIMO systems)
P Number of periods
Nf Number of excited frequencies
Np Number of samples in one period
nu Number of inputs
ny Number of outputs
σ Standard deviation
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Symbols and Operators (contd.)

Notation Meaning

U(ωk) DFT of u(t)
Y (ωk) DFT of y(t)

Ĝ
(i)
k

Non-parametric (estimated) FRF in operating point i
at frequency k

G
(i)
k,θ

Parametric (model) FRF in operating point i at fre-
quency k using model parameters θ

W
(i)
k

Weighting matrix in operating point i at frequency k

vec(B) Stacks the columns bi of a matrix B into a column vec-
tor = [bT1 b

T
2 . . . bTn ]

T

VN (θ) Cost function or prediction error criterion
θ̂N Parameter estimator
θ Position of robot tool in inverse dynamics papers
ν Differential index of DAE

diag(a) A diagonal matrix with vector a on the diagonal
∈ Belongs to
|z| Absolute value of complex variable z

arg(z) Argument or phase of complex variable z
∂G(x)
∂x

Partial derivative of G with respect to x. Also denoted
Gx.

detA Determinant of matrix A
TrA Trace of matrix A
AT Transpose of matrix A
A−1 Inverse of matrix A
AH Complex conjugate transpose of matrix A

Abbreviations

Abbreviation Meaning

e.g. for example
i.e. in other words
BDF Backwards Differentiation Formula
CAD Computer Aided Design
DAE Differential Algebraic Equation
DFT Discrete Fourier Transform
DOF Degrees Of Freedom
EE Elastic Element
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Abbreviations (contd.)

Abbreviation Meaning

ETFE Empirical Transfer Function Estimate
FDB FeeDBack
FEM Finite Element Model
FF FeedForward
FFT Fast Fourier Transform
FFW FeedForWard
FL Feedback Linearization
FRF Frequency Response Function
IRB Industrial RoBot, used in names for ABB robots
ILC Iterative Learning Control
LLS Logarithmic Least Squares
LQ Linear Quadratic

MIMO Multiple Input Multiple Output
MP Minimum Phase
NLP NonLinear Program
NLS Nonlinear Least Squares
NMP Non-Minimum Phase
ODE Ordinary Differential Equation
PDE Partial Differential Equation
PEM Prediction Error Method
PD Proportional and Derivative
PI Proportional and Integral
PID Proportional, Integral, and Derivative
QFT Quantitative Feedback Theory
RB Rigid Body
SISO Single Input Single Output
TCP Tool Center Point



1
Introduction

Models of robot manipulators are important components of a robot motion con-
trol system. The control algorithms and the trajectory generation algorithms are
two equally important components. This thesis deals with some aspects of mod-
eling and control of flexible manipulators. Here, flexible should be interpreted as
elastic, and a manipulator should be interpreted as an industrial robot although
the results to some extent can be applied to other types of manipulators and me-
chanical systems.

1.1 Motivation and Problem Statement

Robot motion control is a key competence for robot manufacturers, and cur-
rent development is focused on increasing the robot performance, reducing the
robot cost, improving safety, and introducing new functionalities as described
in Brogårdh (2007, 2009). There is a need to continuously improve the models
and control methods in order to fulfil all conflicting requirements, for example,
increased performance for a robot with lower weight, and thus lower mechanical
stiffness and more complicated vibration modes. One reason for this develop-
ment of the robot mechanical structure is of course cost reduction, but other ben-
efits are lower power consumption, as well as improved dexterity, safety issues,
and lower environmental impact. The need of cost reduction can result in the use
of optimized robot components, which usually have larger individual variation,
e.g., variation of gearbox stiffness or in the parameters describing the mechanical
arm. Cost reduction sometimes also results in a higher level of disturbances and
nonlinearities in some of the components, e.g., in the actuators or in the sensors.
The development of industrials robots is illustrated in Figure 1.1 which shows
that the robot weight to payload ratio has been reduced 3 times since the 1980’s.

1
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Figure 1.1: The development of large ABB robots. 1984: IRB90 1450kg
and payload 90kg (16:1), 1991: IRB6000 1750kg and payload 120kg
(15:1), 1997: IRB6400R 2100kg and payload 200kg (10.5:1), 2007: IRB6640
1300kg and payload 235kg (5.5:1)

An industrial robot is a general purpose machine for industrial automation, and
even though the requirements of a certain application can be precisely formu-
lated, there are no limits in what the robot users want with respect to the desir-
able performance and functionality of themotion control of a robot. The required
motion control performance depends on the application. The better performance,
the more applications can be subject to automation by a specific robot model.
Some requirement examples are:

• High path accuracy in continuous applications (e.g., laser welding, laser
cutting, dispensing, or water-jet cutting).

• High speed accuracy in continuous applications (e.g., painting or dispens-
ing).

• Low cycle time (high speed and acceleration) in discrete applications (e.g.,
material handling).

• Small overshoots and a short settling time in discrete process applications
(e.g., spot welding).

• High control stiffness in contact applications (e.g., machining).

For weight- and cost optimized industrial manipulators, the requirements above
can only be handled by increased computational intelligence, i.e., improved mo-
tion control. Motion control of industrial robot manipulators is a challenging
task, which has been studied by academic and industrial researchers for more
than three decades. Some results from the academic research have been success-
fully implemented in real industrial applications, while other results are far away
from being relevant to the industrial reality. To some extent, the development of
motion control algorithms has followed two separate routes, one by academic
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researchers and one by robot manufacturers, unfortunately with only minor in-
teraction.

The situation can partly be explained by the fact that the motion control algo-
rithms used in the industry sometimes are regarded as trade secrets. Due to
the tough competitive situation among robot manufacturers, the algorithms are
seldom published. Another explanation is that the academic robot control re-
searchers often apply advanced mathematics on a few selected aspects of rela-
tively small systems, whereas the industrial robot researchers and developers
must deal with all significant aspects of a complex system where the proposed
advanced mathematics often cannot be applied. Furthermore, the problems that
the robot industry sometimes present might include too much engineering as-
pects to be attractive for the academic community. Industrial robot research and
development must balance short term against long term activities. Typical time
constants from start of research to the final product, in the area of the motion
control technology discussed in this work, can be between 5 and 10 years, and
sometimes even longer. Thus, long-term research collaborations between indus-
try and academia should be possible, given that the intellectual property aspects
can be handled.

The problems of how to get industrial-relevant academic research results, and
of how to obtain a close collaboration between universities and industry, are not
unique for robotics motion control. The existence of a gap between the academic
research and industrial practise in the area of automatic control is often discussed.
One balanced description on the subject can be found in Bernstein (1999), where
it is pointed out that the control practitioners must articulate their needs to the
research community, and that motivating the researchers with problems from
real applications "can have a significant impact on increasing the relevance of
academic research to engineering practise". Another quote from Bernstein (1999)
is "I personally believe that the gap on the whole is large and warrants serious in-
trospection by the research community". The problem is somewhat provocatively
described in Ridgely and McFarland (1999) as, freely quoted, "what the industry
in most cases do not want is stability proofs, guarantees of convergence and other
purely analytical developments based on idealized and unrealistic assumptions".
Another view on the subject is that "the much debated theory-applications gap is
a misleading term that overlooks the complex interplay between physics, inven-
tion and implementation, on the one side, and theoretical abstractions, models,
and analytical designs, on the other side" (Kokotovic and Arcak, 2001). The need
for a balance between theory and practise is expressed in Åström (1994), and fi-
nally a quote from Brogårdh (2007): "industrial robot development has for sure
not reached its limits, and there is still a lot of work to be done to bridge the gap
between the academic research and industrial development".

It is certainly true that, as in the science of physics, research on both "theoreti-
cal control" and "experimental control" is needed. The question is whether the
proportions need adjustment. This subject is certainly an important one, as auto-
matic control can have considerable impact on many industrial processes as well
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as on other areas, affecting both environmental and economical aspects. It is my
hope that this work can help bridging the gap, as well as moving the frontiers
somewhat in the area of robotics motion control.

This thesis concerns modeling and control of flexible manipulators. Most publi-
cations concerning flexible (elastic) robot manipulators only consider elasticity in
the rotational direction. If the gear elasticity is considered we get the flexible joint
model, and if link deformation restricted to a plane perpendicular to the preced-
ing joint is included in the model we get the flexible link model. These restricted
models simplify the control design but limit the attainable performance. Moti-
vated by the trend of developing light-weight robots, a new model, here called
the extended flexible joint model, is proposed for use in motion control systems
as well as in robot design and performance simulation. The use of this extended
model is the main theme of this thesis, and the following aspects are treated:

• Identification of the unknown elastic model parameters, applied to a real
six-axes industrial robot.

• Inverse dynamics to enable high-accuracy path tracking by the use of feed-
forward control.

The remainder of this work deals with feedback control. For flexible joint models,
feedback control for path tracking is investigated by comparing nonlinear feed-
back control to nonlinear feedforward control. Finally, two benchmark problems
on robust feedback control are presented together with some suggested solutions.

1.2 Outline

Part I contains an overview of robotics, modeling, identification, and control. Part
II consists of a collection of edited papers.

1.2.1 Outline of Part I

Chapter 2 gives an introduction to robotics in general, and the motion control
problem in particular. Modeling of robot manipulators is described in Chapter
3, and some system identification methods that are relevant for this thesis are
described in Chapter 4. A survey on control methods used in robotics can be
found in Chapter 5. Finally, Chapter 6 provides a summary and some ideas for
future research.

1.2.2 Outline of Part II

This part consists of a collection of edited papers, introduced below. Summary
and background of each paper are given, together with the contribution of the
author of this thesis.
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Paper A: Modeling and Parameter Estimation of Robot Manipulators using

Extended Flexible Joint Models

S. Moberg, E. Wernholt, S. Hanssen, and T. Brogårdh. Modeling and
parameter estimation of robot manipulators using extended flexible
joint models. 2010. Submitted to Journal of Dynamic Systems Mea-
surement and Control, Transactions of the ASME.

Summary: This paper considers the problem of dynamicmodeling and identifica-
tion of robot manipulators with respect to their elasticities. The so-called flexible
joint model, modeling only the torsional gearbox elasticity, is shown to be insuf-
ficient for modeling a modern industrial manipulator accurately. The extended
flexible joint model, where non-actuated joints are added to model the elasticity
of the links and bearings, is used to improve the model accuracy. The unknown
elasticity parameters are estimated using a frequency domain gray-box identifi-
cation method. A detailed description of this method is provided in Paper B.
Similar elasticity model parameters are obtained when using two different out-
put variables for the identification, the motor position and the tool acceleration
respectively. A brief time-domain model validation is also presented.

Background and contribution: The basic idea of extending the flexible joint
model for a better description of modern light-weight manipulators is mainly
due to the author and Sven Hanssen. These two also performed the first promis-
ing attempt to identify the model by use of frequency-domain methods. The
research was continued by the authors of Öhr et al. (2006) where the use of the
nonparametric frequency response function (FRF) for the estimation of the para-
metric robot model was first described. Erik Wernholt has continued to improve
and analyze various aspects of the identification procedure as described in Wern-
holt (2007). The improvements of the identification procedure presented in this
paper is due to the author and Erik Wernholt, the model equations are derived by
Sven Hanssen, and the simulated and experimental evaluation were performed
by the author. Torgny Brogårdh has throughout this whole work served as a most
valuable discussion partner.

Paper B: Nonlinear Gray-Box Identification Using Local Models Applied to

Industrial Robots

E. Wernholt and S. Moberg. Nonlinear gray-box identification using
local models applied to industrial robots. Automatica, 2010. Accepted
for publication.

Summary: This paper studies the problem of estimating unknown parameters in
nonlinear gray-box models that may be multivariable, nonlinear, unstable, and
resonant at the same time. A straightforward use of time-domain predication-
error methods for this type of problem easily ends up in a large and numerically
stiff optimization problem. An identification procedure, that uses intermediate
local models that allow for data compression and a less complex optimization
problem, is therefore proposed. The procedure is illustrated by estimating elastic-
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ity parameters in a six-axes industrial robot. Different parameter estimators are
compared and experimental results show the usefulness of the proposed identifi-
cation procedure. A brief example of time-domain identification is also presented
and compared to the suggested frequency-domain method.

Background and contribution: The basic idea of using the nonparametric FRF
for the estimation of the parametric robot model is due to the author and Sven
Hanssen as previously described. The research was continued by the authors of
Öhr et al. (2006). Erik Wernholt has continued to improve and analyze various
aspects of the identification procedure as described inWernholt (2007) where the
author has served as a discussion partner. The first theoretical part of this paper
is mainly due to Erik Wernholt, whereas the second part with simulation and
experimental results is mainly due to the author. The time-domain example is
also performed by the author.

Paper C: Inverse Dynamics of Flexible Manipulators

S. Moberg and S. Hanssen. Inverse dynamics of flexible manipulators.
In Multibody Dynamics 2009, Warsaw, Poland, July 2009.

Summary: This paper investigates different methods for the inverse dynamics
of the extended flexible joint model. The inverse dynamics solution is needed
for feedforward control, which is often used for high-precision robot manipula-
tor control. The inverse dynamics of the extended flexible joint model can be
computed as the solution of a high-index differential algebraic equation (DAE)
and different solvers are suggested and evaluated. The inverse dynamics can be
solved as an initial-value problem if the zero dynamics of the system is stable, i.e.,
minimum phase. For unstable zero dynamics, an optimization approach based
on the discretized DAE is suggested. An collocation method, using a continuous
DAE formulation, is also suggested and evaluated. The solvers are illustrated by
simulation, using a manipulator with two actuators and five degrees-of-freedom.

Background and contribution: The DAE formulation of the inverse dynamics
problem was the result of a discussion between the author and Sven Hanssen.
Sven Hanssen derived the simulation model, and the author has made the con-
trol research and implemented the DAE solvers that are used. Sven Hanssen has
been a discussion partner for this part of the work and also derived and analyzed
alternative solvers together with the author.

Paper D: Inverse Dynamics of Robot Manipulators Using Extended Flexible

Joint Models

S. Moberg and S. Hanssen. Inverse dynamics of robot manipulators
using extended flexible joint models. 2010. Submitted to IEEE Trans-
actions on Robotics (under revision).

Summary: This article is based on Paper C. The suggested concept for inverse
dynamics is experimentally evaluated using an industrial robot manipulator. In
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this experimental evaluation, an identified model is used in the inverse dynamics
computation. Simulations using the same identifiedmodel are in good agreement
with the experimental results. The conclusion is that the extended flexible joint
inverse dynamics method can improve the accuracy for manipulators with signif-
icant elasticities, that cannot be described by the flexible joint model.

Background and contribution: The background and contribution concerning
the problem formulation and the suggested solvers are as described previously
for Paper C. The experimental evaluation was performed by the author and Sven
Hanssen.

Paper E: On Feedback Linearization for Robust Tracking Control of Flexible

Joint Robots

S. Moberg and S. Hanssen. On feedback linearization for robust track-
ing control of flexible joint robots. In Proc. 17th IFACWorld Congress,
Seoul, Korea, July 2008.

Summary: Feedback linearization is one of the major academic approaches for
controlling flexible joint robots. This contribution investigates the discrete-time
implementation of the feedback linearization approach on a realistic three-axis
robot model. A simulation study of high speed tracking with model uncertainty
is performed. The feedback linearization approach is compared to a feedforward
approach.

Background and contribution: The feedback linearization for flexible joint robots
was first presented in Spong (1987). After attending a workshop on nonlinear
control of flexible joint robots, the author and Sven Hanssen discussed the lack
of (published) evaluations of this control concept. This paper uses a realistic ma-
nipulator model and realistic requirements to evaluate the proposed concept in
a simulation study. The author was responsible for the implementation of the
control schemes, control analysis and performance evaluation. Sven Hanssen
derived the simulation model and the model derivatives, needed for the imple-
mentation of the control algorithms.

Paper F: A Benchmark Problem for Robust Feedback Control of a Flexible

Manipulator

S. Moberg, J. Öhr, and S. Gunnarsson. A benchmark problem for ro-
bust feedback control of a flexible manipulator. IEEE Transactions on
Control Systems Technology, 17(6):1398–1405, November 2009.

Summary: This paper describes a benchmark problem for robust feedback con-
trol of a flexible manipulator together with some proposed and tested solutions.
The system to be controlled is a four-mass system subject to input saturation, non-
linear gear elasticity, model uncertainties, and load disturbances affecting both
the motor and the arm. The system should be controlled by a discrete-time con-
troller that optimizes the performance for given robustness requirements.
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Background and contribution: The benchmark problem was first presented as
Swedish Open Championships in Robot Control (Moberg and Öhr, 2004, 2005)
where the author formulated the problem together with Jonas Öhr. The analysis
of the solutions, as well as the experimental validation of the benchmark model,
were performed mainly by the author. The final paper as presented in this thesis
also includes Svante Gunnarsson as a valuable discussion partner and co-author.

Paper G: A Benchmark Problem for Robust Control of a Multivariable Nonlinear

Flexible Manipulator

S. Moberg, J. Öhr, and S. Gunnarsson. A benchmark problem for
robust control of a multivariable nonlinear flexible manipulator. In
Proc. 17th IFAC World Congress, Seoul, Korea, July 2008.

Summary: This paper describes a benchmark problem for robust feedback con-
trol of a two link manipulator with elastic gear transmissions. The gear trans-
mission is described by nonlinear friction and elasticity. The system is uncertain
according to a parametric uncertainty description and due to uncertain distur-
bances affecting both the motors and the tool. The system should be controlled
by a discrete-time controller that optimizes performance for given robustness re-
quirements. The proposed model is validated by experiments on a real industrial
manipulator.

Background and contribution: This benchmark problem is a continuation of the
problem presented in Paper F, using a more complex and realistic model, and
with a more challenging design task. The author contributed to the majority of
this work with Jonas Öhr and Svante Gunnarsson as valuable discussion partners.

Related Publications

Publications of related interest not included in this thesis, where the author of
this thesis has contributed:

T. Brogårdh, S. Moberg, S. Elfving, I. Jonsson, and F. Skantze. Method
for supervision of the movement control of a manipulator. US Patent
6218801, April 2001. URL http://www.patentstorm.us/patents/
6218801.

T. Brogårdh and S. Moberg. Method for determining load parameters
for a manipulator. US Patent 6343243, Januari 2002. URL http:

//www.patentstorm.us/patents/6343243.html.

G.E. Hovland, S. Hanssen, E. Gallestey, S. Moberg, T. Brogårdh, S. Gun-
narsson, and M. Isaksson. Nonlinear identification of backlash in
robot transmissions. In Proc. 33rd ISR (International Symposium on
Robotics), Stockholm, Sweden, October 2002.

S. Moberg and J. Öhr. Robust control of a flexible manipulator arm: A
benchmark problem. Prague, Czech Republic, 2005. 16th IFACWorld
Congress.

http://www.patentstorm.us/patents/6218801
http://www.patentstorm.us/patents/6218801
http://www.patentstorm.us/patents/6343243.html
http://www.patentstorm.us/patents/6343243.html
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S. Gunnarsson,M. Norlöf, G. Hovland, U. Carlsson, T. Brogårdh, T. Svens-
son, and S. Moberg. Pathcorrection for an industrial robot. US Patent
7130718, October 2006. URL http://www.patentstorm.us/patents/
7130718.html.

J. Öhr, S. Moberg, E. Wernholt, S. Hanssen, J. Pettersson, S. Persson,
and S. Sander-Tavallaey. Identification of flexibility parameters of 6-
axis industrial manipulator models. In Proc. ISMA2006 International
Conference on Noise and Vibration Engineering, pages 3305–3314,
Leuven, Belgium, September 2006.

S. Moberg and S. Hanssen. A DAE approach to feedforward control of
flexible manipulators. In Proc. 2007 IEEE International Conference
on Robotics and Automation, pages 3439–3444, Roma, Italy, April
2007.

E. Wernholt and S. Moberg. Frequency-domain gray-box identifica-
tion of industrial robots. In 17th IFAC World Congress, pages 15372–
15380, Seoul, Korea, July 2008a.

E. Wernholt and S. Moberg. Experimental comparison of methods for
multivariable frequency response function estimation. In 17th IFAC
World Congress, pages 15359–15366, Seoul, Korea, July 2008b.

M. Björkman, T. Brogårdh, S. Hanssen, S.-E. Lindström, S. Moberg,
andM. Norrlöf. A new concept for motion control of industrial robots.
In Proceedings of 17th IFACWorld Congress, 2008, Seoul, Korea, July
2008.

R. Henriksson, M. Norrlöf, S. Moberg, E. Wernholt, and T. Schön. Ex-
perimental comparison of observers for tool position estimation of in-
dustrial robots. In Proceedings of 48th IEEE Conference on Decision
and Control, pages 8065–8070, Shanghai, China, December 2009.

1.3 Contributions

The main contributions of the thesis are:

• The extended flexible joint model presented in Öhr et al. (2006) andMoberg
and Hanssen (2007) and validated in Paper A.

• The identification procedure introduced in Öhr et al. (2006) and further
described in Papers A and B. The procedure has been successfully applied
to experimental data from a six-axes industrial robot.

• The DAE formulation of the inverse dynamics problem for the extended
flexible joint model as described in Paper C and D.

• The solution method for the inverse dynamics problem of the extended flex-
ible joint model, and its application on a small but realistic robot model.

http://www.patentstorm.us/patents/7130718.html
http://www.patentstorm.us/patents/7130718.html
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This is also described in Papers C and D.

• The experimental evaluation of the inverse dynamics method as described
in Paper D.

• The evaluation of feedback linearization as described in Paper E.

• The formulation and evaluation of a relevant industrial benchmark prob-
lem as described in Paper F.

• The formulation of a second relevant industrial benchmark problem as de-
scribed in Paper G. Solutions to the problem are planned to be published in
the future. The model is available for download at Moberg (2007), and has
also been used by other researchers for various purposes.



Part I

Overview





2
Robotics

Robotics involves many technical and scientific disciplines, for example, sensor-
and vision technologies, computer architecture, drive systems and motor tech-
nologies, real time systems, automatic control, modeling, mechanical design, ap-
plied mathematics, man-machine interaction, system communication, and com-
puter languages. This chapter gives a short introduction describing the parts that
are relevant for this work, i.e., modeling and motion control.

2.1 Introduction

Throughout this work, the term robot is used to denote an industrial robot, i.e.,
a manipulator arm, mainly used for manufacturing in industry. Some examples
of such robots are shown in Figure 2.1. The first industrial robots were installed
in the 1960s and the number of operational industrial robots at the end of 2009
was in the range of 1, 021, 000 to 1, 300, 000 units (IFR, 2010). Robots are used for
a variety of tasks, for example, welding, painting, cutting, dispensing, material
handling, machine tending, machining, and assembly. There are many types of
mechanical robot structures such as the parallel arm robot and the articulated
robot, which can be of elbow or parallel linkage type. Examples of these three
robot structures are shown in Figure 2.2. Further examples of mechanical robot
structures (also called kinematic structures) can, e.g., be found in Spong et al.
(2006). In the following, the presentation will be restricted to the, at present,
most common type of industrial robot which is the six-axes articulated robot of
elbow type. This robot, or manipulator arm, consists of seven serially mounted
bodies connected by six revolute joints. The bodies are numbered from 0 to 6, and
body 1 to 6 are also called links. The links and the joints are numbered from 1 to
6. The links are actuated by electrical motors via gear transmissions (gearboxes),

13
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Figure 2.1: ABB robot family and the IRC5 controller.

Figure 2.2: Three examples of robot structures from ABB. The parallel arm
robot IRB340 (left), the parallel linkage robot IRB4400 (middle), and the
elbow robot IRB4600 (right).
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also named speed reducers. The motor positions are measured by sensors. The
first body is connected to the base, and the last body (link) is connected to an end
effector, i.e., a tool. With six actuated links, both the position and the orientation
of the end effector can be controlled. The first three joints and links are often
denoted main axes, and the last three are denoted wrist axes.

2.2 Models

A description of the most important models used in robotics can be found in, e.g.,
Craig (1989), Spong et al. (2006), Siciliano and Khatib (2008), and Siciliano et al.
(2010). Here follows a short overview.

2.2.1 Kinematic Models

The kinematic models describe the robot motions without regard to the forces
that cause the motions, i.e, all time-based and geometrical properties of the mo-
tion. The kinematics relate the joint angular position vector q to the position p
and orientation φ of the tool frame attached to the tool and positioned in the tool
center point (TCP). One example of a kinematic relation is the forward kinemat-
ics where the tool frame position and orientation are described as a function of
the joint angular position vector as

X = Γ(q), (2.1)

where X is the tool frame position and orientation, also named pose, defined as

X =

[
p
φ

]
, (2.2)

and Γ( · ) is a nonlinear function. The tool frame is described in a reference frame,
i.e., a coordinate system, attached to the base of the robot, called base frame. De-
scribing the manipulator pose by the joint angles is often denoted a joint space
representation of the robot state while describing it by the tool position and ori-
entation is denoted a task space representation which is usually implemented
in Cartesian coordinates. The described frames and the joint positions are illus-
trated in Figure 2.3.

2.2.2 Dynamic Models

Dynamic robot models describe the relations between the motions of the robot
and the forces that cause the motions. The models are most often formulated in
joint space. One example of a dynamic model is the model of a rigid manipulator
which can be expressed as

τ = M(q)q̈ + c(q, q̇) + g(q) + f (q̇), (2.3)

where τ is the actuator torque vector, M(q) is the inertia matrix, c(q, q̇) is a vector
of Coriolis and centripetal torques, g(q) is the gravity torque vector, and f (q̇) is
the vector of, possibly nonlinear, joint friction torques. The rigid body inertial



16 2 Robotics

Figure 2.3: Base frame, tool frame, and joint positions illustrated on a robot
equipped with a spotwelding gun.

parameters for each link are the mass, the center of mass, and the inertia. The
actuator inertia and mass are added to the corresponding link parameters.

The inverse dynamics problem is useful for control, and consists of computing
the required actuator torques as a function of the joint position vector q and its
time derivatives, q̇ and q̈. For the rigid model (2.3), this involves algebraic compu-
tations only. For simulation of the manipulator movement, the direct dynamics
problem must be solved. The differential equation (2.3) is then solved with the
actuator torques as input.

2.3 Motion Control

The motion control of a modern industrial manipulator is a complex task. A
description of the current status of industrial robot motion control can be found
in Brogårdh (2007, 2009), and references therein.

2.3.1 A General Motion Control System

A general robot motion control system, capable of synchronously controlling n
robot manipulators, is illustrated in Figure 2.4. The system consists of the follow-
ing components:

Robot 1, Robot 2, ..., Robot n The robot manipulators with actuators and sen-
sors included. The manipulators can be in contact with the environment,
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Figure 2.4: A general robotics motion control system.

e.g., in assembly tasks, or operate in free space without contact with the
environment, e.g., in laser cutting. The sensors can be of different types.
A first type of sensors generates sensor readings ya which are used by the
feedback controller. Examples of such sensors are encoders or resolvers
measuring actuator positions, accelerometers measuring link and tool ac-
celeration, force sensors1 measuring the contact forces acting on the end
effector, torque sensors measuring the joint torques on the link side of the
gearbox, and joint encoders measuring the joint positions. The second type
of sensor information, yb, can be exemplified by conveyor positions mea-
sured by encoders, or the position of an arc-welding gun relative to the
desired welding path as measured by a tracking sensor. The second type of
sensors are used by the trajectory interpolator and the controller to adapt
the robot motion to the measured path. A third type of sensors are pri-
marily used by the trajectory planner, e.g., in the case of a vision system
specifying the position of an object to be gripped by the robot. Some of the
robots in Figure 2.4 could also be replaced by multi- or single-axis position-
ers used for, e.g., rotating the object in an arc-welding application.

Controller 1, Controller 2, ..., Controller n Generate control signals u(t) for the
actuators with the references Xd (t) and the sensor readings ya(t) as inputs.
The controller can operate in position control mode for point-to-point mo-
tion in, e.g., a spot-welding application, or continuous path tracking in,
e.g., a dispensing application. When the robot is in contact with the en-
vironment, the controller can still be in position control mode, e.g., in pre-
machining applications. Some contact applications require a compliant be-
havior of the robot due to uncertain geometry or process requirements. This

1The sensor is called force sensor for simplicity, even though both forces and torques are normally
measured.
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requires a controller in compliance control mode for some directions, and
position control mode for other directions in task space. Examples of these
applications, using compliance control, are assembly, machine tending, and
product testing. In other applications as friction stir welding, grinding, and
polishing, the contact force must be controlled in a specific direction while
position or speed control is performed in the other directions. Compliance
and force control can be accomplished with or without the use of force sen-
sors, depending on the performance requirements.

Trajectory Interpolator The task of the trajectory interpolator is to compute con-
troller references Xd (t) that follow the programmed trajectory and which
simultaneously are adapted to the dynamic performance of the robot. The
input from the trajectory planner is the motion specification, e.g., motion
commands specifying a series of end effector positions xi along with desired
end effector speeds vi . Sensor readings yb(t) and yc(t) can also be used by
the trajectory interpolator. The trajectory Xd (t) contains positional informa-
tion for all n robots, and can be expressed in Cartesian or joint space.

Trajectory Planner Specifies the desired motion of the robot end effector. This
can be done manually by a robot programmer who specifies the motion in
a robot programming language with a series of motion commands. The
program can be taught by moving the robot to the desired positions and
command the robot to read the actual positions. The motion commands can
also be generated by an off-line programming system. The desired motion
can also be expressed on a higher level by task programming as, e.g., by
an instruction as picking all objects on a moving conveyor, and placing the
objects in desired locations. The positions for picking the objects is then
specified by a vision system.

Besides the basic motion control functionality as described in Figure 2.4, the
robot motion control also includes, for example, the following functionality:

Absolute Accuracy Identification of the link parameters for an extended kine-
matic model in order to obtain high volumetric accuracy. This is useful for
off-line programming and for fast robot replacement (Brogårdh, 2007).

ILC Iterative learning control for improved path accuracy, used, e.g., for high
precision laser cutting (Norrlöf, 2000; Gunnarsson et al., 2006).

Load Identification Identification of user tool and load to improve the dynamic
model accuracy for high control performance, and to avoid overload of the
robot mechanics (Brogårdh and Moberg, 2002).

Collision Detection Model based collision detection to save equipment at acci-
dental robot movements, for example during programming (Brogårdh et al.,
2001).

Diagnosis Diagnosis of the status and behavior of, e.g., gearboxes and mechani-
cal brakes.
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Figure 2.5: A simplified robotics motion control system.

Special Control Modes One example is emergency stop control modes where
the mechanical brakes and the motors are used simultaneously to stop the
robot. Another example from ABB is WristMove, where the robot accuracy
in cutting applications is increased bymoving the wrist axes only (Jerregård
and Pihl, 2007).

Supervision Supervision of, e.g., position and speed for safety reasons, and for
saving equipment on and close to the robot.

Calibration Calibration methods for, e.g., tool frame or actuators.

Autotune Methods Methods for adaptingmodel parameters or controller tuning
to a specific robot individual or installation.

2.3.2 A Model-Based Motion Control System for Position Control

A simplified outline of a motion control system is shown in Figure 2.5. The sys-
tem controls one robot manipulator in position control mode. The trajectory in-
terpolator and the controller make an extensive use of models, hence this type
of control is denoted model-based control. The system has the following compo-
nents:

Robot Manipulator The physical robot arm with actuators receiving the control
signal u(t) from the controller. The control signal can be, e.g., a torque refer-
ence to a torque controller, a velocity reference to a velocity controlled actu-
ator or a three-phase current to an electrical motor. Throughout this work,
the torque control is assumed to be ideal and a part of the actuator, which
has been proven by experiments to be a reasonable assumption for most of
the ABB robots. Hence, the control signal u(t) will be a motor torque refer-
ence. The sensor readings y(t) are normally the actuator positions only, but
more sensors can be added as described in the previous section.

Models The models used by the motion control system, e.g., the kinematic and
dynamic models described previously. The models and how to obtain the
model parameters will be further described in Chapters 3 – 4.

Controller Generates control signals u(t) for the actuators with the references
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Xd (t) and the sensor readings y(t) as input. The controller can be split
into a feedback controller and a feedforward controller, and will be further
described in Chapter 5.

Trajectory Interpolator Creates a reference Xd (t) for the controller with the user
program as input. The first step of the trajectory interpolation could be
to compute the continuous geometric path Xd (γ) where γ is a scalar path
parameter, e.g., the distance along the path. The second step of the inter-
polation is to associate a timing law to γ and obtain γ(t). In this way, the
path Xd (γ) is transformed to a time determined trajectory Xd (γ(t)) = Xd (t).
Note that the speed and acceleration as well as higher order derivatives of
the path, are completely determined once the trajectory is computed. The
trajectory interpolator is responsible for limiting the speed and acceleration
of the trajectory, to make it possible for the robot to dynamically follow the
reference without actuator saturations. The requirement of path smooth-
ness depends on the controller used and on the requested motion accuracy.
One example of smoothness requirement is that the acceleration derivative,
also called jerk, is limited.

User Program The desired motion of the robot end effector is specified by a se-
ries of motion commands in the user program. In the example program, the
command MoveL x2,v2 specifies a linear movement of the end effector to
the Cartesian position x2 with velocity v2. The movement starts in the end
position of the previous instruction, i.e. x1. Generally, the movement can
be specified in joint space or in Cartesian space. In joint space the positions
are described by the joint angular positions, and in Cartesian space by the
Cartesian position and orientation of the end effector. The movement in
Cartesian space can typically be specified as linear or circular. In reality,
more arguments must be attached to the motion command to specify, e.g.,
behavior when the position is reached (stop or make a smooth direction
change to the next specified position), acceleration (do not exceed 5m/s2),
and events (set digital output 100ms before the endpoint is reached).

The ultimate requirements on the described motion control system can be sum-
marized as follows:

Optimal Time Requirement The user-specified speed must only be reduced if
the robot movements are limited mechanically or electrically by the con-
straints from the robot components. Some examples of component con-
straints are maximum motor and gearbox torques, maximum motor speed,
and maximum allowed forces and torques acting on the manipulator links.
Note that the acceleration is always limited due to actuator constraints and
that the user can add more constraints, for example, maximum allowed ac-
celeration along the path.

Optimal Path Requirement The user-specified path must be followed with spec-
ified precision, also under the influence of different uncertainties. These un-
certainties are disturbances acting on the robot and on the measurements,
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as well as uncertainties in the models used by the motion control system.

If these two requirements are fulfilled, the cycle-time performance of the robot
depends entirely on the electromechanic components such as gearboxes, mechan-
ical links, actuators, and power electronics. Generally, a given performance re-
quirement can be fulfilled either by improving the electromechanics or by im-
proving the computational intelligence of the software, i.e., improving the mod-
els, the control algorithms, and the trajectory optimization algorithms. The possi-
bilities to use electromechanic or software solutions to fulfil performance require-
ments can be illustrated by two simple examples:

• Requirement: Path accuracy of 0.5 mm.

– Electromechanic solution: Design the robot with a stiffer mechanical
arm including bearings and gearboxes.

– Software solution: Improve the models and control algorithms, i.e., a
higher degree of fulfillment of the optimal path requirement.

• Requirement: The robot task must be accomplished in 10 s.

– Electromechanic solution: Increase the power and torque of the drive-
train, i.e., the motors, gearboxes, and power electronics.

– Software solution: Improve the trajectory optimization algorithms
and the models used, i.e., a higher degree of fulfillment of the opti-
mal time requirement.

A higher degree of fulfilment of the two requirements using software solutions
means more complexity in the software and algorithms and, of course, more com-
putational power. This means a more expensive computer in the controller, and
initially, a longer development time. However, the trend of moving functionality
from electromechanics to software will certainly continue due to the continuing
development of low-cost computer hardware and efficient methods for develop-
ing more and more complex real-time software systems. However, in every prod-
uct development project, there is an trade-off between electromechanics cost, i.e.,
the cost of gearboxes, mechanical arm, actuators, and power electronics, and the
software cost2, i.e., the cost of computers, memory, sensors, and motion control
development.

To make cost optimization of robot systems, including robot electromechanics
and controller software, for a spectrum of different applications, is a very difficult
task. How this task is solved varies a lot from one robot manufacturer to another.
However, moving as much as possible of the performance enhancement to the
controller software must be regarded as the ultimate goal for any robot motion
control system. Besides cost there is of course also a matter of usability which

2Software is not used in the normal sense here and the software cost could also be denoted the
motion control cost. Cost of brain could also be used, and in that case, the electromechanics cost
could be denoted the cost of muscles.
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increases with the level of computational intelligence, e.g., easy programming
and facilitation of advanced applications.

The optimal time requirement is mainly a requirement on the trajectory interpo-
lator and the optimal path requirement is mainly a requirement on the controller.
Accurate models are necessary for the fulfilment of both requirements. One small
example of minimum-time trajectory generation can be found in Section 5.3.6.

The fulfilment of the second requirement, i.e., the optimal path requirement, is
the subject of this work, and the next two chapters will treat the modeling aspects
of robotics.



3
Modeling of Robot Manipulators

This chapter describes the models that are relevant for this work, namely the
kinematic and dynamic models of a serial link robot of elbow type.

3.1 Kinematic Models

The kinematic models describe the motion without regard to the forces that cause
it, i.e, all time-based and geometrical properties of the motion. The position, ve-
locity, acceleration, and higher order derivatives are all described by the kinemat-
ics. A thorough description of kinematic models can be found in Craig (1989),
Spong et al. (2006), Siciliano and Khatib (2008), and Siciliano et al. (2010).

3.1.1 Position Kinematics and Frame Transformations

The serial N-link robot has N + 1 serially mounted rigid bodies connected by
N revolute joints. The rigid bodies are numbered from 0 to N , rigid body 0
is connected to the base, and rigid body N is connected to an end effector, i.e.,
a tool. Rigid body 1 to N are also called links and are actuated by electrical
motors via gear transmissions. The joints are numbered from 1 to N and joint i
connects link i − 1 to link i. The motor positions are measured by sensors1. With
N ≥ 6 actuated links, both the position and the orientation of the end effector
can be fully controlled. The joint angular position vector, or joint angles, q ∈ RN ,
describe the configuration or position of the manipulator. The position of the tool
is described by attaching a coordinate system, or frame, fixed to the tool. The tool

1The motor position sensor is usually an encoder or a resolver.
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Figure 3.1: A robot in a work-cell with the standard frames, as defined by
ABB, used in cell modeling illustrated.

pose is then described by the position p ∈ R3 and orientation2 φ ∈ R3 of this tool
frame. The origin of the tool frame is known as the tool center point (TCP). The
tool frame position is described relative to the base frame, attached to the base of
the robot.

Describing the manipulator position by the joint angles q is often denoted a joint
space description, while describing it by the tool position p and orientation φ is
denoted a task space description3. The position kinematics relates the joint space
to the task space. For a manipulator with gearboxes, the actuator space can also
be defined. The actuator position q̃ is related to the joint position q by

q̃ = ηq, (3.1)

where η is a (possibly non-diagonal) matrix of gear ratios. A robot with the
described frames and the joint positions is illustrated in Figure 3.1. The other
frames in the figure are typical frames used for work-cell modeling, to simplify
the robot programming task4:

2There are several possible representations of orientation. Here, a minimal representation of orien-
tation is assumed. One minimal representation is the use of three Euler angles (e.g., roll-pitch-yaw)
although it suffers from mathematical singularities. These singularities can be avoided with a four
component unit quaternion representation. The orientation can also be represented by a rotational
matrix R ∈ SO(3). Different representations of orientation is described in Siciliano and Khatib (2008).

3Task space is sometimes called operational space or Cartesian space. Joint space is also called
configuration space.

4Different robot manufacturers have slightly different concepts and naming conventions for the
frames used in cell modeling. In this text, the ABB frame concept and names are used.
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Figure 3.2: Standard frames.

• World frame is the common reference frame in a work cell, used by all
robots, positioners, conveyors, and other equipment.

• Base frame describes the position and orientation of the base of a robot.

• Wrist frame is attached to the mounting flange of the robot.

• Tool frame describes the tool position and orientation.

• User frame describes a task relevant location.

• Object frame describes an object relative to the task-relevant location.

• Work object frame is the object frame as seen from the world frame, i.e.,
defined by user frame and object frame.

• Displacement frame describes locations inside an object.

• Target frame (or programmed position) is where the tool frame eventually
should be positioned.

The position and orientation of frame B can be described relative to frame A by a
homogenous transformation A

BT describing the translation and rotation required
to move from A to B. Homogenous transformations are described in the general
references given, e.g., Siciliano and Khatib (2008). Figure 3.2 shows the standard
frames and the chains of transformations describing the frame positions. Note
that, e.g., the user frame can be defined on a positioner, on another robot, or on
a conveyor. This means that the transformation from world frame to user frame
can be time-varying, defined by, e.g., the kinematics of the external positioner.
The base frame can also be time-varying if, e.g., the robot base is moved by a
track motion as illustrated in Figure 3.3. The desired position of the tool frame is
described in the robot programs as a target frame. The target frame, which should
be equal to the tool frame when the position is reached, can then be described
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Figure 3.3: A robot moved by a track motion.

in the base frame using the chain of transformations. For some applications, a
room-fixed TCP is convenient. Here, the tool is fixed and the work object frame
is moved by the robot.

3.1.2 Forward Kinematics

The forward kinematics problem is, given the joint angles, to compute the posi-
tion and orientation of the tool frame relative to the base frame, or

X = Γ(q, θkin), (3.2)

where X is the tool frame position and orientation defined as

X =

[
p
φ

]
, (3.3)

and Γ( · ) is a nonlinear function. θkin is a vector of fixed kinematic link param-
eters which, together with the joint positions, describe the relation between the
base frame, frames attached to each link, and the tool frame. θkin consists of
parameters5 representing arm lengths and angles describing the rotation of each
joint axis relative to the previous joint axis.

3.1.3 Inverse Kinematics

The inverse kinematics problem is, given the position and orientation of the
tool frame, to compute the corresponding joint angles. The inverse kinematics
problem is considerably harder than the forward kinematics problem6, where a
unique closed form solution always exists. Some features of the inverse kinemat-
ics problem are:

• A solution may not exist. The existence of a solution defines the workspace

5A well known parametrization of θkin are the so called Denavit-Hartenberg parameters.
6This is true for the serial link manipulator considered here. For a parallel arm robot, the situation

is the opposite.
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of a manipulator. The workspace is the volume which the end effector of
the manipulator can reach7.

• If a solution exists, it may not be unique. One example of multiple solu-
tions is the elbow-up and elbow-down solutions for the elbow manipulator.
There can even exist an infinite number of solutions, e.g., in the case of
a kinematically redundant manipulator. In this case the number of link
degrees-of-freedom (DOF)8 is greater than the number of tool DOF, e.g.,
N > 6 for a tool which can be oriented and positioned arbitrarily. An ex-
ample of a redundant system is the robot moved by a track motion in Fig-
ure 3.3, having totally 7 degrees-of-freedom. Methods for selecting one of
many possible solutions are often needed, and each solution is then usually
said to represent a particular robot configuration.

• The solution can be hard to obtain, even though it exists. Closed-form solu-
tions are preferred, but for certain manipulator structures, only numerical
iterative solutions are possible.

The inverse kinematics can be expressed as

q = Γ
−1(X, C, θkin), (3.4)

where C is some information used to select a feasible solution. One alternative is
to let C be parameters describing the desired configuration. Another alternative
is to let C be the previous solution, and to select the new solution as the, in some
sense, closest solution.

3.1.4 Velocity Kinematics

The relation between the joint velocity q̇ and the Cartesian velocity Ẋ is deter-
mined by the velocity Jacobian J of the forward kinematics relation

Ẋ =
∂Γ(q)
∂q

q̇ = J(q)q̇. (3.5)

The relation between higher derivatives can be found by differentiation of the ex-
pression above, e.g., Ẍ = J(q)q̈ + J̇(q)q̇. The velocity Jacobian, from now on called
the Jacobian, is useful in many aspects of robotics. One example is the transfor-
mation of forces and torques, acting on the end effector, to the corresponding
joint torques. This relation can be derived using the principle of virtual work,
and is

τ = JT (q)F, (3.6)

where F ∈ R
6 is the vector of end effector forces and torques, and τ ∈ R

N is a
vector of joint torques.

7The volume which can be reached with arbitrary orientation is called dextrous workspace, and
the volume that can be reached with at least one orientation is called reachable workspace.

8The number of independent coordinates necessary to specify the configuration of a certain sys-
tem.
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The Jacobian is also useful for studying singularities. A singularity is a configu-
ration where the Jacobian looses rank. Some facts about singularities:

• A Cartesian movement close to a singularity results in high joint velocities.
This can be seen from the relation q̇ = J−1(q)Ẋ.

• Most singularities occur on the workspace boundary but can also occur in-
side the workspace, e.g., when two or more joint axes are lined up.

• Close to a singularity there may be infinitely many solutions, or no solu-
tions, to the inverse kinematics problem.

• The ability to move in a certain direction is reduced close to a singularity.

3.2 Dynamic Models

Dynamic models of the robot manipulator describe the relation between the mo-
tion of the robot, and the forces that cause the motion9. A dynamic model is
useful for, e.g., simulation, control analysis, mechanical design, and real-time
control. Some control algorithms require that the inverse dynamics problem is
solved. This means that the required actuator torque is computed from the de-
sired movement, including time derivatives. For simulation of the manipulator
movement, the direct dynamic problem must be solved. This means that the dy-
namic model differential equations are solved with the actuator torques as input.

Depending on the intended use of the dynamic model, the manipulator can be
modeled as rigid or elastic. A real flexible manipulator is a continuous nonlinear
system, described by partial differential equations, PDEs, with infinite number
of degrees-of-freedom. An infinite dimensional model is not realistic to use in
real applications. Instead, finite dimensional models with the minimum number
of parameters for the required accuracy level is preferred. The following three
levels of elastic modeling are described in, e.g., Bascetta and Rocco (2002):

Finite Element Models Thesemodels are themost accuratemodels but normally
not used for simulation and control due to their complexity. FEM models
are widely used in the mechanical design of robot manipulators.

Assumed Modes Models These models are derived from the PDE formulation
by modal truncation. Assumed modes models used for simulation and con-
trol design are frequently described in the literature.

Lumped Parameter Models The elasticity is modeled by discrete, localized
springs. With this approach, a link can be divided into a number of rigid
bodies connected by non-actuated joints. The gearbox elasticity can also be
modeled with this approach.

9A somewhat different definition of dynamics is usually adopted in general multibody dynamics
(Shabana, 1998), where kinetics deals with motion and the forces that produce it, and kinematics
deals with the geometric aspects of motion regardless of the forces that cause it. Dynamics then
includes both kinematics and kinetics.
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In the following, both rigid and elastic dynamic models for robot manipulators
will be described.

3.2.1 The Rigid Dynamic Model

There are several methods for obtaining a rigid dynamic model. The two most
common approaches are the Lagrange formulation (Spong et al., 2006) and the
Newton-Euler formulation (Craig, 1989). A third method is Kane’s method (Kane
and Levinson, 1983, 1985; Lesser, 2000). All methods are based on classical me-
chanics (Goldstein, 1980) and produce the same result even though the equations
may differ in computational efficiency and structure. A detailed comparison of
these methods is outside the scope of this work. In the following, only the La-
grange formulation will be described in some detail.

The Lagrangian method is based on describing scalar energy functions of the
system, the kinetic energy K(q, q̇) and the potential energy V (q). These energy
functions are expressed as functions of some suitable generalized coordinates, q,
defined by

q =
[
q1 q2 . . . qN

]T
. (3.7)

For the manipulator considered here, the generalized coordinates can be chosen
as the joint angles. It can be shown that the kinetic energy can be expressed as

K(q, q̇) =
1
2
q̇TM(q)q̇, (3.8)

where M( · ) is the inertia matrix. The inertia matrix is positive definite and sym-
metric. More properties of Lagrangian dynamics are described in, e.g., Sciavicco
and Siciliano (2000).

The next step is to compute the Lagrangian L as L = K − V . By applying the
Lagrange equation

d

dt

∂L

∂q̇j
− ∂L

∂qj
= τj , (3.9)

the equations of motion, i.e., the dynamic model, can be derived. In the equation
above, τj is called a generalized force, in our case the actuator torque.

In a rigid dynamic model, the links and gearboxes are assumed to be rigid. The
mass and inertia of the actuators and gearboxes are added to the corresponding
link parameters. The model consists of a serial kinematic chain of N links mod-
eled as rigid bodies as illustrated in Figure 3.4. One rigid body rbi is illustrated
in Figure 3.5, and is described by its mass mi , center of mass ξ i , and inertia ten-
sor with respect to center of mass J i . Due to the symmetrical inertia tensor, only
six components of J i need to be defined. For simplicity, it is assumed that the
structure of the serial manipulator, i.e., the orientations of the rotational joint
axes, is given. The kinematics is then described by the length l i . All parameters
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Figure 3.4: A rigid dynamic model with 3 DOF.

Figure 3.5: A rigid body and its attributes.

are described in a coordinate system ai , fixed in rbi , and are defined as follows

ξ i =
[
ξ i
x ξ i

y ξ i
z

]
, J i =




J ixx J ixy J ixz
J ixy J iyy J iyz
J ixz J iyz J izz



, l i =

[
l ix l iy l iz

]
.

The model can be derived by using, e.g., the Lagrange formulation which yields
a system of second order ordinary differential equations or ODEs

M(q, θrb, θkin)q̈ + c(q, q̇, θrb, θkin) + g(q, θrb, θkin) = τ, (3.10)

where ẋ denotes dx/dt and the time dependence is omitted in the expressions.
M( · ) ∈ RN×N is the inertia matrix computed asM( · ) = Ma( · )+Mm, whereMa( · )
is the configuration dependent inertia matrix of the robot arm and, Mm is the
inertia matrix of the rotating actuators expressed on the link side of the gearbox.
The Coriolis, centrifugal, and gravity torques are described by c( · ) ∈ R

N and
g( · ) ∈ R

N , respectively. The vector of joint angles is denoted q ∈ R
N , and the

actuator torque vector is denoted τ ∈ R
N . Note that the equations are described

on the link side, i.e., τ = τam = ηT τmm and Mm = Ma
m = ηTMm

mη where η is the
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gear ratio matrix. The notation Xa
m should be interpreted10 quantity X for the

motor expressed on the link side of the gearbox. The rigid body and kinematic
parameters described previously are gathered in θrb and θkin respectively, i.e.,
for each link i

θi
rb =

[
mi ξ i

x ξ i
y ξ i

z J ixx J iyy J izz J ixy J ixz J iyz
]
, (3.11a)

θi
kin =

[
l ix l iy l iz

]
. (3.11b)

For this model to be complete, the friction torque and the torque from gravity-
compensating springs, if present, must be added to (3.10).

3.2.2 The Flexible Joint Dynamic Model

This model is an elastic, lumped parameter model. Consider the robot described
in Section 3.2.1 with elastic gearboxes, i.e., elastic joints. This robot can be mod-
eled by the so called flexible joint model which is illustrated in Figure 3.6. The
rigid bodies are connected by torsional spring-damper pairs. If the inertial cou-
plings between the motors and the rigid links are neglected we get the simplified
flexible joint model11. If the gear ratio is high, this is a reasonable approximation
as described in, e.g., Spong (1987). The motor mass and inertia are added to the
corresponding rigid body. The total system has 2N DOF. The model equations of
the simplified flexible joint model are

Ma(qa)q̈a + c(qa, q̇a) + g(qa) = τa, (3.12a)

τa = K(qm − qa) + D(q̇m − q̇a), (3.12b)

τm − τa = Mm q̈m + f (q̇m), (3.12c)

where joint and motor angular positions are denoted qa ∈ R
N and qm ∈ R

N ,
respectively. τm is the motor torque and τa is the gearbox output torque. K ∈
R

N×N is a stiffness matrix and D ∈ RN×N is the matrix of dampers. The dynamic
and kinematic parameters are still described by θrb and θkin but are for simplicity
omitted in the equations. A vector of friction torques is introduced for this model,
and described by f (q̇m) ∈ RN . The friction torque is here approximated as acting
on the motor side only. The convention of describing the equations on the link
side is used, i.e., qm = qam = η−1qmm and f ( · ) = f a

m( · ) = ηT f m
m ( · )

If the couplings between the links and the motors are included we get the com-
plete flexible joint model (Tomei, 1991)

τa = Ma(qa)q̈a + S(qa)q̈m + c1(qa, q̇a, q̇m) + g(qa), (3.13a)

τm − τa = Mm q̈m + ST (qa)q̈a + c2(qa, q̇a) + f (q̇m), (3.13b)

τa = K(qm − qa) + D(q̇m − q̇a), (3.13c)

where S ∈ R
N×N is a strictly upper triangular matrix of coupled inertia between

links and motors. The structure of S depends on how the motors are positioned

10The a is explained by the fact that the link side can also be denoted the arm side and sometimes
also the low-speed side. The motor side can also be denoted the high-speed side.
11Sometimes, the viscous damping is also neglected in the simplified model.
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Figure 3.6: A flexible joint dynamic model with 6 DOF.

and oriented relative to the joint axis directions.

The flexible joint models can formally be derived in the same way as the rigid
model, e.g., by the Lagrange equation. The potential energy of the springs must
then be added to the potential energy expressions as

Vs(qa, qm) =
1
2
(qa − qm)TK(qa − qm), (3.14)

and the kinetic energy of the rotating actuators must be added as well.

3.2.3 Nonlinear Gear Transmissions

The nonlinear characteristics of the gear transmission can have a large impact on
the behavior of a robot manipulator, for example at low speed when the friction
parameters with nonlinear speed dependency are dominant. A classical friction
model12 includes the viscous and Coulomb friction, fv and fc respectively, and is
given by

f (v) = fvv + fc sign(v), (3.15)

where v = q̇m. More advanced frictionmodels are described in Armstrong-Hélouvry
(1991). One model taking many phenomenon into account is the so called LuGre
Model, described in Canudas de Wit et al. (1995) and Olsson (1996). This model
is a nonlinear differential equation modeling both static and dynamic behavior

12All friction models described here are scalar models that can be used for each gear transmission.



3.2 Dynamic Models 33

−100 −50 0 50 100
−5

−4

−3

−2

−1

0

1

2

3

4

5

Speed [rad/s]

F
ric

tio
n 

T
or

qu
e 

[N
m

]

Figure 3.7: Typical friction characteristics of a compact gearbox as described
by (3.17).

and is described by

dz

dt
= v − |v|

g(v)
z, (3.16a)

σ0g(v) = fc + (fs − fc)e−(v/vs)
2
, (3.16b)

σ1(v) = σ1e
−(v/vd )2 , (3.16c)

f (v) = σ0z + σ1
dz

dt
+ fvv, (3.16d)

which in its simplified form has σ1(v) = σ1. The Stribeck friction is modeled
by fs. Another dynamic friction model is the Generalized Maxwell-Slip Model,
described in Al-Bender et al. (2005). A smooth static friction law is suggested in
Feeny and Moon (1994). This model avoids discontinuities to simplify numerical
integration and is given by

f (v) = fvv + fc(µk + (1 − µk) cosh−1(βv)) tanh(αv), (3.17)

and is illustrated in Figure 3.7. Figure 3.8 shows the frictionmeasured on one axis
of an industrial robot under steady-state conditions, i.e., constant speed, in one
configuration. In the same figure, the steady-state LuGre model and the Feeny-
Moon model, fitted to the experimental data, are shown. Both models describe
the static behavior in a good way. However, the friction of a real robot shows
large variations for different configurations in the workspace, for different tool
loads, and for different temperatures (Carvalho Bittencourt et al., 2010). This
means that some kind of off-line or on-line adaption of the model is necessary.
An open question is whether the existing frictionmodels can capture the dynamic
effects of the compact gear boxes, together with motor bearings, typically used in
industrial robots of today.

Another important nonlinear gearbox characteristic is the nonlinear stiffness. The
nonlinear stiffness can also be included in the flexible joint model by replacing
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Figure 3.8: One example of the friction characteristics for one axis of an
industrial robot.
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Figure 3.9: Three typical gearbox stiffness characteristics.

K(qm − qa) in (3.12) by

τs = τs(qm − qa), (3.18)

where τs( · ) is a nonlinear function describing a nonlinear spring. Three typical
spring characteristics are shown in Figure 3.9. The first has a smooth nonlinear
characteristics, often called a stiffening spring. This is typical for the compact
gearboxes used by modern industrial robots. The second is an ideal linear spring
and the third has a backlash behavior. Industrial gearboxes are designed for low
backlash, i.e., a backlash that can be accepted with respect to the accuracy re-
quired. The backlash is, of course, not zero. More nonlinearities could be added
to the model of the gear transmission. Modeling of hysteresis, backlash, and non-
linear stiffness/damping is, for example, described in Tuttle and Seering (1996),
Dhaouadi et al. (2003), and Ruderman et al. (2009). A smooth nonlinear stiffness
is used in the benchmark problems, described in Papers F and G.



3.2 Dynamic Models 35

Figure 3.10: An extended flexible joint dynamic model with 8 degrees-of-
freedom.

3.2.4 The Extended Flexible Joint Dynamic Model

Most publications concerning flexible robot manipulators only consider elastic
deformation in the rotational direction. If only the gear elasticity is considered
we get the flexible joint model, and if link deformation restricted to a plane per-
pendicular to the preceding joint is included in the model we get the flexible link
model. One example of a flexible link model is described in De Luca (2000). In
Paper A it is shown that the flexible joint model must be extended in order to
describe a modern industrial robot in a realistic way. The added elasticity is the
elasticity of bearings, foundation, tool, and load as well as bending and torsion
of the links.

The extension of the flexible joint model is straightforward. First, replace the one-
dimensional spring-damper pairs in the actuated joints with multidimensional
spring-damper pairs. Second, if necessary, divide each link into two or more rigid
bodies at proper locations, and connect the rigid bodies with multi-dimensional
spring-damper pairs. In this way, non-actuated joints or pseudo-joints are added
to the model. The principle is illustrated in Figure 3.10 where one extra torsional
spring is added in the actuated third joint to model torsion of link three. Link
three is then divided in two rigid bodies, and one more torsional spring is added
to allow bending out of the plane of rotation. In this way two non-actuated joints
are created. The model thus has 8 DOF, i.e., three motor DOF qm1–qm3, three ac-
tuated joint DOF qa1–qa3, and two non-actuated joint DOF qa4–qa5. The number
of non-actuated joints and their locations are, of course, not obvious. This model
structure selection is therefore a crucial part of the modeling and identification
procedure.
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Generally, if the number of added non-actuated joints is Υna and the number of
actuated joints is Υa, the system has 2Υa + Υna degrees-of-freedom. The model
equations can then be described as

Ma(qa)q̈a + c(qa, q̇a) + g(qa) = τa, (3.19a)

τa =

[
τg
τe

]
, (3.19b)

qa =

[
qg
qe

]
, (3.19c)

τg = Kg (qm − qg ) + Dg (q̇m − q̇g ), (3.19d)

τe = −Keqe − De q̇e, (3.19e)

τm − τg = Mm q̈m + f (q̇m), (3.19f)

where qg ∈ R
Υa is the actuated joint angular position, qe ∈ R

Υna is the non-
actuated joint angular position, and qm ∈ R

Υa is the motor angular position.
Mm ∈ R

Υa×Υa is the inertia matrix of the motors and Ma(qa) ∈ R
(Υa+Υna)×(Υa+Υna)

is the inertia matrix for the joints. The Coriolis and centrifugal torques are de-
scribed by c(qa, q̇a) ∈ RΥa+Υna , and g(qa) ∈ RΥa+Υna is the gravity torque. τm ∈ RΥa

is the actuator torque, τg ∈ R
Υa is the actuated joint torque, and τe ∈ R

Υna is
the non-actuated joint torque, i.e., the constraint torque. Kg , Ke, Dg , and De are
the stiffness- and damping matrices for the actuated and non-actuated directions,
with obvious dimensions. This model is from now on called the extended flexible
joint model. The nonlinearities of the gear transmission described previously can
also be added to this model. The non-actuated joint stiffness can also be modeled
as nonlinear if required.

For a complete model including the position and orientation of the tool, X, the
forward kinematic model of the robot must be added. The kinematic model is a
mapping of qa ∈ R

Υa+Υna to X ∈ R
Υa . The complete model of the robot is then

described by (3.19) and

X = Γ(qa). (3.20)

Note that no inverse kinematics exists. This is a fact that makes the control prob-
lem considerably harder.

The identification of the extended flexible joint model is the subject of Paper A
and B, and the inverse dynamics problem when using this model is treated in
Paper C and D.

3.2.5 Flexible Link Models

If the elasticity of the links cannot be neglected nor described by the joint elas-
ticity approaches described in Sections 3.2.2 and 3.2.4, a distributed elasticity
model can be used to increase the accuracy of the model. These models are de-
scribed by partial differential equations with infinite dimension. One way to
reduce the model to a finite-dimensional model is to use the assumed modes
method. The link deflections are then described as an infinite series of separable
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Figure 3.11: The flexible link model.

modes that is truncated to a finite number of modes.

A model of this type is described in De Luca et al. (1998) and illustrated in Fig-
ure 3.11. The model consists of a kinematic chain of N flexible links directly
actuated by N motors. It is assumed that the link deformations are small and
that each link only can bend in one direction, i.e., in a plane perpendicular to the
previous joint axis. The link deflection wi (xi , t) at a point xi along link i of length
li is described by

wi (xi , t) =
Nei∑

j=1

φij (xi )δij (t), i = 1 . . . N, (3.21)

where link i has Nei assumed modes φij (xi ), and δij (t) are the generalized coor-
dinates. By use of Lagrange equations the dynamic model for the system can be
expressed as

[
Bθθ(θ) Bθδ(θ)
BT
θδ(θ) Bδδ

] [
θ̈
δ̈

]
+

[
cθ(θ, θ̇, δ̇)
cδ(θ, θ̇)

]
+

[
0

Dδ̇ + Kδ

]
=

[
τ
0

]
, (3.22)

where θ ∈ RN is a vector of joint angles, δ ∈ RNe is a vector of link deformations,
and Ne =

∑N
i=1 Nei . B is a partitioned inertia matrix, c a vector of Coriolis and cen-

tripetal forces, and K and D are stiffness and damping matrices, respectively, all
with obvious dimensions. The actuator torque is denoted τ. The reference frame
where the deflection is described is clamped to the base of each link. The end ef-
fector position can be approximated by the angles yi as illustrated in Figure 3.11
and described by

yi = θi + Φeiδi , (3.23)

where

Φei =
[
φi,1(li )/ li , . . . , φi,Nei

(li )/ li
]
, (3.24)
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and

δi =




δi,1
...

δi,Nei



. (3.25)

Note that y can be regarded as output variable of this system, and that the same
direct and inverse kinematic models as for the rigid or flexible joint can be used.
This fact simplifies the inverse dynamics control problem. A fact that makes the
inverse dynamics problem hard, however, is that the system from the actuator
torque τ to the controlled variable y can have unstable zero dynamics13, i.e., the
system has non-minimum phase behavior (Isidori, 1995; Slotine and Li, 1991)
which means that trajectory tracking is considerably harder to achieve.

The structure of the equations of motion and the assumed modes depend on the
boundary conditions used, which is a critical choice for these models. Assumed
mode models are further described in, e.g., Hastings and Book (1987), De Luca
and Siciliano (1991), Book (1993), Book and Obergfell (2000), and Bascetta and
Rocco (2002).

3.3 The Kinematics and Dynamics of a Two-Link

Elbow Manipulator

In this section, the kinematic and dynamic models of a rigid two link elbow ma-
nipulator will be derived as a small but illustrative example of how the models
can be derived. The manipulator is planar and constrained to movements in the
x-y plane. By inspection of Figure 3.12, the forward kinematics is

X = Γ(q) =

[
px
py

]
=

[
l1 sin(q1) + l2 sin(

π
2 + q1 + q2)

l1 cos(q1) + l2 cos(
π
2 + q1 + q2)

]

=

[
l1 sin(q1) + l2 cos(q1 + q2)
l1 cos(q1) − l2 sin(q1 + q2)

]
. (3.26)

The inverse kinematics can here be derived in closed form by either algebraic or
geometric methods. Using the geometric approach and the law of cosine

cos(γ) =
l21 + l22 − p2x − p2y

2l1l2
= sin(q2) , s2, (3.27)

and finally obtain the expression for q2 by use of the atan2 function

q2 = atan2(s2,±
√
1 − s22), (3.28)

13For uniform mass distributions, the system is always minimum-phase.
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Figure 3.12: Two link elbow manipulator kinematics.

where the function atan2 is preferred for numerical reasons. Continuing with the
solution for q1, in the same way

cos(β) =
l21 + p2x + p2y − l22
2l1

√
p2x + p2y

= cβ , (3.29a)

β = atan2(±
√
1 − c2β , cβ), (3.29b)

α = atan2(py , px), (3.29c)

q1 =
π

2
− α − β. (3.29d)

The inverse kinematics is given by (3.29d) and (3.28). The alternative signs in
(3.28) and (3.29b) should be chosen as both plus or both minus corresponding
to the two solutions, elbow-up and elbow-down. The Jacobian of the velocity
kinematics is obtained by differentiation of the forward kinematics (3.26), i.e.,

J(q) =
∂Γ(q)
∂q

=

[
l1c1 − l2s12 −l2s12
−l1s1 − l2c12 −l2c12

]
, (3.30)

where the notations sin(q1) , s1, cos(q1) , c1, and cos(q1 + q2) , c12 etc. are used.

The dynamics is computed based on the simplified model in Figure 3.13. The
dynamic and kinematic parameters are defined according to Section 3.2.1. The
actuator inertial parameters are here included in the link parameters. The first
step is to derive the kinematics for each link center of mass, i.e.,

X1 = Γ1(q) =

[
x1
y1

]
=

[
ξ1s1
ξ1c1

]
, (3.31a)

X2 = Γ2(q) =

[
x2
y2

]
=

[
l1s1 + ξ2c12
l1c1 − ξ2s12

]
, (3.31b)
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Figure 3.13: Simplified two link elbow manipulator dynamic model.

and the corresponding Jacobians

J1(q) =

[
ξ1c1 0
−ξ1s1 0

]
, (3.32a)

J2(q) =

[
l1c1 − ξ2s12 −ξ2s12
−l1s1 − ξ2c12 −ξ2c12

]
. (3.32b)

The rotational kinetic energy in this simple case is

Krot =
1
2
j1q̇

2
1 +

1
2
j2(q̇1 + q̇2)

2, (3.33)

and the translational kinetic energy is generally

Ktrans =
1
2

N∑

i=1

(mi Ẋ
T
i Ẋi )

=
1
2

N∑

i=1

(mi (Ji (q)q̇)
T Ji (q)q̇) =

1
2
q̇T (

N∑

i=1

mi J
T
i (q)Ji (q))q̇. (3.34)

Thus, the total kinetic energy is then

K = Ktrans + Krot . (3.35)

The potential energy is given from the y-coordinate of each mass as

V =
N∑

i=1

(migyi ), (3.36)

where g is the gravitational constant. The Lagrange function is then

L = K − V . (3.37)
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Applying the Lagrange equation (3.9) and using some symbolic mathematical
software, e.g., Matlab Symbolic Toolbox, gives the equations of motion as

τ = M(q)q̈ + C(q, q̇) + G(q), (3.38)

where

M(q) =

[
J11(q) J12(q)
J21(q) J22(q)

]
, (3.39a)

J11(q) = j1 + m1ξ
2
1 + j2 + m2(l

2
1 + ξ2

2 − 2l1ξ2s2), (3.39b)

J12(q) = J21(q) = j2 + m2(ξ
2
2 − l1ξ2s2), (3.39c)

J22(q) = j2 + m2ξ
2
2 , (3.39d)

C(q, q̇) =

[
−m2l1ξ2c2(2q̇1q̇2 + q̇22)

m2l1ξ2c2q̇
2
1

]
, (3.39e)

G(q) =

[
−g(m1ξ1s1 + m2(l1s1 + ξ2c12))

−m2ξ2gc12

]
. (3.39f)

Note that the kinetic energy has the form

K =
1
2
q̇TM(q)q̇, (3.40)

as described in Section 3.2.1. If the rotational kinetic energy is included in (3.34),
the inertia matrix of the system, M(q), can be derived without applying the La-
grange equation. Deriving dynamic models is clearly a matter of formulating the
kinematics, and then use a powerful tool for symbolic mathematics. Of course,
the models can be much more complex than shown in this small example. De-
scribing the problems and solutions for those cases is outside the scope of this
work.





4
Identification of Robot Manipulators

This chapter gives a short introduction to system identification in general, and to
the identification of robot manipulators in particular.

4.1 System Identification

System identification is the art of estimating a model of a dynamic system from
measured data. For a thorough treatment of system identification, the reader is
referred to Ljung (1999), Söderström and Stoica (1989), or Johansson (1993). An
in-depth treatment of frequency-domain identification can be found in Pintelon
and Schoukens (2001). In the area of automatic control, the estimated models are
often used for controller design, on-line control, simulation, and prediction.

4.1.1 Introduction

The identification experiment can be performed in open loop or closed loop. Iden-
tification of a system not subject to feedback control, i.e, an open-loop system,
is illustrated in Figure 4.1. This system has input u, output y, and is affected
by a disturbance v. The disturbance can include measurement noise as well as
external system inputs, not included in u. An identification experiment on a sys-
tem subject to feedback control, i.e., a closed-loop system, is shown in Figure 4.2
where r is the reference signal for the system. A reason for performing a closed-
loop experiment could be that the system is unstable, and must be controlled in
order to remain stable. This is typically the case for a robot manipulator. Other
reasons could be that safety or production restrictions do not allow open loop
experiments. If we take a typical industrial robot manipulator as an example
system, u is the motor torque, y is the motor position, and r is the position refer-

43
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Figure 4.1: An open-loop system.

Figure 4.2: A closed-loop system.

ence. The disturbance v includes both measurement noise and internally gener-
ated disturbances, e.g., torque ripple generated by the motor1.

Models can be divided into nonlinear- and linear models. A real world system
is in general nonlinear. However, linear time-invariant approximations are often
used for modeling the nonlinear reality.

Moreover, models can be described as continuous-time models or discrete-time
models although the measurements, u(t) and y(t), are normally represented as
sampled, discrete-time, data. It is assumed that the reader has a basic knowledge
of linear system theory for continuous-time and discrete-time systems. Some
books treating this subject in-depth are Kailath (1980) and Rugh (1996). Other
recommended sources are Åström and Wittenmark (1996) and Ljung and Glad
(2001).

The different types of models can be further divided into nonparametric mod-
els and parametric models. A nonparametric model is a vector of numbers or a
graphical curve describing the model in the time-domain or frequency-domain.
A parametric model is a model where the information obtained by the measure-
ments has been condensed to a small number of parameters. The model can be
described as a differential or difference equation or, in the case of a linear model,
as a transfer function. In the next sections, these two model types are described.

1The torque ripple is not entering the system at the output which means that it must be filtered by
some appropriate system dynamics before added to v.
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Figure 4.3: Step response of a first order process with delay.

4.1.2 Nonparametric Models

Examples of nonparametric models in the time-domain are impulse responses
or step responses. Such models consist of vectors of system outputs and the cor-
responding time stamps. An example of a step response of a first-order system
with a time-delay is shown in Figure 4.3. The measured output is affected by
measurement noise. The nonparametric step response model can in this case be
described by a parametric transfer function model

G(s) =
K

sT + 1
e−Ls. (4.1)

This three-parameter model2 is often used to describe systems in the process
industry. The parametric model (4.1) can be identified by inspection of the step-
response according to Figure 4.3. This model can then be used for tuning of a
PI- or a PID controller using, e.g., lambda tuning. Identification and control of
industrial processes are treated in Åström and Hägglund (2006). The described
methodology of obtaining a parametric model from a nonparametric model is im-
portant, and the method considered in Papers A and B includes such a method-
ology, although based on a nonparametric frequency-domain model instead of a
nonparametric time-domain model.

Methods for obtaining nonparametric frequency-domain models are, e.g., Fourier
analysis, and spectral analysis. The obtained model is a frequency response func-
tion (FRF) consisting of a vector of complex numbers and the corresponding fre-
quency vector. The complex numbers represent the transfer function from input
to output at different frequencies. The FRF can be illustrated in a Bode diagram,

2Sometimes called the KLT model.
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a Nichols diagram, or a Nyquist diagram, and can be used directly for controller
designwith frequency domainmethods, such as loop-shaping using lead-lag com-
pensation or QFT-design (Horowitz, 1991). The FRF can also be used for obtain-
ing a parametric model as described in Papers A and B.

The method used in Papers A and B, for obtaining the FRF, is based on Fourier
analysis and the discrete-time Fourier Transform. This transform, if the time-
domain signal is x(t), is defined by

X(ejωkTs ) =
∞∑

n=−∞
x(nTs)e

−jωknTs , (4.2)

where Ts is the sample time and ωk the frequency considered. As an approxima-
tion of this transform, when themeasurement is a finite sequence of discrete-time
data, sampled for t = nTs, n = 1, . . . , N , the discrete Fourier transform (DFT) is
usually adopted. The DFT3 is usually defined as

XN (ejωkTs ) =
1√
N

N∑

n=1

x(nTs)e
−jωknTs , (4.3)

where

ωk =
2πk
NTs

, k = 1, . . . , N. (4.4)

For a thorough treatment of the discrete Fourier transforms, see Oppenheim and
Schafer (1975).

The DFT may contain errors, known as leakage errors, due to the fact that it is
computed for a data sequence with finite duration. This error can be reduced
by applying windowing functions before computing the DFT. The leakage error
can be eliminated if the signals are of finite duration, and if the signals are sam-
pled until the system is at rest. This type of excitation is called burst excita-
tion. Another way of eliminating the leakage error is to use a periodic excitation,
and to sample the signals for an integer number of periods, when a steady state
is reached. For further discussions on these issues see Pintelon and Schoukens
(2001).

The FRF4 for a SISO system with the transfer function G, at frequency ωk , can be
estimated as

ĜN (ωk) =
YN (ωk)
UN (ωk)

, (4.5)

where YN ( · ) and UN ( · ) are the DFTs of y( · ) and u( · ), respectively. In the fol-
lowing, we assume that no leakage errors are present because burst or periodic
excitation has been used in the experiments. We further assume that a proper
anti-alias5 filtering is performed so that no alias errors are present. For nota-

3The fast Fourier transform (FFT) is an efficient way of computing the DFT.
4This estimated FRF is sometimes called the empirical transfer function estimate (ETFE).
5Alias or frequency folding occurs when sampling a continuous-time signal with a frequency con-
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Figure 4.4: A linear two-mass flexible joint model.

tional simplicity, the arguments of ĜN ( · ), YN ( · ) and UN ( · ) are written as ωk ,
although ejωkTs would be more correct.

For amultiple-input multiple-output (MIMO) system described by the n×n trans-
fer functionmatrix Gwith inputs u and outputs y, the following relation between
the FRF of G, and the Fourier transforms of the input and output, U and Y , for
frequency ωk , holds

Y (ωk) = G(ωk)U(ωk). (4.6)

If n independent experiments of length N are performed, the multivariable FRF
can be estimated as

ĜN (ωk) = ȲN (ωk)Ū
−1
N (ωk), (4.7)

where ŪN (ωk) and ȲN (ωk) have n columns from the n experiments. If more than
n experiments are performed, other FRF estimators can be applied, see, e.g., Pin-
telon and Schoukens (2001) or Wernholt and Moberg (2008b).

4.1.3 A Robot Example

A linear one-axis flexible joint model (see Section 3.2.2) will now be used as an
example of how to obtain an FRF by closed-loop identification. The model, illus-
trated in Figure 4.4, can be described by the differential equations

0 = Ja q̈a + k(qa − qm) + d(q̇a − q̇m), (4.8a)

τ = Jm q̈m − k(qa − qm) − d(q̇a − q̇m), (4.8b)

or by the transfer function

G(s) =
s2/ω2

z + 2ζz s/ωz + 1

s2(Ja + Jm)(s2/ω
2
p + 2ζps/ωp + 1)

, (4.9)

where

ωz =

√
k

Ja
, ωp =

√
k(Ja + Jm)

JaJm
, ζz =

d

2

√
1
kJa

, ζp =
d

2

√
Ja + Jm
kJaJm

. (4.10)

The input u is the motor torque τ and the output y is the motor position qm. Ja
and Jm are the inertias of the arm and motor respectively, k is the joint stiffness,

tent above half the sample frequency. The alias effect is further described in Åström and Wittenmark
(1996).
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d is the joint viscous damping, and finally, qa is the arm position. The measure-
ment y is affected by measurement noise. The system is controlled by a speed
controller of P-type with sample time Ts = 1ms. The motor speed is obtained
by differentiation of the measured position, and the excitation is the the motor
speed reference r. Two different excitations are evaluated. The first is a burst
excitation in the form of a swept sinusoid (chirp)

r(t) = A sin
(
2πf1(t − t1) +

π(f2 − f1)
t2 − t1

(t − t1)2
)
, (4.11)

with amplitude A, starting at t1 = 0.5 s with frequency f1 = 50Hz, and ending at
t2 = 20 s with frequency f2 = 0.5Hz. The second excitation is a periodic multisine
signal, i.e., a sum of sinusoids, computed as

r(t) =

Nf∑

k=1

Ã cos(2πfk t + φk), (4.12)

where Nf is the number of sinusoids, with frequencies fk and random phases φk

uniformly distributed between 0 and 2π. The frequency fk is chosen from the
grid {fk = k/(TsNp) k = 1, . . . , Np/2}, where Np is the number of samples in one
period and Ts is the sampling time. The amplitude Ã is computed, after the ran-
domization of the phases, to fulfil input amplitude constraints. For optimizing
the input power, given an amplitude constraint, the phases can be randomized
repeatedly (or optimized). This means that the crest factor of the input is min-
imized (Ljung, 1999). The period time of the multisine is chosen to 20 s. The
motor speed and motor torque are measured from t = 0 s to t = 25 s. For the
chirp excitation, the whole sequence is used when computing the FRF, in order
to reduce the leakage errors (allowing all transients to decay during the last 5 s).
For the multisine excitation, leakage is avoided by using only the last 20 s (allow-
ing the initial transients to decay during the first 5 s). The motor torque, motor
speed, and the excitation signals are shown in Figures 4.5–4.6. Clearly, the noise
level is very high compared to the excitation.

Figures 4.7–4.8 show the magnitude of the true system FRF and the estimated
FRFs (for chirp and multisine excitation), obtained by applying (4.5). The FRF is
computed from the torque input to the differentiated output (motor speed). The
errors in the estimated FRF, when using burst excitation, are quite high for fre-
quencies above 20Hz. These errors can be reduced by averaging over neighboring
frequencies using a suitable window (smoothing). The errors in the FRF, when
using periodic excitation, are much smaller. The reason is that the periodic excita-
tion can be concentrated at a few selected frequencies, and thereby decreases the
bias and the variance of the estimated FRF. This is further discussed in Paper B.

Figure 4.9 illustrates one potential problem due to closed loop identification.
Here, the amplitude of the excitation signals is reduced by a factor of 100, and
thus decreasing the signal-to-noise ratio. The errors in the estimated FRFs in-
crease, and the estimated FRFs approach a constant gain, 0 dB. This is the inverse
controller gain (K = 1) as expected (see Söderström and Stoica, 1989). Note that



4.1 System Identification 49

0 5 10 15 20 25
−40

−20

0

20

40

M
o

to
r 

S
p

e
e

d
 [

ra
d

/s
]

0 5 10 15 20 25
−40

−20

0

20

40

Time [s]

M
o

to
r 

T
o

rq
u

e
 [

N
m

]

Figure 4.5: Motor speed and torque during the identification experiment
(chirp input).

0 5 10 15 20 25
−5

0

5

S
p
e
e
d
 R

e
f 
[r

a
d
/s

]

0 5 10 15 20 25
−5

0

5

S
p
e
e
d
 R

e
f 
[r

a
d
/s

]

Time [s]

Figure 4.6: Chirp excitation (upper) and multisine excitation (lower).
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Figure 4.7: Magnitude of true FRF (solid) and estimated FRF (dashed) using
chirp excitation.
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Figure 4.8: Magnitude of true FRF (solid) and estimated FRF (circles) using
multisine excitation.
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Figure 4.9: Low excitation amplitude: Magnitude of true FRF (solid), es-
timated FRF with chirp excitation (dashed, left), and estimated FRF with
multisine excitation (circles, right).
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Figure 4.10: Magnitude of true FRF (solid), estimated FRFwith large leakage
errors (dashed).

multisine excitation improves the estimate somewhat.

The effect of frequency leakage is illustrated in Figure 4.10. Here, the measure-
ment is stopped at t = 20 s, before the system has come to rest. Chirp excitation is
used in this case, but leakage can also occur if multisine excitation is used, e.g., if
data from the first transient period is used, or if the data is not exactly an integer
number of multisine periods.

Finally, in Figure 4.11, a comparison is made between the model FRF of the con-
tinuous-time model, and of the discrete-time, zero-order hold sampled model.
The FRFs are shown up to the Nyquist frequency 500 Hz. The FRFs are almost
identical for lower frequencies. Some conclusions can be drawn from this exam-
ple:

• FRFs can be estimated even if the system runs in closed loop. To reduce bias
and variance errors, the excitation level must be reasonably high compared
to the level of disturbances.

• A burst chirp excitation works if the system is at rest when measurements
start and end. However, it might be necessary to smooth the estimated FRF
if the disturbance level is high.

• A periodic multisine excitation improves the estimated FRF.
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Figure 4.11: FRF of the continuous (solid line) and discrete (dashed line)
two-mass model.

• If the sample frequency is well above the frequencies of the interesting pro-
cess dynamics, continuous-time model FRFs can be directly compared to
discrete-time estimated FRFs, e.g., if a parametric model is to be estimated
from the nonparametric (estimated) FRF. If this is not the case, the discrete-
time FRF of the model must be computed.

For further discussions on closed-loop versus open-loop identification, see, e.g,
Ljung (1999). Periodic excitation is often recommended as an alternative way of
obtaining a leakage-free FRF, see, e.g., Pintelon and Schoukens (2001). This is the
adopted solution described in Paper B, where a multisine excitation is used. The
multisine excitation has, among many things, the advantage that the excitation
energy is concentrated at selected frequencies, thus improving the signal-to-noise
ratio at the frequencies where the DFT is evaluated.

4.1.4 Parametric Models

A parametric model is a model described as, e.g., differential or difference equa-
tions. System identification is one route for obtaining a parametric model of a
system. Another route is physical modeling, i.e., deriving a mathematical model
from the basic laws of physics.

If the parameters of a physical model are known with sufficient accuracy, we get
a white-box model, where both the model structure and the model parameters
are known. An example of such a model is a rigid-body model, as described in
Section 3.2.1, where the kinematic and inertial parameters are known from the
CAD models.

A gray-box model is a physical model where the model structure is known but
the physical parameters are unknown or only partly known. Identification of
parameters in this case is called gray-box identification. A nonlinear gray-box
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model can be formulated in continuous state-space form, i.e.,

ẋ(t) = f (x(t), u(t), θ), (4.13a)

y(t) = h(x(t), u(t), θ), (4.13b)

with states x, control input u, and measurements y. The unknown parameters
are contained in θ. One example of a gray-box model is a simplified flexible
joint model (3.12) where the rigid-body parameters are known, and the elastic
parameters, consisting of springs and dampers, are unknown. The simplified
flexible joint model with measurement of motor positions can be expressed as

ẋ =




x3
x4

M−1a (x1)[−c(x1, x3) − g(x1) + diag(θk )(x2 − x1) + diag(θd )(x4 − x3)]
M−1m [−f (x4) + diag(θk )(x1 − x2) + diag(θd )(x3 − x4) + u]



, (4.14a)

y = x2, (4.14b)

with states

x =
[
xT1 xT2 xT3 xT4

]T
=
[
qTa qTm q̇Ta q̇Tm

]T
, (4.15)

motor torque u, and the unknown elasticity parameters

θ =
[
θk θd

]
=
[
k1 . . . kN d1 . . . dN

]
. (4.16)

If (4.13) is discretized, we obtain the discrete-time gray-box model

x(t + Ts) = fd (x(t), u(t), w(t), θ), (4.17a)

y(t) = hd (x(t), u(t), v(t), θ), (4.17b)

with sample time Ts. Here, the process- and measurement disturbances w and
v, assumed to be zero-mean white noise processes, are also included. The dis-
cretization of the continuous-time system can, for example, be carried out using
the Euler forward formula.

A third type of parametric model is the so-called black-box model. In this case,
the model structure is not known, and therefore, a model structure without any
direct physical interpretation is used for the identification. The black-box model
parameters can, e.g., be the coefficients of a linear difference equation. A general
linear discrete-time black-box model can be expressed as

y(t) = G(q−1, θ)u(t) + H(q−1, θ)e(t), (4.18)

where y(t) ∈ R
ny is the output, u(t) ∈ R

nu is the input, and e(t) ∈ R
ny is a

sequence of independent zero-mean random vectors with covariance matrix Λ.
G( · ) and H( · ) are filters of obvious dimensions, rational functions of the back-
ward shift operator q−1, and of finite order. There are a number of standard
black-box model structures, used for discrete-time identification. Examples of
such standard structures are the output error structure and the ARX structure
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(Ljung, 1999). The ARX structure for a single-input single-output system is

A(q−1)y(t) = B(q−1)q−nku(t) + e(t), (4.19a)

A(q−1) = 1 + a1q
−1 + · · · + anaq

−na , (4.19b)

B(q−1) = b0 + b1q
−1 + · · · + bnbq

−nb , (4.19c)

with model parameters

θ =
[
a1 . . . ana b0 . . . bnb nk

]
. (4.20)

4.1.5 Identification of Parametric Models

The gray-box and black-box models can be identified directly in the time domain.
One way of estimating the parameters is by the use of a so-called prediction error
method (Ljung, 1999). For linear systems described by (4.18), the optimal one-
step-ahead predictor is

ŷ(t|t − Ts; θ) = H−1(q−1, θ)G(q−1, θ)u(t) + [I − H−1(q−1, θ)]y(t), (4.21)

where the predictor ŷ(t|t − Ts, θ) depends on previous inputs and outputs. The
prediction error is then

ε(t, θ) = y(t) − ŷ(t|t − Ts; θ) = e(t) = H−1(q−1, θ)[y(t) − G(q−1, θ)u(t)]. (4.22)

When using a prediction-error method, the error between the predicted model
output and the measured output, i.e., ε(t, θ), is minimized according to some
distance measure (norm). A common choice of norm is a quadratic criterion, and
the estimator is then

θ̂N = argmin
θ

VN (θ), (4.23a)

VN (θ) =
1
N

N∑

k=1

ε2(kTs, θ), (4.23b)

assuming N samples of data have been collected. For some model structures the
parameters θ̂N can be estimated using linear regression, but for most structures
a numerical search procedure is necessary.

For linear discrete-time state-space models, the Kalman filter is the optimal one-
step-ahead predictor, and prediction-errormethods can be used for identification.
State-space models can also be expressed on the general form (4.18). Besides
prediction-error methods, subspace methods are often used for identification of
linear discrete-time state-space models (Ljung, 1999).

The gray-box model structure can also be identified in the time-domain. To de-
sign an optimal predictor for the nonlinear state-space model (4.17) is, in general,
not possible. Approximate predictors, e.g, the extended Kalman filter (Anderson
and Moore, 1979) can then be used. A simple predictor is the noise-free simu-
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lated system output of (4.17)

x(t + Ts) = fd (x(t), u(t), 0, θ), (4.24a)

ŷ(t + Ts |t) = hd (x(t + Ts), u(t + Ts), 0, θ). (4.24b)

However, this only works for stable systems, since a stable predictor is always
required.

For closed loop identification, prediction-error methods that describe the true
noise properties can be used for accurate estimates (small bias). However, some
methods may fail, e.g., output error methods. For a thorough description of time-
domain methods, see Ljung (1999) or Söderström and Stoica (1989).

The gray-box and black-box models can also be identified in the frequency do-
main. One way of doing this is to minimize the least squares error between
the estimated nonparametric FRF and the parametric model FRF. The frequency-
domain methods are described in, e.g., Pintelon and Schoukens (2001). In Pa-
per B, it is shown that a time-domain prediction-error method for a nonlinear sys-
tem can be approximated by a frequency-domain gray-box identification method.

Finally, an illustrative example of frequency-domain gray-box identification. The
physical parameters of the the single-axis flexible joint model in Section 4.1.3 can
be approximated by inspecting the estimated FRF from torque to acceleration,
according to Figure 4.12, and using (4.9)–(4.10). The inertias can be estimated
from the low- and high frequency gains, and the elasticity parameters can be
estimated, e.g., from the frequency and gain of the anti-resonance. Note that the
accuracy can be increased by fitting a parametric FRF over the whole frequency
range. The resulting parameters are Ja = 0.052 (J truea = 0.050), Jm = 0.009 (J truem =
0.010), k = 26 (ktrue = 25), and d = 0.032 (d true = 0.025).

4.2 Identification of Robot Manipulators

This section briefly describes the identification of some models needed for the
control and simulation of robot manipulators. The most important models for
this work are the

• Kinematic model

• Rigid dynamic model

• Elastic dynamic model

Other important models subject to identification but not further described are,
e.g., friction models, backlash and hysteresis models, thermal models, fatigue
models, actuator models, and sensor models. For a more thorough survey of
identification methods for robot manipulators, see, e.g., Kozlowski (1998) and
Wernholt (2007).
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Figure 4.12: Approximate parameter estimation by inspecting the estimated
FRF from motor torque to motor acceleration.

4.2.1 Identification of Kinematic Models and Rigid Dynamic

Models

The described models depend on a number of parameters. The kinematic link
parameters consist of lengths and angles. The dynamic model depends on the
kinematic link parameters as well as the inertial link parameters. The accuracy
of these models depends on the accuracy of these parameters. The parameter
values could in some cases be obtained from the CADmodels of the robot manip-
ulator, and in other cases frommeasurements of the individual parts of the robot.
If these methods are not accurate enough or simply not possible to perform, then
identification of the unknown parameters can be used to obtain the unknown
parameter values. This type of identification is usually denoted gray-box identi-
fication as described in Section 4.1.4.

The nominal kinematic model of a large industrial robot typically gives a volu-
metric accuracy of 2–15mm due to the tolerances of components and variations
in the assembly procedure. This does not fulfill the accuracy requirement for
off-line programming of, e.g., a spot-welding application. By identification of the
kinematic parameters of the individual manipulator, as well as the elastostatic
model, used for compensating the deflection due to gravity, a volumetric accu-
racy of ±0.5mm can be obtained.

It is also interesting to be able to identify the rigid dynamic model (2.3). This can
be performed as a verification of the CAD model parameters when a new robot
is developed or for direct use in the controller. The rigid dynamic model can be
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expressed as (Sciavicco and Siciliano, 2000)

τ = H(q, q̇, q̈)π, (4.25)

where π is a vector of the unknown dynamic parameters. The model thus has
the property of linearity in the parameters. The parameters, called base param-
eters, are not the same as the original link inertial parameters which, in general,
cannot all be identified. The parameters in π are a set of uniquely identifiable
parameters, and consist of different combinations of the physical parameters de-
scribed in Section 3.2.1, e.g., Jyy + m(ξ2

x + ξ2
z ). If measurements of torques and

positions are performed along an exciting trajectory, the identification problem
can be formulated as a linear regression

τ =




τ(t1)
...

τ(tN )



=




H(t1)
...

H(tN )



π = Hπ, (4.26)

and the solution is obtained as the least-squares solution

π = (H
T
H)−1H

T
τ. (4.27)

Note that the speed and acceleration, if not measured, must be estimated from
the measured positions. For the identification to be possible, the movements of
the manipulator during the identification experiment must reveal information of
all unknown parameters, i.e., the excitation must be rich enough. Furthermore,
the movements should not excite the mechanical resonances of the manipulator.
Identification of dynamic parameters is further described in, e.g., Swevers et al.
(2007).

4.2.2 Identification of Elastic Dynamic Models

This section gives some examples of proposed identification methods for flexible
robot manipulators. Most articles on flexible manipulator identification consider
local models, i.e., models valid in one configuration, of black-box or gray-box
type. Moreover, the standard assumption is that all parameters are unknown,
and most suggested identification methods therefore estimate all parameters in
one step. In Pham et al. (2001), all physical parameters of a single-input single-
output (SISO) model are identified by linear regression, using a linear-in-param-
eter model structure. This is exemplified with measurements on both motor and
joint side, but some parameters (stiffness and mass) can be identified with motor
measurements only. In Pham et al. (2002), this method is extended with accelera-
tion measurements on the joint side. A multiple-input multiple-output (MIMO)
black-box model of two robot axes is identified from motor side measurements
in Johansson et al. (2000) by use of a subspace method in combination with a
friction estimation. A gray-box prediction error method is used in Östring et al.
(2003) to identify all physical parameters of a SISO model, using motor measure-
ments only. Inverse eigenvalue theory is used to identify a mass-spring model
of any order in Berglund and Hovland (2000), also using motor measurements
only. This method is extended to MIMO models in Hovland et al. (2001). Ex-
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perimental modal analysis is used in Behi and Tesar (1991) to identify the local
masses, springs, and dampers of an industrial manipulator. The system is then
excited by an impact hammer and the response measured by accelerometers. An
introduction to modal analysis can be found in Avitabile (2001).

Identification methods for global flexible joint models have also been suggested.
Prior knowledge of the rigid body parameters is assumed in Hovland et al. (1999),
where the stiffness and damping parameters are identified by using a frequency
domain method where the frequency domain model is linear in the unknown
parameters. This method works for MIMO flexible joint models with motor
measurements only, and is exemplified on two axes of an industrial manipula-
tor. A three-step identification method is suggested in Wernholt and Gunnars-
son (2006). The first step identifies nonlinear friction and rigid body parameters
using a separable least-squares approach, the second step is based on Berglund
and Hovland (2000) and identifies approximate elasticity parameters and refines
some rigid body parameters, and the last step further refines some parameters
by time-domain nonlinear gray-box identification. The method is applied to one
axis of an industrial manipulator using a three-mass model and a nonlinear trans-
mission stiffness (stiffening spring). In Albu-Schäffer and Hirzinger (2001) the
rigid body parameters are assumed to be known from CAD models, while the
friction and elasticity parameters are identified in separate identification experi-
ments. The elasticities of the transmissions are identified from impulse response
experiments for each individual joint before the assembly of the robot, using joint
torque sensors.

In Hardeman (2008), an identificationmethod for an extended flexible jointmodel
with transmission and bearing elasticity, is suggested. The method is based on
the assumption that all DOFs (motor position, transmission and bearing deflec-
tion) are measurable. The unknown elasticity parameters are solved by linear
regression. However, the measurement system used was not accurate enough for
measuring the elastic deflections. An alternative method which further develops
the ideas in Hovland et al. (2001) is then used for estimating the transmission
stiffness. However, the bearing stiffness cannot be identified using this method,
and the uncertainty of the estimated transmission stiffness is rather large, e.g.,
standard deviations larger than 30%.

4.2.3 Identification of the Extended Flexible Joint Dynamic

Model

In Papers A and B, and inWernholt (2007), an identification procedure for the un-
known elastic parameters of the extended flexible joint model (3.19), described
in Section 3.2.4, is proposed. The model is global and nonlinear. The identifica-
tion procedure is a frequency-domain gray-box method and can be summarized
as:

1. Local nonparametric models are estimated in a number of configurations.
The models are frequency response functions, FRFs.
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2. The nonlinear parametric robot model is linearized in each of these config-
urations.

3. The parametric FRFs of these linearized models are obtained for a value of
the unknown parameter vector.

4. The model FRFs and the estimated nonparametric FRFs are compared and
an error computed. The parameter vector is adjusted to minimize the error.

5. Repeat from 3 until some criteria is fulfilled.

Paper B provides a detailed description of this method, and shows that it is an ap-
proximation of a time-domain prediction-error method. The method is exempli-
fied, by estimating the elasticity parameters of a six-axes industrial robot. Some
problems with applying a time-domain identification method to this problem
is also discussed. Paper A show that the flexible joint model cannot describe a
modern industrial robot accurately, and that the extended model increases the
accuracy.

4.3 Summary

In system identification there are alternative choices concerning the experimental
setup, excitation signals, model types, and identification methods. The following
aspects have been discussed:

• Experimental setup

– Open loop

– Closed loop

• Excitation signal

– Periodic (e.g., multisine)

– Non-periodic (e.g., chirp or step)

• Model type

– Nonparametric (e.g., step response or frequency response function)

– Parametric (e.g., discrete-time linear black-box or continuous-time non-
linear gray-box)

• Identification method

– Time-domain methods (e.g., prediction-error methods)

– Frequency-domain methods

However, there are many aspects of system identification not mentioned in this
brief description, e.g., validation, experimental design, noise models, and model
quality measures like bias and variance. The interested reader is referred to the
literature cited in this chapter.
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Identification is often used for parameter estimation of robot manipulator mod-
els. The following cases have been discussed:

• Identification of kinematic parameters

• Identification of rigid dynamic models by linear regression

• Identification of local and global elastic dynamic models

Although, methods for identification of global elastic models have been suggested,
the amount of published research in this area is surprisingly small compared to
the amount of research that has been published on sophisticated control concepts
for these assumed global models. To the authors knowledge, no global valida-
tion of the flexible joint model has been published for a multi-axes industrial-
like robot manipulator. Moreover, no global validation or identification of a
lumped parameter model (e.g., an extended flexible joint model) for a multi-
axes industrial-like robot manipulator has been published. Paper A validates the
global extended flexible joint model and Paper B (and its predecessors described
in Section 1.2) describes such an identification procedure.



5
Control of Robot Manipulators

5.1 Introduction

Advanced motion control of robot manipulators has been studied by academic
and industrial researchers since the beginning of the 1970’s. A historical sum-
mary with many early references is given in Craig (1988).

This chapter is a survey of position control methods for articulated robot manipu-
lators1, suggested in the literature. Control during contact with the environment,
as for example in the case of force control, will not be treated. The actuator is as-
sumed to be an electrical motor, and the motor torque control will not be treated.
It is assumed that the motor torque control is ideal, and that the torque reference
generated by the position controller is equal to the real motor torque2. Further-
more, even though friction is the dominating source of error in some cases, e.g., at
low speed, control methods specially designed for dealing with friction will not
be covered. The emphasis will be on control methods for handling the elasticity
of the manipulator, without influence of tool contact dynamics. This is the far
most usual case for industrial robot applications today.

The focus will be on methods applicable to a typical industrial robot, i.e., an
elastic manipulator with gear transmissions, where the only measured variables
are the motor angular positions. Some of the described methods assume that
more variables are measured but can in many cases be modified such that actu-
ator position only is sufficient, e.g., by using state estimation, which is briefly

1Results for manipulators of parallel linkage type are also applicable to a large extent for serial
link manipulators and vice versa.

2Experiments have shown that this is a reasonable approximation when the current- and torque-
control servo has an appropriate tuning and uses feedforward.
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described. The main approach for controlling an elastic manipulator is consid-
ered to be linear feedback in combination with nonlinear feedforward- or feed-
back linearization control. Therefore, these methods will be described in some
detail. This is also motivated by the fact that Papers C–G treat these control
methods. Some examples of methods not treated here, or only briefly mentioned,
are iterative learning control, adaptive control, backstepping, sliding mode con-
trol, neural networks, singular perturbations, composite control, input shaping,
passivity-based control, and robustification by Lyapunov’s second method. Two
survey articles with many references are Sage et al. (1999) and Benosman and
Le Vey (2004).

The manipulator to be controlled is an elastic multibody system. The system is
multivariable and strongly coupled, and its highly nonlinear dynamics changes
rapidly as the manipulator moves within its working range. Moreover, for a robot
with gear transmissions, the gears have nonlinearities such as hysteresis, back-
lash, friction, and nonlinear elasticity. The actuators have non-ideal characteris-
tics with internally generated disturbances, e.g., torque ripple disturbances. For a
typical industrial robot, the controlled variable (tool position and orientation), is
not measured, and the only measured variable is the actuator position (motor an-
gular position). This position measurement can be impaired with a high level of
measurement noise as well as deterministic disturbances. For industrial manip-
ulators, the dynamic position accuracy requirements for low speed applications
(e.g., laser cutting), can be 0.1mm at 20mm/s. For high-speed applications, such
as dispensing, the maximum allowed error can be 0.5mm at 500mm/s, without
visible vibrations. Another requirement could be short cycle time, which means
high acceleration. Thus, the control problem can, in general, not be solved by
applying smooth trajectories to avoid exciting the mechanical resonances. The
conclusion is that the flexible manipulator control problem is a challenging task.

The control of robot manipulators can be described and classified in many ways,
according to, e.g.,

• type of drive system (direct drive or gear transmission).

• type of model used for the (model-based) control (rigid models, flexible
joint models, or flexible link models).

• controlled variable (position, speed, compliance, or force).

• motion type considered (high-speed continuous path tracking, low-speed
continuous path tracking, point-to-point movement, tracking in contact
with the environment, or regulation control).

• type of control law (linear/nonlinear, feedback/feedforward, static/dynamic,
robust/adaptive).

• type of measurements (actuator position, actuator speed, link position, link
speed, link acceleration, link torque, tool position, tool speed, tool acceler-
ation, tool force, or tool torque).
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Figure 5.1: General robot controller structure. Observer reconstruction is
enabled by the dashed line, feedback linearization by the dotted line.

A general controller structure is illustrated in Figure 5.1. The desired tool trajec-
tory zd is described in Cartesian coordinates, and z is the actual trajectory3, also
described in Cartesian coordinates. The reference- and feedforward generation
block (FFW) computes the feedforward torque uffw and the state references x̄d
used by the feedback controller (FDB), with a correction torque, ufdb, as output.
The manipulator has uncertain parameters, illustrated as a feedback with un-
known parameters ∆, and is exposed to disturbances d and measurement noise
e. The measured signals are denoted ym. Note that the dimension of x̄d and ym
may differ if some states are reconstructed by FDB. The purpose of the FFW is to
generate model-based references for perfect tracking (if possible). The purpose
of the FDB is, under the influence of measurement noise, to stabilize the system,
reject disturbances, and to compensate for errors in the FFW.

5.2 Control of Rigid Manipulators

Although this work is primarily focused on flexible manipulators, the control of
rigid manipulators is a good starting point for this survey. A rigid manipulator
can here, from a control point of view, be interpreted as a manipulator with the
lowest mechanical resonances well above the bandwidth of the control. A direct-
drive manipulator with stiff links is an example of a manipulator with resonances
at high frequencies. In direct-drive manipulators, the motor axes are directly
coupled to the links, and the negative effects of gear transmissions are eliminated,
i.e., friction, backlash, and elasticity. The N-link rigidmanipulator hasN degrees-
of-freedom, and the joint angle q, can be regarded as output variable since it can
be computed from the Cartesian tool position and vice versa (by using the inverse
and forward kinematics). Hence, the reference to the controller can be chosen as

3z is used instead of x to denote the Cartesian position and orientation to avoid confusion with the
states of the system.
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Figure 5.2: Diagonal PD control (independent joint PD control).

Figure 5.3: Feedforward control combined with diagonal PD control.

the desired joint angle qd (t).

5.2.1 Feedback Linearization and Feedforward Control

A summary of control methods and experimental results for rigid direct-drive
robots can be found in An et al. (1988). In the model-based approaches, the rigid
dynamic model (3.10) is used.

The first method described is called independent joint PD control, and is illus-
trated in Figure 5.2. The controller for the direct drive manipulator is given by

u = Kp(qd − q) + Kv(q̇d − q̇), (5.1)

where the measured position and speed are q and q̇, and the desired position and
speed are qd and q̇d . The control signal is the reference torque u. Finally, Kv and
Kp are diagonal gain matrices with obvious dimensions. In this method, the mul-
tivariable couplings between the axes are regarded as unmodeled disturbances.

The second method shown in Figure 5.3 is called feedforward control, and is an
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Figure 5.4: Feedback linearization (computed torque control) combined
with outer-loop diagonal PD control.

extension of the PD controller with a feedforward torque uffw according to

u = uffw + Kp(qd − q) + Kv(q̇d − q̇), (5.2a)

uffw = M̂(qd )q̈d + ĉ(qd , q̇d ) + ĝ(qd ). (5.2b)

Note that the reference qd must be at least twice differentiable. The ˆ signs in-
dicates that a model, that always differs from the true system, is used by the
controller.

The third method described is called computed torque control, and is illustrated
in Figure 5.4. In this approach the system is first partly linearized by canceling
the nonlinear dynamics c(qd , q̇d )+ g(qd ) with a feedback term. The system is then
linearized and decoupled by multiplying the controller output with the inverse
system, i.e., the mass matrix. Ideally, the resulting system is a system of decou-
pled double integrators, i.e., v = q̈. The natural choice of controller, with output
v, is again a PD controller. The first approaches of linearizing a nonlinear system
by nonlinear feedback can be found in the robotics literature from the 1970’s.
The computed torque controller is

u = M̂(q)v + ĉ(q, q̇) + ĝ(q), (5.3a)

v = q̈d + Kp(qd − q) + Kv(q̇d − q̇). (5.3b)

The terminology in this field is somewhat confusing. Computed torque can some-
times denote the feedforward control law, and sometimes the linearizing and de-
coupling control law. With standard control terminology, the control methods
can also be described as diagonal PD control, feedforward control, and feedback
linearization control. These terms will be used from now on. In both of these
model-based methods it is necessary to solve the inverse dynamics problem, i.e.,
compute the torque from the desired trajectory. Also note that one part of the
feedback linearization controller output in Figure 5.4 is computed from the feed-
forward acceleration q̈d .
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The bullets below summarize results concerning tracking errors according to An
et al. (1988), for the diagonal PD, feedforward, and feedback linearization control
methods, when applied to the main axes of a direct-drive manipulator (the MIT
serial-link direct-drive arm). A smooth fifth order polynomial trajectory with
high speed and acceleration (360deg/s and 850deg/s2) was used in the experi-
ments.

• For two axes, the model-based controllers reduced the tracking error to
2 deg compared to 4deg with PD control. No significant difference between
feedforward and feedback linearization was noticed.

• The third axis had the same tracking error, 4 deg, for all three methods.
This was explained by unmodeled motor dynamics and bearing friction in
combination with low inertia.

• The sampling time was critical for the model-based methods. It affected the
discretization error but also the possible level of feedback gain.

• The feedforward control method was believed to be the best choice for free
space movements. For cases with large disturbances, the feedback lineariza-
tion controller was believed to yield better results.

One reflection concerning these results is that the PD controller performance was
surprisingly good. It should also be noted that a feedforward controller has the
advantage that it, in principle, can even be computed off-line in order to save on-
line computer load. Even if the feedforward is computed on-line, the sample rate
of the feedforward computations does not affect the stability of the system. Thus,
it might be possible to save computer load by using a lower sample rate since
it will not reduce the stability. On the other hand, the feedback linearization
controller is a part of the feedback loop, and could cause instability if the model
errors are large.

A more recent publication on the same topic is Santibanez and Kelly (2001). The
conclusion in this and a number of other articles is the same as in An et al. (1988).
Feedforward control gives the same tracking performance as feedback lineariza-
tion and is the preferred choice.

Feedback linearization control and diagonal PD control is also evaluated with
respect to tracking performance of a direct-drive manipulator in Khosla and
Kanade (1989). The conclusion is that feedback linearization control gives bet-
ter performance than diagonal PD control, and that it is important to include the
centripetal and Coriolis terms in the linearization.

A final reflection on this topic is that the test cases studied in the referred articles
are typically a few test trajectories in each article, and only with the best possible
model. Feedback linearization and feedforward based on high-accuracy models
should give the same tracking performance if the sample rate is chosen such that
the discretization effects are negligible. It would be very interesting to see a com-
parative study concerning robustness to model errors and disturbance rejection,
for the different published methods.
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5.2.2 Other Control Methods for Rigid Manipulators

In this section, some examples of other control methods that have been consid-
ered for the control of rigid manipulators, are given.

Adaptive Control Adaptive control of direct-drive manipulators is studied in,
e.g., Craig (1988). The model parameters of the feedback linearization con-
troller described in the previous section are adapted on-line. An experimen-
tal study on two direct-drive axes of the Adept One robot is also included. It
is shown that the constant gain default controller yields a better result than
the adaptive controller. However, it is believed that more fine tuning and a
new implementation of the adaptive controller concept could improve the
result.

Nonlinear Robust Control A nonlinear outer-loop controller, replacing the PD
controller, can be used to robustify the feedback linearization controller.
One example of such a controller, based on Lyapunov’s Second Method, is
described in Spong et al. (2006), and shown to reduce the tracking errors
when model errors are present. Another proposed controller is the Sliding
Mode Controller. One example of this controller type used for robustifi-
cation of a feedback linearization controller is described in Bellini et al.
(1989), where the sliding mode controller was shown to decrease control
errors caused by an approximative model. Both the Lyapunov- and the slid-
ing mode controllers result in a discontinuous control signal (chattering)
that can increase motor losses and excite unmodeled dynamics. Methods
for decreasing the chattering exist for both of these controller types.

A summary of control methods for rigid manipulators is given in Spong (1996).

5.3 Control of Flexible Joint Manipulators

The flexible joint model, as described in Section 3.2.2, is a more realistic descrip-
tion of an industrial robot with gear transmissions. This model has elastic gear
transmissions and rigid links. The N-link manipulator model has 2N degrees-of-
freedom and, as in the case of the rigid manipulator, the Cartesian position z, or
the joint angles q, can be regarded as the output variable since the links are rigid.
Hence, the reference to the controller is assumed to be the vector of desired joint
angles qd .

5.3.1 Feedback Linearization and Feedforward Control

Feedback linearization and feedforward control can be regarded as the main
approaches for the control of flexible joint manipulators, and will therefore be
treated in some detail.
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5.3.2 Simplified Flexible Joint Model

The model is here given by

Ma(qa)q̈a + c(qa, q̇a) + g(qa) + K(qa − qm) = 0, (5.4a)

Mm q̈m + K(qm − qa) = u, (5.4b)

where the same notations as in Section 3.2.2 are used, except that the control
signal, the motor torque, is denoted u. In Spong (1987) and Spong et al. (2006),
control methods for the simplified flexible joint model are discussed. In the sim-
plified model, the inertial couplings between the links and the motors are ne-
glected. Furthermore, the viscous damping is also neglected in order to simplify
the controller design. In Spong (1987) it is shown that a manipulator described
by this model can be linearized and decoupled by static feedback linearization.
As for the rigid model described in the previous section, the flexible joint model
can be used for feedforward control or feedback linearization. The feedforward
approach is described in, e.g, De Luca (2000).

The flexible joint manipulator is an example of a differentially flat system (Rou-
chon et al., 1993). Such a system can be defined as a system where all state vari-
ables and control inputs can be expressed as an algebraic function of the desired
trajectory for a flat output, and its derivatives, up to a certain order. The flat
output is the selected output variable of the system. Feedback linearization by
static or dynamic state feedback is equivalent to differential flatness (Nieuwstadt
and Murray, 1998). Solving (5.4a) for qm, and differentiating twice, we get an
expression for q̈m, adding (5.4a) to (5.4b), and inserting the expression for q̈m
yields

u = (Ma(qa) +Mm)q̈a + c(qa, q̇a) + g(qa) +MmK
−1
g [M̈a(qa, q̇a, q̈a)q̈a+

2Ṁa(qa, q̇a)q
[3]
a +Ma(qa)q

[4]
a + c̈(qa, q̇a, q̈a, q

[3]
a ) + ġ(qa, q̇a, q̈a)], (5.5)

where x[i] denotes d ix/dti . This expression shows that the system is differentially
flat with the flat output qa and that the control signal can be expressed as

u = τm(qa, q̇a, q̈a, q
[3]
a , q

[4]
a ). (5.6)

Using the states

x =
[
qTa q̇Ta q̈Ta q

[3]T
a

]T
, (5.7)

the feedback linearization control law can be expressed as

u = τm(x1m, x2m, x3m, x4m, v), (5.8)

where xjm are the measured states, and v is a new control signal for the linearized

and decoupled system q
[4]
a = v consisting of N independent chains of four inte-

grators. For tracking control, v can be chosen as

v = q
[4]
ad + L1(xd − xm), (5.9)

where L1 ∈ R
N×4N is a linear feedback gain matrix and xd , xm are the reference
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states and the measured states respectively. The fourth derivative of the reference

trajectory is denoted q
[4]
ad . The derived control law is a combination of feedback

and feedforward where the feedback part is dominating. The feedback gain ma-
trix can be computed, e.g., by using LQ optimal control (Anderson and Moore,
1990). It is also possible to find a feedforward-dominant control law according
to

u = τm(x1d , x2d , x3d , x4d , q
[4]
ad ) + L2(xd − xm), (5.10)

where, ideally in the case of a perfect model, all torques needed for the desired
trajectory are computed by feedforward calculations, i.e., based on the reference
states xd . Note that the desired trajectory qd must be at least four times differen-
tiable for both the feedback linearization and the feedforward control laws. The
feedback linearization control law (5.8) gives constant bandwidth of the feed-
back controller for all robot configurations. For constant bandwidth there would
be no need for gain scheduling. Due to the varying manipulator dynamics, gain
scheduling, or some other model-based feedback gain computation, is probably
needed in the feedforward control law (5.10). A simulation study comparing
these two control algorithms is presented in Paper E. Furthermore, feedforward
control for an extended flexible joint model is investigated in Paper C and D.

5.3.3 Complete Flexible Joint Model

The complete flexible joint model (3.13) cannot be linearized by static state feed-
back. However, if the viscous damping is excluded, any flexible joint model can
be linearized and decoupled by dynamic state feedback as shown in De Luca
(1988) and De Luca and Lanari (1995). The static feedback controller described
in the previous section has the form

u = α(x) + β(x)v, (5.11)

where x are the states, v are the new control signals for the linearized system,
and α( · ), β( · ) are nonlinear functions of appropriate dimensions. The dynamic
feedback controller has the form (De Luca and Lanari, 1995)

ξ̇ = α(x, ξ) + β(x, ξ)v, (5.12a)

u = γ(x, ξ) + δ(x, ξ)v, (5.12b)

where ξ are the internal states of the controller (α( · ), β( · ), γ( · ), and δ( · ) are
nonlinear functions of appropriate dimensions).

The proof that the complete model is feedback linearizable is based on the fact
that the system is invertible with no zero dynamics. Given a desired trajectory
and its derivatives up to a certain order, the motor states and the required torques
can be computed recursively. The solution is based on the fact that S in (3.13) is
upper triangular. This result can also be used for feedforward control based on
the completemodel (De Luca, 2000). Static or dynamic feedback linearization can
also be performed when the damping term is included but in this case only input-
output linearization is possible (De Luca et al., 2005). Input-output linearization
can be used since the zero dynamics is stable.
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The complete model increases the complexity of the linearization procedure con-
siderably. The requirement on the smoothness of qd is high using these control
laws. If the manipulator has N links, qd must be 2(N + 1) times differentiable
compared to four times for the simplified flexible joint model as described in
Section 5.3.2.

5.3.4 State Estimation

All states must be available for feedback in order to use the control laws (5.8)
and (5.10). However, the feedforward control law (5.10) can be combined with,
e.g., a PD controller for the actuator position, which only requires the motor
states to be available (De Luca, 2000). The motor position is available for all
industrial manipulators considered, and the motor speed can be estimated by,
e.g., differentiation of the motor position. This means that a simplified version of
the feedforward control law is possible to evaluate on a standard industrial robot,
if the required computational capacity is available.

The feedback linearization control law (5.8) requires the link position, speed, ac-
celeration, and jerk for each link to be measured. This means that some of the
states, e.g., the acceleration and jerk, must be estimated from the available mea-
surements. If differentiation is used for estimating the higher order derivatives,
the measurement noise is likely to reduce the performance. If link position, link
speed, motor position, and motor speed are measured, the link acceleration and
jerk can be computed by using the model (Siciliano and Khatib, 2008, Chapter
13). However, it is likely that the robustness and performance will be impaired,
compared to full-state measurements, since the controller will depend on (uncer-
tain) model parameters to a higher degree.

Estimation of states can be performed by observers. One well-known type of
observer for linear systems is the Kalman filter (Anderson and Moore, 1979)
where the observer gain is computed based on a stochastic description of the
measurement- and system disturbances. For nonlinear systems, the extended
Kalman filter, can be used. The gain of an observer with the same structure as
the Kalman filter can also be determined by pole placement of the observer error
dynamics. Another type of observer is the reduced observer, sometimes called
Luenberger observer. Nonlinear observers are treated in, e.g., Isidori (1995) and
Robertsson (1999). A state observer for the linear system

ẋ = Ax + Bu,

y = Cx

can be expressed as
˙̂x = Ax̂ + Bu + K(y − Cx̂),

where x̂ is the estimated state vector and K is the observer gain.

A nonlinear observer for the motor position, motor speed, link position, and link
speed is suggested in De Luca et al. (2007). The observer works for both the
simplified and the complete flexible joint model, and requires measurements of
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motor position and link acceleration. The observer does not depend on the in-
ertial link parameters but on the motor inertias, the joint spring-damper pairs,
and the kinematic link parameters describing the accelerometer locations. For
an N -link manipulator,M accelerometers are needed, withM ≥ N . The observer
is characterized by a linear and decoupled error dynamics. The observer is evalu-
ated on the three main axes of an industrial robot, as well as in closed loop with
the feedforward control law decribed in Section 5.3.2. The result is a significant
improvement, with respect to damping and overshoot, compared to a control law
using motor states only.

An experimental evaluation of observers for tool position estimation is described
in Henriksson et al. (2009). Both the observer from De Luca et al. (2007) and
the extended Kalman filter are evaluated with an emphasis on tuning and robust-
ness. The Kalman filter showed better robustness, although a simple nonlinear
deterministic observer is preferred for on-line control, due to the less expensive
computations. More references on nonlinear observers for flexible joint robots
can be found in De Luca et al. (2007).

5.3.5 Feedback Control

A feedback controller is needed to stabilize the system, reject disturbances, and to
compensate for errors in the feedforward (if used). This section is a brief overview
of feedback control for flexible joint robots. A general multivariable linear state
feedback controller with integral action is

u = L(xd − xm) + Li

∫
(xid − x

i
m), (5.13)

L ∈ R
N×4N is a linear feedback gain matrix, xd ∈ R

4N are the reference states,
and xm ∈ R

4N are the measured or estimated states. Li ∈ R
N×N is a diagonal

matrix of integral gains, and xi are the states used by the integral term. Several
state representations are possible, but here, it is assumed that the states are

x =
[
qTm qTa q̇Tm q̇Ta

]T
. (5.14)

For full-state multivariable control, the feedback gains L and Li of (5.13) can
be computed by LQ design (Anderson and Moore, 1990). If not all states are
measured, a Kalman filter (Anderson and Moore, 1979) can be used for state esti-
mation and combined with LQ design. The resulting controller is then called an
LQG controller. LQ and LQG control are natural ways of approaching the flexible
joint control problem as the design weights for the controlled variable (qa) can be
explicitly tuned. However, for uncertain and disturbed systems, the tuning of the
state weights might not be intuitive, and the tuning of the Kalman filter covari-
ances is even harder. The LQG approach for flexible joint robots is described in,
e.g., Ferretti et al. (1998), Östring and Gunnarsson (1999) and Elmaraghy et al.
(2002). The combination of LQG and disturbance observers is described in Ji
et al. (2008). An alternative design method for state feedback and state estima-
tion is pole placement (Kailath, 1980; Rugh, 1996; Kautsky et al., 1985). A similar
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multivariable controller can also be designed using H∞ methods (Skogestad and
Postlethwaite, 1996).

For a single axis flexible joint system, a general state feedback controller is

u = Kpm(αpmq
d
m − qm) + Kpa(αpaq

d
a − qa) + Kvm(αvm q̇

d
m − q̇m)+

+ Kva(αva q̇
d
a − q̇a) + Kim

∫
(qdm − qm) + Kia

∫
(qda − qa), (5.15)

where one of the integral gains must be zero to avoid saturation or oscillations
due to the double integral parts. The gains α can be used for setpoint weighting
(Åström and Hägglund, 2006). Note that, e.g., a PID controller for the motor
variables often is implemented as a cascade controller, with an inner PI controller
for speed control and an outer P controller for position control. If not all states
are measured, the controller uses only partial state feedback. For the case of only
motor side measurements, a PD controller for the motor position is suggested
in Tomei (1991), i.e., all gains in (5.15) are zero except Kpm, αpm and Kvm. In,
Tomei (1991), it is also proved that the suggested controller globally stabilizes
the manipulator around a reference position if gravity compensation is used. A
practical controller for industrial systems also need an integral part on the motor
side, i.e., Kim , 0. Another controller, suitable for relatively stiff systems, has
all gains zero except Kpa, αpa, Kvm, αvm, and Kia. Here, αvm can also be zero if
no speed reference is used. This controller combines high accuracy on the arm
side with good damping. Using only the arm side measurements results in a low
performance controller and the best control is of course obtained by using all
states (if available) and with integral part on the arm side. More discussion on
these issues can be found in Spong et al. (2006) and Siciliano and Khatib (2008,
Chapter 13). To illustrate the effects of different feedback configurations, a single-
link flexible joint robot (Figure 5.5) is used in the following configurations:

1. PD control with motor feedback, no speed reference (Kpm, αpm, and Kvm

used).

2. PD control with arm position- and motor speed feedback, no speed refer-
ence (Kpa, αpa, and Kvm used).

3. PD control with arm feedback and lead filter on PD output, no speed refer-
ence (Kpa, αpa, and Kva used).

4. Full state feedback, no speed references (Kpa, αpa, Kva, Kpm, αpm, Kvm

used).

5. PD control with arm feedback, no speed reference (Kpa, αpa, and Kva used).

The test consists of a filtered position reference step, followed by a pulse dis-
turbance torque on the arm, and finally a pulse disturbance torque on the motor.
The result is shown in Figures 5.6–5.8. PD control when measuring arm variables
only, clearly results in a slow controller which is very sensitive to disturbances.
However, with a more complex controller design, the performance can be im-
proved. The use of a lead filter, that improves the phase by adding phase lead,
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Figure 5.5: Linear model of a SISO flexible joint robot.

0 0.5 1 1.5

−0.5

0

0.5

1

q
a
 [

ra
d

]

Time [s]
0 0.5 1 1.5

−0.5

0

0.5

1

q
a
 [

ra
d

]

Time [s]

Figure 5.6: Arm position (solid) and position reference (dashed) for case
1 and 2. 1: Motor feedback (left). 2: Arm/Motor feedback (right). Arm
disturbance at 0.5 s, motor disturbance at 1.0 s.

is just an example to show this. Full state feedback gives the best result as ex-
pected. Note that the tunings are just examples (with an effort to be fair) for the
different controller configurations. Effects of measurement noise and controller
robustness have not been studied. However, from the tuning of the different
controller configurations, it is clear that the configurations using arm feedback
only (case 3 and 5), are not very robust. This can be explained by the concept of
collocation.

A collocated system measures the response at the same location as the actuator
input is applied, i.e., measuring the motor in our case, whereas a non-collocated
system measures the response at another location, i.e., after the flexibility in our
case. This can be illustrated by the benchmark model of Paper F (Figure 5.9).
Figure 5.10 shows the frequency response from the control signal (motor torque)
to the positions of the different masses. Clearly, the more flexibility between the
torque input and the sensor, the more phase lag in the feedback loop.

Important aspects, often neglected in the robotics literature, are disturbance re-
jection and consequences of discrete-time implementation. This is the motivation
for the two benchmark problems described in Papers F and G. The controllers
presented up to now, must in practice most certainly be extended to deal with
disturbances and stability issues. Loop shaping techniques, e.g., QFT (Horowitz,
1991), can be used for this part of the controller design.
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Figure 5.7: Arm position (solid) and position reference (dashed) for case 3
and 4. 3: Arm feedback + lead filter (left). 4: Full state feedback (right). Arm
disturbance at 0.5 s, motor disturbance at 1.0 s.
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scaling of the axes!

Figure 5.9: The SISO benchmark model.
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Figure 5.10: Frequency response of the SISO benchmark model.
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5.3.6 Minimum-Time Control

Minimum-time control can also be used for generating the feedforward torque
uffw and the references states x̄d from Figure 5.1. The trajectory- and feedforward
generation are here combined, as the trajectory reference zd is also generated. In
this section, minimum-time control is exemplified for a single-axis flexible joint
manipulator.

Minimum-time control of robot manipulators can be divided into the minimum-
time path-following problem and theminimum-time point-to-point problem. For
the path-following problem, there are path constraints along the path and the
robot is not allowed to deviate from the desired path. For the point-to-point
problem, only the start and end positions are specified. There are two main ap-
proaches for solving minimum-time problems. Direct methods transcribe the
problem to a nonlinear program (NLP) (Betts, 2001) and indirect methods solve
the problem by solving the equations resulting from optimality conditions, e.g.,
the Pontryagin maximum principle (Bryson and Ho, 1975). The time-optimal
control of rigid robot manipulators with path constraints is approached with di-
rect methods in, e.g., Verscheure et al. (2009), and an indirect approach to the
same problem is considered in, e.g, Shiller (1994). An article concerning the gen-
eral problem of path-constrained trajectory optimization is Betts and Huffmann
(1993). Dahl (1992) approaches the problem with direct and indirect methods
and also shows some results for the flexible joint manipulator.

A linear model of a single-axis flexible joint robot arm (Figure 5.5) can be de-
scribed by

Jm q̈m = k(qa − qm) + d(q̇a − q̇m) + u, (5.16a)

Ja q̈a = −k(qa − qm) − d(q̇a − q̇m). (5.16b)

The motor and arm inertia are described by Jm and Ja, respectively, the gear-box
stiffness and damping are k and d, and the applied motor torque is u. The motor
angular position is qm and the arm angular position is qa. The minimum-time
problem for a point-to-point movement (constraint on control variable u only)
can be solved using direct transcription. If the problem is discretized using M

time-steps, sample-time h, states x =
[
qm qa q̇m q̇a

]T
, movement distance ∆q,

and maximum allowed motor torque umax, we get the following nonlinear pro-
gram (NLP):

min
u(k),x(k),h

M∑

k=1

h = Mh,

s.t. x(k + 1) = f (x(k), u(k), h),

x(1) =
[
0 0 0 0

]T
,

x(M) =
[
∆q ∆q 0 0

]T
,

|u(k)| ≤ umax,
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Figure 5.11: Minimum-time control of single-link flexible joint manipulator
with eigenfrequency 5Hz and motor torque constraint |u(k)| ≤ 2000Nm.
Movement time is 0.21 s.

i.e., the problem is to minimize the sample time, which is a free parameter. The

optimization parameters are
[
u(1), . . . , u(M), x(1), . . . , x(M), h

]T
.

Figure 5.11–5.12 show the result for two different manipulator elasticities. The
test case is a short movement of 0.05 rad which is discretized with M = 60 steps.
The near minimum-time solution approaches bang-bang control with three
switches. The manipulator eigenfrequency in the two cases are 5Hz and 1Hz,
which result in movement times of 0.21 s and 0.45 s, respectively. The minimum
time for the rigid system is 0.2 s. Clearly, the elasticity and the eigenfrequency
should be taken into account for time-optimal trajectory generation as well as for
robot design.

If a constraint on the link torque (i.e., gearbox torque τgear = k(qa − qm) + d(q̇a −
q̇m)) is added to the optimization problem, the solution approaches seven switches
according to Figure 5.13. An approximative solution to the problem is to com-
pute the minimum-time trajectory for the rigid system, i.e. bang-bang control
with one switch (Bryson and Ho, 1975), and then use flexible joint feedforward
control (5.10) with the rigid trajectory reference as input. However, this is not fea-
sible since the feedforward torque depends on the second acceleration derivative,

q
[4]
ad . One alternative is shown in Figure 5.14 where a rigid trajectory reference

with a limited q
[4]
ad is constructed, and combined with flexible joint feedforward

control (Lambrechts et al., 2004). The movement time is somewhat larger for this
approximative solution and the constraints cannot in general be guaranteed.
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Figure 5.12: Minimum-time control of single-link flexible joint manipulator
with eigenfrequency 1Hz and motor torque constraint |u(k)| ≤ 2000. Move-
ment time is 0.45 s.
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Figure 5.13: Minimum-time control of single-link flexible joint manipulator
with eigenfrequency 5Hz, motor torque constraint |u(k)| ≤ 2000, and gear-
box torque constraint |τgear (k)| ≤ 1000. Movement time is 0.25 s.
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Figure 5.14: Approximateminimum-time control of single-link flexible joint
manipulator with eigenfrequency 5Hz, motor torque constraint |u(k)| ≤
2000, and gearbox torque constraint |τgear (k)| ≤ 1000. Movement time is

0.27 s. The trajectory reference has a limited value of q
[4]
ad and flexible joint

feedforward is used.

5.3.7 Experimental Evaluations

This section presents some reported experimental evaluations of control methods
for flexible joint manipulators.

In Swevers et al. (1991), an industrial robot from KUKA is used for evaluation
of an improved trajectory generation, and a model-based control concept. The
robot was equipped with three extra encoders in order to measure the link po-
sitions of the main axes. The motor positions were measured by the standard
controller. A state feedback controller combined with feedforward control based
on a flexible joint model was evaluated and compared with the standard con-
troller for this robot. The trajectory generation was also modified to yield a tra-
jectory based on a 9th order polynomial. The performance of the standard- and
model-based controllers were evaluated using some test cases4 defined in the in-
dustrial robot test standard ISO 9283 (ISO, 1998). The tests showed significant
improvements compared to the standard KUKA industrial controller implemen-
tation. The conclusion was that the smooth trajectory from the new trajectory
generation contributed most, but also that the new flexible controller improved
the performance at very high velocities and accelerations.

Jankowski and Van Brussel (1992b) mention some problems with feedback lin-
earization, such as the complexity of the control laws, the need for measurement
or estimation of link acceleration and jerk, and the need for high sampling fre-

4Settling time, overshoot, and path-following error according to the ISO standard were evaluated.
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quencies. The suggested solution is a discrete-time formulation of the inverse dy-
namics which requires the solution of an index-3 differential algebraic equation.
Some experimental results are presented in Jankowski and Van Brussel (1992a).

In Caccavale and Chiacchio (1994), an experimental evaluation on an industrial
robot with gear transmission is reported. The robot is the SMART-3 6.12R robot
from COMAU. A feedforward torque was added to the conventional PID con-
troller output. Sample times were 1 ms and 10 ms for the PID controller and
the feedforward computation, respectively. The feedforward torque calculations
were based on a rigid dynamic model in identifiable form, as described in Section
4.2.1. The path error was decreased from 3.4 mm to 1.1 mm at a speed of 2 rad/s
and an acceleration of 6 rad/s2. It was concluded that the diagonal inertia terms
are the most important terms for use in feedforward.

In Grotjahn and Heimann (2002), model-based control of a KUKA KR15 manip-
ulator is described. It is concluded that the nonlinear multibody dynamics and
the nonlinear friction are the dominating reasons for path deviation, and that the
elasticity does not need to be considered. No torque interface to the controller
was available. Instead a path correction interface is used together with a feedfor-
ward control method called nonlinear precorrection based on an identified rigid
body model including friction. Improvement by learning control and training of
the feedforward controller is discussed and evaluated. Learning control can com-
pensate for all deviations whereas the feedforward training only compensates for
the modeled effects. Thus, learning gives better performance but is very sensi-
tive to path changes after the learning where the feedforward training is more
roboust. The different algorithms improve the path-following in a path defined
by the ISO 9283 standard.

A full-state feedback controller is presented in Albu-Schäffer andHirzinger (2000).
The motor position qm and the joint output torque τ are measured for each

joint. By numerical differentiation, the state vector x =
[
qTm q̇Tm τT τ̇T

]T
is

obtained. The state feedback controller is diagonal, i.e., based on an independent
joint approach that neglects the disturbance due to the strong coupling. Grav-
ity and friction compensation is added to the controller, and gain scheduling
based on the diagonal inertial terms is also suggested. A Lyapunov-based proof
of global stability is given. The experimental evaluation is performed on a DLR
light-weight robot and shows that the bandwidth of the proposed controller is
twice the bandwidth of a motor PD controller, given the same damping require-
ment. This type of controller is further developed and analyzed in Le Tien et al.
(2007) and Albu-Schäffer et al. (2007).

In Zhu (2007), a seven-axes robot with harmonic drives gearboxes is controlled
by an adaptive joint-torque controller, where the friction parameters and the gear-
box stiffness are continuously adapted. The outer position control loop is based
on virtual decomposition control. Here, qa, q̇a, q̈a, qm, q̇m, τ, and τ̇ are used by the
controller. Only the positions and torques are measured, and the derivatives are
estimated by numerical differentiation. The result was particulary good at ultra-
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low speeds, due to the adaptive friction compensation. Virtual decomposition
control is further described in Zhu (2010).

5.4 Control of Flexible Link Manipulators

This section describes some proposed control methods for the flexible link model
described in Section 3.2.5. The choice of coordinates and reference frames is not
unique and there is more than one possible approximate description of the same
system (Book, 1993). If the actuator torque is applied at one point of the dis-
tributed structure, and the response is measured at another point, the system is
non-collocated, and if the finite dimensional approximation of a beam-like sys-
tem has a sufficiently large number of assumed modes, the system description
will be non-minimum phase. This means that if the Cartesian end effector posi-
tion is to be controlled, the system can be non-minimum phase, and the inverse
dynamics is then hard to obtain. The control methods described in this section
are in general feedforward control methods combined with a feedback controller
of, e.g., PD-type.

If the desired Cartesian trajectory zd is known for t ∈ [0, T ], the desired beam tip
angles yd , in Figure 3.11, can be computed by the inverse kinematics. In De Luca
et al. (1998) it is shown that the state trajectories and the control torque can be ob-
tained by solving an ordinary differential equation (ODE). The problem is to find
a bounded solution to this ODE as the system is normally non-minimum phase,
i.e., no bounded causal5 solutions to the inverse dynamics exist. Three different
methods for solving the problem are suggested, and one is experimentally eval-
uated. This method finds a non-causal solution by applying iterative learning
control (ILC) for time t ∈ [−∆, T + ∆].

A different approach for the problem of point-to-point motion is described for
a one-link manipulator in De Luca and Di Giovanni (2001a). Here, an auxiliary
output is designed and used as output variable of the system. In this case the
angle yd points to a location where the system is minimum phase, but close to
non-minimum phase. In De Luca and Di Giovanni (2001b) the same problem is
solved for a two-link manipulator of which one link is flexible. A method based
on dividing the inverse system in a causal and an anti-causal part is presented
in Kwon and Book (1990). The method is limited to linear systems, i.e., one-link
manipulators. In De Luca and Siciliano (1993) it is shown that a PD controller
with gravity feedforward is globally asymptotically stable for the flexible link
manipulator.

The robust control problem of a four-link flexible manipulator is treated in Wang
et al. (2002). An H∞ controller for regional pole-placement is designed for the
uncertain linearized system. The controller is evaluated by simulation, and tests

5The output of a causal system depends only on past inputs, whereas the output of a non-causal
system also depends on future inputs. Hence, a non-causal solution to the inverse dynamics, outputs
a torque before the start of a movement.
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on an experimental manipulator show that the proposed controller has better
performance than an LQ controller.

To summarize, the control of the flexible link manipulator is complicated by the
fact that the system can be non-minimum phase. There are several alternatives
for solving the problem, e.g.,

• Find a stable non-causal solution of the inverse dynamics as described in
the references of this section.

• Choose a new output so that the system becomes minimum phase, e.g., the
joint angle for a flexible link robot. The new output should be a reasonable
approximation of the original output.

• For a linear discrete-time system, the zero phase tracking controller (Torfs
et al., 1991; Tung and Tomizuka, 1993) can be used.

• In Aguiar et al. (2005) a reformulation from tracking to path-following6 is
suggested. By parameterizing the geometrical path X by a path variable
θ, and then selecting a timing law for θ, the inverse dynamics for the non-
minimum phase system can be stabilized.

5.5 Industrial Robot Control

As described in Section 1.1, the control algorithms used by robot manufacturers
are seldom published. This section gives a few examples of known facts about
the control of commercial robots7, taken from public information sources.

In Grotjahn and Heimann (2002) it is claimed that the feedback controller of
a KUKA robot is a cascaded controller with an inner speed controller of PI type
with sample time 0.5 ms. The outer loop is a position controller with 2 ms sample
time. Only the position is measured, and the speed is estimated by differentiation
and low-pass filtering. The controller can thus be described as a diagonal PID
controller.

A slidingmode controller based on an elastic model of two-mass type is suggested
in Nihei and Kato (1993) by Fanuc. The motivation is the reduction of vibrations
in short point-to-point movements in, e.g., spotwelding applications. A patent
by Fanuc (Nihei et al., 2007) describes a method for reduction of vibrations in
robot manipulators. The method is based on observer estimation of the link posi-
tion. The estimated variable is then used in a controller of internal model control
(IMC) type. The controller is based on a linear elastic SISO model of two-mass
type. On their web-site (Fanuc, 2007), the new Fanuc controller R-J3iC offers en-
hanced vibration control as a feature. Fanuc has recently applied for a patent

6The path-following error is in fact a more relevant performance measure for industrial applica-
tions as reflected by the ISO 9283 standard.

7The examples are restricted to the four major robot manufacturers, i.e., Fanuc, Motoman, ABB,
and KUKA.
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on arm position feedback, called secondary position feedback control (Tsai et al.,
2010).

The motion control of ABB robots is described as model-based control, and the ac-
curacy in continuous path tracking is claimed to be very high (Madesäter, 1995).
The model-based controller is implemented in a controller functionality denoted
TrueMove, and the time-optimal path generation is denoted QuickMove. An im-
proved version of this functionality is called The Second Generation of TrueMove
and QuickMove (ABB, 2007) and further described in Björkman et al. (2008).

Finally, Motoman has a control concept called Advanced Robot Motion (ARM)
control for high-performance path accuracy and vibration control (Motoman,
2007).

Clearly, high performance motion control is important for the industrial robot
manufacturers. The actual algorithms used are hard to reveal, and an article or
a patent does not mean for sure that the described technology is actually used in
the product.

It is also clear that the performance of industrial robots can be very high. This
indicates that advanced concepts for motion control are used. Some examples of
obtained performance for the "best in class" commercial robots during optimal-
time movements:

• Path-following error of large robots with considerable link- and joint flex-
ibilities and a payload of more than 200 kg can be in the order of 2 mm
at 1.5 m/s according to the ISO 9283 standard, i.e., when the maximum
path-following error is considered. The mean error is considerably smaller,
about 0.5 mm.

• The corresponding errors for a medium-sized robot with a payload of 20 kg
could be maximum 0.5 mm and mean 0.1 mm.

• A positioning time of 0.25 s is obtained for a 50 mm point-to-point move-
ments for the large 200 kg payload robot described above. Time is mea-
sured from start of movement until the tool is inside an error band of 0.3
mm. This means that there are almost no vibrations or overshoots when
reaching the final position.

• Dynamic position accuracy better than 0.15 mm considering maximum er-
ror, and with a mean value of 0.05 mm at 50 mm/s in laser-cutting applica-
tions when using iterative learning control (ILC).

5.6 Conclusion

Control of flexible joint and flexible link manipulators is a large research area
with numerous publications, and almost every possible control method ever in-
vented has been suggested for dealing with these systems. This survey has de-
scribed only the main approaches.
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It is clear that the theoretical foundation of the control methods, and the ability
to prove stability, is in focus for many academic robot control researchers. Eval-
uation of nominal and robust performance of the proposed methods, is often
neglected. From the reported simulation studies and experimental evaluations,
it is in fact quite hard to judge what the attainable performance is for the differ-
ent methods. It is true that it can be hard to use commercial robots for control
evaluations, and that some methods require a larger computational capacity than
currently available in present robot controllers. However, simulation studies are
always possible to perform. One further comment is that an integral term is
most certainly needed in order to handle model errors and disturbances in a real
application. The reason for avoiding the integral term in many publications is
probably motivated mainly by the need to prove stability.

The following facts regarding the tracking and point-to-point performance are at
least indicated in the experimental results presented in this survey:

1. Model-based control improves the performance of an industrial-type robot.

2. A rigid model can improve the performance although the robot has elastic
gear transmissions.

3. A flexible joint model improves the performance even more. It is not clear
whether the nonlinear model should be used in the feedback loop, i.e., feed-
back linearization, or in the feedforward part of the controller.

4. More measurements improve the result, e.g., measurement of link position
or acceleration.



6
Conclusion

This first part of the thesis has served as an introduction to modeling and control
of robot manipulators. The aim has been to show how the included papers in
Part II relate to the existing methods, and to motivate the need for the research
presented. In Section 6.1 a summary of the results is given. Suggestions for future
research in this area are discussed in Section 6.2.

6.1 Summary

This thesis has investigated aspects on modeling and control of elastic manipula-
tors. The work is motivated by the industrial trend to develop weight- and cost-
minimized robot manipulators. A large amount of applied research is needed
in order to maintain and improve the motion performance of new generations
of robot manipulators. The approach adopted in this thesis is to improve the
model-based control by developing and validating more accurate elastic models.
A model, called the extended flexible joint model, is suggested for use in motion
control systems, as well as for robot design and performance simulation. Differ-
ent aspects of this model, illustrated in Figure 6.1, are treated in this thesis.
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Figure 6.1: A 9 DOF extended flexible joint model with 2 links, 2 motors
(M), 3 elastic elements (EE) and 3 rigid bodies (RB).
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Figure 6.2: The magnitude of a 6 × 6 frequency response function (FRF),
describing the dynamics between applied motor torques and motor acceler-
ations. Nonparametric FRF obtained frommeasurements (dashed) and para-
metric model FRF (solid).

A procedure for multivariable identification of the unknown elastic parameters
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of the extended model is proposed and described in Papers A and B. The proce-
dure is applied for identifying these parameters of a real six-axes industrial robot.
Paper B gives a detailed description of the proposed frequency-domain gray-box
method, and shows that the proposed method is an approximation of a time-
domain prediction-error method. Paper A shows that the flexible joint model is
insufficient for modeling a modern industrial manipulator accurately, and that
the extended model significantly improves the model accuracy. An example of
measured- and modeled frequency response functions is shown in Figure 6.2.
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Figure 6.3: Snapshots from an animation of a movement resulting from con-
trol using the inverse extended flexible joint model. The manipulator is de-
scribed by a 5 DOF extended flexible joint model with 2 actuated joints and
1 non-actuated joint (the outer joint). The reference path is shown as a dot-
ted line with the direction indicated by the solid arrow. The motor angular
positions (transformed to the arm side) are indicated by the dashed lines,
and the joint angular positions are indicated by the solid lines.

In Papers C and D, the inverse dynamics of the extended model is derived and
studied. The inverse dynamics solution can be used for feedforward control. It
is shown that the inverse dynamics can be computed as the solution of a high-
index differential algebraic equation (DAE). Different DAE solvers are suggested
and evaluated, both for minimum phase and non-minimum phase systems. A
simulation study is presented in Paper C, and in Paper D, the suggested concept
for inverse dynamics is experimentally evaluated using an industrial robot ma-
nipulator. Figure 6.3 illustrates the inverse dynamics solution. The conclusion
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is that the extended flexible joint inverse dynamics method can improve the ac-
curacy for manipulators with significant elasticities, that cannot be described by
the flexible joint model.

Paper E investigates the discrete-time implementation of the feedback lineariza-
tion approach for a realistic three-axes flexible joint robot model and compares
the result with a feedforward approach. An example trajectory from the evalu-
ation is shown in Figure 6.4. The conclusion is that feedforward control gives
better performance and reduces the requirements on the controller- and sensor
hardware.

Figure 6.4: 20 Monte Carlo simulations, where the uncertain robot executes
a circular trajectory, using a feedback linearization controller.

Figure 6.5: The SISO Benchmark Robot Model.

Robust feedback control of a one-axis four-mass model, illustrated in Figure 6.5,
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is studied in Paper F. The proposed SISO benchmark problem concerns distur-
bance rejection for the uncertain robot manipulator using a discrete-time con-
troller. The benchmark model is validated by experiments on a real industrial
manipulator. Several proposed solutions are presented and analyzed. The con-
clusion is that, for the uncertain SISO system using motor measurements only,
it is hard to improve the result of a PID-controller. One proposed solution not
included in Paper F is Varso et al. (2005).

Figure 6.6: The MIMO Benchmark System.

Finally, Paper G presents a MIMO benchmark problem for a nonlinear two-link
manipulator with elastic nonlinear gear transmissions, illustrated in Figure 6.6.
This problem also concerns disturbance rejection for the uncertain robot manip-
ulator using a discrete-time controller. The benchmark model is validated by
experiments on a real industrial manipulator. Two solutions have been received
for this benchmark problem:

A Solution A (unpublished) has a controller that is based on a nominal model
with robot configuration dependence. The (SISO) controllers uses polyno-
mial pole placement with additional closed loop poles to increase the ro-
bustness. The states are estimated by a Kalman filter. The resulting perfor-
mance, using the proposed controller, is worse than the performance of the
default PID controller included in the benchmark problem.

B Solution B is based on a robust frequency-domain method called QFD, which
is an extension of quantitative feedback theory (QFT), see, Horowitz (1991).
The solution is described in Yaniv and Pila (2009), and the resulting (SISO)
controllers are filtered PD controllers in series with two complex lead fil-
ters. The controller has a slightly worse performance than the default PID
controller.

To summarize, no solutions with better performance than the default PID con-
troller has yet been received. The conclusion is that, for the uncertain MIMO
system using motor measurements only, it is hard to improve the result of a diag-
onal PID-controller. However, no multivariable controller has yet been proposed.
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6.2 Future Research

Based on the experience obtained from the work described in this thesis, several
research-related questions have come up. Thus, it would have been interesting
to proceed working on the following topics:

• Modeling and Identification

– Identification methods with minimum energy, i.e., minimum experi-
ment time and minimum amplitude.

– Identification of transmission nonlinearities.

– Automatic frequency-weight selection.

– Automatic gray-box model structure selection.

– Identification of elasticity models with more DOF than described in
this thesis.

– Identification based on both motor position and arm side measure-
ments. Some possibilities are position, speed, or acceleration for the
joints/links and/or the tool. This will include investigations of the
optimal accelerometer/gyro placement, in combination with optimal
configurations for identification.

• Feedforward Control

– Experimental evaluation of feedforward control based on the extended
flexible joint model, using a more complicated and realistic robot, e.g.,
a six-axes industrial robot.

– Extended theoretical analysis of the inverse dynamics problem (e.g.,
solvability, controllability and uniqueness).

– Development of more efficient DAE solvers.

– Development of alternative solvers for non-minimum phase dynamics.

– Development of approximate control algorithms for on-line computa-
tion.

• Feedback Control

– Design of a MIMO controller for the MIMO benchmark problem, in-
cluding experimental evaluation.

– Further development of robust feedback control using additional arm
sensors, e.g., arm side encoders, accelerometers, or gyros.
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