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Abstract :  This paper introduces the four-wheel-drive vehicle REMI, a testbed developed by SAGEM for
research purposes in mobile robotics and intelligent car systems. The motion control architecture of the robot is
presented, with an emphasis on the guidance and piloting modules. The latter relies on neural network
techniques, and the principles underlying its design are outlined. A robust neural control scheme using an internal
model of the process is developed. Experimental results are presented.
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1. Introduction.

This paper describes the main features of an
autonomous outdoor robot with neural network
control. This robot is a fully automated standard
4WD vehicle called REMI (Robot Evaluator for
Mobile Investigations) that is used as a testbed for
motion control. The main components of the
motion control architecture are path planning,
guidance and piloting modules. Their hierarchical
organization will be presented in section 2. In
section 3, we will focus on the guidance module.
Classical, robust, and neural piloting control
techniques have been successfully experimented on
REMI. We will however devote section 4 to a
piloting module that is entirely designed using
neural network techniques, which have achieved very
good performances and offer new perspectives for
intelligent vehicle control.
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Figure 1.
The motion control testbed REMI.

Typical automotive applications range from
fully autonomous robots (open mine industry,
construction, forest exploitation, agriculture

[VDB93]) to automated functions on standard
vehicles, such as intelligent cruise control systems,
controlling the accelerator and braking systems with
neural controllers.

2. Functional architecture.

The functional motion control architecture is
divided in four separate modules, which are
hierarchicaly organized, as shown in figure 2. These
modules achieve the following tasks : the path
planning, the guidance, the neural network piloting,
and the actuator control.
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Figure 2 - Motion control architecture.



The path planning module.
A final goal position being given by the

operator, the path planning module computes a path
as a set of points satisfying this endpoint constraint.
This path is associated to a time constraint specified
by the operator in terms of an average velocity. A
" teaching by doing " procedure can replace this
module. In this case, path and velocity are
" tought " by driving the vehicle manually while
its position and velocity are recorded. The set of
points and the average velocity are sent to the
guidance module.

The guidance module.
The guidance module first generates a continuous

reference trajectory and a velocity profile. Then, at
each cycle of operation, this module chooses a
target-point on the reference trajectory and computes
a setpoint heading ψc from vehicle and target-point
postures (i. e. position and heading). This setpoint
heading and the velocity associated to the target-
point, the setpoint velocity vc, are sent to the
piloting module.

The neural network piloting module.
The piloting module consists of two separate

neural controllers. The heading controller computes
a desired steering wheel position α . The velocity
controller generates a desired position for the throttle
of the engine θ and a desired pressure for the braking
system π. These control intputs, or desired actuators
positions, are sent to the next module at 20 Hz.

The actuator control module.
This module is interfaced with the actuators

through power boards. Three digital-analog servo-
loops running at 100 Hz monitor the angular
position of the steering wheel, the throttle valve
angular position, and the pressure in the braking
system.

A localisation module computes the position,
the attitude and the velocity of the vehicle, using an
inertial dead-reckoning unit and an odometric sensor.
Localisation and motion control modules are
implemented on a 68030 board running under the
real-time operating system OS9 [VDB93].

3. Guidance module.

First a continuous reference trajectory with an
associated velocity profile is computed from the set
of points and average velocity determined by the
path planning module.

Then, at each sampling time, a setpoint heading
and a setpoint velocity for the piloting module are
generated for the piloting module. Our control
strategy is based on a target-point approach. A
target-point is defined for a point of the vehicle
body, the control-point, which is chosen at the
center of the rear axle. This location is of course

weakly controllable, due to the nonholonomy
constraint, but presents the following advantages :
- it coincides with the localisation point (the
position computed by the dead-reckoning unit),
-  steering and velocity control of this point can be
decoupled,
-  its turning radius is the smallest,
-  the heading ψ of the vehicle at this point is
tangent to the path.
The following section is devoted to the trajectory
generation, section 3.2 to the choice of the target-
point, and section 3.3 to the computation of the
setpoint heading ψc.

3.1. Trajectory generator.
The aim of this function is to generate a

smooth, feasible reference trajectory, interpolating
the set of points sent by the path planning module.
Previous work established criteria for trajectories to
be suited to tracking [FRA 93]. B-splines and
clothoïds both show continuity in position, heading
and curvature. But B-splines are based on
polynomial functions which are easely computed,
integrated and differentiated, and are therefore the
best candidates for real-time implementation. The
trajectory generator also generates a velocity profile
respecting a maximum allowable lateral acceleration
and the kinematic constraints of the vehicle.

3.2. Choice of the target-point.
It is chosen at a so called " lookahead " distance

D in front of the vehicle. D is a function of vehicle
velocity, which must be chosen so as to guarantee
that :
- D is not too small : otherwise, the vehicle might
reach the target point between two computations, or
oscillations might appear.
- D is not too big : if this condition is not fulfilled,
the vehicle might cut corners.
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Reference trajectory, lookahead distance D,
control-point and target-point are shown in figure 3.
∆ψ denotes the orientation error, and εt the
transversal error.

3.3. Setpoint heading generator.
The aim is to define a setpoint heading ψc for

the heading controller of the piloting module. Thus
ψc must be defined in order that if ψ converges to
ψc, then εt and ∆ψ both converge to 0. Different
choices of ψc are described in [FRA93] and
[RIV93].

4. Neural network piloting module.

We address the lateral and longitudinal piloting
of the vehicle, that is how to have the vehicle
follow the setpoint heading ant velocity determined
by the guidance module. Why is a neural network
approach advantageous, and how to achieve the
modeling and control of the vehicle using recurrent
neural networks ?

4.1. Why ?
Wheeled mobile robots are nonlinear dynamical

systems ; their kinematics involves geometrical
nonlinearities, and their actuators introduce
dynamical nonlinearities, e. g. the saturations of the
steering wheel actuator and the nonlinear dynamics
of the thermal engine. Thus, the identification and
control of these processes require nonlinear models
and controllers.

Optimal control theory has been widely used to
solve such nonlinear, constrained problems. But the
conventional scheme of optimal control has its own
drawbacks. Very often, finding the optimal control
trajectory is time consuming, and the solution
obtained consists of a sequence of open-loop control
vectors.

Neural networks offer interesting solutions of
nonlinear control problems. Their approximation
properties make them a useful tool for modeling
nonlinear processes, and they provide a solution to
the problem of getting a closed-form expression for
optimal control laws. Besides, robustness
considerations led us to develop an internal model
based approach that was successfully applied to the
longitudinal control of the vehicle, as will be shown
in part 5. Finally, generic training algorithms were
established, regardless of model and controller
complexity. They will be presented in the next
section.

4.2. How ?
A general framework for training recurrent

networks for nonlinear modeling and control is now
outlined.

4.2.1. Training the neural model.
We assume that the process to be controlled can

be described by the following model :

(1)
Sp(n+1) = f Sp(n), Dp(n), U(n)

yp(n+1) = g Sp(n+1)  + w(n+1)

where yp is the output of the process, Sp its state,
Dp are measured disturbances, and U is the control
input. f and g are unknown functions. w is an
output additive white noise modeling a measurement
noise : it has been shown [NER94] that the optimal
predictor for such a process is recursive. Thus, the
model must be trained as the following feedback
predictor :

(2)
 S(n+1) = fNN S(n), D(n), U(n); Cm

 y(n+1) = gNN S(n+1); Cm

where y is the output of the model, S its state, and
fNN and gNN are the functions implemented by the
static part of the neural net with weights Cm, which
must be estimated.
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Figure 4.1.
Model training architecture.

The training of the model (see figure 4.1), i.e.
the estimation of its weights Cm, is performed by
minimizing the cost function Jm :

Jm = 1
2

 em(n) 2∑
n=1

N

 = 1
2

 yp(n)–y(n) 2∑
n=1

N

The minimization is carried out by a gradient-based
technique. The gradient is computed by back-
propagation on a fixed window of size N (non
recursive, iterative training) using a semi-directed
algorithm [NER92]. The size N of the window
corresponds to the amount of training data available
from the process.

4.2.2. Training the neural controller.
We perform the training of the controller using

the neural model and a reference model, as shown in
figure 4.2. The neural net controller with weights
Cc implements the nonlinear state-feedback :

(3) U(n) = hNN U(n-1), S(n), D(n), R(n); Cc



where D are simulated disturbances and {R(n)} is the
setpoint sequence.
The weights of the neural model (2) are set to the
values computed during its training.
A reference model is designed to generate the desired
output sequence, or reference sequence, {yr(n)} :

(4)

Sr(n+1) = fr Sr(n), R(n)

yr(n+1) = gr Sr(n+1)

where Sr is the state of the reference model ; fr and
gr are chosen by the designer.
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Figure 4.2.
Controller training architecture.

The weights of the controller Cc are computed so as
to minimize the cost-function Jc :

Jc = 1
2

 ec(n) 2∑
n=1

N

 = 1
2

 yr(n)–y(n) 2∑
n=1

N

Again, back-propagation on the fixed window of
size N, fixed by the designer, is used to compute the
gradient of Jc.

4.2.3. Using the neural controller.

a) Simple state-feedback control (SFC).
The operating control system is shown in figure

4.3. The controller, with fixed weights, computes
its output from the process state, measured
disturbance and setpoint :

(5) U(n) = hNN U(n-1), Sp(n), Dp(n), R(n)
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Figure 4.3.
Operating phase : SFC system.

For this control system to be stable and show
good tracking and regulation properties, the neural
model used for the training of the controller has to
be quite accurate.

b) Internal model control (IMC).
The IMC structure incorporates a model of the

process to be controlled that is simulated on-line in
the control computer. This recursive model is only
fed with the process inputs (controls and
disturbances). Using neural networks, the model
must be the feedback neural model the controller
was trained with. The basic IMC structure is shown
in figure 4.4. The controller computes its output as
follows :

(6) U(n) = hNN U(n-1), S(n), Dp(n), R*(n)

where S is the state of the model, R*=R-eim , and
eim=yp-y. Thanks to the second loop, model
uncertainty and measured output disturbances are
taken into account.
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Operating phase : IMC system.

IMC has many desirable properties, which were
extensively analyzed for linear systems in
[MOR89], and can be generalized to nonlinear
systems [ECO86]. Thus, our neural IMC system
has the two following characteristics :
(a) If the plant and the controller are input-output
stable, and if the model is perfectly accurate, then
the closed loop system is also input-output stable.
(b) If the controller steady-state gain is equal to the
inverse of the model steady-state gain (assuming its
existence), and if the closed-loop system is stable
with this controller, offset-free control is obtained
for constants inputs.
If the neural controller is trained using a reference
model with unity steady-state gain, then the first
condition of (b) is met.
One must be aware that the validity domain of the
neural controller is restricted to the region of the
state space it was trained in. This training region
must be larger than the operating region desired for
the process. As a matter of fact, during the operating
phase, the controller controls the model (its input is
the state of the model), which might evolve in a
larger region of the state space than the process, due
to the mismatch between model and process and to
perturbations. In the case the model should leave the
validity domain of the neural controller during the
operating phase, the model state must be reset to the
process state.

One can also train the controller to implement
the inverse of the operator describing the plant



model (if it exists) by using a reference model
consisting of a simple delay for the training. In this
case, a filter must be introduced between setpoint
and controller in order to achieve the desirable
robustness against perturbations, and the desired
tracking response [MOR89]. If the model is
perfectly accurate, perfect tracking can be achieved.

5. Experimental results.

The piloting problem is split into two separate
control problems (see part 2), a lateral or heading
control problem, and a longitudinal or velocity
control problem. The lateral problem has been
presented more extensively in [RIV93].

5.1. Lateral modeling and control.
The usually adopted “bicycle model ” proved to

be only a rough approximation of REMI’s lateral
behaviour. We thus performed an identification of
the nonlinear relationship between the vehicle
heading ψp and the steering wheel control input α .
Incorporating a priori knowledge (the basic structure
of the bicycle model) into the neural model led to a
good generalization in regions where training data
was not sufficient (at high velocity). In addition, we
could model the nonlinear first order dynamics with
two saturations (in angle and velocity) of the
steering wheel actuator. The neural model consists
of two subnetworks NNβ and NNψ :

 β(n+1) = fNNβ β(n), vp(n), α(n)

 ψ(n+1) = ψ(n) + vp(n) fNNψ β(n)

where β(n) is the model steering wheel angle. The
velocity of the vehicle vp is considered as a
measured disturbance.

The heading controller was designed as a static
state-feedback regulator :

α(n) = ρNN eψ(n), β(n), v(n)

eψ(n)=ψc(n)–ψ(n), ψc(n) being the heading setpoint
given by the guidance module.
The reference model used for the training of the
controller (figure 4.2) was designed to compute
minimal-time rallying sequences {ψr(n)} rallying ψ
to ψc for the linearized model, at various velocities
(0-80 km/h) [RIV93]. Thus the neural controller
was trained to be a minimal-time controller (see
[RIV93] part 3.2.1 : the heading-based approach).

The model being very accurate, the heading
controller could be used with very good
performances in a SFC system (figure 4.3). Since
the process itself is an integrator, zero steady state
error could be achieved.
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Lateral control result (SFC system).

Experimental lateral control results (path
following) are shown in figure 5.1. As described in
section 3.3, the setpoint heading was computed by
the guidance module so as to bring the vehicle onto
the reference trajectory. The transversal error shown
is the distance to the closest point of the reference
trajectory, and the heading error is defined with
respect to the tangent to the trajectory at this point.
The velocity was monitored by a human operator,
with a mean value of 4,5 m/s. The transversal error
did not exceed 40 cm, with curvature values of 0.1
m-1 in the sharp curves.

5.2. Longitudinal modeling and control.
The model of the longitudinal dynamical

behaviour of the vehicle is a second order neural
model :

v(n+1) = gNN v(n), v(n-1), ρp(n), θ(n), π(n)

              –  G sin sp(n)   k ρp(n)

where v is the velocity, θ the throttle angular
position and π the brake pressure. The (automatic)
gear transmission ratio ρp is considered as a
measured disturbance. G is the gravity constant, k a
known inertia factor, and sp the measured slope of
the terrain.

The velocity controller was designed as a
dynamic state-feedback controller implementing the
inverse of the model (i. e. it was trained with a
reference model consisting of a unit delay, within
the training architecture shown in figure 4.2) :



(n) = κNN U(n-1), vc(n), vc(n-1), ρ(n), s(n), v(n), v(n-1)

where {vc(n)} is the velocity setpoint sequence. The
following switching logic was used to control
throttle and brakes alternatively :
if u(n)>0 then θ(n) = u(n)   (throttle), and π(n) = 0.
if u(n)<0 then π(n) = u(n)   (brakes),  and θ(n) = 0.

The longitudinal model being less accurate than
the lateral one, we chose to use the controller trained
with this model as a part of an IMC system (figure
4.4). We chose a damped second order low-pass
linear filter with faster dynamics than the vehicle :

vr(n+1) = a1 vr(n) + a2 vr(n-1) + b1 vc(n) + b2 vc(n-1)
where {vr(n)} is the reference sequence.
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Longitudinal control results (IMC system).

Experimental results are shown in figure 5.2.
vm, the thin dotted line, denotes the internal model
velocity. These graphs show (i) the mismatch
between model and process (i. e. between vm and
vp, the thick dotted line), and (ii) that, despite this,
zero steady-state error and good tracking dynamics
are achieved.

6. Conclusion.

On the example of the piloting control system
of a 4WD vehicle, we show the applicability of the
neural network techniques to a complex control
problem in automotive industry. The design of the
control system was achieved using dynamical neural
network models of the vehicle, and neural
controllers implementing an optimal control law
(lateral control) and a control law related to the
inverse of the neural model in an internal model
control scheme (longitudinal control). One of the
salient features of our methodology is the use of a
priori knowledge in the design of the model and
controller networks [PLO94].

This piloting system was integrated in a fully
automated robot ; systematic tests in rough terrain
as well as comparisons to other approaches are in
progress.
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