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Chapter 48

Modeling and Control of

Legged Robots

Summary

Introduction

The promise of legged robots over standard wheeled robots is to provide im-
proved mobility over rough terrain. This promise builds on the decoupling
between the environment and the main body of the robot that the presence of
articulated legs allows, with two consequences. First, the motion of the main
body of the robot can be made largely independent from the roughness of the
terrain, within the kinematic limits of the legs: legs provide an active suspen-
sion system. Indeed, one of the most advanced hexapod robots of the 1980s was
aptly called the Adaptive Suspension Vehicle [1]. Second, this decoupling al-
lows legs to temporarily leave their contact with the ground: isolated footholds
on a discontinuous terrain can be overcome, allowing to visit places absolutely
out of reach otherwise. Note that having feet firmly planted on the ground is
not mandatory here: skating is an equally interesting option, although rarely
approached so far in robotics.

Unfortunately, this promise comes at the cost of a hindering increase in
complexity. It is only with the unveiling of the Honda P2 humanoid robot in
1996 [2], and later of the Boston Dynamics BigDog quadruped robot in 2005 that
legged robots finally began to deliver real-life capabilities that are just beginning
to match the long sought animal-like mobility over rough terrain. Not matching
yet the capabilities of humans and animals, legged robots do contribute however
already to understanding their locomotion, as evidenced by the many fruitful
collaborations between robotics and biomechanics researchers.
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48.1 A Brief History of Legged Robots

Before the advent of digital computers, legged machines could be approached
only by electro-mechanical means, lacking in advanced feedback control. This
“pre-robotics” period culminated with the General Electric Walking Truck de-
veloped by Ralph Mosher, which inspired awe in the mid 1960s. The limb
motions of this elephant-size quadruped machine were directly reflecting the
limb motions of the onboard operator, who was responsible for all motion con-
trol and synchronization. Unfortunately, the strenuous concentration that this
required limited operation to less than 15 minutes.

Digitally controlled legged robots started to appear in the late 1960s. Among
early pioneers, Robert McGhee initiated a series of quadruped and hexapod
robots first at University of South California, then at Ohio State University,
culminating in the mid 1980s with the Adaptive Suspension Vehicle, a human
carrying hexapod vehicle walking on natural and irregular outdoor terrain [1],
while Ichiro Kato initiated a long series of biped and humanoid robots in the
Waseda University, a series still continuing nearly half a century later [3]. But
by the end of the 1970s, all legged robots were still limited to quasi-static gaits,
i.e. slow walking motions with the Center of Mass of the robot always kept
above its feet.

The transition to dynamic legged locomotion occurred in the beginning of
the 1980s, with the first dynamically walking bipedal robot demonstrated at the
Tokyo University [4], and the famous series of hopping and running monope-
dal, bipedal and quadrupedal robots developed at the MIT LegLab under the
direction of Marc Raibert [5]. Key theoretical breakthroughs came in the end
of the 1980s, when Tad McGeer demonstrated that stable dynamic walking mo-
tions could be obtained by pure mechanical means, giving rise to a whole new
field of research, passive dynamic walking, introducing new, key concepts such
as orbital stability using Poincaré maps [6], with one simple conclusion: you
need not have complete (or any) control to be able to walk dynamically and
efficiently.

Legged robots were still mostly research laboratory curiosities working in
limited situations when Honda unveiled the P2 humanoid robot in 1996 [2], a
decade long secret project demonstrating unprecedented versatility and robust-
ness, followed in 2000 by the Asimo humanoid robot. The world of humanoid
and legged robots was ripe for companies to begin investing. A handful of
other Japanese companies such as Toyota or Kawada were quick to follow with
their own humanoid robots, while Sony began selling more than 150,000 of its
Aibo home companion robot dogs. Boston Dynamics, a company Marc Raibert
founded after leaving the MIT LegLab, finally unveiled its BigDog quadruped
robot in 2005 [7], which was the first to demonstrate true animal-like locomotion
capabilities on rough terrain.

The progress over the last decades has been remarkable. Profound questions
have finally been answered: we now understand how to make legged robots walk
and run dynamically. But other profound questions still have to be answered,
such as how best to make them walk and run efficiently. The performance of



48.2. THE DYNAMICS OF LEGGED LOCOMOTION 3

legged robots needs to be improved in many ways: energy, speed, reactivity,
versatility, robustness, etc. We will therefore discuss in this Chapter how legged
robots are usually modeled in Section 48.2 and how dynamic motions are cur-
rently generated and controlled in Sections 48.4 and 48.5, before discussing in
Section 48.6 the current trends in improving their efficiency.

48.2 The dynamics of legged locomotion

One of the major difficulties in making a legged robot walk or run is keeping its
balance: where should the robot place its feet, how should it move its body in
order to move safely in a given direction, even in case of strong perturbations?
This difficulty comes from the fact that contact forces with the environment are
an absolutely necessity to generate and control locomotion, but they are limited
by the mechanical laws of unilateral contact.

This essential role of the contact forces is particularly clear in the derivatives
of the total linear and angular momenta of the robot, the former involving the
motion of its Center of Mass. Because of the importance of contact forces for
legged locomotion, we briefly discuss here their different models.

48.2.1 Lagrangian dynamics

Structure of the configuration space. As for every robot moving in their
3D environment (in space or underwater for example), the configuration space
of legged robots combines the configuration q̂ ∈ R

N of their N joints with a
global position x0 ∈ R

3 and orientation θ0 ∈ R
3 (representing an element of

SO(3)):

q =





q̂

x0

θ0



 . (48.1)

The position x0 and orientation θ0 are typically those of a central body (pelvis
or trunk) or of an extremity (foot or hand).

Structure of the Lagrangian dynamics. The specific structure of the con-
figuration space outlined above is naturally reflected in the Lagrangian dynamics

M(q)









¨̂q

ẍ0

θ̈0



+





0

g

0







+ n(q, q̇) =





u

0

0



+
∑

i

Ci(q)
⊤fi (48.2)

of the system, where M(q) ∈ R
(N+6)×(N+6) is the generalized inertia matrix of

the robot, −g ∈ R
3 is the constant gravity acceleration vector, n(q, q̇) ∈ R

N+6

is the vector of Coriolis and centrifugal effects, u ∈ R
N is the vector of joint

torques, and for all i, fi ∈ R
3 is a force exerted by the environment on the robot

and Ci(q) ∈ R
(N+6)×3 is the associated Jacobian matrix [8].
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Since the vector u of joint torques has the same size as the vector q̂ of joint
positions, the whole dynamics including the global position x0 and orientation
θ0 appears to be underactuated if no external forces f i are exerted.

48.2.2 Newton and Euler equations of motion

Center of Mass and Angular Momentum. A consequence of the struc-
ture (48.2) of the Lagrangian dynamics is that the part of this dynamics which is
not directly actuated involves the Newton and Euler equations of motion of the
robot taken as a whole (see [8] for detailed derivations). The Newton equation
can be written in the following way:

m (c̈+ g) =
∑

i

fi (48.3)

with m the total mass of the robot and c the position of its Center of Mass
(CoM). The Euler equation can be expressed with respect to the CoM in the
following way:

L̇ =
∑

i

(pi − c)× fi (48.4)

with pi the points of applications of the forces fi and

L =
∑

k

(xk − c)×mkẋk + Ikωk (48.5)

the angular momentum of the whole robot with respect to its CoM, with ẋk

and ωk the translation and rotation velocities of the different parts k of the
robot, mk and Ik their masses and inertia tensor matrices (expressed in global
coordinates).

The Newton equation makes it obvious that the robot needs external forces,
fi, in order to move its CoM in a direction other than that of gravity. The Euler
equation is more subtle, as we will see during flight phases.

Flight phases. During flight phases, when a legged robot is not in contact
with its environment, not experiencing any contact forces, fi, the Newton equa-
tion (48.3) simplifies to

c̈ = −g. (48.6)

In this case, the CoM invariably accelerates along the gravity vector −g with
constant horizontal speed, following a standard falling motion: there is abso-
lutely no possibility to control the CoM to move in any different way. The Euler
equation (48.4) simplifies in the same way to

L̇ = 0, (48.7)

imposing a conservation of the angular momentum, L. In this case, however,
the robot is still able to generate and control both joint motions and global
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Figure 48.1: Even though the angular momentum is constant during flight
phases, the robot is still able to generate and control rotations of the whole
body (in red) with the help of leg or arm motions (in green), as a result of the
non-holonomy of the angular momentum. This is how cats fall back on their
feet when dropped from any initial orientation.

rotations, this is how cats are able to fall back on their feet when dropped from
any initial orientation (Figure 48.1). This is a result of the non-holonomy of
the angular momentum (48.5) which is not the derivative of any function of the
configuration of the robot [9]. As a result, even though the angular momentum,
L, is kept constant during the whole flight phase, the joint configuration, q̂, and
the global orientation, θ0, of the robot can be driven to any desired value at the
end of the flight phase. We will see in Section 48.5 how this impacts the control
of legged robots. Note that the dynamics of legged robots during flight phases
is similar to the dynamics of free-floating space robots discussed in Chapter 55.
Further discussion and developments can be found there.

In contact with a flat ground: the Center of Pressure. In case the
forces applied by the environment on the robot are due to contacts with a flat
ground (while standing still, walking or running), let us consider a reference
frame oriented along the ground, with the z axis orthogonal to it (therefore
tilted if the ground is tilted, see Figure 48.5). Without loss of generality, let us
suppose that the points of contact, pi, with the ground are all such that pzi = 0.

Let us consider then the sum of the Euler equation (48.4) and the cross
product of the CoM, c, with the Newton equation (48.3):

m c× (c̈+ g) + L̇ =
∑

i

pi × fi, (48.8)
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and let us divide the result by the z coordinate of the Newton equation to obtain

m c× (c̈+ g) + L̇

m(c̈z + gz)
=

∑

i pi × fi
∑

i f
z
i

. (48.9)

Since pzi = 0, the x and y coordinates of this equation can be simplified in the
following way:

cx,y −
cz

c̈z + gz
(c̈x,y + gx,y) +

1

m(c̈z + gz)
SL̇x,y =

∑

i f
z
i p

x,y
i

∑

i f
z
i

(48.10)

with a simple rotation matrix S =

[

0 −1
1 0

]

.

On the right hand side appears the definition of the Center of Pressure
(CoP), z, of the contact forces, fi. These contact forces are usually unilateral
(the robot can push on the ground, not pull):

fz
i ≥ 0, (48.11)

which implies that the CoP is bound to lie in the convex hull of the contact
points (Figure 48.2):

zx,y =

∑

i f
z
i p

x,y
i

∑

i f
z
i

∈ conv {px,y
i } . (48.12)

Combining this inclusion with the dynamic equation (48.10) reveals an Ordinary
Differential Inclusion (ODI)

cx,y −
cz

c̈z + gz
(c̈x,y + gx,y) +

1

m(c̈z + gz)
SL̇x,y = zx,y ∈ conv {px,y

i } (48.13)

which bounds the motion of the CoM, c, of the robot and the variations of its
angular momentum, L, with respect to the position, px,y

i , of the contact points.
This ODI can be reorganized in the following way:

cz

c̈z + gz
(c̈x,y + gx,y) = (cx,y − zx,y) +

1

m(c̈z + gz)
SL̇x,y (48.14)

in order to expose its simple geometric meaning in Figure 48.3. We can see
especially that aside from the effects of gravity, gx,y, and variations, L̇x,y, of the
angular momentum, the horizontal acceleration, c̈x,y, of the CoM is the result
of a force pushing the CoM, cx,y, away from the CoP, zx,y, which is bound to lie
in the convex hull of the contact points. We have here an intrinsically unstable
dynamics.

Note finally that the definition (48.12) of the CoP can be reorganized to
show that the horizontal momenta of the contact forces, fi, with respect to the
CoP z are equal to zero:

[

∑

i

(pi − z)× fi

]x,y

=
∑

i

(px,y
i − zx,y) fz

i = 0. (48.15)

Hence the CoP is also referred to as the Zero Moment Point (ZMP) [10, 11].
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Figure 48.2: The CoP, z, is bound to lie in the convex hull of contact points,
pi.
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Figure 48.3: The horizontal acceleration, c̈x,y, of the CoM of the robot is the
sum of a force pushing the CoM, cx,y, away from the CoP, zx,y, the effect of
gravity, −gx,y, and variations, L̇x,y, of the angular momentum.
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In contact with multiple surfaces. If the contact points, pi, are not all on
the same plane, we can introduce a CoP for each contact surface, but we cannot
introduce a unique CoP for all contact forces as we did previously. Approxi-
mations, and generalizations to limited multiple contact situations have been
proposed but haven’t been widely adopted [11, 12, 13, 14]. In the general case,
the Newton and Euler equations (48.3) and (48.4) have to be considered explic-
itly together with the unilaterality condition (48.11) in order to check which
motion is feasible or not [15, 16, 17]. The problem we have to solve then relates
very closely to the force closure problem discussed in Chapter 38 on Grasping.
Different ways to solve it as quickly as possible have been proposed [15, 18],
and used mostly so far to measure offline the stability robustness of a given
motion [19, 20], and only recently for motion planning, once again offline [21].
Refinements to curved contact surfaces have also been proposed [22].

48.2.3 Contact models

The structure of the Lagrangian dynamics makes it clear that contact forces
are central to the modeling and control of legged robots. But note that the
only characteristics of these forces that we have introduced so far is their uni-
laterality (48.11). As a result, the previous analysis applies to various contact
situations: walking and running motions, but also sliding situations such as
when skiing or skating, or even rolling situations [23, 24].

Let us briefly discuss now standard contact models (more details can be
found in Chapter 37 on Contact Modeling and Manipulation). Concerning mo-
tion and forces tangential to the contact surfaces, a simple Coulomb friction
model is usually considered. Concerning motion and forces orthogonal to the
contact surfaces, two options are generally considered: a compliant or a rigid
model, introducing impacts and other nonsmooth behaviors.

Coulomb friction. When a contact point, pi, is sliding on its contact surface,
the corresponding tangential contact force, fx,y

i , is proportional to the normal
force, fz

i , in a direction opposite to the sliding motion:

f
x,y
i = −µ0f

z
i

ṗ
x,y
i

‖ṗx,y
i ‖

if ṗ
x,y
i 6= 0, (48.16)

with µ0 > 0 the friction coefficient. When the contact point is sticking and
not sliding, the norm of the tangential force is simply bounded, with the same
friction coefficient:

‖fx,y
i ‖ ≤ µ0f

z
i if ṗ

x,y
i = 0. (48.17)

This is typically referred to as the friction cone. Note that this friction model
directly implies the unilaterality condition (48.11).

Compliant contact models. Compliant contact models take into account
the visco-elastic properties of the materials in contact in the direction orthogonal
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to the contact surfaces:

fz
i = −Kip

z
i − Λiṗ

z
i if pzi ≤ 0, (48.18)

whereKi and Λi are stiffness and damping coefficients, respectively. In this case,
the normal force, fz

i , appears to be the result of a penetration of the contact
point below the contact surface, i.e. when pzi < 0. Note that, as it is here, this
model doesn’t satisfy the unilaterality condition (48.11) in all situations and
needs therefore to be saturated to enforce this property. Of course, when there
is no contact, there is no contact force:

fz
i = 0 if pzi > 0. (48.19)

A similar spring-damper model can also be used to determine the frictional
contact force, fx,y

i , subject to the bounds of the friction cone (48.17).

Rigid contact models. Rigid contact models are somewhat simpler to in-
troduce: either there is contact and the normal force can take any non-negative
value,

fz
i ≥ 0 if pzi = 0, (48.20)

or there is no contact and no contact force:

fz
i = 0 if pzi > 0. (48.21)

In this case, no penetration of the contact points below the contact surfaces are
considered. Note also that the unilaterality condition (48.11) is satisfied here
by definition. As a matter of fact, this rigid model can be summarized in the
following way:

fz
i ≥ 0, pzi ≥ 0, fz

i p
z
i = 0, (48.22)

where it appears that both the normal force, fz
i , and the position of the contact

point with respect to the contact surface, pzi , must be non-negative, but at least
one of them must be equal to 0. This is called a complementarity condition.
Analogous to equations (48.18)-(48.19), it defines the normal force to be either
zero, or the force necessary to maintain pzi = 0. Note that the sticking-or-sliding
behavior of Coulomb friction can also be represented with such a complemen-
tarity condition. Note also that this set of implicit equations may not have a
solution or may have multiple ones in certain pathologic situations [25].

Rigid and compliant contact models are compared in Figure 48.4 in a static
situation (when ṗzi = 0), showing clearly how the rigid model corresponds to
an infinitely stiff compliant model. Compliant contact models can model more
accurately the deformation of the contacting bodies, but accurate models of-
ten require very stiff springs, causing the resulting differential equations to be
numerically stiff, what can slow down or complicate numerical analysis. Rigid
models are comparatively more straightforward to integrate and analyze, with
purely rigid bodies and contact surfaces. They are therefore preferred when
theoretically or numerically studying the stability of legged robots, when opti-
mizing walking or running trajectories, etc.
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fz

i

p
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i
≤ 0

Figure 48.4: Comparison of a rigid (blue) and compliant (red) contact model
in a static situation. Unlike the rigid model, the compliant model considers a
penetration of the contact point below the contact surface, when pzi < 0. The
graph of the rigid model, with the specific shape of a right angle, is called a
Signorini graph.

Impacts. Since rigid contact models do not allow penetration of the contact
points below the contact surfaces, when a point, pi, reaches a contact surface,
pzi = 0, with a velocity, ṗzi < 0, this velocity has to change instantaneously in
order to satisfy the no-penetration assumption, pzi ≥ 0 [26]. What happens in
this situation is an impact, a discontinuity of the velocity, where we need to
distinguish the velocity of the robot before impact, q̇−, and its velocity after
impact, q̇+. A straightforward integration of the Lagrangian dynamics (48.2)
over a time singleton [27] gives us a relation between pre- and post-impact
velocities and impulsive forces Fi:

M(q)
(

q̇+ − q̇−
)

=
∑

i

Ci(q)
⊤Fi. (48.23)

But in order to completely define the impact law and compute the post-
impact velocity, we also need a model of the impulsive forces. Unfortunately,
this is a complex problem still open to research [28, 29], especially in situations
of multiple contacts which are the standard situation for legged robots. The
usual approach for legged robots is therefore to assume the post-impact behav-
ior, usually considering that the contact points eventually stick to the contact
surfaces:

ṗ+
i = Ciq̇

+ = 0. (48.24)

This is, however, a strong assumption, and reality can be much more complex, as
demonstrated in [30]. Moreover, a recent study shows that post-impact sticking
may not always be desirable [31].

Impacts are central in most stability analyses of passive dynamic walking
machines (see Section 48.6), but they can be potentially destructive for the
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mechanical parts of a robot. As a result, they are often carefully avoided and
therefore generally disregarded outside of passive dynamic walkers. A recent
study shows however that this is probably a mistake [32].

Hybrid and nonsmooth dynamics. With rigid contacts, the dynamics of
legged robots appears to switch, depending on the contact situations (48.20)
or (48.21). Discontinuities of the state of the robot also occur at impacts. A
classical way to combine these different aspects is with a hybrid dynamical sys-
tem. This approach has however some limitations [33, 34], the most obvious one
being its incapacity to handle properly Zeno behaviors, infinite accumulations
of impacts in finite time [35]. An example of such a situation is when a legged
robot is rigidly standing on one foot, and gently rocking from one contact edge
to the opposite contact edge, with a continuously decreasing period (at least
according to the perfectly rigid model).

Impacts with multiple contacts and Zeno behaviors are not the only dif-
ficulties with rigid contact models: there is also the Painlevé paradox, tan-
gential impacts, impacts without collisions, etc. The nonsmooth dynamics ap-
proach [25, 27, 33, 34], where the Lagrangian dynamics is turned into a mea-
sure differential equation, accelerations being abstract measures, velocities being
functions with locally bounded variations, appears to be a much more adequate
way to deal with all these intricacies. But it has not been widely adopted for
legged robots because of a significant increase in mathematical complexity.

Many of the complexities of rigid body contact dynamics can be avoided
by discretizing the system dynamics in time and reasoning about the integral
of contact forces acting over a time step. In particular, no distinction is made
between impulses and finite contact forces over a time step. By conservatively
approximating the friction cone as a polyhedron, forward dynamics can be cast
as a linear complementarity problem (LCP) [36], for which efficient solvers ex-
ist. This has become a popular formulation for simulation of rigid bodies in
frictional contact and it has recently seen applications to control design for
legged systems [37].

48.3 Stability analysis, not falling down

The robot model described above represents a complex, constrained, nonlinear
dynamical system. Our goal for this section is to understand the long-term
behavior of this dynamical system, to answer questions like, “Will the robot fall
down?” As we will see in the following sections, this long-term behavior can be
changed by open-loop or closed-loop feedback control, with the explicit goal of
minimizing the likelihood that the robot will fall down.

For controlled nonlinear dynamical systems, there are a number of useful
concepts relating to their safeness and stability, including:

• Fixed points. Stable fixed points represent the static postures in which
the robot can safely stand still.
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• Limit cycles. Limit cycles provide a natural extension of fixed-point
analysis to periodic walking or running motions.

• Viability. Viability is a concept of controlled invariance, which analyzes
the set of states from which the robot is able to avoid to fall. Unfortu-
nately, this property can be intractable to compute.

• Controllability. Controllability provides a slightly restricted notion of
viability, analyzing the set of states from which the robot is capable of
returning to a particular fixed point (or limit cycle). This can be more
tractable to compute than viability, especially for simple models.

In addition, if there are unknown errors in the robot model, if there is un-
certainty about the environment (e.g., the location of the ground), or if there
are unmodeled disturbances, then additional tools are available from robustness
analysis and stochastic stability:

• Robust stability. Robust stability (or viability) examines the proper-
ties of the system considering worst-case (bounded) disturbances. For
instance, a robust controller may be able to guarantee that a fixed point
is stable even if the estimate of the mass of the trunk is wrong by ±10%.

• Stochastic stability. Stochastic analysis provides tools to investigate
the probability of falling down. For many robot disturbance models, the
system will always fall eventually (with probability one), but analysis can
reveal long-living “metastable” distributions.

• Input-output stability. This analysis treats a particular disturbance as
an input, a performance criteria as output, and attempts to compute a
relative gain or sensitivity of the robot performance due to this input.

• Stability margins. Robustness analysis can be difficult. In practice
control designers often settle for the system staying comfortably away
from the boundaries of deterministic stability.

We give a very brief overview of these tools in the remainder of this section,
with an attempt to emphasize features of the analysis that are particular to
legged robots.

48.3.1 Fixed points

Given a first-order ordinary differential equation governed by ẋ = a(x), a fixed

point of the system is a state, x∗, for which a(x∗) = 0. The governing equations
for a legged robot, given in Section 48.2, are second-order, take a control input,
and potentially require a differential inclusion to describe the contact forces,
but the notion of a fixed point is still meaningful. Here a fixed point is a
configuration, q∗, for which there exists feasible control inputs, u∗, and feasible
contact forces, f∗, so that q̇∗ = q̈∗ = 0 is a solution to equation (48.2). A fixed
point of this system is a posture in which the legged robot is able to stand still.
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Figure 48.5: A necessary static equilibrium condition on a flat ground is that
the CoM, c, must project on the ground along the gravity vector, −g, inside
the convex hull of the contact points, pi, also known as the support polygon (in
red).

In static situations, when c̈ = L̇ = 0, the ODI (48.13) gives the following
necessary condition

cx,y −
cz

gz
gx,y = zx,y ∈ conv {px,y

i } (48.25)

for a static equilibrium on a flat ground. This necessary condition states that
the CoM, c, must project on the ground along the gravity vector, −g, inside the
convex hull of the contact points, pi, also known as the support polygon (Fig-
ure 48.5). This is a very well known and widely used necessary condition. Note,
however, that it is valid only when considering contacts with a flat ground [15].

Once a fixed point has been found, one would often like to examine its sta-
bility. For smooth nonlinear differential equations, local stability can often be
established via linearizing the dynamics at the fixed point and then applying
well-known tools from linear systems theory. Indeed, these tools can also be
applied here, under the strong assumption that the contact conditions do not

change (e.g., either fz
i = 0 and pzi ≥ 0, or fz

i ≥ 0 and pzi = 0). Each active con-
tact adds an equality constraint to the linearized system and the eigenvalues of
this constrained linear system are only meaningful in the minimal coordinates;
e.g., for a robot standing on horizontal ground the assumption precludes the
ability to examine a perturbation of the entire robot in the vertical direction.
Note that in a hybrid model of the legged robot, this assumption is equivalent
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Figure 48.6: Illustration of a Poincaré surface, P, defined on a periodic orbit
(red) and a trajectory converging to the orbit (black).

to linearizing within a single hybrid mode, and it is common practice to de-
scribe each hybrid mode in its minimal coordinates [38]. Once local stability is
established, it may also be possible to understand the region of attraction of the
fixed point [39, 40]). Evaluating the stability of these models through changes
in contact configurations is a new and important area of research. For recent
work, see for instance [41].

48.3.2 Limit Cycles

A natural extension of fixed-point analysis to walking and running motions is to
examine the existence and stability of periodic orbits, or limit cycles, of the dy-
namical system. Here a periodic orbit is a solution {〈q(t),u(t),f(t)〉 | t ∈ [0,∞)}
of the dynamical system with a finite period T > 0 such that q(t + T ) =
q(t),u(t + T ) = u(t), and f(t + T ) = f(t). Almost always, periodic orbits
are discovered numerically using techniques from motion planning like those de-
scribed in Section 48.4. For passive, or very minimally actuated robots, the very
existence of a periodic solution can be exciting [42]; robots with more actuators
typically have an abundance of periodic solutions and planning techniques can
be used to find solutions that, for instance, minimize the a quantity of interest
such as the cost of transport [43] or a measure of open-loop stability [44].

A periodic solution, 〈q0(·),u0(·),f0(·)〉, with period T , is (asymptotically)
orbitally stable [45] or limit-cycle stable if, given initial conditions, q(0), we have

lim
t→∞

[

min
0≤t′<T

‖q(t)− q0(t
′)‖

]

= 0. (48.26)

The key feature here that there is no requirement that system trajectories con-
verge in time; only the distance to the closest point on the orbit must go to
zero. This stability can be defined for initial conditions restricted to a local
neighborhood of q0(·), for a region containing q0(·), or globally (though no in-
teresting legged robot is globally stable) and for inputs determined by a variety
of open- or closed-loop control policies, u(t) = π(t, q(t), q̇(t),f(t)). Under mild
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conditions, a sufficient criteria for establishing orbital stability is establishing
fixed-point stability of a Poincaré map [46], as illustrated in Figure 48.6. Due
to the limitation that finding periodic solutions is typically done numerically,
Poincaré map analysis is also typically done numerically, e.g., using finite dif-
ferences to evaluate a local linearization of the map. This does not necessarily
preclude rigorous analysis, and techniques exist to compute regions of attraction
to hybrid limit cycles despite potential numerical inaccuracies [47]. Finally we
note that limit cycle analysis can be applied (carefully) to solutions that are not
periodic in all states —for instance, the x, y location of the floating base should
be left out if the robot needs to make forward progress!

The primary advantage of limit cycle analysis is that, using the Poincaré
map and related methods, many of the tools from fixed point analysis and
linear systems theory can be easily extended to evaluate (local) stability and
even to design a (locally) stabilizing controller. However, this is a very limited
definition of locomotion; useful locomotion through non-trivial environments
will likely require aperiodic motions.

Extensions to aperiodic stability. The notion of stability requires con-
vergence to some nominal solution as time goes to infinity, thus the nominal
solution must be defined over an infinite interval. A common approach involves
stitching together periodic solutions with provably bounded finite-time tran-
sition maneuvers which can switch between them [48]. Orbital stability of an
(infinite) aperiodic trajectory can be established using a transverse linearization
or “moving Poincaré section” [49]. For real-world situations where the entire de-
sired trajectory cannot be known apriori, these guarantees can also be provided
using online motion planning and receding-horizon control [50].

48.3.3 Viability

If the objective of a legged robot is simply to avoid falling down, it can be
possible then to directly define (at least theoretically) the set of postures, F ⊆
R

N+6, where the robot has fallen down and that the robot should simply avoid.
This leads to introducing the set of states from which the robot is able to avoid
entering F – the set of states from which the robot is able to avoid falling down.
These states will be called viable, following the viability theory developed in [51]
for general ODIs and introduced in the analysis of walking robots in [52]. In
principle, the set of all viable states represents a safe operating envelope for the
robot. It is typically intractable to compute explicitly but it can be approached
indirectly in the case of walking robots in the following way.

Center of mass dynamics during horizontal walking. In case the robot
is walking on a horizontal ground, the z axis is aligned with gravity, so gx,y = 0
and the ODI (48.13) becomes

cx,y −
cz

c̈z + gz
c̈x,y +

1

m(c̈z + gz)
SL̇x,y ∈ conv {px,y

i } . (48.27)
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We can observe that it is linear with respect to the horizontal motion cx,y, c̈x,y

of the CoM and variations of the angular momentum Lx,y. The vertical motion
cz, c̈z of the CoM can usually be bounded, but in order to simplify the following
derivations, let us suppose that the CoM moves strictly horizontally above the
ground, i.e. cz is constant and c̈z = 0, so the ODI becomes:

cx,y −
cz

gz
c̈x,y +

SL̇x,y

mgz
∈ conv {px,y

i } . (48.28)

Variations of the angular momentum L can also be bounded in the x and y
directions, but to make things as simple as possible, let us consider these vari-
ations to be equal to 0, so the ODI takes a very simple second order linear
form:

cx,y −
cz

gz
c̈x,y = zx,y ∈ conv {px,y

i } . (48.29)

An example of inevitable fall. Let us consider furthermore a situation
where, for some reason (e.g., a cliff), no contact with the ground can be realized
beyond a certain line (Figure 48.7), with a a vector orthogonal to this line and
pointing beyond it. If the CoM of the robot reaches this line at a time t0 with
a speed pointing beyond it (a⊤ċx,y(t0) > 0), this linear ODI can be integrated
analytically very simply and lead to the following inequality [53], valid at all
time t ≥ t0:

a⊤(cx,y(t)− cx,y(t0)) ≥
a⊤ċx,y(t0)

ω
sinh (ω(t− t0)) (48.30)

with

ω =

√

gz

cz
. (48.31)

The right hand side is increasing exponentially with time. As a result, the
position cx,y of the CoM is diverging exponentially in the direction of the vector
a, leading inexorably to a fall.

A sufficient condition for viability. In the simplified linear case developed
above, the inequality (48.30) establishes that in the case of a fall, the motion of
the CoM diverges exponentially, so the integral of the norm of any nth derivative
of its position,

∫ ∞

t0

∥

∥

∥c
(n)(t)

∥

∥

∥ dt, (48.32)

would be infinite. Therefore, if we can find a finite value for such an integral
from a given initial state of the robot, we can conclude that this state is viable.

48.3.4 Controllability

For any dynamical system, an initial condition, x0, is controllable to a final
state, xf , if there exists a feasible input trajectory, u(·), which takes the system
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a

Figure 48.7: A situation where, for some reason, no steps can be undertaken
beyond a certain line (in red), with a a vector orthogonal to this line and
pointing beyond it.

from x0 to xf . An initial state, x0, is denoted finite-time controllable to xf

if the minimum time required is finite. Controllability analysis is a well under-
stood topic for linear dynamical systems, where a simple rank condition on the
“controllability matrix” provides necessary and sufficient conditions to establish
whether or not any initial condition can be driven to any final state [54]. For
nonlinear systems, the property is dependent on both the initial and final states.

In the case of legged robots, instead of considering the set of all viable states
introduced earlier, we could consider instead the more limited set of states that
are controllable to stable fixed-points – states that can come to a stable stop
after a given number of steps. This is a sufficient condition for viability. Such
states have been called capturable [55], and arguably encompass most of the
states of interest for legged robots. A variant would be to consider states from
which the robot is able to reach a stable limit cycle, or any other state which is
known to be viable in the first hand.

The Capture Point. In the simple linear case developed above, the cap-
turable states can be identified analytically with the help of the compound
variable

ξ = c+
1

ω
ċ, (48.33)

introduced independently as the eXtrapolated Center of Mass (XCoM) [56], the
Capture Point [57] or the divergent component of the dynamics [58]. These
three denominations correspond to three key properties of this variable. First
of all, a trivial reformulation gives

ċ = ω(ξ − c), (48.34)

revealing that this point ξ is the point where the CoM is converging to, hence
the extrapolated CoM . Following the linear dynamics (48.29), the horizontal
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Figure 48.8: The speed of the CoM, c, points towards the Capture Point, ξ,
while the speed of this Capture Point points away from the CoP, z. The com-
bination of these two first-order dynamics gives the acceleration, c̈, pushing the
CoM away from the CoP.

motion of this point satisfies

ξ̇x,y = ω(ξx,y − zx,y), (48.35)

where we can see that this point ξ diverges away from the CoP z. But if this
point is above the support polygon, if we have

ξx,y ∈ conv {px,y
i } , (48.36)

we can have zx,y = ξx,y so the point ξ can stay motionless, and the CoM will
converge to it and come to a stop, hence it can be seen as a Capture Point
(CP). Finally, we can observe that the second-order linear dynamics (48.29)
has been decomposed here as two first-order linear dynamics (48.34)-(48.35),
the first one being stable, with the CoM converging to the XCoM, the second
one being unstable, with the XCoM diverging away from the CoP, hence the
divergent part of the dynamics (48.29). Here appears an interesting structure
relating the motion of the points z, ċ and ξ, shown in Figure 48.8 [59, 60].

An important observation here is that if the state of the robot satisfies the
condition (48.36), then the robot can stop without making any step and it is
capturable and viable. Further analysis, considering any given number of steps
and a non-zero angular momentum, L, can be found in [60].

48.3.5 Robust or stochastic stability

For the deterministic robot dynamics models described in Section 48.2, the con-
cepts of fixed-points, limit cycles, viability, and controllability form the core
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issues of analysis. However, in the presence of disturbances, such as model
inaccuracies or unpredicted variation in terrain, tools from robust verification
must be called upon to characterize the stability of a system. Broadly speak-
ing, robust stability analysis exists in two forms. In worst-case analysis, an
upper bound is given for a disturbance and the goal is to demonstrate that
for any disturbance within this bound, the system will not reach an unstable
state. Alternatively, stochastic analysis can be performed where a disturbance
probability distribution is specified with the goal being to demonstrate that the
system avoids unstable states with high probability. Worst-case analysis has
received surprisingly little attention to date in the legged robotics community,
however analysis approaches based on Lyapunov functions [38, 47, 41] can be
easily extended using the notion of a common Lyapunov function [61]. One
challenge here is that the nominal solutions, e.g. the exact shape of the nominal
limit cycle, are often parameter dependent: the system might still be stable
with different parameters, but to a slightly different limit cycle.

Stochastic stability has received relatively more attention in the legged robotics
community, perhaps because many interesting models of possible disturbances
do result in robots that walk for a long time, but do eventually fall over. Such
systems cannot be classified as stable, but it seems incomplete to simply call
them unstable. Such systems are said to be metastable, a concept first es-
tablished in the physics community [62] and later used to analyze walking sys-
tems [63]. From this point of view, the stability of a system can be characterized
by its mean time to failure.

Recall the idea of Poincaré maps described above, but now consider the
discrete time stochastic return map dynamics for a periodic walking system,

xk+1 = r(xk, hk), (48.37)

where hk ∼ P (h) is a random variable that, e.g., captures the terrain height at
time step k. Discretizing the state space X ⊆ R

(N+6) × R
(N+6) into d states

allows us to define the Markov process based on the above return map:

pk+1 = Tpk, (48.38)

where pk ∈ R
d is the state probably distribution vector and T is a stochastic

matrix with entries Tij = Pr(xi
k+1|x

j
k). If we assume that all failure states are

absorbing and can be grouped together into a single state, this corresponds to
a column in T containing a single 1 and d− 1 zeros. The largest eigenvalue of
T must then be λ1 = 1 with a corresponding eigenvector, v1, describing the
stationary distribution of the absorbing state. Interestingly, the second largest
eigenvalue has been found to be close to unity, λ2 ≈ 1, and much larger than
the remaining d − 2 eigenvalues, for several simple walking systems [63]. This
suggests the existence of a metastable neighborhood in state space captured by
the distribution v2 with an associated time constant τ = −1/ log(λ2). Other
approaches to computing these stochastic stability bounds are also possible [64].
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48.3.6 Input-output stability

Input-output methods define sensitivity measures to summarize the system’s
response to disturbances. For example, for a walking system, one could define
a vector l ∈ R

m composed of m gait variables that directly relate to failure
modes (such as foot-ground clearance) and measure the effect that a set of input
disturbances, w, have on their values. The gait sensitivity norm does exactly
this [65]; here the dynamic system response ‖∂l/∂w‖2 is used as a measure of
disturbance rejection. How is this response actually computed? In practice,
computing the system response can be done experimentally by generating a
variety of perturbations and measuring the effect in the gait variables. Although
laborious, this approach is probably the most appropriate for physical systems.
Alternatively, for simulated limit cycle walkers, linearization of the Poincaré
return map and perturbation analysis yields a complete characterization of the
dynamic system response.

More general tools from nonlinear control theory can also be applied. The L2

gain is a sensitivity measure that has seen widespread application in nonlinear
control theory. For complex dynamical systems such as walking robots, an upper
bound on the L2 gain can be approximated using storage functions, which can
often be computed using convex optimization [66, 67].

48.3.7 Stability margins

In practice, computing performance measures like the ones mentioned above for
complex walking systems can be very difficult. As a result, researchers often
employ heuristic stability margins to keep the robot away from the boundary
of stability. Here the definition of stability can vary widely. The simplest
stability margins rely only on the static configuration of the robot, where if
the CoM ground projection leaves the support polygon, this corresponds to
an uncompensated moment on the foot resulting in a rotation along its edge.
Popular static metrics include the distance between the ground projection of the
CoM and the edges of the support polygon or the minimum potential energy
required to tip the robot over sideways [68]. Because these stability criteria are
based only on statics, they are only practically useful for slow (or “quasi-static”)
motions.

The most commonly used dynamic stability margin requires that the CoP
(or ZMP) remains within the boundary of the support polygon. When this
condition is satisfied, the foot cannot rotate around the boundary of the support
polygon. Note that this is certainly very conservative - many bipedal robots
walk dynamically even with point feet (resulting in a CoP that is always on the
boundary of the support polygon) - but this metric has proven extremely useful
for flat-foot dynamic walking. Goswami introduced the related concept of the
foot rotation indicator (FRI) [69] that is defined as the point on the ground
where the net ground reaction force would have to act to keep the foot from
rotating; this point need not stay inside the support polygon and can therefore
be applied for a wider range of gaits. However, the stability claims based on
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these criteria are valid only on flat terrain and they do not constitute necessary
or sufficient conditions for stable walking in general [15, 55].

When the CoM projection exits the support polygon, there are two ways
to make it return: by accelerating the CoM in the direction of the support
polygon through changes in angular momentum or by changing the support
polygon by taking a step. This basic insight led to stability margins based on
capture regions [55, 60]. A capture region is simply the set of all capture points
(defined in Section 48.3.4). The capture margin is a metric that determines
the “capturability” of a walking system. If the capture region and support
polygon overlap, it is defined as the maximum distance between the points in
the capture region and the closest edge of the support polygon, otherwise it is
the negative distance between the capture region and support polygon. Note
that large values under this metric are related to the total capture region area,
which is in turn related to the ability of the walking system to stabilize itself,
e.g., with upper body motions that affect angular momentum [60]. Extensions
to n-step capture margins have also been developed and described in detail [55].

48.4 Generation of dynamic walking and run-

ning motions

As mentioned in the brief historical introduction to this Chapter, early legged
robots were maintaining quasi-static equilibrium postures at all time. The tran-
sition to more dynamic motions took place at the beginning of the 1980s, as-
sociated with biped [4] and monopod [5] robots. As a result, this Section on
dynamic legged locomotion will focus on results obtained mostly with biped
robots, although most of the methods discussed here could be applied as well
to other legged robots.

48.4.1 Early offline motion generation schemes

The very limited computing power of early robots allowed very limited online
decisions. As a result, trajectories were usually computed offline, especially
in complex situations such as for legged robots. Online motion generation has
finally become possible only by the year 2000, thanks to the exponential increase
in computing power and the continuous progress of numerical methods during
the last decades.

Trajectory optimization. One of the earliest approaches to computing walk-
ing and running motions was through numerical optimization [70]. The idea is
to leverage the capacity of trajectory optimization methods to take into account
nonlinear dynamics and objectives such as minimizing energy consumption, and
compute the corresponding optimal motion. Unfortunately, the dynamics of
legged robots are so complex that this approach was still stuck with simple pla-
nar models by the end of the 1990s [71, 72, 73, 74, 75]. It is only by the year
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2000 that the first optimal walking motions for complete 3D models could be
computed [76, 77].

Fortunately, numerical methods have continued to improve (as discussed
in 48.6.1), allowing researchers to solve complex problems such as optimizing
trajectories and the mass distribution of the robot simultaneously and maxi-
mizing the open-loop stability of trajectories [78].

Unfortunately, this approach still requires time consuming computations
that often cannot be realized online. Not being able to compute walking or
running motions online limits the robots to a predefined set of precomputed
actions, potentially ruining their versatility and reactivity. One way to alleviate
this serious limitation is to generate a database of trajectories [79] that can be
queried online, possibly conditioned on orders given to the robot [80] or the
current state of the robot in order to improve its stability [81, 82, 40].

Artificial synergy synthesis and the ZMP approach. Partitioning the
problem is another early approach, that aimed at palliating the complexity of the
dynamics of legged robots that hindered trajectory optimization. The idea is to
assign some degrees of freedom of the robot to take care of dynamic constraints
such as the ODI (48.13), allowing the rest of the robot to be operated more
or less independently. This general approach has been called artificial synergy

synthesis [10].

The original proposition in [10] was to use trunk rotations to ensure dynamic
feasibility while the legs of the robot executed a given pre-recorded motion.
More precisely, leg motions and contact points, pi, being predefined, the trajec-
tory of the CoP, z, could be predefined accordingly, so that it was just a matter
of solving the ODE (48.13) for this predefined z to obtain the required rota-
tions of the trunk. This original proposition was demonstrated experimentally
20 years later on the Waseda University WL-12RV biped walking robot [83].
This method of predefining the trajectory of the CoP has eventually been called
the ZMP approach to walking motion generation (remember the ZMP is just
another name given to the CoP). This ZMP approach has been associated later
with having feet always flat on the ground, excluding heel and toe rotation
phases. Note, however, that such phases were considered in the original propo-
sition [10].

Some aspects of this proposition can be questioned. It has been argued
first of all that predefining the evolution of the CoP is not necessary nor even
desirable [84, 85]. Then, the ODI (48.13) clearly shows that dynamic feasibility
depends on both variations of the angular momentum, L, and motion of the
CoM, c, with respect to contact points, pi. While trunk rotations mostly involve
variations of the angular momentum, a recent analysis showed that this has only
a weak influence on the balance of legged robots [86]. Dynamic feasibility can
be handled much more efficiently by adapting the motion of the CoM, which
has been the prevailing approach.

The core idea of partitioning the motion of the robot builds on a profound
and far-reaching observation: if the robot has a sufficient number of degrees of
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freedom and sufficient control authority, then every part of the motion that is not
involved in the dynamic constraints —everything but angular momentum and
motion of the CoM with respect to contact points— can be operated more or less
independently, and appears therefore to be relatively peripheral to the problem
of legged locomotion. It is the same key observation that implicitly drives the
Templates and Anchors approach and the long history of simple biomechanical
models of legged locomotion that focus on a few meaningful degrees of freedom,
mostly the motion of the CoM with respect to contact points, and abstract all
the rest [87, 88, 89]. This idea has been tremendously successful in the legged
locomotion research community.

48.4.2 Online motion generation: a Model Predictive Con-

trol point of view

If the algorithms for motion generation could work sufficiently fast to be applied
online, then the robot could achieve reactivity and robustness by continuously
adapting the motions to the current state of the robot and its environment. But
therein lies a problem: how can we make sure that the continuous re-evaluation
of online decisions maintains long term viability? One solution comes from the
Model Predictive Control (MPC) theory.

The online motion generation schemes that allow most of the great humanoid
robots of today and yesterday to walk and run can all be related to MPC theory
and can all be seen as variants of the same MPC scheme, although they have
rarely been introduced in that way. Most adopt the artificial synergy synthesis
approach described in the previous Section, focusing almost exclusively on the
motion of the CoM with respect to contact points and assuming that the rest
of the robot can be operated more or less independently.

Viability and capturability, Optimal Control and Model Predictive

Control When trying to identify viable states in Section 48.3.3, the first op-
tion was to check if the integral (48.32) could have a finite value. A classical
result from optimal control theory is that an optimal control law minimizing
this integral would make it decrease with time. As a result, if this integral was
finite in the beginning, it would stay finite: if the state of the robot was viable
in the beginning, it would stay viable. The problem is, the dynamics of legged
robots is too complex to be able to compute such an optimal control law in the
general case.

Model Predictive Control is one way to obtain a computable approximation
to this optimal control law. The fundamental idea is to introduce a terminal

constraint [90], imposing that the integral (48.32) is equal to zero after a finite
length of time. Introducing such an artificial constraint naturally yields a sub-
optimal control law, but this allows considering the integral (48.32) over only
a finite length of time while preserving viability. Note that enforcing viability
in finite time means in this case enforcing capturability: here, the terminal
constraint is a capturability constraint.
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Many MPC variants have been proposed [91], but two extremes are going
to be significant in the following. One extreme is to observe that minimizing
an integral of the form (48.32) is not necessary to obtain a viable behavior: the
terminal, capturability constraint can be sufficient in this respect [92]. In this
case, however, it is not possible to continuously re-evaluate and adapt the motion
to the state of the system: this must be done at carefully chosen moments,
what limited the reactivity of the robots. The other extreme is to observe that
the terminal constraint is not absolutely necessary [93]: simply minimizing a
truncated version of the integral (48.32) over a sufficiently long but finite length
of time can still lead to an integral decreasing with time, ensuring viability. In
this case, it is possible to continuously re-evaluate and adapt the motion to the
state of the system without any problem.

Let us see now how all this theory is applied to the online generation of walk-
ing and running motions. In all the following examples, the robot is supposed
to walk on a flat horizontal ground.

Predefined footsteps, and capturability constraint. Let us have a look
first at motion generation schemes implementing the original ZMP approach,
with predefined footsteps and a predefined CoP, and considering a capturabil-
ity constraint to ensure viability. Let us begin with the walking motion gen-
eration scheme implemented in the long series of Waseda University humanoid
robots [94], which considers a four point mass model with predefined motion ex-
cept for the horizontal motion of the waist and trunk masses which is assigned
to follow a reference trajectory for the CoP. An iterative procedure based on
Fast Fourier Transforms is used then to solve the dynamics

∑

mi(c̈
z
i + gz)cx,yi −mi c

z
i c̈

x,y
i

∑

mi(c̈zi + gz)
−→ z

x,y
ref . (48.39)

In order to execute this scheme online, a capturability constraint is introduced,
imposing that the robot is always able to stop within two steps [95]. Unfor-
tunately, details about the choice of the reference CoP and the exact terminal
constraint are not disclosed.

The walking motion generation scheme implemented in the Munich Univer-
sity Johnny robot [96] considers only a three point mass model with predefined
motion, except for the horizontal motion of the main mass in the trunk which
is assigned to follow a piecewise linear reference trajectory for the CoP. One de-
gree of freedom is left in this reference trajectory in order to impose a terminal
constraint on the position of the CoM at the end of the next two steps:

cx,y = c
x,y
ref . (48.40)

This constraint appears to be incomplete in imposing capturability, what would
require to consider also the velocity of the CoM (see Section 48.3.3).

The walking motion generation scheme implemented in the Honda Asimo
robot [58] is very similar, three point masses and a piecewise linear reference for
the CoP with one degree of freedom left to satisfy the terminal constraint. The
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difference lies in the terminal constraint which is a true capturability constraint,
imposing cyclicity of the motion through the Capture Point/XCoM/divergent
component of the dynamics at the end of the next step:

ξx,y = ξ
x,y
ref . (48.41)

The walking motion generation scheme implemented in the Tokyo University
H7 robot [97] considers the whole dynamics (48.13) of the robot. The whole
motion of the robot is predefined, except the horizontal motion of the CoM
which is assigned to follow a reference trajectory for the CoP, set in the middle
of the contact points. An iterative procedure is used then to solve the dynamics

cx,y −
mcz c̈x,y − SL̇x,y

m(c̈z + gz)
−→ p

x,y
i . (48.42)

The terminal constraint (48.40) on the position of the CoM (incomplete with
respect to capturability) is also considered at the end of the next two steps.

The walking and running motion generation scheme implemented in the
Toyota Partner robot [98] is exactly the same, except for the terminal constraint
which is a true capturability constraint imposing cyclicity of the motion through
both the position and velocity of the CoM.

The walking and running motion generation scheme implemented in the
Sony QRIO robot [99] follows a similar design, but considers only a single point
mass at a constant height, with its horizontal motion assigned to minimizing
the deviation of the CoP from the middle of the contact points:

min

∫
∥

∥

∥

∥

cx,y −
cz

gz
c̈x,y − p

x,y
i

∥

∥

∥

∥

2

dt (48.43)

while imposing a capturability constraint on both the position and velocity of
the CoM.

Another variant tested on the Kawada HRP-2 robot [100] also considers a
single point mass at a constant height, but the CoP follows a piecewise polyno-
mial trajectory:

cx,y −
cz

gz
c̈x,y = z

x,y
ref (48.44)

with some degrees of freedom left to satisfy the same capturability constraint as
before, through both the position and velocity of the CoM. An important char-
acteristic of this scheme is that the piecewise polynomial trajectory of the CoP
may fluctuate strongly, threatening to violate the ODI (48.13). An automatic
adjustment of the step timings is proposed therefore in order to minimize this
risk.

All of these walking and running motion generation schemes try to impose
capturability through terminal constraints, but some of them appear to fail
properly doing so by only constraining the position of the CoM. None of them
consider an integral of the form (48.32): the integral (48.43) does not match.
We have seen earlier that in this case, it is possible to re-evaluate and adapt
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the motion at specific instants, what has been done when having to realize
new steps, or when changing the walking speed or direction. But to adapt the
motion to a perturbation, a specific observer would be required to trigger the
adaptation at the correct instant [92], and it appears that this option hasn’t
been investigated: no state feedback has been experimented with these motion
generation schemes.

Predefined footsteps, without capturability constraint. In the stan-
dard walking motion generation scheme implemented in the Kawada HRP-2
humanoid robot [101], the whole motion of the robot is predefined as before,
except the horizontal motion of the CoM which is assigned this time to minimize
the weighted integral

min

∫

‖
...
c x,y‖2 + β

∥

∥

∥

∥

∥

cx,y −
cz

gz
c̈x,y +

SL̇x,y

mgz
− p

x,y
i

∥

∥

∥

∥

∥

2

dt (48.45)

of the norm of the third derivative of the motion of the CoM and the deviation
of the CoP from a reference in the middle of the contact points. This is clearly
an integral of the form (48.32), and we have seen that viability can be ensured in
this case if we consider a truncated version of this integral over a sufficiently long
but finite length of time, typically the next two steps, without the need to impose
any terminal constraint. We have also seen that it is possible in this case to
continuously re-evaluate and adapt the motion to the state of the system, a clear
improvement over the previous approaches based solely on terminal constraints.
This has been validated experimentally in various situations, effectively adapting
the walking motion to perturbations [102].

An interesting variant [103] introduces variations of the angular momentum,
L, as an additional variable to minimize the combined integral

min

∫

‖
...
c x,y‖2 + β

∥

∥

∥

∥

∥

cx,y −
cz

gz
c̈x,y +

SL̇x,y

mgz
− p

x,y
i

∥

∥

∥

∥

∥

2

+ γ‖Lx,y‖2dt, (48.46)

showing an improvement in the tracking of the generated motion (and the same
closed loop robustness to small perturbations).

A problem however with these approaches is that simply minimizing the
deviation of the CoP from the middle of the contact points doesn’t preclude
it from fluctuating, so the ODI (48.13) could be violated, especially in case
of perturbations. This is monitored in [102] to trigger a change of footstep if
necessary, but without any clear guarantee that this change is appropriate. For
this reason, it has been proposed in [85] to impose the ODI (48.13) as a strict
constraint, considering a single point mass model with a constant height:

cx,y −
cz

gz
c̈x,y ∈ conv {px,y

i } , (48.47)

and simply minimize the integral

min

∫

‖
...
c x,y‖2dt (48.48)
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over a sufficiently long but finite length of time to ensure viability. This is the
walking motion generation scheme implemented in the Aldebaran Nao robot [104].

A variant tested successfully on the DLR biped robot [105] considers min-
imizing the deviation from a reference trajectory for the XCoM together with
the derivative of the CoP:

min

∫

∥

∥

∥ξ
x,y − ξ

x,y
ref

∥

∥

∥

2

+ β‖żx,y‖2dt. (48.49)

An additional terminal constraint was considered but not tested.
A last proposition, tested only in simple simulations, not with a real robot [106],

considers a single point mass which is assigned to minimize the deviation of the
leg length l from a given reference, and the deviation of the CoP from the middle
of the contact points over the next two steps:

min

∫

(l − lref )
2 + β

∥

∥

∥

∥

cx,y −
cz c̈x,y

c̈z + gz
− p

x,y
i

∥

∥

∥

∥

2

dt. (48.50)

What makes this proposition particularly stimulating is that this is not an in-
tegral of the form (48.32), that can ensure viability, and no terminal constraint
is there to impose capturability, so there is no direct relation with the viabil-
ity/capturability analysis developed in Section 48.3.3, on which all the previous
schemes were based. What this minimization only imposes is the ability to re-
alize two more steps in the future, with legs approximately at a nominal length:
the situation in the end of these two steps is not controlled (no terminal con-
straint), so the robot might very well be falling afterwards. However, in the
presented simulations, it appears that maintaining this ability to make two
more steps in the future is a sufficient condition for generating stable walking
and running motions. The conclusion is that terminal constraints or integrals
of the form (48.32) are in fact not mandatory and could be relaxed altogether.

In all of these approaches, the footsteps were predefined and kept fixed,
which is obviously a strong limitation on the robot’s capacity to adapt to a
changing environment or to strong perturbations.

Adaptive footsteps. In fact, adapting foot placement is straightforward, and
has already been validated on a Kawada HRP-2 robot [107]: the only required
change is to consider foot placement as a decision variable, used in addition to
the horizontal motion of the CoM, in order to both satisfy the ODI (48.47) and
minimize the integral

min

∫

∥

∥

∥
ċx,y − ċ

x,y
ref

∥

∥

∥

2

dt (48.51)

over a sufficiently long length of time to ensure viability (since this is clearly
an integral of the form (48.32)), and have the CoM follow on top of that the
reference velocity, ċx,yref . Now, since the footstep placement is decided online,
geometric feasibility needs to be checked online as well. A simple but effective
option is to consider a polygonal approximation of the reachable volume of the
CoM with respect to each foot on the ground [108].
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Yet, the timing of the steps was still predefined, what has a huge influence
on the reactivity of legged robots [60]. In order to adapt it as well, it has been
proposed in [109] to minimize the combined integral

min

∫

∥

∥

∥ċ
x,y − ċ

x,y
ref

∥

∥

∥

2

+ ‖f̈x,y‖2dt (48.52)

with f̈x,y the horizontal acceleration of the feet. But this approach has been
tested only in simple simulations so far. Moreover, the underlying optimization
problem becomes nonlinear, what is significantly more involved to solve.

Another approach, quite unique, starts with a singular LQR design [110],
considering the classical single point mass at a constant height, assigned to
minimize the deviation of the CoP from a combination of a reference CoP and
the XCoM:

min

∫
∥

∥

∥

∥

cx,y −
cz

gz
c̈x,y + αzx,y

ref − (1 + α)ξx,y
∥

∥

∥

∥

2

dt (48.53)

for some α > 0. An interesting feature of this singular LQR design is that it
can be solved analytically. And an interesting property of this singular objective
function is that it can be reduced to zero, in which case we have

cx,y −
cz

gz
c̈x,y = (1 + α)ξx,y − αzx,y

ref , (48.54)

what can be combined with the dynamics (48.35) of the XCoM to obtain a
stable first order dynamics

ξ̇x,y = αω(zx,y
ref − ξx,y) (48.55)

according to which the XCoM, ξ, is going to converge to z
x,y
ref , and the CoP, z,

as well according to (48.54). But in a very unusual twist, this LQR design is
not used as is, and is inverted analytically to find under which condition does
a piecewise constant trajectory of the CoP generate a non-diverging motion of
the CoM. Unsurprisingly, this non-diverging condition ends up being a terminal
constraint on the Capture Point/XCoM/diverging part of the dynamics, with
trajectories corresponding in the end exactly to those found in [59]. But here,
this terminal constraint is used in the end to decide online the footstep placement
that will ensure viability, what is eventually validated experimentally with very
strong perturbations.

All variants of a common design. The viability analysis of Section 48.3.3
attested the crucial importance of anticipation to avoid falling. We observe now
that the walking and running motion generation schemes that power most of the
greatest humanoid robots of today and yesterday, the Honda Asimo, the Toyota
Partner, the Sony Qrio, the Aldebaran Nao, the Kawada HRP-2, the Tokyo
University H7, the Munich University Johnny, the DLR biped, the long series of
Waseda University humanoids and many others, are all structured around this
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necessity to anticipate, at least a couple steps ahead of time. Viability is secured
then in different ways, always related to MPC theory, through capturability
or through minimizing an integral of the form (48.32). In all cases, adopting
the artificial synergy synthesis approach, focusing on the motion of the CoM
of the robot with respect to contact points, considering that the rest of the
motion can be handled more or less independently, is the key to enable efficient
computations. All these motion generation schemes appear then to share the
same general design: Model Predictive Control of the CoM of the robot with
respect to contact points. The rest is details.

The compelling consequence of identifying this common design, is revealing
the possibility to crossbreed all these approaches, retaining the best features
of each: more precise multiple mass models, for generating both walking and
running motions, with adaptive footstep placement and adaptive timing, sensor
feedback, all in order to obtain in the end the ultimate robust and versatile
online motion generation scheme. These are the next obvious steps.

Missing in this gallery of great legged robots, the Boston Dynamics biped
and quadruped robots. They are without a doubt the legged robots exhibiting
the most impressive dynamic motions today, robust and versatile. Exact details
about their control algorithms are scarce, but various clues suggest that they
might share the same design.

48.4.3 Motion in constrained environments

We have seen so far how to generate dynamic walking and running motions by
considering the dynamic feasibility constraint (48.13) independently from any
other concern. But on truly rough terrain or in cluttered spaces, kinematic
constraints on the motion of the robot cannot be disregarded and can further
complicate the problem. More precisely, kinematic constraints generally make
the reachable space of the robot non-convex, so that deciding actions and mo-
tions with only a local view on the situation can quickly get the robot stuck in
local loops or dead-ends. One way to decide actions and motions with a global
view on the situation is with planning techniques, as described in Chapter 7 on
Motion Planning and Chapter 47 on Motion Planning and Obstacle Avoidance.
In the case of legged robots, three classes of problems of increasing complexity
have been considered: dynamic manipulation without locomotion, locomotion
on a flat ground with obstacles, and locomotion on rough terrain with complex
contact transitions.

Dynamic manipulation without locomotion. In the case of manipula-
tion tasks without locomotion, the only difference of legged robots with re-
spect to more traditional manipulator robots is the dynamic feasibility con-
straint (48.13). Therefore, a mere application of the standard planning tech-
niques described in Chapters 7 and 47 including this feasibility constraint has
proved to be fully sufficient. But these techniques are strongly biased towards
quasi-static motions. As a result, a sequence of statically stable postures is
computed first, and the motion is smoothed and accelerated afterwards, finally
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taking into account dynamic feasibility [111]. Much more involved are the prob-
lems involving locomotion, which attracted therefore much more attention.

Legged locomotion on a flat ground with obstacles. If we consider that
the problem of generating dynamic legged locomotion is properly solved thanks
to the different methods described earlier in this Section, we can try to ab-
stract its details and plan the navigation of the upper body of a legged robot
between obstacles as for any other mobile robot, with the same planning tech-
niques, regardless of the exact locomotion method. It has been shown indeed
that legged robots present a form of small-space controllability, which means
that their upper-body can follow any given path with any given accuracy [112],
although this can require impractically quick steps. A different option to follow
exactly any given path with the upper-body is to cross legs, as if walking on
a balance beam, and some robots have been specifically designed to be able to
realize such feats [113], but this can require impractically slow steps. Ruling
out impractically slow or impractically quick steps, the legged locomotion may
finally differ from the planned path and fail to avoid obstacles. In this case,
iterative replanning techniques have been proposed [114].

In this approach, however, it is assumed that finally finding proper footholds
to follow the path planned for the upper body is not a problem. Yet, the appeal
of legged robots is to provide improved mobility on difficult terrain, situations
where finding footholds is actually a problem. A solution then is to check the
availability of proper footholds when planning the upper body motion [115], an
approach recently refined to show how to obtain in the general case an exact
equivalence between planning a continuous path and planning a sequence of
footholds on a flat ground [116, 117].

A different approach is to plan directly the footholds with respect to obsta-
cles on the ground, and generate afterwards the corresponding dynamic legged
locomotion [118]. This has been applied successfully to long distance naviga-
tion with a tiered strategy [119], with computations fast enough to run online
in changing environments [120], taking into account deterministically moving
obstacles [121], on mildly rough terrain [122, 123, 124], using on-board sens-
ing [125]. Obstacles above the ground can be considered then with a hybrid
bounding box or more refined swept volumes [126, 127], or one can approximate
the free-space with convex segmentation [128].

Legged locomotion with complex contact transitions. On truly rough
terrain or in cluttered environments, legged locomotion may require much more
complex contact situations and contact transitions than in standard walking or
running, involving not only contacts between the feet and the ground, but all po-
tential contact surfaces on the robot and on the environment. The variability of
these situations is beyond comparison with the previous case on flat ground, and
chances of pre-computations or simplifications are strongly lacking in respect.
Notably, the kinematic and dynamic constraints cannot be tackled indepen-
dently, and having to consider them simultaneously results in an overwhelming
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computational problem. As a result, a major effort has been to find a proper
ordering of the different sub-problems in order to obtain a tractable problem
in the end, finally opting for planning contacts before motion [129, 130, 131].
Complex real-life use-cases have been solved this way [132, 133, 134], but the
computational requirements still limit our ability to achieve the versatility of lo-
comotion possible on flat ground. Online adaptation to changing environments
has yet to be convincingly demonstrated and remains an active area of research.

As noted before, the underlying planning techniques manifest a strong bias
towards quasi-static motions: some post-processing is necessary to obtain a truly
dynamic motion in the end. The same two options as in Section 48.4.1 have
been proposed, standard trajectory optimization [135], or following the artificial
synergy synthesis approach and computing first the motion of the CoM of the
robot with respect to the different contact points, independently from the rest of
the motion of the robot, which is computed only afterwards [21]. But the strong
interdependency between kinematic and dynamic constraints defeats the core
assumption of the artificial synergy synthesis approach in this case: dynamic
feasibility can’t always be handled independently from the rest of the motion of
the robot, so there is a significant risk that this method fails finding in the end
a feasible motion even if one exists.

Further discussion of all these problems in the specific case of humanoid
robots can be found in Section 5 of Chapter 67 on Whole-Body Activities of
Humanoid Robots, or in [136]. There is also a rich literature on gait selection
for many-legged robots, starting as early as [137] but this is still an active area
of research [138].

48.4.4 Motion generation with limited computing resources

The walking and running motion generation schemes presented so far in this
Chapter all require significant computation, even when they consider only sim-
plified dynamical models. Early legged robots, which had very limited comput-
ing resources, had to rely on much less demanding approaches. One option is
to combine simple explicit rules, each one focusing on a different part of the
overall motion. Another option is to try to mimic biological hypotheses on how
animals generate and control their motion, what ended up in fact with somehow
similar propositions.

Combining simple rules. Thanks to simplifying symmetries in biped or
quadruped running gaits such as trot, pace and bound, the whole family of
robots hopping in the MIT LegLab throughout the 1980s on one, two or four
legs, in 2D or 3D, could rely on the same simple control design [5]. The general
idea is to apply simple control laws independently to the different parts of the
overall locomotion task. The vertical oscillations were controlled by open-loop
vertical thrusts, simply stabilized by mechanical energy losses. Since the angular
momentum is conserved during flight phases, the body attitude was controlled
only during stance phases, with standard PD control. The key to maintaining
long-term balance, and controlling the global motion was foot placement. An
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elementary analysis of the motion of the CoM during the stance phase revealed
the role of the so-called neutral foot position, which would make the stance
phase perfectly symmetric. It is then just a matter of linear corrections of the
foot position with respect to this neutral position to make the stance phase
asymmetric in order to control the robot’s speed and balance. The direct com-
bination of these utterly simple control laws resulted in impressively robust and
versatile locomotion.

The first biped robot that walked dynamically relied on an equally simple
approach [4]. This robot emulated walking on stilts, with contact surfaces be-
tween the feet and the ground reduced to single points, so z = p. With a single,
fixed contact point during single support phases (the double support phases were
supposed negligible), the ODI (48.29) can be solved analytically: for t ≥ t0,

[

cx,y(t)− px,y(t0)
ċx,y(t)

]

= A(t)

[

cx,y(t0)− px,y(t0)
ċx,y(t0)

]

(48.56)

with

A(t) =

[

coshω(t− t0) ω−1sinhω(t− t0)
ω sinhω(t− t0) coshω(t− t0)

]

, ω =

√

gz

cz
. (48.57)

If the next single support phase starts at time t1 with a foot position px,y(t1),
we end up having

[

cx,y(t1)− px,y(t1)
ċx,y(t1)

]

= A(t1)

[

cx,y(t0)− px,y(t0)
ċx,y(t0)

]

+

[

px,y(t0)− px,y(t1)
0

]

,

(48.58)
which describes the motion of the CoM cx,y with respect to the contact points
px,y, from one step, starting at time tk, to the next, starting at time tk+1. This
discrete time dynamical system can be controlled then with the foot placement
px,y(tk). Since it is linear, standard pole placement can be applied, yielding a
standard PD control of foot placement. This simple approach has been success-
fully applied on more complex biped robots [139, 140].

The drawback of combining independent control laws is to lack coordination
yielding potentially harsh, unrefined motion, but this approach demonstrates
that stable locomotion is possible even with very limited control resources. Of
primary importance here are foot placement and upper body attitude; the rest
of the motion appears to be secondary, at least with respect to balance control.
Pushing this observation further, it has been proposed, and validated in sim-
ulation, that a large variety of walking patterns could be used, and stabilized
only with upper body attitude and foot placement control, both with simple PD
control laws [141]. It is not surprising then that hand-designed motion patterns
can be used successfully on robots as complex as the KAIST Hubo humanoid
robot [142], although this may require delicate fine tuning.

Reducing even further the control requirements, the mechanics of the robots
could be tuned so that passive motions would automatically land the feet on the
appropriate locations with respect to stability, ending up with perfectly passive
stable dynamic locomotion. This idea will be discussed more thoroughly in
Section 48.6.
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Biomimetic motion generation. Current theories on locomotion control
in animals include Central Pattern Generators (CPGs) and cascades of reflex
motions, which interact and combine to generate the final motion. CPGs are
tunable oscillators, generating synchronized quasi-cyclic motion patterns in re-
sponse to simple control signals such as locomotion speed or turning angle [143].
In order to introduce such CPGs in legged robots, standard oscillators such as
the Van der Pol equation or the Hopf oscillator have been proposed [144, 145],
or more biologically inspired neural oscillators [146] (ironically, Central Pat-
tern Generators often happen to be decentralized, composed of a collection of
synchronized oscillators [147, 145, 143]).

But CPGs are intrinsically open-loop motion generators, so to stabilize and
adapt the motion of the robot to their environment, limited feedback loops
have been introduced, similar to the simple control laws discussed earlier in this
Section, focusing on upper body attitude and foot placement [148, 147, 145].
Continuing with the biological analogy, these simple feedback loops have been
called reflexes. Following ideas discussed more thoroughly in Chapter 13 on
Behavior-Based Systems, the subsumption architecture has been proposed to
build much more complex networks of reactive behaviors or reflexes [149], and
has allowed a hexapod robot to walk successfully on mildly rough terrain without
any careful planning of the motion [150].

Fundamentally the same decoupling approach. Being inspired by simple
mechanical analyses or by animals, these approaches based on combinations
of simple rules demonstrate that stable walking can be realized without much
computation, at least in simple situations. More complex situations may require
more refined motions and therefore more refined motion generation schemes,
such as the ones discussed earlier in this Chapter. But it is striking to observe
again the same focus here on the motion of the CoM of the robot with respect to
the contact points, when controlling either the upper body attitude or the foot
placement (or both), regardless of the rest of the motion, which can be generated
by CPGs, Inverse Kinematics or any other approach, simple or complex. This
is fundamentally the same decoupling as proposed earlier with the artificial
synergy synthesis approach.

48.5 Motion and Force Control

Properly executing the walking and running motions computed in the previous
Section requires precise control of the motion of the robot and of the contact
forces with the environment, applying techniques from Chapters 8 and 9 on Mo-
tion and Force Control. But since legged robots are often complex mechanical
systems with many degrees of freedom and some form of redundancy, techniques
from Chapter 10 on Redundant Manipulators also need to be applied frequently.
And in case of contact with multiple surfaces, problems of contact force distri-
bution appear, requiring techniques similar to those found in Chapter 38 on
Grasping. And in the opposite case, during flight phases, when the robot is not
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at all in contact with its environment, its dynamics appear to share important
properties with free-floating space robots, requiring control techniques similar
to those found in Chapter 55 on Space Robotics. All these techniques (and
many more) are necessary to make legged robots walk and run efficiently. The
purpose of this Section is to see how they connect and are implemented in the
case of legged robots.

Whole-body motion. Humanoid and other legged robots are often complex
mechanical systems with a large number of degrees of freedom in order to ac-
complish the various kinematic and dynamic tasks necessary for simultaneously
achieving locomotion, perception and manipulation of the environment, inter-
action with humans, etc. Making use of all available degrees of freedom, and
not only those in the legs, to achieve multiple simultaneous objectives, and not
only locomotion, is usually called whole-body motion control (see for example
Section 5 of Chapter 67). We have seen previously that locomotion mostly in-
volves the motion of the CoM c with respect to points pi of contact with the
environment. Other objectives involve end-effector motion for manipulation,
gaze control for perception, motion of specific parts of the robot for obstacle
avoidance, etc. In all of these cases, what needs to be controlled is Cartesian
motion of different parts of the robot, rather than joint motion. Several control
schemes have been proposed to do this, standard inverse kinematics followed
by joint space control [139], Virtual Model Control [151], the Task Function
approach [152, 153], Operational Space Control [154].

Interestingly, the last two options allow specifying different priorities to the
different objectives assigned to the robot, so in case these objectives are not
feasible jointly, the robot tries first to achieve the objectives with higher priority.
In the case of legged robots, maintaining balance and avoiding falls appear to be
of primary importance for the safety of both the robot and its environment, so
being able to consider this objective with a higher priority can be crucial in this
regard. These control schemes allow moreover some form of decoupling between
the different objectives, further contributing to the artificial synergy synthesis
approach introduced earlier in the previous Section. We are going therefore to
continue focusing here exclusively on the locomotion objective, since the other
ones can be considered more or less independently and are not specific to legged
robots.

Flight phases. We have seen earlier in this Chapter that during flight phases,
when a legged robot is not in contact with its environment, the motion of the
CoM invariably follows a standard falling motion: there is no possibility to make
it move in any other way. But we have seen that even though the angular mo-
mentum, L, is constant during flight phases, the joint configuration, q̂, and the
global orientation, θ0, of the robot can still be driven concurrently together to
any desired value thanks to the non-holonomy of the angular momentum (48.5).
However, a famous theorem due to R.W. Brockett [155] implies that continuous
time-invariant feedback control laws such as those proposed in [156, 157] are
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not able to do so. The solution is to use discontinuous or time-varying control
laws [158], an approach well established in space robotics [159, 160].

In the case of running motions, it has been proposed to specifically adapt leg
trajectories during flight phases in order to control both the joint configuration
and the global orientation at the end of the flight phases [161]. It has been
measured indeed that a simple difference in the height of a single step can
result in 1 or 2 degrees of difference in the global orientation of the robot [8].
Albeit small, this effect is far from negligible. More thorough discussions of
nonholonomic constraints and the impact of Brockett’s theorem can be found in
Chapter 49 on the Modeling and Control of Wheeled Mobile Robots or in [158].

Angular momentum. Either considering the ODI (48.13) when walking on
a flat ground, or the Newton and Euler equations (48.3) and (48.4) in the gen-
eral case, the dynamic feasibility of legged motions appears to be directly and
entirely related to the motion of the CoM, c, and the angular momentum, L.
It has been naturally proposed therefore to control specifically those two quan-
tities concurrently [162, 163, 164]. Of course, since CoM motion and angular
momentum are directly related to contact forces, fi, (or equivalently to the
CoP, z), controlling the former is absolutely equivalent to controlling the latter.
The question however is whether the angular momentum should be specifically
controlled to some given value and what that value should be [163, 164].

Of course, since the angular momentum is directly related to contact forces,
it should comply with the unilaterality and Coulomb friction limitations on
contact forces (48.11) and (48.17). As a matter of fact, the regulation of angular
momentum has been discussed only in quasi-static situations [162, 163, 164],
where the reference value is clearly zero, which generally complies well with these
limitations. And in the only case where walking was considered, the horizontal
angular momentum, Lx,y, that appears in the ODI (48.13) when walking on a
flat horizontal ground, was explicitly not controlled [162]. It appears, in fact,
that during walking motions, the question of which value the angular momentum
should have is very intricate, because of its nonholonomy, but it is definitely not
zero [8, 103].

Even in quasi-static situations, both joint configuration and global orien-
tation can be controlled independently from the angular momentum; the con-
nection between these different values is very subtle. As a result, controlling
the angular momentum does not induce a control of either joint configuration
or global orientation (due to its nonholonomy). The opposite is true however:
controlling joint configuration and global orientation does induce a control of
the angular momentum as a derived quantity. It has been argued furthermore
that common whole body motion objectives such as manipulation or interaction
with humans are more directly related to joint configuration and global orien-
tation than to angular momentum [165]. As a matter of fact, disregarding the
exact variations of the angular momentum has been the most frequent option
so far [139, 151, 152, 153, 154, 165]. In the end, it is not clear if specifically
controlling the angular momentum can help controlling legged robots: this is
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still an open question.

CoM motion control. Putting the angular momentum aside, and consid-
ering only the simple linear dynamics (48.29) when walking on a flat ground,
and more precisely its decomposition (48.34)-(48.35), we have seen that every
state satisfying the condition (48.36), such that the capture point, ξ, is in the
support polygon, is capturable and can therefore be stabilized. If the capture
point is strictly inside the support polygon, the CoM can even be stabilized to
any reference position, cref , above the support polygon, with a simple linear
feedback of the capture point:

zx,y = c
x,y
ref + k(ξx,y − c

x,y
ref ), (48.59)

where the feedback gain, k > 1, must be tuned in order to keep the CoP, z,
within the support polygon, ensuring dynamic feasibility of the motion. In-
deed, using this feedback with the dynamics (48.35) yields a stable closed loop
dynamics

ξ̇x,y = ω(k − 1)(cx,yref − ξx,y), (48.60)

according to which the capture point, ξ, will converge to the reference position,
cref , and the CoM, c, will converge to it as a result of the stable dynam-
ics (48.34). It has been shown that among all Proportional-Derivative (PD)
feedback of the motion of the CoM

zx,y = c
x,y
ref + k(cx,y + λċx,y − c

x,y
ref ), (48.61)

the feedback (48.59) of the capture point, with a choice of λ = ω−1, is the
only one that will successfully stabilize all capturable states [166]. It has been
successfully applied to walking motions on the DLR biped robot [59].

Now, if there is a time-varying perturbation or error, ε, in our dynamics,
such that

cx,y −
cz

gz
c̈x,y = zx,y + ε, (48.62)

the PD feedback (48.61) can be shown to be robustly stable (input-to-state
stable, to be precise) with respect to ε, but with λ < ω−1 and k > 1

λ2ω2 [167].
As discussed above, with this choice of λ, not all capturable states will be
stabilized successfully, even if there is no perturbation. This is unfortunately a
usual trade-off in robust control.

Force feedback. Motion control of legged robots without contact force sens-
ing and feedback has been shown to be possible for simple quasi-static balancing
tasks, using passivity based control [168]. However, force sensing and feedback
is commonly used when realizing more dynamic motions such as walking or
running. One of the first problems to overcome in this case is the compli-
ance of both the robot and its environment, which easily generates destabi-
lizing oscillations [169, 170, 171, 172]. Contact force control schemes of var-
ious complexity have been proposed, but always with the goal of damping
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these undesired oscillations. The exact implementation of these force control
schemes generally relies on a stiff lower-level joint motion control in order
to enhance disturbance rejection, leading to admittance control implementa-
tions [139, 169, 170, 171, 172, 173]. More details on such control schemes can
be found in Chapter 9 on Force Control.

Now, these damping control schemes inevitably introduce some delay in the
realization of the desired contact forces. One option is to show that the CoM
motion control scheme described earlier, which entirely relies on contact forces,
is robust to such delay [59]. Another option is to take this delay into account
with a simple first-order dynamics of the CoP:

ż = ωz(zd − z), (48.63)

and adapt the previous CoM motion control scheme accordingly [174, 175]:

z
x,y
d = c

x,y
ref + k(ξx,y − c

x,y
ref ) + k′(zx,y − c

x,y
ref ). (48.64)

This introduces some force feedback directly in the CoM motion control through
the measurement of the CoP, z, what can help improve the reactivity of the
controller to perturbations.

Contact forces distribution In case of contact with multiple surfaces, com-
puting contact forces, fi, that allow realizing the desired motion control scheme
through the Newton and Euler equations (48.3) and (48.4), and yet comply with
both the unilaterality condition (48.11) and the Coulomb friction model (48.17),
can be slightly more involved. The standard approach is through optimization,
and more precisely Quadratic Programming (QP) with linear constraints, using
a faceted, linear approximation of the Coulomb friction model (48.17):

Afi ≤ b. (48.65)

It has been proposed then to minimize when possible the norm of the joint
torques u in order to reduce energy consumption [152],

min
fi

. ‖u‖2, (48.66)

or to balance the contact forces between the different contact points, either by
minimizing the sum of their norms [165],

min
fi

.
∑

i

‖fi‖
2, (48.67)

or the norm of their difference [176],

min
fi

. ‖fleft − fright‖
2, (48.68)

or minimizing the tangential forces in order to reduce the risk of slipping [177],

min
fi

.
∑

i

‖fx,y
i ‖2. (48.69)
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More general QP formulations have been proposed [178, 179], including hierar-
chies of kinematic and dynamic tasks and constraints [153].

But contact forces obtained in these ways are not explicitly kept away from
the edges of the friction cone and unilaterality condition, so that the slightest
perturbation may quickly lead to sliding or tipping, what can lead to serious
issues. The simplest way to steadily improve the robustness of the robot to such
perturbations is to introduce a security margin w:

Afi ≤ b− w1, (48.70)

where 1 is a vector of ones, but there is no obvious way to decide which value
would be appropriate. One option then is to try to maximize it with a Linear
Program (LP):

max
w,fi

. w, (48.71)

improving as much as possible the robustness of the robot to perturbations by
selecting contact forces fi the farthest possible from the edges of the (faceted)
friction cone and unilaterality condition. Note that the maximal value w∗ ob-
tained in this way is the residual radius discussed in [19].

48.6 Towards more efficient walking

Examples of remarkably efficient locomotion are ubiquitous in nature. From
sprinting cheetahs to leaping sifakas, the variety and beauty of animal motion
has inspired roboticists for decades. Yet some of the most impressive examples
of humanoid walking, e.g., Honda’s Asimo or Boston Dynamics’ Atlas, have
employed high-impedance joint control to achieve stable locomotion. As a result,
the fluidity of their motions is far from that of their biological counterpart.
Indeed, these robots expend an order of magnitude more energy than a typical
human while walking[180].

In contrast, the passive dynamic walking machines of McGeer and oth-
ers [6, 184] have been able to achieve surprisingly human-like gaits without
any actuation, relying solely upon the their carefully designed body dynam-
ics. These machines moved down sloped terrain, relying upon the conversion
of potential to kinetic energy to balance the losses introduced by impacts and
friction. Subsequent examples of minimally-actuated bipeds capable of walk-
ing under their own power on flat terrain made the first steps toward realizing
efficient walking machines [180, 185].

The existence of these robots leads to several interesting questions. For
example, how can we find limit cycles of underactuated walkers and reason
about their stability? Simple models of walking systems have been used to
try to answer these questions for over two decades. Such analyses typically rely
upon linearization of the model dynamics to integrate the equations of motion or
numerical simulation of the nonlinear dynamics and analysis via Poincaré maps
(Section 48.3.2). For example, the compass gait model is one of the simplest
walking models, consisting of three point masses—one at the hip and one on
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b
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Figure 48.9: Passive-dynamic walking machines. (a) The Wilson Walkie [181].
(b) A slightly improved version [182]. Both (a) and (b) walk down a slight ramp
with the comical, awkward, waddling gait of the penguin [181]. (c) Cornell copy
[183] of McGeer’s capstone design (7). This four-legged biped has two pairs of
legs, an inner and outer pair, to prevent falling sideways. (d) The Cornell
passive biped with arms (photo by Hank Morgan) [184]. This walker has knees
and arms and is perhaps the most human-like passive-dynamic walker to date
(8). (Photo reproduced with permissions from [180])

each leg—and the legs connected to the hip with a pin joint (Figure 48.10).
Although even this very simple model cannot be analyzed analytically, a variety
of stable gaits have been identified using numerical techniques [186].

Today there exists a community of researchers working to bridge the gap
between stable and versatile machines like Asimo and efficient dynamic walk-
ers. Topics of particular interest include navigating robustly over rough terrain,
generating and stabilizing non-periodic gaits, and scaling up to more complex
robot models. New computational tools for generating and stabilizing trajecto-
ries for underactuated dynamical systems have been an important result of this
work. In this section we highlight the fundamental insights provided by work
on passive dynamic walking machines and describe ways in which these ideas
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Figure 48.10: The compass gait
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have been extended to more general systems.

48.6.1 Gait generation for dynamic walking

The most direct approach to producing efficient walking gaits in underactuated
robots is to design controllers that produce actuated trajectories that mimic pas-
sive ones. Fundamental to these methods is the idea of restoration of mechanical
energy. Since mechanical energy is lost at each heel strike, passive dynamic walk-
ers require gravitational force to restore energy to the system before the next
step. By choosing control inputs that regulate mechanical energy, for example
by simulating gravity, walking on level terrain can be achieved [187, 188]. How-
ever, such approaches are still largely limited to modest terrains and periodic
motions.

Trajectory optimization methods offer the potential to move beyond limit
cycle gaits and to more complicated systems without passive stability properties.
However, the fact that walking systems must make and break contact with the
world complicates the trajectory optimization problem. Simulating rigid-body
contact forces continuously using spring and damper models often results in stiff
differential equations that can lead to numerical and computational issues. An
alternative approach is to capture discontinuities in velocity by modeling colli-
sions as impulsive events using a hybrid system representation (Section 48.2.3).
For a walking hybrid system, a set of autonomous guard functions are defined
such that φi(q) = 0 implies that body i is in contact and φi(q) > 0 implies the
opposite. When a body comes into contact, the generalized velocity undergoes
an instantaneous change, q̇+ = f∆(q, q̇

−), where q̇− and q̇+ are the velocities
pre- and post-impact, respectively. The mode of the system is defined by the set
of active contacts, C = {i|φi(q) = 0}, which in turn defines the set of Jacobian
matrices in (48.2).

The hybrid system representation creates several challenges for trajectory
optimization methods. The discontinuities due to mode transitions are typically
be accounted for explicitly using either direct or multiple-shooting methods[189].
Since each mode implies a different dynamics and mode changes are necessary for
walking, this leads to the question of how to formulate the dynamics constraints.
One solution is to predefine the sequence of mode transitions. For simple models
with point feet, this approach can work quite well. However, for more complex
models with many contacts, the number of modes grows exponentially, making
mode sequence pre-specification impractical.

The complementarity-based methods for simulating rigid body systems in
contact described in Section 48.2.3 suggest another approach. By discretiz-
ing the dynamics in time and considering only the integral of contact forces
over a time interval, the forward dynamics of a walking system can be greatly
simplified. Since many trajectory optimization methods already discretize by
evaluating a finite set of points along a trajectory, incorporation of contact
forces as optimization variables leads to trajectory optimization as a nonlinear
optimization problem with complementarity constraints [37].
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Many impressive examples of trajectory optimization for walking and run-
ning exist in the literature. For example, Mombaur [78] simultaneously opti-
mized motion and physical parameters for simulated bipeds to achieve open-loop
stable running and Remy [190] applied trajectory optimization to generate effi-
cient running for a quadruped. There are many more examples and it remains an
active area of research. The problem of stabilizing trajectories optimized offline
remains a challenge, particularly when the execution deviates from the planned
mode sequence. Computational requirements still prevent nonlinear trajectory
optimization methods from being applied online as an MPC algorithm, but im-
provements in numerical solvers and computing hardware will likely continue to
reduce this gap.

48.6.2 Orbital trajectory stabilization and control

Once an open-loop gait is generated, it must typically be stabilized in order to
be executed on a robot. Classical techniques for trajectory stabilization from
linear control can work, but a strong theme in stabilization for legged robots
has been the idea that one should not enforce the precise timing of the tra-
jectory. Section 48.3.2 discussed the notion of orbital stability and introduced
Poincaré maps as a tool for stability analysis. Orbital stabilization, rather than
traditional trajectory stabilization, sacrifices little and appears to be more com-
patible with underactuated robots. These ideas have also played an important
role in developing stable dynamic walking and running controllers using virtual

constraints [38]. Virtual constraints are holonomic constraints on monotonic
functions of the robot’s configuration variables. For example, for a forward pe-
riodic gait, it might be reasonable to assume that the angle of the stance leg
with respect to the ground, θst, is monotonically increasing in time throughout
the stance phase. The remaining configuration variables are written as functions
of θst, effectively reparametrizing time, and constraints are imposed that, e.g.,
enforce symmetry in stance and swing leg angles (θsw = −θst) or coordinate
arm and leg motion. This leads to outputs

y =





h1(q)
. . .

hd(q)



 , (48.72)

where each hi(q) encodes a virtual constraint. For example, h(q) = θsw + θst
encodes the virtual constraint for swing-stance leg symmetry. By driving the
output dynamics asymptotically to 0 using high-gain control, the system can be
seen to evolve according to the virtual constraints, yielding a lower dimensional
problem for control design and stability analysis. This approach has been used to
produce remarkable dynamic walking and running examples in real robots [191].

Poincaré maps are defined with respect to a transverse surface at a single
point on a periodic orbit, which limits their usefulness for designing stabilizing
controllers. The transverse dynamics, on the other hand, is defined with respect
to a continuous family of surfaces, S(t), transverse to the orbit [45]. In the
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Figure 48.11: A simple illustration of transverse linearization along a nominal
trajectory (red) for systems with impacts.

neighborhood of these coordinates, the dynamics can be written as

τ̇ = 1 + f1(τ,x⊥) (48.73)

ẋ⊥ = A(τ)x⊥ + f2(τ,x⊥), (48.74)

where τ ∈ [0, tf ] represents the orbit phase, x⊥ are the 2N − 1 coordinates
orthogonal to the flow of the system, and f1(·), f2(·) are functions containing
nonlinear terms. Note that unlike the discrete Poincaré map, these dynamics
do not require the trajectory of interest to be a periodic orbit.

By extracting the linear part of the transversal dynamics and incorporating
control inputs, we obtain the transverse linearization:

ż(t) = A(t)z(t) +B(t)u(t), (48.75)

for t ∈ [0, tf ]. Stabilization of this system, and therefore the underlying trajec-
tory, can be approached using standard techniques from linear control theory.
For walking systems with impulses, the dynamics can be extended to include
a linearized impact map, z(t+i ) = Ciz(t

−
i ), where ti, i ∈ C are times at which

impacts occur. Figure 48.11 illustrates the idea of transversal surfaces about a
trajectory for a system with impacts. Manchester et al. [50] showed that under
some mild assumptions, local exponential orbital stability of planned motions
on a hybrid nonlinear system can be achieved using a receding horizon control
with the transverse linear dynamics.

Minor variations in impact timing can be handled in linearization-based
approaches to stabilizing walking trajectories, but perturbations that lead to
changes in mode ordering often cannot. To address this problem, we need al-
gorithms for adjusting walking trajectories online. As described in the previous
section, the hybrid nature of walking systems makes this challenging. One way
to avoid this issue is to employ smooth approximations of the dynamics that per-
mit the use of efficient local trajectory optimization techniques at the expense
of violating complementarity condition (48.22) by, e.g., allowing interpenetra-
tion of rigid bodies. This approach has led to impressive examples of online
trajectory optimization for simulated systems [192], but it is yet unknown how
well these approximations will transfer to physical systems.



48.7. DIFFERENT CONTACT BEHAVIORS 43

48.7 Different Contact Behaviors

Contact forces have appeared throughout this Chapter to be central for the
modeling and control of legged robots. As a result, a different contact behavior
can result in a significantly different dynamical behavior of the whole robot, and
this can be extremely useful in situations where standard walking or running is
inefficient or downright impossible.

Wall climbing. Wall climbing legged robots rely on various devices such as
suction cups, magnets, adhesive materials, miniature spine arrays, that can gen-
erate adhesive forces in order to stick to various vertical surfaces such as glass,
steel, concrete, brick, stone [193, 194, 195]. In this case, the unilaterality con-
dition (48.11), which was central throughout this Chapter, is no more relevant.
As a result, the whole locomotion modeling and control is deeply transformed.

Tethered walking. On steep slopes, rappelling is an interesting option, teth-
ering the robot to anchors in order to avoid tumbling down. This has been
experienced successfully on construction sites [196], or in a volcano in the case
of the impressive CMU Dante II octopod robot [197]. In this case, the locomo-
tion problem is similar to the general case described throughout this Chapter,
but the tether introduces an additional contact between the robot and the en-
vironment, on which the robot can pull but not push, so a unilateral contact
exactly opposite to the standard unilateral contact between the feet and the
ground, what can be treated however in exactly the same way.

Legs with wheels. Adapting wheeled vehicles to rough terrain has led in
some cases to implant wheels on legs, combining the flexibility of articulated
legs on rough terrain with the efficiency of wheels on flat terrain. Different op-
tions are possible, passive or active wheels, passive or active legs [198, 199, 200,
201, 202]. In this case, the unilaterality condition (48.11) is fundamental like in
the rest of this Chapter, but the contact points can move freely on the contact
surfaces along the direction of the wheels, what can significantly increase the
array of possible motions [203]. Problems similar to those of standard legged
robots include finding stable postures and allocating contact forces for maxi-
mizing stability and efficiency [200, 201, 202]. Interestingly, the case of passive
wheels results in motions similar to skating [198].

Wheels with legs. Evolving the mechanical design of legs for greater sim-
plicity and improved efficiency has led in some cases to directly implant the legs
on wheels [204, 205]. This results in very impressive outdoor performance, but
not much related to standard legged robots in the end.
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48.8 Conclusion

Legged systems are at the heart of some of the most exciting work in modern
robotics. They offer the opportunity to travel to places beyond the reach of
wheeled systems and gain fundamental insights into the conditions under which
stable and efficient locomotion is possible. At the same time, their complex
dynamics pose significant challenges for our computational approaches to control
and stability analysis. Indeed, the simple fact that every walking system must
engage in intermittent contact with its environment has significant mathematical
implications.

A large number of success stories for legged systems moving with remarkable
precision and reliability have been witnessed over the past decade, and the
development of exciting new tools for optimization-based planning, control, and
analysis offers the promise to develop machines that achieve even higher levels
of robustness and efficiency.
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