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Abstract: Ionic polymer-metal composites (IPMCs) are electrically driven materials that undergo
bending deformations in the presence of relatively low external voltages, exhibiting a great potential
as actuators in applications in soft robotics, microrobotics, and bioengineering, among others. This
paper presents an artificial eukaryotic flagellum (AEF) swimming robot made up of IPMC segments
for the study of planar wave generation for robot propulsion by single and distributed actuation, i.e.,
considering the first flagellum link as an actuator or all of them, respectively. The robot comprises
three independent and electrically isolated actuators, manufactured over the same 10 mm long IPMC
sheet. For control purposes, a dynamic model of the robot is firstly obtained through its frequency
response, acquired by experimentally measuring the flagellum tip deflection thanks to an optical
laser meter. In particular, two structures are considered for such a model, consisting of a non-integer
order integrator in series with a resonant system of both non-integer and integer order. Secondly,
the identified models are analyzed and it is concluded that the tip displacement of each actuator or
any IPMC point is characterized by the same dynamics, which remains unchanged through the link
with mere variations of the gain for low-frequency applications. Based on these results, a controller
robust to gain variations is tuned to control link deflection regardless of link length and enabling the
implementation of a distributed actuation with the same controller design. Finally, the deflection of
each link is analyzed to determine whether an AEF swimming robot based on IPMC is capable of
generating a planar wave motion by distributed actuation.

Keywords: swimming robot; ionic polymer-metal composite; fractional calculus; modeling; control

1. Introduction

In recent decades, technological advances in micro and nanotechnology have opened
up new lines of research. The field of microrobotics has received great attention due to
the possibility of manufacturing tiny devices, which offers many and diverse applications,
mainly derived from the ability to access small spaces at the microscale. Concretely, tiny
artificial devices propelled on liquid environments (TADPOLEs) can perform medical
procedures in a minimally invasive way, deliver drugs with high precision, and detect
towards diagnosis and monitoring, among other tasks [1–9]. However, the number of chal-
lenges increases as the working scale is scaled down, starting from fabrication techniques,
power supply, as well as ways to propel such a kind of devices [6,10–17]. Therefore, a
deep understanding of physics principles is fundamental for the design, manipulation,
and control since the conventional consideration cannot be applied to the dynamic study
of TADPOLEs: they have to work within environments characterized by a low Reynolds
number (Re, which is a dimensionless parameter that quantifies the ratio between inertial
and viscous forces in a fluid), i.e., within environments dominated by viscous forces. In
this regime, the study of swimmers’ dynamics acquires an important role in understanding
the motion and finding new ways for propulsion. A review on the theoretical framework
for locomotion at low Re can be found in [18,19].
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The analysis of the methods of propulsion at low Re inspired by biological systems
has been extensively addressed in the literature from different perspectives. Considering
only those focused on the well-known Purcell’s swimmers, approaches based on motion
primitives and resistive forces were reported in [20–24]. Other approaches propose the
generation of planar waves by means of an eukaryotic flagellum applying the following
methods: (1) by active distributed actuation [25–28]; (2) by two-point actuation [29,30];
(3) by single-point actuation with the absorption of the reflected wave [29,30]; and (4) by
single-point actuation with a non-uniform distribution of mass (passive distributed actua-
tion) [31–33].

However, the number of studies that analyze and implement these ways of propelling
with a single material piece that can be found in the literature is limited. In this sense,
the ionic polymer-metal composite (IPMC) is presented as an emerging material whose
properties can fill this gap due to the possibility of both bending with a relatively low power
supply (4–6 V) and underwater actuation, which makes it suitable for the development
of swimming microrobots and biomedical applications. Nevertheless, the main works
reported in robotics use IPMC as a simple actuator, with the robot body being made of
other materials [34–39]. On the other hand, working with IPMCs involves a great number
of challenges, beginning with fabrication techniques, as well as behavior characterization
and performance analysis for control, which requires understanding the physical models,
as well as the influence of physical parameters [40,41]. In this regard, different models
describing the behavior of IPMC actuators have been reported, of integer [42] and non-
integer orders consisting of two fractional poles and a fractional integrator [43].

In this context, this paper presents the first steps to propel a small-scale three-link
artificial eukaryotic flagellum (AEF) swimming robot manufactured from a single IPMC
sheet, where the three IPMC segments allow to actuate the flagellum in two ways: dis-
tributed, being the three segments active, or by single actuation, where only the first one
is an actuator and the other two perform as passive links. Firstly, the robot modeling is
addressed in the frequency domain to determine whether a single actuation is sufficient to
generate a planar waveform, a motion that is necessary for robot propulsion in low Re. In
particular, models consisting of a non-integer order integrators in series with a resonant
system of both non-integer and integer order are considered in this work. To obtain the
frequency responses experimentally, the first IPMC link actuator was attached to a couple
of gold electrodes and the tip deflection of the third link was measured by means of a laser
distance meter. Secondly, a robust controller is designed to control the tip displacement of
each link in order to generate a non-reciprocal motion for propulsion. Finally, the deflection
of each link is analyzed to determine whether an AEF swimming robot based on IPMC is
capable of generating a planar wave motion by distributed actuation.

In summary, the two main contributions of this paper are: (1) fabrication of an IPMC-
based AEF swimming robot; and (2) design of a controller robust to actuators of different
lengths to propel the robot at low Re regimes. Hence, this article provides a different
perspective from those presented in the aforementioned works, addressing the design of
a small-scale swimming robot whose links are integrated into the same piece of material
and can work as actuators or passive flexible links. In our previous works, an N-link AEF
swimming robot with rotary joints was considered; the propulsion performance of such a
kind of robot was studied (see [28] and references therein).

The contents of the paper are organized as follows. Section 2 briefly describes the
mathematical background concerning the hydrodynamics of swimming robots at low Re
environments, the types of waveforms for propulsion, and IPMC technology. Section 3
focuses on the IPMC-based AEF swimming robot, as well as the setup with which the
experiments will be carried out. Section 4 contains the identification process performed
to obtain an appropriate model of the robot for control purposes. The control design and
simulations to analyze the motion of the swimming robot are approached in Section 5.
Finally, Section 6 draws the concluding remarks and perspectives on the future work.
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2. Background

This section describes the hydrodynamics of swimmers whose size is within the
micrometer scale, i.e., working in low Re environments. A summary of the propulsion
waveforms of an AEF swimming robot is also addressed. Likewise, a brief introduction to
IPMC technology is given.

2.1. Hydrodynamics

When the swimming robot size ranges from milli to micrometers, the forces that
predominate in the environment change as a consequence of the scale: inertial forces begin
to lose importance in contrast to the viscous ones, which can be described by a low Re
regime [14–16,44–46]. For this regime, the well-known Navier–Stokes equations reduce to
Stokes’ equations as follows:

µ∇2v = ∇p (1)

∇ · v = 0

where v is the fluid velocity field, ∇p is the pressure gradient present in the fluid, and
µ∇2v represents the diffusion and internal forces. The first consequence of low Re regime
governed by the Stokes’ equations is the reversibility of a flow, which implies that the
motion of the fluid particles is independent of time and is the only function of the followed
path. Therefore, according to the “scallop theorem” [47], a swimmer achieves zero net
displacements when moving to a position and then returning by reversing the same
sequence of movements and, as a consequence, a non-reciprocal motion is required to
accomplish a net displacement different from zero. The difference between reciprocal
and non-reciprocal motion is illustrated in Figure 1 by means of the simplest swimming
robot, namely the so-called Purcell’s three-link swimmer. For the green-red arrow path,
which corresponds to a reciprocal motion, the sequence of movements repeats step ‘B’
to complete the cycle. Therefore, the displacement achieved from A-B-C movements is
canceled with C-B-A, since it is the same motion in opposite direction. On the other hand,
the green-yellow arrow path shows a non-reciprocal motion as none of the steps is repeated,
so all the movements contribute to robot displacement.

A B

CD

Figure 1. Graphical description of reciprocal (green-red arrow path, A-B-C-B-A) and non-reciprocal
(green-yellow arrow path, A-B-C-D-A) motion with a Purcell’s swimming robot.

2.2. Waveforms

As mentioned above, the selection of an optimal non-reciprocal motion is a key factor in
low Re environments, since the net displacement only depends on the geometrical sequence
of movements [14,48]. In particular, planar waveforms describe a non-reciprocal motion.
From a nature perspective, different kinds of waveforms can be observed in biological
swimmers. The first kind is a planar (traveling) wave based on flagella of eukaryotic cells,
which is described by a traveling harmonic wave [49]. Linear and quadratic traveling waves
define the Carangiform fishes motion, i.e., the bending of their bodies in a propulsive wave
that extends from head to tail end [50]. These three waveforms can be described by:

y(x, t) = (c0 + c1x + c2x2) sin
(

2π

λ
(x−Vpt)

)
, (2)
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where c0, c1, and c2 are the coefficients that govern the amplitude growth, x is the displace-
ment along the propulsion axis, Vp refers to the propagation speed of the wave, and λ is
the wavelength. For planar waves, the amplitude is only given by coefficient c0 (the others
are zero). For Carangiform swimmers, c0 = 0. By choosing adequate values for coefficients
c1 and c2, two important properties for propulsion can be preserved: (1) the flagellum head
is always maintained at zero amplitude (boundary condition, i.e., y(0, t) = 0), and (2) the
wave amplitude along the flagellum can be modulated.

An alternative way for preserving such properties, which has been demonstrated to
increase the forward propulsion velocity, is the use of a fractional growth for variable x as
follows [28]

y(x, t) = (cxα) sin
(

2π

λ
(x−Vpt)

)
, (3)

where c defines the amplitude at the end of the flagellum, and α ∈ R+ (0 < α < 1) is
the coefficient that determines the wave growth shape. In particular, when α = 0, the
resulting waveform is harmonic, whereas α = 1 results in the Carangiform waveform.
Thus, this waveform can be also viewed as a generalization of (2), merging the features
from harmonic to Carangiform waveforms. Figure 2 depicts the four traveling waveforms
described. Figure 2a illustrates the harmonic waveform, the linear waveform and the
Carangiform waveform are depicted in Figure 2b, and the waveform with fractional growth
for different values of α is shown in Figure 2c.

0 0.05 0.1 0.15 0.2
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(a)

0 0.05 0.1 0.15 0.2

0

0.02

0.04

0.06

(b) (c)
Figure 2. Appearance of the four different kinds of planar traveling waves: (a) harmonic waveform,
(b) linear and quadratic Carangiform waveforms, (c) waveform with fractional growth.

2.3. IPMC Technology

IPMCs have received a significant amount of attention since they offer new oppor-
tunities for the development of flexible underwater robotic systems due to their intrinsic
properties: large bending deformation under a low applied voltage (4–6 V), low density,
and potential biocompatibility and biodegradability. They are usually manufactured by
Nafion as the foundation polymer matrix, a thin ion-exchange layer based on a perfluori-
nated ionomer membrane in a hydrated state with water as a solvent, plated with platinum
and attaching a couple of electrodes to both surfaces. The ion-exchange layer is neutralized
with Na+ counterions to balance the electric charge of the anions attached to the ionomer.
Likewise, IPMC units can be also manufactured using different types of both ionomer mem-
branes (such as Flemion) and counterions (such as Li+, Rb+ or K+) with water, ethylene
glycol, or glycerol as solvent.

If a voltage is applied to one of the electrodes, an ion migration is produced, moving
the hydrated cations and water molecules inside the polymer forward to the opposite
surface. This motion will increase the gradient concentration, producing electrostatic and
osmotic forces inside the polymer and forcing the bending as a result. Therefore, IPMCs are
electrically driven materials that undergo bending deformations in the presence of external
voltages.

3. Swimming Robot

This section focuses on the description of the AEF swimming robot manufactured by
IPMC and the experimental setup used in this work.
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3.1. Robot Description

Figure 3 shows the AEF swimming robot under study in this work. Inspired by the
flagella of eukaryotic cells, the robot consists of three planar segments based on IPMC
technology. The prototype was manufactured over the same IPMC sheet attending to the
mechanical design in Figure 3a and the dimensions given in Table 1. For that purpose, a
micro laser etching machine was used to cut the robot flagellum and isolate electrically
each of the segments.

It is important to remark that each segment of the flagellum can behave as an indepen-
dent actuator if it is electrically powered, or as a passive flexible link when it is not. In this
work, only the first segment will be used as a robot actuator for robot modeling, so the rest
of the links will behave as passive links. On the contrary, for control purposes, each link
will be driven in order to reproduce a non-reciprocal motion for propulsion. The deflection
of any of the links can be measured at its tip in both cases.

LT

L1

L1 + g1

W

1st − Link 2nd − Link 3rd − Link

(a) (b)

Figure 3. The three-link IPMC-based AEF swimming robot: (a) mechanical design, (b) image of the
real prototype.

Table 1. Geometrical parameters of the IPMC-based AEF swimming robot.

Parameter Description Value Unit

LT Length of robot 31 mm
W Width of robot 3 mm
h Thickness 250 µm
Li Length of actuator 10 mm
N Number of links 3 -
gl Space between actuators 500 µm

3.2. Experimental Setup

The experimental setup used in this work for identification and control purposes of
the manufactured swimming robot is illustrated in Figure 4a, which consists of:

• A water tank, used as an environment since the ultimate goal of the swimming robot
is to be able to swim in a fluid.

• A laser distance meter (OADM 20U2441), to measure the deflection of the links.
• Gold electrodes, attached by means of a clamp, to transmit the voltage from the

supplier to the IPMC surface.
• A USB multifunction I/O data acquisition board of National Instruments (NI-USB6259),

which is connected to a computer in which LabVIEW™ 2020 SP1 runs to collect the
data and generate the desired excitation voltage.

• A power stage, to provide sufficient power to the actuator from a power DC supplier
and the desired voltage indicated by the computer.
Note that, although in the scheme only one laser meter is shown pointing to the end
of the flagellum, there are two others to measure the deflection at the end of each of
the other two segments, depending on the needs of the application to be developed.
Likewise, other two additional pairs of electrodes are also available for distributed
actuation.
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Power Supply

NI Data acquisition
(NI-USB6259)

                                  Water Tank

Gold electrodes

Laser distance

 meter

(OADM 20U2441)

Labview 2020

L1 L2 L3

A1

(a) (b)

Figure 4. Experimental setup: (a) scheme, (b) swimming robot prototype pointed by the laser distance
meter during an experiment.

The laser distance meter is calibrated for a resolution of 0.8 mm/V and pointed at the
end of the desired link. Furthermore, the swimming robot is positioned in the middle of the
range, allowing it to measure a maximum displacement of 4 mm. On the other hand, the
voltage applied to the actuator is sampled with the USB multifunction I/O data acquisition
board at a frequency of 1 kHz. Likewise, the output signal of the laser distance meter and
the excitation voltage applied to IPMC are measured at the same sampling frequency and
then sent to the computer in order to collect the data. Figure 4b shows a real image of the
robot pointed by the laser during one of the experiments.

4. Robot Modeling

In this section, robot modeling is addressed in the frequency domain. The obtained
results are discussed in order to determine what kind of actuation can be applied to the
swimming robot to generate a planar waveform for propulsion.

4.1. Measuring Frequency Responses

The procedure described below was performed by measuring the deflection of each
link and exciting exclusively the first actuator. To measure frequency responses, a frequency
sweep is performed through a chirp signal with an amplitude of 3 V, a frequency range
from 100 mHz to 200 Hz, and a duration of 200 s, with the objective of capturing all possible
dynamics of the system and deciding which of them can be neglected for control purposes.
The chirp signal is applied directly to the electrodes attached to the first actuator (A1) and
the system response is the deflection of the link under study. Figure 5 shows the excitation
signal and the deflection measured at the third link (L3). Likewise, every experiment was
repeated 10 times in order to guarantee reproducibility and improve the final parameter
estimation.

0 50 100 150 200

-3

-1.5

0

1.5

3

(a)

20 40 60 80 100 120 140 160 180 200

-3

-2

-1

0

-3

-2

-1

0

1

(b)
Figure 5. Example of experimental signals: (a) excitation signal applied to the first actuator for
identification, (b) deflection measured on the third link.

The time response shows that the swimming robot reaches the relative maximum
deflection in the resonance conditions and then decreases. Processing these data in
MATLAB®, the frequency response was obtained using Welch’s method dividing the
set of data into eight sections with 50% overlap, each section was windowed with a Ham-
ming window and the eight modified periodograms were computed and averaged. The
average frequency response of the set of experiments obtained for each segment of the flag-
ellum, 10 for each, is shown in Figure 6. Likewise, the maximum and minimum standard
deviation is depicted for the response of the third link (gray lines).
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Figure 6. Frequency responses of the AEF swimimng robot for the excitation of first segment and the
deflection in each IPMC link.

4.2. Dynamic Model Identification

The theoretical models of IPMCs found in the literature stand out for their complexity
and the huge variability of their chemical parameters due to the lack of technical standards
in manufacturing methods. More precisely, the existing models can be categorized as:
(1) black-box models, based on empirical responses [43]; (2) gray-box models, which
combine the knowledge about materials with experimental data, i.e., they are formulated
based on physical principles while empirical results are used to define more complex
physical processes [42]; and (3) white-box models, whose components explain the physics
and actuation responses by partial differential equations [51,52]. Taking into account that
the last method is not practical for real-time control purposes due to the high computational
efforts required, the second approach will be used in this work as described below.

From the measured frequency responses, it can be seen that the system has two
resonance frequencies in the frequency range under study, regardless of the considered
link. Moreover, the farther a link is from the first link, the lower the resonance peak. On the
other hand, it should be remarked that the magnitude curves are not flat at low frequencies:
they fall with a slope of −10 dB/dec being the phase approximately 45◦. This behavior
matches perfectly with a fractional integrator of order 0.5, i.e.:

H(s) ≈ s−0.5 (4)

It is worth mentioning that these low-frequency dynamics was also proved for other
prototypes in [43,53,54], in our previous work [55], and in [42,51], whose theoretical models
present root square of the Laplacian variable to define the electrical dynamics of IPMC.

Theoretical studies on IPMCs usually model mechanical behavior and hydrodynamic
interactions when the actuator is submerged by coupling a resonant system for the first
vibration mode in order to obtain a more reliable model. This consideration can be accepted
in this work since, as it can be seen from the experimental frequency responses, the first
resonance mode predominates for frequencies below 50 rad/s, which are high enough for
the frequency range of interest for this application. Therefore, that dynamics may be given
by a spring-mass-damper second order system of the form:

G1(s) =
a0

b2s2 + b1s + 1
(5)
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or by a fractional order system as

G2(s) =
a0

b1sα + 1
(6)

with α ∈ R+ (α ∈ (1, 2)), and being a0, b1, and b2 constants. Notice that both models have
the same number of parameters (i.e., three). Hence, the global dynamics of the system will
be obtained as the fractional order integrator cascaded with the mechanical model, i.e.,
Pi(s) = H(s)Gi(s), with i = {1, 2}, for the frequency range of interest of [0.2, 50] rad/s.

For simplicity, the dynamics corresponding to the integrator was removed from the
measured frequency responses. Consequently, the identification procedure was reduced to
identify models of the form of (5) and (6) in the mentioned frequency range. In particular,
the average frequency response of the 10 measurements was used for identification. Con-
cerning the identification process, the Levy’s method is implemented in MATLAB® (with
function levy [56]) for both the integer and the fractional order models. The adjustment
was performed by minimizing J = (G(jω)D(jω)− N(jω))2, i.e., the quadratic error per
sampling frequency (N(jω) and D(jω) are the numerator and denominator of the transfer
function of the model to be identified, respectively). Fractional models were found sweep-
ing α in the interval (1, 2), with a step of 0.01, and choosing the best result from among the
stable models obtained.

The model parameters derived from the above-described identification process are
indicated in Table 2. From these results, it can be stated that: (i) as expected, the two models
Gi(s) obtained for each link are stable; (ii) gains of the models (coefficient a0) are of the same
order of magnitude; and (iii) the values obtained for the parameter α for each of the models
are very similar. Figure 7 shows a comparison of the experimental data and the frequency
response of the identified model for each robot link (denoted as PLq(jω) = H(jω)G1Lq

(jω),
being Lq = {L1, L2, L3} the link and G1Lq

(s) the dynamics of each link with the form of
(5)). As can be observed, differences between experimental and model frequency responses
appear at frequencies higher than 50 rad/s, i.e., outside of the range of interest.

In order to compare and evaluate the goodness of the obtained models, besides J,
additional performance indices were calculated: mean square error (MSE), mean absolute
deviation (MAD), maximum deviation (MD), and coefficient of determination R2, all of
them calculated in the same way as in [55]. They are given in Table 3, where the best fits
are in bold. To this respect, except for the third link, the best results are obtained using the
model G1(s) given by (5). However, for the third link that model is also the best in terms of
J and MD, but not if another of the remaining indices is considered.

10
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Figure 7. Comparison of experimental and model frequency responses of the AEF swimming robot
by exciting the first actuator and measuring the deflection at the end of each link.
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Table 2. Model parameters obtained from identification procedure.

Model α a0 (×10−3) b2 (×10−3) b1 (×10−3)

First link G1 - 13.70 1.62 12.60
G2 1.79 13.33 - 3.30

Second link G1 - 51.00 1.61 12.72
G2 1.81 48.10 - 3.10

Third link G1 - 376.09 2.13 23.31
G2 1.71 352.80 - 5.80

Table 3. Performance indices after fitting models P1(s) and P2(s). Numbers in bold correspond to the
best fit.

Model J (×10−5) MSE (×10−7) MAD (×10−4) MD (×10−3) R2

First link P1 2.4884 4.5210 5.4392 2.800 0.9153
P2 3.4992 5.0188 5.7149 3.3000 0.9059

Second link P1 4.9163 59.7630 13.0000 24.0000 0.9630
P2 12.3680 104.2300 19.0000 28.5000 0.9354

Third link P1 530.0000 1654.7000 69.0000 126.5000 0.9796
P2 550.0000 1392.7200 45.000 186.4000 0.9828

4.3. Discussion of the Results

According to the above results, it can be stated that the links have similar dynamics
regardless of their position. However, there are differences in the gain, which means a
greater displacement as the closer to the end of the flagellum is measured. Specifically, the
tip displacement of the second link shows an increase in gain, whereas the tip displacement
of the third link also presents a lag with respect to the first link as a consequence of the
length, the flexible behavior of IPMC and the interaction with the environment. These
conclusions are illustrated in Figure 8, which schematizes the relation between the first and
the rest of the links. (At this point, it should be recalled that the first link is active, while the
other two behave as passive links). The values of the gains and the phase lag of the third
link can be directly deducted from Table 2 as follows: K2 = 3.72, K3 = 7.37, and φ = 4◦. It
should be noted that the gain does not increase linearly due to the fact that the IPMC bends
into a C-shape, so the closer to the end is measured, the higher the displacement.

PL1
(jω) e−jφK2 K3

y1 y2 y3Vin

First link dynamics

Second link dynamics (PL2
)

Third link dynamics (PL3
)

Figure 8. Diagram block of swimming robot model for single actuation.

Hence, it can be concluded that the displacement of the end of each flagellum segment,
or of any IPMC point, is characterized by the same dynamics, which remains unchanged
along with the link with mere variations of the gain for low-frequency applications. This
conclusion is also consistent with other studies reported in the literature, where IPMCs show
changes in model gain when the links do not have the same length or are manufactured
from different substrates (see e.g., [31,41,43,55]).

Moreover, from the above conclusion, it can be stated that a non-reciprocal motion
cannot be achieved with a single actuation if the geometrical and mechanical design of



Algorithms 2022, 15, 181 10 of 18

the swimming robot has not been analyzed previously and designed for that purpose,
otherwise the dynamics of consecutive links are subjected to the active link. In other
words, it is not possible that the swimming robot carries out a non-reciprocal motion with
a single actuation; a distributed actuation is needed to obtain the desired waveform and,
consequently, for robot propulsion.

Finally, the dynamics considered for the control design is the one corresponding to the
third link, which takes the form:

PL3(s) =
1

s0.5
376.09× 10−3

2.13× 10−3s2 + 23.31× 10−3s + 1
(7)

It is worth mentioning that such a dynamics is considered because it represents the worst
case: a further increase in the third link gain may cause the system to become unstable, as
the gain variation is not linear; on the contrary, a decrease in gain does not compromise the
stability of the system.

5. Robot Propulsion

This section addresses the motion control of the AEF swimming robot to reproduce
the desired waveform. Firstly, the formulation of the problem under study is explained.
Then, two controllers are tuned for robot propulsion, namely a traditional integer order
proportional-integral-derivative (PID) and a fractional order integrator. Motion analysis
when applying both controllers is then discussed.

5.1. Problem Formulation

Two main issues have to be addressed when trying to generate a non-reciprocal
motion, especially a planar traveling wave. Firstly, the desired waveform must be adapted
to the swimming robot dynamics and discretized for its geometry, considering that it is
necessary to define a reference for each of the robot’s links. This will fulfill the capabilities
of the swimming robot in terms of amplitude and velocity. The resulting waves will be the
references of the IPMC links. Secondly, a tracking controller needs to be applied to each
link to follow the desired deflection.

The methodology applied to discretize the motion is based on [28], which divides the
flagellum into the same number of segments and the same length as the swimming robot
has, providing a matrix, A[T][N], that contains the trajectory as a function of time and
space for the N links of the robot. However, it should be noted that in this work the above
method is modified to obtain the waveform amplitude instead of the link angle. The type of
waveform chosen is the linear Carangiform, due to the physical limitations of IPMCs (slow
dynamics and low amplitude responses). Therefore, the linear Carangiform waveform
may be the most suitable for this type of material in contrast to other ones that require a
greater range of motion, which means very low frequencies or the impossibility to perform
the motion. The parameters that define the linear Carangiform motion according to the
waveform expression (2) are collected in Table 4. With respect to the wavelength, it was
defined using the criterion applied in [28], which means it is equal to the robot’s length.

Table 4. Linear Carangiform waveform parameters.

Parameter Value Description Unit

c0 0 Amplitude coefficient µm
c1 200 Amplitude coefficient -
c2 0 Amplitude coefficient 1/µm
f 0.01 Frequency Hz
λ 32 Wavelength mm

In order to track the calculated references, as commented above, a controller for each
link that takes the following considerations into account is required. Firstly, from the
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identification procedure, it has been deduced that the dynamics of the IPMC links are very
similar and that only variations in the gain are observed as a consequence of its strong
dependence on the link length. Secondly, it has been found that an equal link length does
not provide the optimal waveform and, consequently, the optimal drive for a given number
of links [25]. With this motivation, a controller robust to variations in the system gain is
considered to overcome the robot propulsion, so that it can also be applied after a link
length optimization process.

5.2. Control Design

The methodology applied to design the controller is based on the reference model
strategy proposed in [57], which adjusts the step response of the controlled system to an
ideal closed-loop system. The frequency domain specifications for the ideal closed-loop are:

1. Gain crossover frequency: ωcg = 5 rad/s.
2. Phase margin: φm = 75◦.

Based on the above specifications, the ideal Bode transfer function of a non-integer
integrator is taken as the ideal reference model, whose open- and closed-loop forms are,
respectively:

Lol(s) =
(

ωc

s

)γ

(8)

Lcl(s) =
1(

s/ωc
)γ

+ 1
(9)

where ωc denotes the crossover frequency, and γ ∈ (0, 2] is the non-integer order of the
reference system. The gain and phase of the ideal reference model (8) are given by [57,58]:

|Lol(jω)| = −20γ log10

(
ω

ωc

)
dB/dec

arg
[
Lol(jω)

]
= −γπ/2 rad

The reference model has a constant phase at any frequency to ensure that the controlled
system is robust to gain variations and exhibits an iso-damping property at a step response.
Then, based on the above relationships, the system must have a crossover frequency of
ωc = ωcg = 5 rad/s and a non-integer order of γ = 1.16 to meet the desired specifications.

In order to achieve this dynamics with the IPMC link model identified (Equation (7)),
a PID controller is considered in parallel form as:

CPID(s) = Kp +
Ki
s
+ Kds (10)

where Kp, Ki, and Kd are the proportional, integral, and derivative gains, respectively. The
controller parameters were determined by an optimization process based on the structure
presented in [57], minimizing the following cost function:

J(Kp, Ki, Kd) =
∫ ∞

0

(1
2
+

t
2

)
|e(t)|dt =

∫ ∞

0

(1
2
+

t
2

)
|yr(t)− y(t)|dt (11)

where yr(t) is the desired output, obtained from the reference model, and y(t) is the output
of the controlled swimming robot link with the proposed controller. Note that cost function
(11) is a combination of the integral time absolute error (ITAE), to evaluate the performance
of the system over time (it penalizes the errors that are persistent and neglects the initial
errors) [59], and the integral of absolute error (IAE), to quantify the performance to be
sensitive at low errors [59].

The optimization process is divided into two steps and is carried out by combining
both MATLAB® and Simulink®. The first step is to implement the system (the dynamics of
the third link, i.e., model (7)) controlled by a PID, whose gains are variable, in closed-loop,
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together with the scheme corresponding to the reference model. The second step is a
MATLAB script that implements an iterative process based on the Nelder–Mead simplex
search method, through the function fminsearch, that runs the mentioned Simulink model
calculating the cost function J given by (11). In particular, this script varies the parameters
of the PID controller until the values that minimize J are found, i.e., the controller optimal
values. In order to be able to find a globally optimal solution, the iterative process was
applied for a wide number of initial conditions, which were randomly changed for each
optimization. The resulting optimal controller is the following:

CPID(s) = 8.12 +
53.36

s
+ 0.61s (12)

It is worth mentioning that other performance indices were tried, but results with small
variations were obtained with respect to the ones presented.

Upon analyzing the design method for the IPMC link model, which also contains
non-integer order dynamics, the conclusion is drawn that the PID controller attempts to
approximate the dynamics of a non-integer order integrator with the purpose of approa-
ching the system to the desired dynamics. On this basis, a non-integer integrator is also
considered for comparison purposes with the form:

CI(s) =
K
sλ

(13)

where λ ∈ (0, 1] is its order. Unlike PID, the parameters of fractional integrator are
calculated analytically from the design specifications, which results in

CI(s) =
15.62
s0.62 (14)

Moreover, this controller was approximated by the Oustaloup method with four poles
and four zeros in the frequency range [0.001, 100] rad/s as follows:

C∗I (s) =
32.08s4 + 1981s3 + 6511s2 + 1196s + 11.7

36.47s4 + 372.9s3 + 202.9s2 + 6.175s + 0.01
(15)

The Bode plots of the three designed controllers, namely CPID(s), CI(s), and C∗I (s), are
shown in Figure 9. As can be seen, the PID controller provides a phase of 44◦ at 5 rad/s
and a positive gain to the system at relatively high frequencies, which will increase the
speed of the system, but at the same time, the crossover frequency specification will not be
met. In contrast, the non-integer integrator has a bit higher phase at 5 rad/s, namely 56◦,
and a positive gain of 15 dB, so the design specifications can be better fulfilled. As for the
approximation of the fractional integrator, it should be noted that it performs very close to
CI(jω), with only a small variation in the phase from the desired ωcg being observed.

Figure 10 illustrates Bode plots of the open-loop system when applying the designed
controllers and the approximation. From these frequency responses, the first remark that
can lay bare is that the PID controller does not meet the design specifications: as it was
commented, the controller increases the speed of the system (ωcg = 38 rad/s) and the
phase margin is 75◦. The reason for the frequency response mismatch is due to the fact
that the optimization process was approached from a time perspective, to adjust the time
response of the system for a step input. On the contrary, the system fulfills the design
specifications perfectly when applying a fractional order integrator. Furthermore, the phase
is flat at crossover frequency and almost constant within an interval around it. In other
words, the system is robust to gain variations and the overshoot of the response will be
almost constant close to ωcg.



Algorithms 2022, 15, 181 13 of 18

10
-1

10
0

10
1

10
2

-100

-50

0

50

100

10
-1

10
0

10
1

10
2

-100

-50

0

50

100

Figure 9. Frequency response of the designed integer and fractional order controllers.

10
-1

10
0

10
1

10
2

-100

-50

0

50

100

10
-1

10
0

10
1

10
2

-300

-200

-100

0

Figure 10. Frequency response of the reference model and the controlled system in open-loop.

The issues mentioned above can be also observed from the results plotted in Figure 11,
which illustrates the step response of the reference model and that corresponding to each
link of the robot when applying the PID (see Figure 11a) and the fractional integrator
and its approximation (see Figure 11b). As far as the PID controller is concerned, the
response for the third link shows a good fit with respect to the reference model response.
However, the characteristics of this behavior do not hold for the other links: the overshoot
increases as the gain decreases, although the system is faster for the second and third links
compared to the other control strategy. This behavior is not observed in the system for the
fractional integrator, which also approximates the step response of the reference model and,
in the case of applying the controller to other links, the overshoot is maintained, ensuring
robustness to gain variations. Regarding the integrator approach, the responses show small
differences with respect to the ideal case, with the system velocity and overshoot remaining
unchanged for all three links.
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Figure 11. Step response of each robot link when applying: (a) PID controller, (b) non-integer order
integrator and its approximation.

5.3. Motion Analysis

The swimming robot model was implemented in Simulink® on the basis of the de-
scription given in Section 4. Three equal IPMC links are concatenated and modeled with
the same dynamics since they have the same length. Specifically, the link dynamics is
defined as PLq(s) = H(s)G1Lq

(s), where the model parameters of G1Lq
(s) for each link are

contained in Table 2. The total displacement of a link is calculated by means of its relative
displacement and the angle of the previous link end.

Figure 12 shows the displacement of each link tracking its reference for the designed
control strategies (see Figure 12a) and the comparison between the ideal linear Carangiform
motion and the motion resulting from the distributed actuation (see Figure 12b). Firstly, let
us comment on the results of Figure 12a. Independently of the flagellum segment, both
controllers track closely the references, although the PID controller achieves better tracking
as the controller increases the speed of the system. However, an increase in the tracking
error is also observed as a consequence of the amplitude increase in the reference signal
and the compensation of the dynamic motion of the previous link. In order to evaluate the
tracking performance of the controllers, the ITAE and IAE indices were calculated. The
results of the performance indexes obtained from the simulation are given in Table 5. It
is important to remark that the results of the non-integer order controller correspond to
its approximation. The indices validate the previous statement: the best performance is
achieved in the first link, where the effort demanded by the reference is lower and the
second and third links obtain worse tracking, although the error between them is similar,
which shows the robustness of the controller. In addition, the PID controller exhibits a
better tracking performance, although its behavior at step response is worse.

(a)
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(b)
Figure 12. Swimming robot motion: (a) tracking results for the three robot links, (b) comparison of
the ideal, discretized, and realized linear Carangiform waveform.
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With respect to the results of Figure 12b, the ideal linear waveform, the discretized
one obtained from the projection method described in [28] and the realized waveform
are illustrated. As can be seen, the swimming robot is able to perform a non-reciprocal
motion through a distributed actuation, although there exists a higher amplitude error
and lag on the response when applying the fractional integrator, which will affect the
robot’s propulsion. The non-reciprocal motion for the ideal waveform and the obtained
by applying each designed controller can be observed more clearly in Figure 13, which
represents a three-dimensional graph showing time, the normal and transverse axis of
the swimming robot. For the three cases, the ideal and simulated results show that the
flagellum motions perform a wave that travels along the flagellum and over time.

Table 5. Tracking performance indices.

Link IAE ITAE

CI(s) CPID(s) CI(s) CPID(s)

First link 4.67 0.68 434.90 42
Second link 13.87 2.28 1283.50 140.75
Third link 18.04 3.97 1861.70 269.74

(a) (b) (c)
Figure 13. Three-dimensional representation of non-reciprocal motion for: (a) ideal waveform,
(b) simulated motion with CPID(s), (c) simulated motion with C∗I (s).

6. Conclusions

In this paper, an artificial eukaryotic flagellum (ABF) swimming robot made up of ionic
polymer-metal composite (IPMC) has been studied for the generation of planar traveling
waves through single and distributed actuation in low Reynolds number (Re) environments.
The robot comprised three independent and electrically isolated actuators manufactured
over the same 10 mm long IPMC sheet.

Firstly, the swimming robot dynamics was identified for control purposes through its
frequency response. It was obtained experimentally in LabVIEW by attaching a couple of
gold electrodes to the first actuator and measuring the tip deflection by means of a laser
distance meter. The experiments were performed considering the first segment as actuator
and the rest acting as passive flexible links, and the deflection of each of the links was
measured. Models consisting of a fractional integrator in series with a resonant system
of both fractional and integer order were identified in the frequency range [0.1, 50] rad/s
for each link. The results showed that both models can be adequate for control purposes.
Furthermore, the identification process led to the conclusion that the tip displacement and
of any IPMC point are characterized by the same dynamic, which remains unchanged along
with the link with mere variations of the gain for low-frequency applications. From this
conclusion, it was also deduced that single actuation of the robot does not allow to produce
a non-reciprocal motion, since the dynamics of the second and third links are subject to
the dynamics of the first link. There are only differences in the gain and a slight phase lag,
which are not sufficient to generate a non-reciprocal motion.

Secondly, a controller robust to gain variations was designed to control link deflection
regardless of link length allowing to address a distributed actuation with the same controller
design. It was tuned based on the methodology of the reference model and two control
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strategies were proposed: a classical proportional-integral-derivative (PID) controller and
a non-integer order integrator. The results showed that the PID offers a better response
to tracking control as a consequence of the increased system speed, but does not meet
the design specifications. In contrast, the non-integer order integrator meets the step
response specifications but provides worse results for the tracking problem. Finally, the
motions of the AEF swimming robot composed of three links of the same length were
analyzed to validate that the robot performs a non-reciprocal motion, determining that a
distributed actuation generates a planar wave motion. Therefore, it was also concluded
that a distributed actuation (active or passive) is necessary to develop a non-reciprocal
motion.

Our future works will focus on: (1) validating the distributed actuation method in the
real prototype; and (2) studying the control approach for a swimming robot with segments
of different lengths designed to optimize robot propulsion.
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