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Introduction

“The real voyage of discovery consists not in seeking

new landscapes but in having new eyes.”

Marcel Proust

This thesis is focused on the development of new modeling, analysis and control

methods for nonlinear electrical networks and physical systems in general.

Motivation

A classical, but more actual than ever, problem in modern technology is the op-

timization, in a suitably defined sense, of the power transfer between the supplier

(for example, a generator, accumulator, etc.) and the load (for example, an elec-

tronic system). In the area of electrical power conversion, such optimization prob-

lems range from simple power management scenarios in mobile phones to com-

plex high-tech devices used in space applications and power plants. In a typical

scenario, it is assumed that the supplier consists of a generator with fixed voltage

in series with a resistor, and the problem is to design a compensator to minimize

the transmission losses. Historically, the loads have been assumed linear, and over-

whelmingly inductive. For instance, if the source voltage is purely sinusoidal, it is

well-known [26, 15] that the optimal compensator is the one that minimizes the

phase shift between the supplied voltage and current waveforms — increasing the

so-called power factor. However, we have witnessed in the last two decades an ex-

ponential increase in the use of nonlinear electrical apparatus, such as adjustable

AC drives and all sort of switching converters, that inject high-frequency harmon-

ics to the power network establishing a non-sinusoidal regime. It is evident that

in these circumstances, the power factor compensator design paradigm described

above — which is based on sinusoidal steady-state considerations — is not always

adequate. In our opinion, a first step towards the construction of a unified frame-
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Introduction

work for optimization and compensator design that encompasses nonlinear loads,

is the development of mathematically tractable and physically sensible methods to

analyze and describe the nonlinear phenomena at a level of significant detail.

Since virtually all complex physical systems can be viewed as a set of simpler

subsystems [105], which exchange power through their mutual interconnections

and the environment, it seems natural to take the system’s power as a starting point

for the analysis. One of the aims is to construct a unified modeling framework

where the total power-flow between the various subsystems is used to play a role

similar to well-known energy-based approaches, like the classical Euler-Lagrange

and Hamiltonian equations [1, 77, 105]. Once we have obtained such power-based

model, it can be used for analysis and then to control the system by modifying

the total power to any desired shape as to prescribe a certain desired (dynamical)

behavior. If we return to power factor compensator design as briefly described

above, this would mean that we start by describing the dynamical behavior of the

system in terms of its power-flows. Next, we look what needs to be changed in

order to obtain an optimal power transfer, i.e., the desired power-flow. Finally,

the power delivered (or extracted) by the controller/compensator is then defined

by the difference between the original and the desired power-flow. The key as-

pect here is that, in contrast to the classical signal-based methods, power does not

depend on the form of the signals nor is it restricted to linear elements and sys-

tems. This means that the method should be applicable to more general classes

of systems, including those from other engineering domains, like mechanical and

electro-mechanical (mechatronic) systems.

Interestingly, in the early sixties there has already been a relatively small com-

munity of researchers which have presented power related ideas in this direction.

For example, J.K. Moser [72] was the first who proposed a single power function

to model arrays of tunnel diode circuits. Once the model has been obtained, the

same function could be used to determine conditions for stability or conditions to

maintain stable oscillations. A few years later, a more general theory based on this

power function was presented in [10], for which the main result is presently known

as the Brayton-Moser equations. From that period on, only a few generalizations

where added, and some book writers devoted a chapter on the subject (a detailed

list of references can be found in Chapter 2). To our knowledge, none of the au-

thors at that time, nor any of the works from that time on, however, discussed

a possible extension of the power-based approach in the direction of control and

compensator design. Our objective is to refine and further explore these power-

based concepts to make them suitable for applications and to gain new insights in

2
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modern modeling and control problems.

Besides the focus on the power-flows, the key aspect behind our ideas is the

notion of passivity.1 Passivity is a fundamental property of dynamical systems that

constitutes a cornerstone for many major developments in systems and control

theory, including optimal (H2 and H∞) control, and adaptive control. Passivity

has been instrumental to reformulate, in an elegant and unified manner, the cen-

tral problem of feedback stabilization — either in its form of feedback passivation

for general linear and nonlinear systems, or as passivity-based control for systems

with physical structures. Passive systems are a class of dynamical systems in which

the energy exchanged with the environment plays a central role [77]. In passive

systems, the rate at which the energy flows into the system is not less that the in-

crease in storage, i.e., a passive system cannot store more energy than is supplied

to it from the outside — with the difference being the dissipated energy. In our ap-

proach, passivity will be considered from a fairly different point of view. Instead of

a focus on the system’s energy-flows, we focus on the associated power-flow. Our

main source of inspiration are the Brayton-Moser equations [10] — including all

of its known generalizations — for they constitute a natural dynamical description

for a sufficiently large class of nonlinear electrical networks in terms of the systems

power-flow.

Contributions and Innovation

Several contributions of this thesis can be distinguished. First, a unified power-

based framework for modeling, analysis and control of a large class of nonlin-

ear electrical networks, including switched-mode power converters, is proposed.

Second, our research found new power-based passivity properties and lead to the

so-called Power-Shaping Stabilization strategy. This new control method forms

an alternative to, and is also used to overcome certain obstacles of, the widely

appreciated method of Energy-Shaping [80]. Third, we approach the Passivity-

Based Control (PBC) design methodology for switched-mode power converters,

as recently exposed in [77], from a power-based perspective and propose a re-

vised damping injection scenario. This new scenario leads to the notion of parallel

damping, which in contrast to series damping results in robust controllers that do

not need adaptive extensions to deal with load variations. Additionally, but not

less important, effort is made to address the tuning of the controller. Fourth, some

1Since a list of references concerning passivity can be extended almost indefinitely, the reader is

referred to [115, 112, 77, 105] for an excellent expound on the subject and its origins.
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preliminary steps are taken to extend the power-based modeling and control ideas

to electro-mechanical systems and beyond. Finally, we present some new passivity

results for general nonlinear systems which are closely related to the main line of

research followed in this thesis. These contributions gave rise to several publica-

tions which are explicitly itemized as follows:

✦ In the early sixties Brayton and Moser proved three theorems concerning the

stability of nonlinear electrical circuits. The applicability of each theorem

depends on three different conditions on the type of admissible nonlinear-

ities in circuit. We provide a natural generalization of Brayton and Moser’s

stability theorems that also allows the analysis of a larger class of nonlinear

networks. This result has been published in [49].

✦ Our research found new power-based passivity properties and led to the

paradigm of Power-Shaping control. This novel control method forms an

alternative to, and is also used to overcome certain obstacles of, the widely

appreciated method of Energy-Shaping control (presented in e.g. [80]). The

new passivity property was presented in [41] and [42]. The extension to

stabilization is addressed in the papers [74], [75], and [76].

✦ We have addressed the question when a given RLC network can be rewritten

as a port-Hamiltonian (PH) system — with state variables the inductor cur-

rents and capacitor voltages instead of the fluxes and charges, respectively.

The resulting novel network representation naturally suggests the deriva-

tion of a very simple, and physically interpretable, expression for the rate of

change of the network’s instantaneous reactive power, and the application

to the compensator design paradigm discussed in the previous section. This

research is published in [54]. Some related results are published in [13, 39].

✦ The Passivity-Based Control methodology exposed in [77] is rewritten in

terms of the Brayton-Moser equations. Based on this framework, practi-

cal guidelines for the structure of the injected damping are justified theo-

retically and the problem of controller commissioning is addressed. The

proposed ‘tuning rules’ are shown to be practically relevant in terms of sta-

bility, overshoot and non-oscillatory responses. The ideas are exemplified

using elementary single-switch and complicated poly-phase power convert-

ers. These results were published in [44], [48], and [50]. Some preliminary

and related results were published in [51] and [52]. Some results concerning

the modeling part were published in [45].
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✦ Although it is well-known that there is a standard analogy between simple

mechanical and electrical systems, like e.g., the mass-inductor or spring-

capacitor analogy, the existence of a well-defined analogy for more general

(electro-)mechanical systems is not straightforward. One of the main rea-

sons for making such analogy difficult is the presence of the so-called corio-

lis and centrifugal forces in the mechanical domain, which do not appear as

such in the electrical domain. Some preliminary findings of extending the

power-based modeling and control ideas to electro-mechanical systems and

beyond are reported in [46] and [47].

✦ Stabilization of nonlinear feedback passive systems is achieved assigning a

storage function with a minimum at the desired equilibrium. For physical

systems this has recently led to the so-called Energy-Balancing (EB) control

strategy. However, Energy-Balancing stabilization is stymied by the exis-

tence of pervasive dissipation, that appears in many engineering applica-

tions. The first successful attempt2 to overcome the ‘dissipation obstacle’ is

the method of Interconnection and Damping Assignment (IDA), that en-

dows the closed-loop system with a special (port-Hamiltonian) structure.

In [40] and [43] we have established a similar equivalence between IDA and

EB when the damping is pervasive. Furthermore, we show that the IDA

methodology carries on beyond the realm of port-Hamiltonian systems.

Some other contributions which have been inspirational for the developments in

present thesis, but are not explicitly included, are the following:

✦ In the context of switched-mode power converter models, we have devel-

oped a systematic procedure using the constrained Lagrangian approach.

In contrast to earlier methods, our method leads to a set of natural state

variables which are directly suitable for application of Passivity-Based Con-

trol (PBC). Additionally, we show how to include converter topologies with

coupled-magnetics. These contributions are published in [38], [89], and

[90].

✦ For complexity reasons, the dynamical behavior of matrix converters are

often neglected in controller design. However, increasing demands on re-

duced harmonic generation and higher bandwidths makes it necessary to

study large-signal dynamics. In [53], a unified methodology that considers

2That is, before the method of Power-Shaping discussed previously.

5



Introduction

matrix converters, including input and output filters, as gradient systems is

presented.

✦ In [24], we have presented two new choices of regular Lagrangian functions

for the dynamical description of LC networks, and prove that the solutions

are equivalent one to another and to the results obtained in the literature.

The first approach uses the integrated version of Kirchhoff ’s current law

(constraints), which is just the condition of charge conservation, to define a

regular Lagrangian description by using only the inductances of the system.

The second approach is based on the formulation of a Lie algebroid which

defines the constraints of the system in a different way. Both approaches

are shown to be in a one-to-one relation and they both provide equivalent

Hamiltonian formalisms.

Outline of this Thesis

This thesis is subdivided into three parts which are structured as follows. Part I

contains four chapters which are devoted to general nonlinear RLC networks. The

necessary background material is largely contained in Chapter 1 and the first few

pages of Chapter 2. It contains a brief historical outline on nonlinear network the-

ory as well as the main concepts and definitions used throughout the thesis. The

larger part of Chapter 2 is devoted to Brayton and Moser’s stability theorems and

its generalizations. Additionally, some interesting relations between the Brayton-

Moser equations and port-Hamiltonian systems are established. Chapter 3 is ded-

icated to the proof that for all RL or RC circuits, and a class of RLC circuits it is

possible to ‘add a differentiation’ to one of the port variables (either the voltage

or current) preserving passivity, with a storage function that is directly related to

the circuit power. The new passivity property naturally suggests the paradigm of

Power-Shaping stabilization as an alternative to the well-known method of Energy-

Shaping. The first part is completed with the development of a port-Hamiltonian

description which, in contrast to the standard form, uses an instantaneous reactive

power type of Hamiltonian function. This novel network representation naturally

suggests the derivation of a very simple, and physically interpretable, expression

for the rate of change of the network’s instantaneous reactive power, as well as a

procedure for its regulation with external sources.

Part II is devoted to the study of switched-mode power converters and contains

two chapters. In Chapter 5 the Brayton-Moser equations are accommodated for
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the inclusion of (multiple) controllable switches. The approach can be considered

as an alternative to the switched Lagrangian and port-Hamiltonian formulation.

The theory is exemplified using the elementary single-switch DC/DC Buck and

Boost converters, and the more elaborate multi-switch three-phase voltage-source

rectifier. Chapter 6 is concerned with the control of switched-mode converters.

The chapter starts with an outline of the recently proposed Passivity-Based Con-

trol (PBC) methodology. Some new insights regarding the damping assignment

philosophy are presented and justified theoretically using the switched versions of

Brayton and Moser’s equations. These new insights lead to improvements in the

robustness of the closed-loop system against unmodeled load uncertainties. Fur-

thermore, the problem of controller tuning is addressed and extensive simulation

studies of the closed-loop behavior are provided.

The last part, Part III, is dedicated to the study of more general type of systems in

the power-based framework. First, in Chapter 7, the construction of a power-based

modeling framework for purely mechanical systems is presented. Finally, in Chap-

ter 8, some equivalence relations between Energy-Balancing (EB) control and In-

terconnection and Damping Assignment (IDA-PBC) control for general nonlinear

systems in which the dissipated power is nonzero at the equilibrium is established.

Notation

We denote by ∇xV (·) the partial derivative of a function V : X → R with respect to

a n−dimensional column vector x = col(x1, . . . , xn) ∈ X, i.e.,

∇xV (·) =
∂V

∂x
(·),

where ∇xV (·) itself represents a column vector. Similarly, the operator ∇2
x denotes

the second partial derivative (Hessian) with respect to x, i.e.,

∇2
x V (·) =

∂2
V

∂x2
(·).

When clear from the context the subindex will be omitted.

Let ẑ : X → Z represent a scalar function mapping x ∈ X unto z ∈ Z. The integral

of z = ẑ(x) with respect to x between the endpoints x(1) and x(2) is explicitly written

as

V2

(

x(2)
)

− V1

(

x(1)
)

=

∫ x(2)

x(1)

ẑ(x)dx.

7
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When the lower limit will be taken to be the origin (i.e., x = 0), the latter simplifies

to

V (x) − V (0) =

∫ x

0

ẑ(x′)dx′.

In many occasions, however, the lower limit of integration need not to be specified

until the function is actually evaluated. In such case, we simply write

V (x) =

∫ x

ẑ(x′)dx′.

The above definitions may be extended to n-dimensional functions provided that

the vector field z = ẑ(x) is (locally) symmetric in the sense that ∇ẑ(x) = (∇ẑ(x))T.

By an RLC network we refer to an electrical network consisting of arbitrary in-

terconnections of resistors (R), inductors (L), and capacitors (C). The variables

related to each of the three elements are labelled by the subindexes r, ℓ, and c, re-

spectively. For ease of reference, we often denote the variables related to a current-

controlled resistor by the subindex r, while for a voltage-controlled resistor we use

the subindex g.
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Chapter 1

Nonlinear RLC Networks: History,

Properties and Preliminaries

“Always surpass the one you were yesterday.”

Yagyu Sekishusai

An entire book could be written on the history of nonlinear network theory start-

ing, roughly speaking, from the early fifties until the present day, with technical ex-

planations, journal and patent references, and interactions with other disciplines.

However, its preparation would take more journal and library research than could

be justified within the context of the present thesis. In this chapter, we briefly dis-

cuss some of the most important developments in nonlinear network theory in

relation to our studies in the chapters that follow.

1.1 Introduction and Historical Remarks

Network theory is based on the conceptual modeling of electrical circuits. As in

many engineering disciplines, to analyze a complex physical system, we use the

description of a system in terms of an ideal model that is an interconnection of

idealized elements. The idealized elements are simple models that are used to rep-

resent or approximate the properties of separate physical elements or physical phe-

nomena. Although physical elements and physical phenomena may be described

in such manner only approximately, idealized elements are by definition character-

ized precisely. In network theory we study networks made up of idealized elements,

and we also study their general properties. Given a physical network, it is possible

to obtain a succession of idealized models of this network such that the behavior

of the model fits better and better with the physical reality. The ultimate bases
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for the treatment of all electromagnetic phenomena in a physical network are the

Maxwell’s equations [66]. However, in a very large number of practical problems,

it would mean an unnecessary complication to apply (and moreover, to actually

solve) Maxwell’s equations and to describe the behavior of the network under con-

sideration in terms of fields intensities, charge and current densities, etc.. In order

to analyze an electrical network it is usually a sufficient approximation to only

consider some time-varying quantities satisfying the Maxwell relations, as well as

certain incidence and characteristic relations. Going back to Ohm, Kirchhoff, and

Maxwell, such approximation has been crucial in the process of understanding the

various complex physical phenomena.

First, the performance of the individual elements had to be formulated or mod-

eled. The result was Ohm’s law for resistors, Maxwell’s relations for the current and

voltage derivatives of the inductors and capacitors, etc.. Secondly, the behavior of

interconnected elements had to be formulated. For linear and time-invariant net-

works, Kirchhoff ’s laws led to linear differential equations expressed in terms of

voltages and/or currents, with constant coefficients. Of course, a mathematical

theory of such differential equations was well-known at that time, and also its ap-

plications to classical mechanics. The popularity and the understanding of the dif-

ferential equations as they apply to linear networks has led to a wealth of important

issues for networks such as steady-state versus transient responses, the superposi-

tion theorem, Thevenin’s and Norton’s theorems, and the reciprocity theorem, to

mention but a few. All these concepts nowadays belong to the standard outfit of

the electrical engineer and can be found in almost any textbook on network the-

ory, design and analysis, e.g., [26].

Until the early 1950s, most researchers only payed attention to the develop-

ments of linear network theory. Besides the various fundamental contributions

briefly outlined above, there has always been a particular interest in studying the

relations between basic equations of mechanics and the basic laws of electrical net-

works. For generations, many of the results from classical mechanics have been

enunciated in terms of the Lagrangian and Hamiltonian formulations of physical

systems [1, 2]. A key aspect of these formulations is that they provide a systematic,

compact and elegant system description in which physical quantities like energy,

interconnection and dissipation play a central role. These results may be translated

into network terminology if the networks are properly described. Such translation

affords physical insight into the behavior of electrical networks. The use of La-

grange’s equations in the study of electro-magnetic phenomena can be traced back

to the era of J.C. Maxwell [66]. However, one of the first researchers that devel-
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§1.1. Introduction and Historical Remarks

oped a systematic Lagrangian framework for a class of linear networks was Wells

[109]. A few years later, Wells also introduced a ‘power function’ — the electrical

counterpart of what is known in mechanics as Rayleigh’s dissipation function —

in order to account for linear dissipative elements in the network [110]. The field

of research took a new turn with the beginning of the era of nonlinear electrical

networks, which significantly complicated the analysis.

The need for structural nonlinear network analysis was, to our knowledge, first

addressed by W. Millar and E.C. Cherry. The main motivation behind the ideas

presented in [70], was the search for a generalization of Maxwell’s celebrated min-

imum heat theorem — one of the first results for linear networks, presented in

[66]. Since Maxwell’s minimum heat theorem applies only to linear networks,

Millar started to look for some other quantities possessing similar properties in

the case of nonlinearities being present in the network. This has led to the no-

tion of resistors content, and its dual, the resistors co-content.1 The second paper

[17], accompanying [70], is concerned with the construction of some simple, but

fundamental, concepts and theorems related to nonlinear reactance, i.e., nonlinear

inductors and capacitors. Cherry introduced the notion of co-energy (the dual of

energy) and showed that the equations of motion of a nonlinear network, possess-

ing reactance, may be expressed in Lagrangian form. The inclusion of dissipation

and generalized forces (e.g., external voltage and/or current sources) was accom-

plished using Millar’s content and co-content. The ideas of content and co-content

generalized the power function of Wells and enabled the inclusion of nonlinear re-

sistive elements.

Since then, many authors contributed to this subject. Besides the structural

energy-based methods emphasized here, Brayton and Moser showed that the dy-

namical equations of a class of nonlinear networks can be expressed in terms of a

mixed-potential function, e.g., [10, 11]. The mixed-potential function can be used

to prove stability of equilibrium points and reduces to Millar’s content for net-

works containing no capacitors and to the co-content for networks containing no

inductors. The general state-space approach for the time-domain modeling and

analysis of nonlinear networks became popular in the late 1950s. For a brief sum-

mary on the history of network theory till the early sixties the interested reader is

referred to [4]. A selection of papers regarding nonlinear network theory up to

1975 is bundled in [113]. An excellent account of the main results up to 1980 can

1Millar argued that if there are any nonlinear elements present in a network, the generated heat

is in general not stationary at the networks DC operating point. Instead, Millar defined heat related

quantities, called content and co-content, which are stationary in the nonlinear case.
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be found in [21]. Another excellent overview up to 1987 is provided in [65]. In the

context of the Lagrangian and Hamiltonian formulation some steps of the progress

were related to the application of topological methods to justify Cherry’s approach,

see e.g., [61] and [99]. Others contributed to the generalization of the Lagrangian

and the closely related Hamiltonian descriptions, and to a concept of state vari-

ables which came with it. For instance, Chua and McPherson [22] used the classi-

cal Lagrangian framework, but their choice of coordinates departed radically from

conventional thinking, see also [101]. Almost a decade later, in [58] a generalized

Lagrangian (and Hamiltonian) framework is proposed in which some severe lim-

itations of the previous methods are relaxed. In between, Milić and Novak [68]

introduced the so-called anti-Lagrangian equations and generalized their ideas to

nonlinear networks of arbitrary topology in [69]. Some recent contributions on

Lagrangian and Hamiltonian formulations of linear and nonlinear networks can

be found in e.g., [5, 7, 24, 25, 57, 63, 71], and the references therein.

1.2 State Equations and RLC Networks

The networks considered in our study consist of one-port (or two-terminal) and

multi-port (or multi-terminal) resistors, inductors, and capacitors, as well as inde-

pendent and controlled voltage and current sources. A network, denoted by N ,

consisting of an arbitrary interconnection of these basic circuit elements is called a

dynamic lumped RLC network. For sake of brevity, the time arguments, t ∈ R, of

the various dynamic variables are discarded unless stated explicitly otherwise.

Basically all developments in this thesis presuppose that the network equations,

and physical system equations in general, allow a state equation of the form

ẋ = f (x, t), (1.1)

where x = col(x1, . . . , xn) are coordinates, called the state variables of the network,

for an n-dimensional state-space manifold Rn, and f : Rn+1 → Rn is a C
k vector

field for k ≥ 0. Given (1.1), it is well-known that we can in fact define infinitely

many equivalent state equations by non-singular coordinate transformations. Of

particular interest are the current-voltage formulation, which involve the currents

through a set of nℓ inductors, denoted by iℓ, and the voltages across a set of nc

capacitors, denoted by uc, respectively, and the flux-charge formulation. The latter

formulation involves the flux-linkages pℓ,

pℓ(t) � pℓ(t0) +

∫ t

t0

uℓ(t
′)dt′, (1.2)

14
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with initial conditions pℓ(t0), and charges qc,

qc(t) � qc(t0) +

∫ t

t0

ic(t
′)dt′, (1.3)

with initial conditions qc(t0), associated with the inductors and capacitors in the

network, respectively. In order to have a clear distinction between the two formu-

lations we denote the state-space of the current-voltage formulation by E∗
� Iℓ×Uc,

where Iℓ represents the space of inductor currents and Uc the space of capaci-

tor voltages, while the state-space of the flux-charge formulation is denoted by

E � Pℓ × Qc, where Pℓ represents the space of inductor flux-linkages and Qc the

space of capacitor charges.

1.3 Two Common State Formulations

Any RLC network N containing linear, time-varying and/or nonlinear elements

can be represented as shown in Figure 1.1, where all inductors and capacitors are

connected externally to a resistive subnetwork M . Since (some of) the inductors

(resp. capacitors) may be coupled to each other, multi-port inductors (resp. ca-

pacitors) are also included in this representation. Resistors and sources can be

regarded as essentially the same kind of elements since they are both specified by

static relations in terms of currents and voltages. For example, an independent

source may be interpreted as a special case of a one-port resistor, and a controlled

source as a special case of a two-port resistor.2 For similar reasons, other one-

or multi-port elements, like ideal diodes, switches, transistors (described by the

Ebers-Moll equation), gyrators, and transformers, can be considered as resistors,

since their constitutive relations are usually also described by algebraic relations

involving only currents and voltages and are therefore included in M . To simplify

the notation, we assume throughout the thesis that all elements are time-invariant,

except possibly the independent sources, and that their constitutive relations can

be defined as follows:

2As argued in [20], there is in fact a sound theoretical reason for this way of classification because

it can be proved that any multi-port black box made of arbitrary interconnections of linear resistors,

nonlinear resistors, (possibly controlled) voltage- and current sources always gives rise to a multi-

port resistor. However, there are occasions where it is more convenient to regard these sources as a

separate set of elements, especially when we want to specify a particular behavior to them (e.g., if we

want to control the circuit or if the network’s passivity properties are considered). We come back to

this in later chapters.
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M

Es

Is

ia1

ia2

iaj

ua1

ua2

uaj

ib1

ib2

ibk

ub1

ub2

ubk

iℓ1

iℓ2

iℓj

uℓ1

uℓ2

uℓj

ic1

ic2

ick

uc1

uc2

uck

Fig. 1.1. Any RLC network N can be represented by an algebraic subnetwork M , with port currents

iaj
, ibk

and port voltages uaj
, ubk

, that is terminated by inductors and capacitors, respectively. The

inductors (capacitors) may be coupled to each other.

Definition 1.1 (Resistor) A resistor is an element whose instantaneous current

and voltage, denoted by ir ∈ Ir and ur ∈ Ur, respectively, satisfy the relation

Γr(ir, ur) = 0, (1.4)

called the current-voltage characteristic. A resistor is said to be current-controlled

if there exists a function ûr : Ir → Ur such that Γr(ir, ur) = ûr(ir) − ur = 0, or equiva-

lently, ur = ûr(ir). It is voltage-controlled if there exists a function îr : Ur → Ir such

that ir = îr(ur). A resistor that is both current- and voltage-controlled is a one-to-

one resistor. For example, a linear resistor is represented by ur = Rir (Ohm’s law),

where R is the resistance, or, similarly, ir = Gur, where G (= R−1) is the conduc-

tance. Hence, a linear resistor is a one-to-one resistor. For ease of presentation, we

will often denote a voltage-controlled resistor (a conductor) by the port variables

ig and ug , with ig ∈ Ig and ug ∈ Ug , instead of ir and ur, i.e., Γg(ig , ug) = 0.

Definition 1.2 (Inductor) A one-port inductor is an element whose instantaneous
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§1.3. Two Common State Formulations

flux-linkage pℓ ∈ Pℓ and current iℓ ∈ Iℓ satisfy the relation

Γℓ(pℓ, iℓ) = 0, (1.5)

called the flux-current characteristic. An inductor is flux-controlled if there exists a

function îℓ : Pℓ → Iℓ such that Γℓ(pℓ, iℓ) = îℓ(pℓ) − iℓ = 0, or equivalently, iℓ = îℓ(pℓ).

Conversely, it is current-controlled if there exists a function p̂ℓ : Iℓ → Pℓ such that

pℓ = p̂ℓ(iℓ). It is said to be a one-to-one inductor if it is both flux-controlled and

current-controlled.

Definition 1.3 (Capacitor) A one-port capacitor is an element whose instanta-

neous charge qc ∈ Qc and voltage uc ∈ Uc satisfy the relation

Γc(qc, uc) = 0, (1.6)

called the charge-voltage characteristic. A capacitor is charge-controlled if there

exists a function ûc : Qc → Uc such that Γc(qc, uc) = ûc(qc) − uc = 0, or equivalently,

uc = ûc(qc). Conversely, a capacitor is voltage-controlled if there exists a function

q̂c : Uc → Qc such that qc = q̂c(uc). It is a one-to-one capacitor if it is both charge-

controlled and voltage-controlled.

Furthermore, the subnetwork M in Figure 1.1 admits a mixed representation3 of

the port voltages ua of the form

ĥa

(

ia, ub,φs(t)
)

− ua = 0, (1.7a)

and for the port currents ib

ib − ĥb

(

ia, ub,φs(t)
)

= 0, (1.7b)

where φs(t) = col
(

Es(t), Is(t)
)

represents the possibly time-varying independent

voltage and current sources. For autonomous networks, i.e., networks driven by

constant (DC) sources, we usually omit the source vector φs.

3In the work of Chua, e.g., [21], such representations are called hybrid representations, where the

word hybrid is used in the sense that the Ohmian relation may be a function of both current and

voltage at the same time. We prefer to use the term ‘mixed’ in order to avoid confusion with other

closely related fields of research.
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1.3.1 Current-Voltage Formulation

Let us first consider the current-voltage formulation. Suppose all inductors are

current-controlled and the incremental inductance matrix

L(iℓ) � ∇p̂ℓ(iℓ) (1.8)

is non-singular for all iℓ ∈ Iℓ. Suppose that all capacitors are voltage-controlled and

the incremental capacitance matrix

C(uc) � ∇q̂c(uc) (1.9)

is non-singular for all uc ∈ Uc. Substitution of uℓ = −ua into (1.7a) and ic = −ib

into (1.7b), yields (see also Figure 1.1)

uℓ = −ĥa

(

ia, ub,φs(t)
)

, ic = −ĥb

(

ia, ub,φs(t)
)

. (1.10)

By Faraday’s law, the inductor voltages equal uℓ = dpℓ/dt = L(iℓ)diℓ/dt, while the

capacitor currents equal ic = dqc/dt = C(uc)duc/dt. Furthermore, substitution of

iℓ for ia and uc for ub in (1.10) yields

N :






diℓ

dt
=−L−1(iℓ)ĥa

(

iℓ, uc,φs(t)
)

duc

dt
=−C−1(uc)ĥb

(

iℓ, uc,φs(t)
)

,

(1.11)

which are the state equations on E∗. Let us define x � col(ia, ub) = col(iℓ, uc),

ĥ(·) �




ĥa(·)
ĥb(·)



, and M(·) �




L(·) 0

0 C(·)



 . (1.12)

Then, the state equations (1.11) can be represented by the following compact form:

dx

dt
= −M−1(x)ĥ

(

x,φs(t)
)

, (1.13)

where ĥ(·) and M(x) are C
k-functions, for some k ≥ 0, of x ∈ E∗.

1.3.2 Flux-Charge Formulation

Let us next derive the flux-charge formulation. For that, the inductors and capaci-

tors need to be flux-controlled and charge-controlled, respectively, so that we may

substitute ia = îℓ(pℓ) and ub = ûc(qc) in (1.7a) and (1.7b), respectively. Hence, by
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noting that dpℓ/dt = −ua and dqc/dt = −ib, we obtain the following state equations

on E:

N :






dpℓ

dt
=−ĥa

(

îℓ(pℓ), ûc(qc),φs(t)
)

dqc

dt
=−ĥb

(

ûc(qc), îℓ(pℓ),φs(t)
)

.

(1.14)

Let z � col(pℓ, qc), then in a similar fashion as before, Eq.’s (1.14) can be represented

by the compact form:

dz

dt
= −ĥ

(

x̂(z),φs(t)
)

, (1.15)

where x̂(·) is a C
k-function, for some k ≥ 0, of z ∈ E.

1.3.3 On the Existence of the State Equations

The preceding two state equation formulations are set up deceptively simple be-

cause we assumed the function ĥ(·) describing the subnetwork M is known a pri-

ori. For each network, this function must be derived before the state equation

can be written, which, in general, is not always possible [21]. Moreover, it is not

difficult to give simple examples of pathological networks for which a state equa-

tion formulation is even impossible, e.g., a network with a non-invertible current-

controlled (voltage-controlled) resistor in parallel (series) with a capacitor (induc-

tor). In order to ensure the existence of the solutions for the state equations, ei-

ther on E∗ or E, we need to confine our study to the class of complete networks

expounded below.

Definition 1.4 (Completeness) A network N is said to be complete if the state

variables x form a complete set of variables. The set of state variables x is complete

if its components can be chosen independently without violating Kirchhoff ’s laws4,

and if they determine either the current or the voltage (or both) in every branch of

the network.

Basically, a network N is complete if the following conditions are satisfied [21, 86]:

4Kirchhoff ’s current law (KCL) states that for any lumped network, for any of its cutsets, and at

any time, the algebraic sum of all the branch currents traversing a branch cut-set is zero. Kirchhoff ’s

voltage law (KVL) states that for a lumped network, for any of its loops, and at any time, the algebraic

sum of all the branch voltages around a loop is zero.

19



Chapter 1. Nonlinear RLC Networks: History, Properties and Preliminaries

C.1 There are no cutsets formed exclusively by inductors and/or independent

current sources. There are no loops formed exclusively by capacitors and/or

voltage sources.

C.2 Each current-controlled (but not voltage-controlled) resistor is in series with

an inductor, and each voltage-controlled (but not current-controlled) resis-

tor (i.e., conductor) is in parallel with a capacitor.5

C.3 Each remaining resistor has a bijective characteristic relation.

Concerning condition C.1, every inductor-only cutset can usually be eliminated

by short-circuiting one of the inductors in the cutset, and by modifying the consti-

tutive relations of the remaining elements in the cutset. Similarly, every capacitor-

only loop can be eliminated by open-circuiting any one capacitor in the loop, and

by modifying the constitutive relations of the remaining elements in the loop. Most

of the fundamental properties of the original elements are inherited by the result-

ing ‘new’ elements, see e.g., [88]. The same kind of treatment applies to cutsets

formed by independent current sources and loops formed by independent voltage

sources.

Condition C.2 guarantees that the voltage across each current-controlled resis-

tor in series with an inductor is uniquely determined by the inductor current iℓ.

Likewise, the current through each voltage-controlled resistor (i.e., conductor) in

parallel with a capacitor is uniquely determined by capacitor voltage uc.

Condition C.3 guarantees that the resistors not in series or in parallel with an

inductor or a capacitor, respectively, are one-to-one which ensures that their con-

stitutive relations can always be expressed in terms of either a current or a voltage.

Corollary 1.1 A network N has a global current-voltage formulation (1.13) if it

is complete, and the inductors are current-controlled possessing a non-singular

incremental inductance matrix of the form (1.8), and the capacitors are voltage-

controlled possessing a non-singular incremental capacitance matrix of the from

(1.9). Likewise, the existence of a global flux-charge formulation (1.15) requires

the network to be complete with flux-controlled inductors and charge-controlled

capacitors.

5In the multi-port case: Each current-controlled port (or terminal pair) should be in series with

an inductor, while each voltage-controlled port (or terminal pair) should be in parallel with a capac-

itor [21].
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Remark 1.1 Note that in a more general network, where some inductors (capac-

itors) are current-(voltage-)controlled while others are flux-(charge-)controlled a

state formulation is still possible, mutatis-mutandis, by defining a complete set of

state variables in an obvious way. Mixed formulations will be used to formulate

Lagrange’s equations as treated in Section 1.5.

A special subclass of networks that will often be consider in our developments is

the class of so-called topologically complete networks.6

Definition 1.5 (Topologically Completeness) A network N is said to be topolog-

ically complete if it is complete, and furthermore, if the network N can be de-

composed into two subnetworks Na and Nb, where Na contains all inductors and

current-controlled resistors, and Nb contains all capacitors and voltage-controlled

resistors (i.e., conductors).

Basically, a network is topologically complete if all current-controlled resistors are

in series with the inductors and all voltage-controlled resistors (conductors) are in

parallel with the capacitors. This means that for an autonomous network equa-

tions (1.10) take the explicit form

N :






uℓ =−Λtuc − Λrûr(Λ
T
r iℓ) −Na−

ic =Λ
T
t iℓ − ΛT

g îg(Λguc) −Nb−.
(1.16)

Observe that ΛT
r iℓ = ir and Λguc = ug , where Λr ∈ Rnr×nℓ and Λg ∈ Rnc×ng are con-

stant matrices, express how the currents and voltages in the resistors are related to

the independent dynamical variables. The matrix Λt ∈ Rnℓ×nc can be considered as

the ‘turns-ratio’ of a bank of ideal one-to-one transformers connecting the induc-

tive and capacitive elements [99]. Indeed, if we assume for a moment that there are

no resistive elements in the network, i.e., Λr = 0 and Λg = 0. Then (1.16) reduces

to

N :






uℓ + Λtuc = 0

ic − ΛT
t iℓ = 0,

(1.17)

which clearly constitutes the relationships of an ideal multiple input-output trans-

former. This agrees with the important fact that the interconnection is lossless and

power preserving. We come back to this later on.

6We have adopted the terminology used in [108]. It should be remarked that the definitions of

complete and topologically complete networks are sometimes used in an opposite manner.
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If a network is not topologically complete, we can always try to enlarge the net-

work topology by adding additional dynamic elements — in agreement with the

requirements of Definition 1.5 — such that the enlarged network is topologically

complete. Let us illustrate this idea using a simple example.

(a) (b)

(c)

⇐⇒

Es1

Es1 Es1

L1

L1 L1

L2

C1

C1

C1

ûr1
(·)

ûr1
(·)

ûr1
(·)

ûr2
(·)

ûr2
(·) ûr2

(·)

M

Fig. 1.2. Network for Example 1.1. (a) A network that is not topologically complete; (b) Subnetwork

decomposition (note that M can be considered as a two-port resistor); (c) The addition of an extra

inductor renders the network topologically complete.

Example 1.1 Consider the nonlinear RLC network depicted in Figure 1.2(a). Ob-

viously, the network is not topologically complete since the current ir1
cannot be

expressed in terms of independent dynamical variables. Suppose that we add an

additional inductor, L2, as shown in Figure 1.2(c). Then, the matrices Λr and Λt

are readily found as

Λr =





−1 0

1 1



 , Λt =





−1

1



 .

Applying Kirchhoff ’s voltage and current law yields the network equations

KVL :






0= L1

diℓ1
dt

− uc1
− ur1

0= L2

diℓ2
dt

− Es1
+ uc1

+ ur1
+ ur2

,

(1.18)
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and

KCL : 0 = C1

duc1

dt
+ iℓ1 − iℓ2 . (1.19)

Since ir1
= iℓ2 − iℓ1 and ir2

= iℓ2 , the enlarged network now is topologically complete.

However, in order to find a state formulation for the network of Figure 1.2(a). we

need to be able to eliminate the additional current iℓ2 from the above equations.

Letting L2 → 0, the second equation in (1.18) reduces to

0 = −Es1
+ uc1

+ ûr1
(iℓ2 − iℓ1) + ûr2

(iℓ2) � ĥa2
(iℓ1 , iℓ2 , uc1

).

The dynamics of the network of Figure 1.2(a) are described implicitly by a set of

differential-algebraic equations (DAE’s):

N :






diℓ1
dt
=

1

L1

(

uc1
+ ûr1

(iℓ2 − iℓ1)
)

duc1

dt
=

1

C1

(

iℓ2 − iℓ1
)

0= ĥa2
(iℓ1 , iℓ2 , uc1

).

(1.20)

If ĥa2
(iℓ1 , iℓ2 , uc1

) = 0 can be solved7 for iℓ2 such that its solution, iℓ2 = îℓ2(iℓ1 , uc1
), is

well-defined, then we arrive at an explicit set of ordinary differential equations

N :






diℓ1
dt
=

1

L1

(

uc1
+ ûr1

(

îℓ2(iℓ1 , uc1
) − iℓ1

) )

duc1

dt
=

1

C1

(

îℓ2(iℓ1 , uc1
) − iℓ1

)

.

(1.21)

1.3.4 Reciprocity, Passivity and Positivity

Reciprocity

A very important network property is the notion of reciprocity. For our purposes,

reciprocity is best defined in terms of the symmetry of the incremental parameter

matrices. Thus, a multi-port resistor (conductor) described by a C
1-function is

said to be reciprocal iff its associated incremental resistance (conductance) matrix

R(ir) � ∇ûr(ir),
(

G(ug) � ∇îg(ug)
)

(1.22)

7This can be easily checked using the implicit function theorem, which can be found in almost any

textbook on advanced calculus or mathematical analysis.
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is symmetric. Reciprocity is defined similarly for inductive and capacitive ele-

ments. Of particular interest is the condition for reciprocity of the algebraic sub-

network M of Figure 1.1. Since M consists of one-port or multi-port resistive

and/or conductive elements, M itself can be considered as a multi-port resistive

and/or conductive element. However, the condition for reciprocity of M is slightly

more involved. For ease of notation we assume that M is autonomous.

Definition 1.6 The multi-port subnetwork M described by C
1-functions ĥa(·)

and ĥb(·) is reciprocal if both the incremental mixed submatrices

Haa(·)�∇ia ĥa(ia, ub),

Hbb(·)�∇ub
ĥb(ia, ub)

(1.23)

are symmetric, and

Hab(·)�∇ub
ĥa(ia, ub),

Hba(·)�∇ia ĥb(ia, ub)

(1.24)

are skew-symmetric, i.e., Hab(·) = −HT
ba

(·), for all ia, ub ∈ Rn.

Observe that a one-port element is inherently reciprocal. Thus, the subnetwork

M is reciprocal if it contains only one-port resistors and conductors. In case M

contains multi-port elements, M is reciprocal iff the elements are reciprocal. How-

ever, if M contains a non-reciprocal element, such as a gyrator, M will in general

become non-reciprocal.

Element Passivity and Positivity

A one-port (two-terminal) resistor is passive if its current-voltage characteristic

lives in the first and third quadrants, i.e., iTr ur ≥ 0 (see also Figure 1.3), otherwise,

it is said to be active. Note that a resistor may possess regions of negative slope and

still be passive. A nonlinear resistor is said to be positive if for any two points on

the current-voltage characteristic:
(

i(1)
r − i(2)

r

)(

u(1)
r − u(2)

r

)

≥ 0.

It is strictly positive if the latter holds with strict inequality. (Note that the resistor

of Figure 1.3 is not positive.) The passivity definition can be extended to multi-

port resistors. The definition of positivity is extended merely by summing over the

terminal pairs [83]. Passivity and positivity is defined similarly for (multi-port)

conductive, inductive and capacitive elements.
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u

i

I

III

0

Fig. 1.3. Characteristic curve of a nonlinear resistor.

1.4 On the Role of State Functions

In the previous section, we have briefly discussed two different sets of state equa-

tions describing the dynamical behavior of a large class of (possibly nonlinear)

electrical networks. In the chapters that follow we will often make use of special

forms describing either one or combinations of the previously defined equations

sets (1.13) and/or (1.15). These special forms all make use of certain scalar func-

tions defined on the network’s state-space. The use of state functions in nonlinear

network analysis was originated by [17] and [70]. The most familiar examples of

such functions are the energies in connection with inductors and capacitors, which

will be defined in Subsection 1.4.2. Let us start by introducing the less known con-

cepts of content and co-content.

1.4.1 Millar’s Content and Co-Content

The concepts of content and co-content of a nonlinear resistive type of element

was first introduced in [70]. Millar’s original intention seemed to be the search for

a generalization of Maxwell’s minimum heat theorem [66] to nonlinear networks.

However, the content and co-content functions turned out to be very useful for

structural modeling, analysis and control purposes.

Definition 1.7 (Content and Co-Content) For any one-port element with charac-
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G

G

G

I

I

I

Is

Es

(a) (c)

(b) (d)

i

ii

i

u

uu

u

Fig. 1.4. Content and co-content: (a) The content G and the co-content I are equal to the areas

indicated below and above the curve, respectively; (b) Content of a DC voltage source; (c) Co-

content of a DC current source; (d) For a linear element content equals co-content.

teristic relation Γ(i, u) = û(i) − u = 0, the content G (i) is defined as

G (i) �

∫ i

û(i′)di′. (1.25)

Conversely, for any one-port element that may be characterized explicitly by the

characteristic relation Γ(i, u) = i − î(u) = 0, the co-content I (u) is defined as

I (u) �

∫ u

î(u′)du′. (1.26)

A typical geometrical interpretation of the content and co-content function of var-

ious one-port elements is depicted in Figure 1.4. Additionally, we observe that

G (i) +I (u) = iu, which shows that the content and co-content are proportional

to the power (thus, in case of a resistor, to the generated heat).
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Example 1.2 Consider a linear resistor described by ur = Rir (Ohm’s law). This

means that the content is simply half the dissipated power, i.e.,

Gr(ir) =

∫ ir

Ri′rdi′r =
1

2
Ri2

r .

Similarly, for the co-content, which in case of a linear resistor is defined by

Ir(ur) =
1

2
Gu2

r

(

G = R−1
)

.

Hence, in the linear case: Gr(ir) = Ir(ur) =
1
2
irur (see Figure 1.4 (d)).

The above definitions may be extended to multi-port elements, provided that the

element is reciprocal, i.e., the gradients of the constitutive relations are symmetric,

see Subsection 1.3.4. Reciprocity of the elements is necessary and sufficient to

ensure integrability of û(i) and î(u), and hence to have G and I , respectively, be

state functions. The content and co-content will play a central role in our future

developments.

Remark 1.2 Millar has generalized the concepts of content and co-content beyond

the realm of (reciprocal) elements that allow a functional description in terms of

û(i) or î(u). From the instantaneous current i(t) and the instantaneous voltage u(t)

of an one-port element, the generalized content G (t) is defined as

G (t) = G (0) +

∫ t

0

(

u(t′)
di(t′)

dt′

)

dt′. (1.27)

In general, G (t) depends upon the past history of the excitation and so its not a

state function — of course, for reciprocal elements it is a state function and is equal

to the content defined in (1.25). The co-content can be generalized in a similar way

[70].

1.4.2 Cherry’s Energy and Co-Energy

In the previous subsection we have seen that the dissipated power in any resis-

tive element at any instant can be divided into two parts, the content and the co-

content. In [17] it is shown that similar, yet physically quite distinct, notions arise

in connection with inductive and capacitive elements.
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Definition 1.8 (Magnetic Energy and Co-Energy) The magnetic energy, a func-

tion of flux-linkage, in a one-port inductive element is

Eℓ(pℓ) �

∫ pℓ

îℓ(p
′
ℓ)dp′

ℓ, (1.28)

and the magnetic co-energy, a function of current, is

E
∗
ℓ (iℓ) �

∫ iℓ

p̂ℓ(i
′
ℓ)di′ℓ

(

= pℓiℓ − Eℓ(pℓ)
)

. (1.29)

A typical geometrical interpretation of the energy and co-energy function of a one-

port inductive element is depicted in Figure 1.5 (a).

Eℓ

E
∗
ℓ

pℓ

iℓ

Ec

E
∗
c

uc

qc

(a) (b)

Γℓ

Γc

Fig. 1.5. Energy and co-energy: (a) Inductive element. (b) Capacitive element.

Remark 1.3 Note that the magnetic energy Eℓ(·) may derived from the instanta-

neous power associated with the inductive element, i.e.,

∫ t

0

iℓ(t
′)uℓ(t

′)dt′ =

∫ t

0

(

iℓ(t
′)

dpℓ(t
′)

dt′

)

dt′ =

∫ pℓ(t)

pℓ(0)

îℓ
(

p′
ℓ(t)

)

dp′
ℓ(t).

For the magnetic co-energy E
∗
ℓ

(·) such power association only holds if the inductor

is linear, i.e., when E
∗
ℓ

(·) = Eℓ(·).

Similarly, for a nonlinear capacitive element we have, together with its possible

generalizations, the following definition:
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Definition 1.9 (Electric Energy and Co-Energy) The electric energy, a function

of charge, in an one-port capacitive element is

Ec(qc) �

∫ qc

ûc(q
′
c)dq′

c, (1.30)

and the electric co-energy, a function of voltage, is

E
∗
c (uc) �

∫ uc

q̂c(u
′
c)du′

c

(

= qcuc − Ec(qc)
)

. (1.31)

A typical geometrical interpretation of the energy and co-energy function of an

one-port capacitive element is depicted in Figure 1.5 (b). The above definitions

of energy and co-energy may be extended to multi-port inductive and capacitive

elements (with linear or nonlinear mutual coupling), provided that the inductors

and capacitors are reciprocal. The (co-)energy functions are found simply by sum-

ming over all relevant ports (or terminal pairs) in the definitions. Hence, the total

stored (co-)energy of a network is equal to the sum of the (co-)energy stored in

each individual inductive and capacitive element.

1.5 The Lagrangian Formulation

The state functions presented in the previous section play an important role in var-

ious phases of network theory. The formulation of the network equations in terms

of scalar functions provides a compact and elegant description. Equations of this

kind are the Lagrangian and Hamiltonian formulations of the network equations,

as well as gradient type of descriptions like the Brayton-Moser equations (an exten-

sive list of references is given in the introduction of this chapter). In this section, we

briefly discuss some highlights of the Lagrangian modeling approach. We start by

considering networks consisting solely of inductors and capacitors, which are char-

acterized by either the energy or co-energy. The inclusion of resistive elements and

independent sources is accomplished using the electrical analogue of the Rayleigh

dissipation function: the content and co-content. Additionally, it is shown that a

peculiar choice of generalized coordinates leads to a special Lagrangian descrip-

tion which coincides with the Brayton-Moser equations. The (port-)Hamiltonian

formulation is treated in Section 1.6.

1.5.1 Nonlinear LC Networks

Let N be a network solely composed of nℓ one-port and/or multi-port inductors

and nc one-port and/or multi-port capacitors (LC network). Assume that the in-
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ductors are described by the constitutive relations p̂ℓj : Iℓ → Pℓj , for j = 1, . . . , nℓ,

then the total co-energy stored by the inductors in the network is determined by

E
∗
ℓ

(iℓ)=

nℓ∑

j=1

∫ iℓj
p̂ℓj (. . . , i′ℓj , . . .)di′ℓj

=

nℓ∑

j=1

E
∗
ℓj

(iℓ).

(1.32)

Differentiating the latter function with respect to the inductor currents yields

∇E
∗
ℓ (iℓ) = pℓ ⇒ ṗℓ =

dpℓ

dt
=

d

dt

(

∇E
∗
ℓ (iℓ)

)

= uℓ. (1.33)

Furthermore, assume that the capacitors are described by the constitutive relations

ûck
: Qc → Uck

, for k = 1, . . . , nc. The total electric energy stored by the capacitors

in the network is determined by

Ec(qc)=

nc∑

k=1

∫ qck

ûck
(. . . , q′

ck
, . . .)dq′

ck

=

nc∑

k=1

Eck
(qc),

(1.34)

and

∇qcEc(qc) = uc. (1.35)

Although there are no resistive and/or conductive elements, the network N can

still be represented as shown in Figure 1.1, where the subnetwork M consists solely

of a bank of ideal transformers with nℓ × nc ‘turns-ratio’ matrix Λt . For complete

networks the topological relationships are explicitly determined by (1.17), which

for ease of reference are repeated as: uℓ + Λtuc = 0 (KVL), and ic −ΛT
t iℓ = 0 (KCL).

Hence, mimicking (KVL) in terms of (1.33) and (1.35) yields

d

dt

(

∇E
∗
ℓ (iℓ)

)

+ Λt∇Ec(qc) = 0, (1.36)

which is recognized to be closely related to Lagrange’s equation for a conservative

mechanical system [1, 2]. Indeed, if we integrate (KCL) with respect to time, we

obtain (replacing ic = q̇c and iℓ = q̇ℓ) by the principle of conservation of charge

∫ t

0

(

q̇c(t
′) − ΛT

t q̇ℓ(t
′)
)

dt′ =
(

qc(t
′) − ΛT

t qℓ(t
′)
)
∣
∣
∣
∣
∣
∣

t

0

= 0,
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which, if we assume without loss of generality that the initial conditions are zero,

implies that qc = Λ
T
t qℓ. Hence, if we take the inductor ‘charges’ qℓ as the generalized

coordinates, equation (1.36) may be rewritten as

d

dt

(

∇q̇ℓL (qℓ, q̇ℓ)
)

−∇qℓL (qℓ, q̇ℓ) = 0, (1.37)

where the Lagrangian function is defined as L (qℓ, q̇ℓ) � E
∗
ℓ

(q̇ℓ) − Ec

(

ΛT
t qℓ

)

.

Example 1.3 Consider the LC network depicted in Figure 1.6. This example is also

used in [5, 63], however, for simplicity we assume that the elements are linear. The

matrix Λt is readily found using either one of the Kirchhoff laws (KVL) or (KCL),

i.e.,

Λt =





1 −1 1

0 1 0

0 1 −1

1 0 −1





. (1.38)

The Lagrangian for the network is

L (qℓ, q̇ℓ)=
1

2

4∑

j=1

Ljq̇
2
ℓj
−

1

2C1

(qℓ1 + qℓ4)2

−
1

2C2

(−qℓ1 + qℓ2 + qℓ3)2 −
1

2C3

(−qℓ3 − qℓ4)2.

Hence, Lagrange’s equations (1.37) read

N :






L1

d2qℓ1
dt2
+

1

C1

(qℓ1 + qℓ4) −
1

C2

(−qℓ1 + qℓ2 + qℓ3) = 0

L2

d2qℓ2
dt2
+

1

C2

(−qℓ1 + qℓ2 + qℓ3) = 0

L3

d2qℓ3
dt2
+

1

C2

(−qℓ1 + qℓ2 + qℓ3) −
1

C3

(−qℓ3 − qℓ4) = 0

L4

d2qℓ4
dt2
+

1

C1

(qℓ1 + qℓ4) −
1

C3

(−qℓ3 − qℓ4) = 0.

Conversely, if we assume that the capacitors are described by the constitutive

relations q̂ck
: Uc → Qck

, for k = 1, . . . , nc, then the total electric co-energy stored
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1 −1 1

0 1 0
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1 0 −1





M

⇐⇒

Fig. 1.6. Linear LC network.

by the capacitors in the network is determined by

E
∗
c (uc)=

nc∑

k=1

∫ uck

q̂ck
(. . . , u′

ck
, . . .)du′

ck

=

nc∑

k=1

E
∗
ck

(uc),

(1.39)

Differentiating the latter function with respect to the voltages yields

∇E
∗
c (uc) = qc ⇒ q̇c =

dqc

dt
=

d

dt

(

∇E
∗
c (uc)

)

= ic. (1.40)

Similarly, if we assume that the inductors are described by the constitutive relations

îℓj : Pℓ → Iℓj , for j = 1, . . . , nℓ, then the total energy stored by the inductors in the

network is determined by

Eℓ(pℓ)=

nℓ∑

j=1

∫ pℓj
îℓj (. . . , p′

ℓj
, . . .)dp′

ℓj

=

nℓ∑

j=1

Eℓj (pℓ).

(1.41)

Observe that we now have the property

∇Eℓ(pℓ) = iℓ. (1.42)

In a similar fashion as before, we try to mimic (KCL) in terms of (1.40) and (1.42),

and interpret the integral of (KVL) as some sort of ‘flux-conservation law’, i.e.,
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pℓ + Λtpc = 0, and consider the variable pc as the ‘capacitor flux’. Indeed, by defin-

ing the function L
∗(pc, ṗc) � E

∗
c (ṗc) − Eℓ(−Λtpc), we obtain

d

dt

(

∇ṗcL
∗(pc, ṗc)

)

−∇pcL
∗(pc, ṗc) = 0. (1.43)

Equations of the form (1.43) are often referred to as co-Lagrangian equations with

a Lagrangian co-function L
∗(pc, ṗc).

1.5.2 Constrained Lagrangian Equations

In a mechanical context, EL equations of the form (1.37) represent a generalized

force balance. In the electrical domain this means that the equations constitute a

voltage balance that corresponds with Kirchhoff voltage law (KVL) — Kirchhoff ’s

current law (KCL) is implicitly included in the Lagrangian. The choice of gener-

alized coordinates (inductor ‘charges’), however, seems rather artificial. Similar

arguments hold for the co-EL equations (1.43), which constitute a generalized ve-

locity balance. One way to include KCL explicitly in the EL equations (resp., KVL

in the co-EL equations) is to consider the constrained EL equations, see e.g., [105],

given by

d

dt

(

∇q̇L (q, q̇)
)

−∇qL (q, q̇) = Aλ, (1.44)

together with the constraint equation8

ATq̇ = 0, (1.45)

where A is a constant matrix of appropriate dimensions and λ denotes the Lagrange

multiplier. The constrained EL equations are accommodated for its application to

network modeling by selecting an appropriate set of generalized coordinates. For

that, we attach to each energy storage element, i.e., inductor and/or capacitor, two

state variables, namely a charge and a current [90]. Physically, it can be viewed as

if for the inductor the charge is an intermediate help variable, and for the capaci-

tor the current is. Eliminating the algebraic constraints then finally results in the

removal of the intermediate help variables. Indeed, let

q =





qℓ

qc



 , q̇ =





q̇ℓ

q̇c



 , (1.46)

8Constraints of this type fall in the class of holonomic constraints, see e.g., [105]. Thus, Kirch-

hoff ’s current and voltage law can be considered as holonomic constraints. Constraint equations

that are not integrable are called non-holonomic.
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then by substitution of A = (Λt | I)T, with I the identity matrix, into (1.44) and

solving for λ, yields the network equations (1.17), in the form

N :






L(q̇ℓ)
dq̇ℓ

dt
=−Λt ûc(qc), L(q̇ℓ) = ∇2

E
∗
ℓ (q̇ℓ),

q̇c =Λ
T
t q̇ℓ

(1.47)

For completeness, the constrained version of the co-EL equation can be ob-

tained assigning to each energy storage element both a flux and a voltage coordi-

nate. Hence, equation (1.43) is augmented with

d

dt

(

∇ṗL
∗(p, ṗ)

)

−∇pL
∗(p, ṗ) = ATλ∗, (1.48)

and the constraint equation

Aṗ = 0, (1.49)

or equivalently, replacing pc = uc and solving for λ∗,

N :






ṗℓ =−Λtuc

C(uc)
duc

dt
=ΛT

t îℓ(pℓ), C(uc) = ∇2
E

∗
c (uc).

(1.50)

1.5.3 Rayleigh Dissipation

Classically, the inclusion of mechanical dissipative elements (e.g., friction) is ac-

complished using a so-called Rayleigh dissipation function. In the electrical do-

main, resistive elements are included using a content type of function G : Rn → R

such that (1.44) is extended to

d

dt

(

∇q̇L (q, q̇)
)

−∇qL (q, q̇) = Aλ−∇q̇G (q̇), (1.51)

while (1.45) remains untouched. Regarding the network representation of Figure

1.1, we directly observe that the subnetwork M should be characterizable solely in

terms of the content function G (q̇). Since the gradient of this function constitutes

a vector of voltages, this means that all elements in M should be strictly current-

controlled and/or one-to-one. In the linear case this condition is always satisfied.

However, more often than not, this will not be the case in nonlinear networks. We

come back to such difficulties in Subsection 1.5.4. A similar discussion holds when
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we extend (1.48), which involves the inclusion of a co-content type of function

I : Rn → R, i.e.,

d

dt

(

∇ṗL
∗(p, ṗ)

)

−∇pL
∗(p, ṗ) = ATλ∗ −∇ṗI (ṗ). (1.52)

The subnetwork M should then be characterizable solely in terms of a co-Rayleigh

function, i.e., the resistors co-content, requiring that the elements in M are strictly

voltage-controlled and/or one-to-one. It should be noted that, in general, the con-

straints corresponding to KCL (KVL) should be divided between the constraint

matrix A and the (co-)content function. In other words, the derivation of the (co-

)content function may involve the use of KCL (KVL) for determining the current

(voltage) associated to a resistive/conductive branch. The remaining constraints

thus only involve currents (voltages) associated to the dynamic elements. If there

are no such constraints left: set A = 0.

Example 1.4 Consider the network depicted in Figure 1.2 (b). The network con-

tains two nonlinear current-controlled resistors characterized by the constitutive

relations urj
= ûrj

(irj
), with j = 1, 2, while the remaining elements are linear. We

start by assigning to the inductors the (intermediate) variables qℓj and q̇ℓj , for

j = 1, 2, and to the capacitor the variables qc1
and q̇c1

. The Lagrangian for the

network is determined by the sum of the co-energy in each inductor minus the

energy stored in the capacitor, i.e.,

L (qc1
, q̇ℓ1 , q̇ℓ2) =

1

2
L1q̇2

ℓ1
+

1

2
L2q̇2

ℓ2
−

1

2C1

q2
c1

. (1.53)

The currents through the resistors is completely determined by the inductor cur-

rents, hence, the content function is readily found as

G (q̇ℓ1 , q̇ℓ2) =

∫ q̇ℓ2−q̇ℓ1

ûr1
(ir1

)dir1
+

∫ q̇ℓ2 (
ûr1

(ir2
) − Es1

)

dir2
, (1.54)

while the constraint matrix is given by A = (1 −1 | 1)T and λ ∈ R. Substituting the

latter into (1.51) yields the following set of implicit differential equations

N :






L1

dq̇ℓ1
dt
= λ + ûr1

(q̇ℓ2 − q̇ℓ1)

L2

dq̇ℓ2
dt
= Es1

− λ− ûr1
(q̇ℓ2 − q̇ℓ1) − ûr2

(q̇ℓ2)

qc1

C1

= λ

0= q̇ℓ1 − q̇ℓ2 + q̇c1
.
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Eliminating the Lagrange multiplier gives

N :






L1

dq̇ℓ1
dt
=

qc1

C1

+ ûr1
(q̇ℓ2 − q̇ℓ1)

L2

dq̇ℓ2
dt
= Es1

−
qc1

C1

− ûr1
(q̇ℓ2 − q̇ℓ1) − ûr2

(q̇ℓ2)

q̇c1
= q̇ℓ2 − q̇ℓ1 ,

(1.55)

which coincides with (1.18) and (1.19).

1.5.4 Stern’s Dissipation Function

The above construction has shown that using the Lagrangian formulation, we can

concisely summarize the dynamics for a broad class of nonlinear networks in terms

of certain scalar state functions. The existence of these functions, and thus of

the associated Lagrangian formulation, depend on the type of nonlinearity of the

element. The network of Figure 1.2 (b), for example, allowed for a Lagrangian

formulation in terms of the inductive co-energy, capacitive energy and a content

function playing the role of the Rayleigh function. However, if the resistors are

strictly voltage-controlled, or the inductor is strictly flux-controlled such formula-

tion would not be possible. Most of these difficulties associated to the type of non-

linearities of the resistive elements are eliminated if both formulations (1.51) and

(1.52) could be somehow combined to one Lagrangian type of equation leading

to either state equations of the form (1.11) or (1.14) — depending on the choice

of coordinates. Indeed, in [99] it is shown that if we select as generalized veloc-

ities the set of independent inductor currents and capacitor voltages (iℓ, uc) ∈ E∗

(it will turn out that there is no need for the generalized coordinates, i.e., their

time-integrals). Assume that the inductors are current-controlled, the capacitors

are voltage-controlled, and that the subnetwork M (Figure 1.1) is reciprocal. Let

E
∗
ℓ

(iℓ) and E
∗
c (uc) denote the total stored inductive and capacitive co-energy, re-

spectively defined in (1.32) and (1.39). Furthermore, assume that there exists a

scalar function D : E∗ → R that describes the characteristic of the subnetwork M ,

i.e.,

D(iℓ, uc) =

∫ iℓ

uT
a dia −

∫ uc

iTb dub. (1.56)
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Now define the network Lagrangian as the difference between inductive and ca-

pacitive co-energy, L (iℓ, uc) � E
∗
ℓ

(iℓ) − E
∗
c (uc), and the EL equations become

N :






d

dt

(

∇iℓL (iℓ, uc)
)

=−∇iℓD(iℓ, uc)

d

dt

(

∇ucL (iℓ, uc)
)

=−∇ucD(iℓ, uc).

(1.57)

(Compare with (1.11).) Observe that all constraint equations are captured by

(1.56), in which the first term is a content type of function and the second term

is co-content type of function. In [99], the scalar function (1.56) is referred to

as the ‘hybrid dissipation’ function. However, a function of this form was origi-

nally introduced in [72] and called ‘mixed-potential’ function. Moreover, Equa-

tions (1.57) are a peculiar form of what is known as the Brayton-Moser equations

[10, 11]. This formulation will prove itself to be very instrumental for the various

developments in the chapters that follow. The explicit construction and philoso-

phy behind the Brayton-Moser equations is discussed in detail in Chapter 2.

1.6 Hamiltonian Formulation

Let N be a network solely composed of nℓ (one-port and/or multi-port) induc-

tors described by the constitutive relations îℓj : P → Ij, for j = 1, . . . , nℓ, and

nc (one-port and/or multi-port) capacitors described by the constitutive relations

ûck
: Q → Uk, for k = 1, . . . , nc. If the network is complete, the state equations in

terms of the inductor flux-linkages and capacitor charges, i.e., on the state-space

E, can explicitly be written as:

dpℓ

dt
= −Λt ûc(qc),

dqc

dt
= ΛT

t îℓ(pℓ). (1.58)

(Compare with (1.17).)

Let H : E → R represent the total energy stored in the network, that is

H (pℓ, qc)=

nℓ∑

j=1

∫ pℓj
îℓj (. . . , p′

ℓj
, . . .)dp′

ℓj

+

nc∑

k=1

∫ qck

ûck
(. . . , q′

ck
, . . .)dq′

ck

=

nℓ∑

j=1

Eℓj (pℓ) +

nc∑

k=1

Eck
(qc),

(1.59)
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or equivalently,

H (z) =

n∑

j=1

∫ zj

x̂j(. . . , z′j , . . .)dz′j , (1.60)

where z = col(pℓ, qc) ∈ E. Then, by noting that

x̂(z) = ∇H (z), (1.61)

the network equations (1.58) can compactly be expressed in terms of the energy

function as follows:

dz

dt
= J∇H (z), (1.62)

where

J �





0 −Λt

ΛT
t 0



 . (1.63)

In terms of mathematical control theory, the dynamical equations (1.62) with the

inductor flux-linkages and capacitor charges as state variables constitute a Hamil-

tonian system with Hamiltonian function defined as the sum of the inductive and

capacitive energy functions of the network, with respect to a Poisson bracket de-

fined on the manifold E by the structure matrix J, see e.g., [63]. For the above

equations to be in canonical Hamiltonian form, the number of inductors and the

number of capacitors must be equal and Λt must be the identity matrix.9 In such

case, the structure matrix J is said to be symplectic [1, 2, 73]. A set of equations of

the form (1.62), together with (1.63), is referred to as a generalized Hamiltonian

system. An interesting feature of (1.62) is that along the solutions of N

dH (z)

dt
= 0, (1.64)

which expresses that power is conserved in the network.

1.6.1 Port-Hamiltonian Systems

Recently, the notion of generalized Hamiltonian systems has been extended to the

so-called port-Hamiltonian formulation. Port-Hamiltonian systems encompass

9In [5] a method is proposed to obtain a canonical Hamiltonian formulation using particular

state transformations.
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a very large variety of physical nonlinear system models [105]. In the context of

electrical networks, the philosophy behind the construction of a port-Hamiltonian

model is that the elements in the network exchange power (and energy) among

each other and the environment through their ports. Indeed, we have already seen

in the previous subsection that the inductive and capacitive elements are intercon-

nected through a ‘bank’ of ideal one-to-one transformers. Hence, power between

the inductors and capacitors is exchanged through this interconnection and, since

the interconnection is lossless, this power is preserved in the network — see (1.64).

Suppose now that there are (possibly time-varying) independent sources present

in the network, then (1.62) can be extended as

dz

dt
= J∇H (z) + Λsφs(·), (1.65)

where the nℓ × ns matrix Λs is called the input matrix. Observe that along the

solutions of N we now have that

dH (z)

dt
=

(

∇H (z)
)T
Λsφs(·),

where the currents and the voltages associated to the independent sources — the

so-called ‘natural’ outputs — are determined by





is

us



 = Λ
T
s ∇H (z) � ys ⇒

dH (z)

dt
= iTs Es(·) + uT

s Is(·) = yT
s φs(·), (1.66)

which again expresses power conservation (available network power equals sup-

plied power). Note that the conjugated input-output pair, φs(·) and ys, can be con-

sidered as the external ports of the system to which energy can be supplied to or

extracted from. A network formulation of the form (1.65), together with outputs

ys, i.e.,

N :






dz

dt
= J∇H (z) + Λsφs(·)

ys =Λ
T
s ∇H (z)

(1.67)

is called a port-Hamiltonian (PH) system.

1.6.2 Dissipation

Based on the power port concept, additional elements, such as resistors, are easily

included terminating (some of) the external ports. Indeed, consider instead of
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Λsφs(·) in (1.67) a term

(

Λs Λr Λ
T
g

)





φs

ur

ig





= Λsφs + Λrur + Λ
T
g ig , (1.68)

and accordingly extend ys to





ys

ir

ug





=





ΛT
s

ΛT
r

Λg





∇H (z). (1.69)

Here the pairing ur, ir and ig , ug denote the power variables at the ports which are

terminated by (linear) resistive and conductive elements, i.e.,





ur

ig



 = −D̃





ir

ug



 , (1.70)

for some symmetric matrix D̃ = D̃T. Substitution of the latter leads to a port-

Hamiltonian system of the form

dz

dt
= (J − D)∇H (z) + Λsφs(·), (1.71)

where D � (Λr Λ
T
g )D̃(ΛT

r Λg)T is the resistance/conductance matrix. If the resistors

and/or conductors are passive, i.e., D = DT ≥ 0, then (1.71) is referred to as a port-

Hamiltonian system with dissipation (PHD) — compare with (1.15) and (1.17).

In the previous subsection it was shown that for the case when D = 0, the

power-balance

dH (z)

dt
= yT

s φs(·), (1.72)

with yT
s φs(·) the power supplied by the indepedent sources. For a network with

dissipation (1.71) the power-balance (1.72) extends to

dH (z)

dt
= yT

s φs(·) −
(

∇H (z)
)T

D∇H (z), (1.73)

where the second term of the right-hand equation represents the power dissipated

by the resistors and conductors.

The PHD formulation has the advantage that the network equations are ex-

pressed in terms of flux-linkages and charges which directly, and almost always,
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lead to a globally defined state equation. On the other hand, it clearly has a dis-

advantage concerning the admissible class of resistors and conductors. Although,

for sake of brevity, we only included linear resistors and/or conductors the largest

admissible class is limited to resistors and/or conductors that can be described by

a constitutive relation of the form




ur

ig



 = (Λr Λ
T
g )D̃

(

îℓ(pℓ), ûc(qc)
)

(ΛT
r Λg)T

︸����������������������������������︷︷����������������������������������︸

D(z)





iℓ

uc



 , (1.74)

whereas in general ur and ig are mixed relations: ur = ûr(iℓ, uc) and ig = îg(iℓ, uc).

Example 1.5 Consider the topologically complete network of Figure 1.2(c). The

Hamiltonian is represented by the total energy stored in the network, i.e.,

H (pℓ1 , pℓ2 , qc1
) =

1

2L1

p2
ℓ1
+

1

2L2

p2
ℓ2
+

1

2C1

q2
c1

.

Recall that the network contains two nonlinear current-controlled resistors char-

acterized by the constitutive relations urj
= ûrj

(irj
), with j = 1, 2. In order to be able

to include these relations they must be such that urj
can be decomposed as

urj
= Rj(. . . , irj

, . . .)irj
, (1.75)

for some Rj : I → R. In that case, the matrix D̃(·) takes the form

D̃(iℓ) =





R1(ir) −R1(ir) 0

−R1(ir) R1(ir) + R2(ir) 0

0 0 0





ir=Λ
T
r iℓ

,

where we subsequently use the fact that iℓ = îℓ(pℓ) to obtain the dissipation matrix

D(pℓ). Then, the PHD model for the network reads

N :










dpℓ1
dt

dpℓ2
dt

dqc1

dt





=









0 0 1

0 0 −1

−1 1 0





−





R1(pℓ) −R1(pℓ) 0

−R1(pℓ) R1(pℓ) + R2(pℓ) 0

0 0 0













∇pℓ1
H

∇pℓ2
H

∇qc1
H





+





0

1

0





Es1
.
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1.7 Retrospection

In this chapter, we have discussed several fundamental aspects of nonlinear net-

work theory. We have seen that, in general, the study of network theory is based

on four fundamental electrical variables, namely, the current, the voltage, the flux,

and the the charge. Furthermore, there are three basic network elements defined in

terms of the relationship between two of the four fundamental electric variables.

The three basic elements are the resistor (defined between current and voltage),

the inductor (defined between current and flux), and the capacitor (defined be-

tween voltage and charge). A network N made of an arbitrary interconnection of

these basic elements is called a dynamic lumped RLC network, or simply an RLC

network. Every properly modeled complete RLC network has a well-defined state

equation. Depending on the individual element characteristics such state equation

is formulated in terms of the inductor currents and capacitor voltages, the induc-

tor flux-linkages and the capacitor charges, or combinations of these variables.

A very important concept in network theory is the notion of state functions

such as content and co-content, or energy and co-energy. These functions can

be used to formulate the dynamic behavior of RLC networks in an elegant, com-

pact and convenient manner. In the last part of this chapter, we have discussed

the most well-known examples of state function based modeling concepts: the

Lagrangian and (port-)Hamiltonian (PHD) formulations. An overall picture of

the connection between the electrical variables, the network elements and the dif-

ferent (state) formulations is shown in Figure 1.7. It is clear that the Lagrangian

and co-Lagrangian formulations may be associated to the dashed lines, while the

PHD formulation may be associated to the bottom line. The remaining part of the

quadrangle (top line) may be associated to the network formulation discussed in

Subsection 1.5.4. This particular description is better known as the Brayton-Moser

equations, which are discussed in detail in the next chapter.

It is of interest to point out that in the nonlinear case the admissible types of

dissipation in the PHD framework bear a marked similarity with the definition

of the memristor as proposed in [18]. For instance, a one-port charge-controlled

memristor is an element characterized by a constitutive relation p = p̂(q). The cor-

responding relation between its port voltage and current is given by the Ohmian

relation dp/dt = ∇p̂(q)dq/dt, or u =W(q)i, where W(q) � ∇p̂(q) is called the in-

cremental memristance.10 A memristor as a physical electrical device is, to our

10A flux-controlled memristor is defined in similar way and is often referred to as a memductance

(like a voltage-controlled resistor is often denoted as a conductance).
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Fig. 1.7. Basic element quadrangle. The ‘?’ could be replaced by memristor type of dissipative

elements.

knowledge, still physically undiscovered — apart from realizing its port behavior

by operational amplifiers. On the other hand, if one considers mechanical systems,

it is easy to see that position dependent friction can be considered as memristor

type of phenomena [82]. Memristors can be useful to model various complicated

devices. However a detailed discussion is out of place here.
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Chapter 2

The Brayton-Moser Equations:

State-of-the-Art

“Black fish blue fish old fish new fish.”

Dr. Seuss (1960)

One particular source of inspiration for the progress of this thesis was the theory

expounded in [10] and [11]. For complete reciprocal nonlinear networks, Brayton

and Moser proved that it is possible to describe the network as a gradient type of

system associated to a single scalar function, called the mixed-potential function.

By means of the mixed-potential function, they also constructed several theorems

concerning the stability of the network — each with its own particular restriction

on the type of admissible nonlinearities. The first part of this chapter reviews the

construction of the mixed-potential function up to a level of generality sufficient

for the developments in the remaining part of this thesis. In the second part, some

generalizations of Brayton and Moser’s stability theorems are provided. This ex-

tended family of criteria will appear to be very useful in later chapters. The third

and final part of this chapter is devoted to the establishment and study of certain

mathematical relations between the Brayton-Moser equations and recent notion of

port-Hamiltonian systems, as briefly discussed at the end of the previous chapter.

2.1 Mixed-Potential Modeling

In the early sixties, J.K. Moser [72] developed a mathematical analysis to study the

stability of circuits containing tunnel diodes.1 His method was based on the intro-

1It should be mentioned that related ideas where already contained in [100].
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duction of a certain power-related scalar function, which was four years later gen-

eralized and coined mixed-potential by the same author, together with his compan-

ion R.K. Brayton in [10] and [11]. For the class of complete networks, Brayton and

Moser proved the existence of the mixed-potential function, while for the subclass

of topologically complete networks they gave an algorithm for its construction.2

Since then, many generalizations of the mixed-potential are given. For example, in

[99] a Lagrangian interpretation of Brayton and Moser’s equations is given, where

the mixed-potential is considered as a generalized dissipation function (see also

Subsection 1.5.4). In [30], [31] the existence of the mixed-potential for the same

classes of networks is proved and an algorithm is given for its construction in terms

of a total content and a total co-content function. In [55], [61] the mixed-potential

is derived from a variational point a view. The latter observations were proved

more rigorously a few years later in [64]. The inclusion of ideal transformers —

although this was already discussed years before in [99] — was treated in [36].

For noncomplete networks, Chua [19] explicitly constructed a mixed-potential by

using the concept of a pseudo (co-)content and pseudo hybrid content. The prob-

lem of finding the largest class of networks for which a mixed-potential can be

constructed has been discussed in [62] and [108]. Detailed discussions on the ge-

ometrical aspects of the concept of mixed-potential can be found in e.g., [6], [9],

[62], [65], and [98].

2.1.1 General Idea

Basically, the theory of Brayton and Moser is based on the following observation.

If the n-port subnetwork M in Figure 1.1 is reciprocal, and each of its branches can

(not necessarily uniquely) be determined in terms of its port voltages and currents,

then M can be characterized by a single scalar function P : Rn → R. For reciprocal

networks this function — the mixed-potential — takes the general form

P (ia, ub) =

∫ ia

ĥT
a (v, w)dv −

∫ ub

ĥT
b (v, w)dw, (2.1)

where ĥa(·) and ĥb(·) are defined in (1.7a) and (1.7b), respectively (recall that we

do not explicitly show the source vector φs(·) in case it is constant). The presence

of the minus sign in the right-hand side of the latter equation may seem a little

strange at first. Its origin stems from Definition 1.6 and can be explained as fol-

lows. Since ĥa(·) and ĥb(·) are defined in terms of mixed variables, its associated

2See Definitions 1.4 and 1.5.
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incremental matrix is not symmetric (see Subsection 1.3.4). Therefore, to define a

proper mixed-potential function for M , we need to multiply both sides of (1.7b)

by minus one and consequently replace ĥ(·) in (1.12) by

ĥ∗(·) �




ĥa(·)
−ĥb(·)



 ,

which guarantees that the gradient of ĥ∗(·) is symmetric iff M is reciprocal. Thus,

for a reciprocal network, ĥ∗(·) is integrable for all ia, ub ∈ Rn yielding the mixed-

potential function (2.1). Indeed, taking the respective gradients of (2.1), we have

by (1.10) that

M :






ua =+∇iaP (ia, ub)

ib =−∇ub
P (ia, ub).

(2.2)

2.1.2 Explicit Construction

In general, the construction of the mixed-potential requires the solution of implicit

equations. Simple procedures for its explicit construction, however, can be given

for a certain classes of networks. In particular, Brayton and Moser have shown [10]

that for topologically complete networks the mixed-potential P : E∗ → R takes the

form

P (iℓ, uc)=

∫ iℓ (

Λrûr

(

ΛT
r i′ℓ

)

+
1

2
Λtuc

)T

di′ℓ

−
∫ uc (

ΛT
g îg

(

Λgu′
c

)

−
1

2
ΛT

t iℓ

)T

du′
c,

(2.3)

where we have substituted iℓ = ia and uc = ub (recall that for topologically complete

networks, ĥa and ĥb are determined by (1.16)). Note that the mixed-potential in-

volves the construction of content and co-content functions. It can be subdivided

into a resistive content function Gr : Iℓ → R (current potential) associated to the

current-controlled resistors in Na ⊆ N , i.e.,

Gr(iℓ) =

∫ iℓ (

Λrûr

(

ΛT
r i′ℓ

))T
di′ℓ (2.4)

and a conductive co-content function Ig : Uc → R (voltage potential) associated

to the voltage-controlled resistors in Nb ⊆ N , i.e.,

Ig(uc) =

∫ uc (

ΛT
g îg

(

Λgu′
c

))T
du′

c. (2.5)
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The remaining part of the mixed-potential represents the difference between the

mixed content and co-content, respectively Gt : E∗ → R and It : E∗ → R, asso-

ciated to the bank of ideal transformers representing the interconnection between

the inductors and capacitors, i.e.,

Gt(iℓ, uc) − It(iℓ, uc)=
1

2

∫ iℓ
(

Λtuc

)T
di′ℓ −

1

2

∫ uc (

−ΛT
t iℓ

)T
du′

c

= iT
ℓ
Λtuc,

(2.6)

where, as before, Λt denotes the ‘turns-ratio’ matrix. This means that (2.3) can be

written compactly as

P (iℓ, uc) = Gr(iℓ) − Ig(uc) + iTℓΛtuc, (2.7)

while (2.2) in relation to the overall network N takes the form

N :










−L(iℓ) 0

0 C(uc)









diℓ

dt

duc

dt





=





∇iℓP (iℓ, uc)

∇ucP (iℓ, uc)




. (2.8)

The latter set of equations provide us an elegant way of expressing the dynamical

behavior of any network whose resistive portion is reciprocal — and in particular

topologically complete. A set of equations of the form (2.8) is referred to as a set

of canonical Brayton-Moser (BM) equations.

Since L(iℓ) and C(uc) are assumed to be non-singular, the state equations can be

expressed as

N :






−
diℓ

dt
= L−1(iℓ)∇iℓP (iℓ, uc)

duc

dt
=C−1(uc)∇ucP (iℓ, uc).

(2.9)

This form simplifies further in three special cases:

✦ (RL networks) If the network does not contain any capacitors, Λt = 0. Fur-

thermore, if all resistors are such that they are contained in the subnetwork

Na (i.e., are either current-controlled or one-to-one), then (2.7) reduces to

P (iℓ) = Gr(iℓ), where the resistive content Gr(iℓ) is defined in (2.4). Hence,

the network equations are

−L(iℓ)
diℓ

dt
= ∇P (iℓ). (2.10)
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✦ (RC networks) Similarly, if the network does not contain any inductors, Λt =

0, and if all resistors are such that they are contained in the subnetwork

Nb (i.e., are either voltage-controlled or one-to-one), then (2.7) reduces to

P (uc) = −Ig(uc), where the conductive co-content Ig(uc) is defined in (2.5).

Thus, the network equations are

C(uc)
duc

dt
= ∇P (uc). (2.11)

✦ (LC networks) If the resistors and conductors are absent, we have that Gr =

Ig = 0, and thus that P (iℓ, uc) = Gt(iℓ, uc) − It(iℓ, uc) = iT
ℓ
Λtuc. Obviously,

the network equations remain of the form (2.8).

Example 2.1 Consider again the topologically complete network of Figure 1.2(c).

The network contains two nonlinear current-controlled resistors characterized by

the constitutive relations urj
= ûrj

(irj
), with j = 1, 2, while the remaining elements

are linear. Hence, the mixed-potential for this network is

P (iℓ1 , iℓ2 , uc1
)=

∫ iℓ2−iℓ1

ûr1
(ir1

)dir1
+

∫ iℓ2 (
ûr2

(ir2
) − Es1

)

dir2

+(iℓ1 + iℓ2)uc1
,

(note that Ig = 0) which leads to the following set of differential equations

N :






−L1

diℓ1
dt
= ∇iℓ1

P =−uc1
− ûr1

(iℓ2 − iℓ1)

−L2

diℓ2
dt
= ∇iℓ2

P =−Es1
+ uc1

+ ûr1
(iℓ2 − iℓ1) + ûr2

(iℓ2)

C1

duc1

dt
=∇uc1

P = iℓ2 − iℓ1 ,

which coincides with (1.18) and (1.19).

Remark 2.1 Notice that the sum of the mixed content and co-content associated

with the bank of ideal transformers representing the interconnection between the

inductors and capacitors equals zero, i.e., Gt +It = 0, which expresses the fact that

the interconnection is lossless.
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Remark 2.2 We can interpret the matrix





−L(iℓ) 0

0 C(uc)



 � Q(iℓ, uc) (2.12)

as a pseudo-Riemannian metric on the state-space (iℓ, uc) ∈ E∗ [104]. Then, the

Brayton-Moser equations (2.8) represent a gradient system with respect to this

metric and with potential function (2.3). Since the incremental matrices L(iℓ) > 0

and C(uc) > 0, the metric is indefinite. If there are no capacitors present (an RL

network), or if there are no inductors present (an RC network), then the metric

can be taken positive definite.

2.2 Stability Theorems

Apart from being an elegant way of formulating the behavior of a large class of

nonlinear networks, the principal use of the concept of the mixed-potential func-

tion concerns its use in determining stability criteria for nonlinear networks. Orig-

inally, it was Moser’s [72] special interest in finding conditions under which RLC

networks containing ‘negative’ resistors such as tunnel diodes do not oscillate, and

therefore the trajectories approach the stable equilibria as time increases. For now,

let us indicate how the mixed-potential can be advantageously used by consider-

ing a network with no capacitors (RL network). In such case, the mixed-potential

reduces to P (iℓ) = Gr(iℓ), and the Brayton-Moser equations (2.8) reduce to (2.10).

Consider then the time-derivative of P (iℓ) along the trajectories of (2.10):

dP

dt
=

(

∇iℓP (iℓ)
)T diℓ

dt
= −

(

diℓ

dt

)T

L(iℓ)
diℓ

dt
. (2.13)

Since L(iℓ) is positive definite, the network is locally asymptotically stable with

Lyapunov function P (iℓ). If, in addition, the resistors are such that the resistive

content has the property Gr(iℓ) → ∞ as |iℓ| → ∞, then the network is globally

asymptotically stable.

In general, most RL networks will at least be locally asymptotically stable. Similar

conclusions can be drawn for networks with no inductors (RC networks). How-

ever, RLC networks will admit self-sustained oscillations and thus marginally sta-

ble or even unstable behavior — even in the linear case! One might expect that

oscillations can not occur if either the inductors or the capacitors are sufficiently

small. Based on the mixed-potential formulation (2.8) Brayton and Moser were
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able to proof several theorems concerning global asymptotic stability. Two of Bray-

ton and Moser’s stability theorems — Theorem 3 and 4 of [10], respectively (which

for ease of reference are stated below as Theorem 2.1 and 2.2, respectively) — give

conditions which depend on the interconnection of the circuit as given by the ma-

trix Λt but are independent of the nonlinearities in either the R, L and C elements.

Some additional requirements of Theorem 3 and 4 of [10] are that either the Hes-

sian of the current or voltage potentials should be constant and positive definite, i.e.,

either ∇2
Gr(iℓ) > 0 and constant or ∇2

Ig(uc) > 0 and constant. Roughly speaking,

this means that either all inductors should have some linear series resistance or all

capacitors should have some linear parallel conductance.

Theorem 2.1 [10] If R � ∇2
Gr(iℓ) is constant, symmetric and positive definite,

Ig(uc) + |Λtuc| → ∞ as |uc| → ∞, and there exists a δ > 0 such that3

∥
∥
∥
∥L

1
2 (iℓ)R

−1ΛtC
− 1

2 (uc)
∥
∥
∥
∥ ≤ 1 − δ, (2.14)

for all (iℓ, uc) ∈ E∗, then all trajectories of (2.8) tend to the set of equilibrium points

as t → ∞.

Theorem 2.2 [10] If G � ∇2
Ig(uc) is constant, symmetric and positive definite,

Gr(iℓ) + |ΛT
t iℓ| → ∞ as |iℓ| → ∞, and there exists a δ > 0 such that

∥
∥
∥
∥C

1
2 (uc)G

−1ΛT
t L− 1

2 (iℓ)
∥
∥
∥
∥ ≤ 1 − δ, (2.15)

for all (iℓ, uc) ∈ E∗, then all trajectories of (2.8) tend to the set of equilibrium points

as t → ∞.

On the other hand, the third theorem — Theorem 5 of [10] — does not depend

on the interconnection matrix Λt but gives conditions which depend on the non-

linearities of the resistors. However, as a dual to the two aforementioned theorems,

this theorem requires linearity of both the L and C elements. Let the eigenvalues

of a symmetric m×m matrix S(x) be denoted by the set σ(x) = {σ1(x), . . . ,σm(x)},

and let µ(S) represent the infimum of the eigenvalues of S(x) for all x, i.e.,

µ(S) = inf
j,x

{

σj(x)
}

, j = 1, . . . , m.

Theorem 2.3 [10] Under the condition that L and C are constant, symmetric and

positive definite, and

µ
(

L− 1
2 ∇2

Gr(iℓ)L
− 1

2

)

+ µ
(

C− 1
2 ∇2

Ig(uc)C
− 1

2

)

≥ δ, (2.16)

3The notation ‖ · ‖ denotes the spectral norm of a matrix.
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Table 2.1. Different assumptions for Brayton and Moser’s stability theorems; linear (LIN) and non-

linear (NL). The column marked with ‘?’ represents the ‘missing’ theorem.

Type Thm. 3 Thm. 4 Thm. 5 ?

R LIN NL NL NL

G NL LIN NL NL

L/C NL NL LIN NL

for all δ > 0 and (iℓ, uc) ∈ E∗, then all trajectories of (2.8) approach the equilibrium

solutions as t → ∞.

In summary, Table 2.2 shows the assumptions on the circuit elements regarding

the applicability of each of the three theorems above. The column marked with ‘?’

represents the ‘missing’ theorem, i.e., a generalization of the existing three theo-

rems. In the remaining of the section, a new theorem will be proved which omits

all possible linearity requirements on the network elements and thus completes

Table 2.2. For sake of brevity, Eq’s (2.8) are rewritten in the compact notation

Q(x)
dx

dt
= ∇P (x), (2.17)

where x ∈ E∗ and Q(x) is defined in (2.12).

2.2.1 Generation of Lyapunov Function Candidates

The underlying idea to proof the stability theorems 2.1, 2.2, and 2.3 (resp., 3, 4,

and 5 of [10]), is the search for an alternative pair, Q̃(x) and P̃ (x), such that (2.17)

can be written as

Q̃(x)
dx

dt
= ∇P̃ (x), (2.18)

and such that the symmetric part of Q̃(x) is negative definite, i.e.,

Q̃sym(x) �
1

2

(

Q̃(x) + Q̃T(x)
)

< 0, (2.19)

for all x.
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Lemma 2.1 [10] For any arbitrary constant λ and any constant symmetric n × n

matrix K, the pair





Q̃(x)= λQ(x) +∇2
P (x)KQ(x)

P̃ (x)= λP (x)+
1

2

(

∇P (x)
)T

K∇P (x)
(2.20)

is admissible and equivalently characterizes the dynamics (2.17).

Proof. Computing the gradient of P̃ (x) gives

∇P̃ (x) =
(

λ +∇2
P (x)K

)

∇P (x).

Since Q(x) is full-rank by assumption, such that

∇P̃ (x) = Q̃(x)Q−1(x)∇P (x), (2.21)

we conclude that (2.18) is equivalent with (2.17). Q.E.D.

(More details on the construction of the pairs (2.20) can be found in [10].) The

usefulness of Lemma 2.1 is best illustrated as follows. The proof of Theorem 2.1,

for example, consists in first selecting λ = −1 and

K =





2R−1 0

0 0



 , (2.22)

and proceeds by verification of (2.14). A simple Schur analysis shows that if (2.14)

holds, then negative definiteness of (2.19) is guaranteed. The last step involves

the application of LaSalle’s invariance theorem [10]. The proof of the other two

theorems follow in a similar way. However, the requirement that K in Lemma

2.1 should be chosen constant is precisely the reason for the several linearity as-

sumptions of the three theorems. Hence, the first step towards a generalization of

the theorems is to extend the above procedure to a non-constant K-matrix, i.e.,

K = K(x).

Lemma 2.2 For any arbitrary constant λ and any symmetric n×n matrix K(x), the

pair






Q̃(x)= λQ(x) +
1

2

(

∇
(

K(x)∇P (x)
)

+∇2
P (x)K(x)

)

Q(x)

P̃ (x)= λP (x)+
1

2

(

∇P (x)
)T

K(x)∇P (x).

(2.23)

is admissible and equivalently characterize the dynamics (2.17).
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Proof. Like the proof of Lemma 2.1, the extended characterization (2.23) simply

follows by noting that

∇P̃ (x)=

(

λI +
1

2
∇
(

K(x)∇P (x)
)

+
1

2
∇2

P (x)K(x)

)

∇P (x),

which, by using (2.21), clearly restores the original description (2.17). Q.E.D.

2.2.2 The Missing Theorem

As discussed before, the original form of Brayton and Moser’s fifth theorem (The-

orem 2.3) does not depend on the network interconnection matrix Λt , but it im-

poses the condition that the inductors and capacitors are linear. Using the theory

developed in the previous section, this linearity condition can be omitted as fol-

lows. Let

M1(x)�
1

2
∇2

Gr(iℓ) +
1

2
∇iℓ

(

L−1(iℓ)∇iℓP

)

L(iℓ)

M2(x)�
1

2
∇2

Ig(uc) −
1

2
∇uc

(

C−1(uc)∇ucP

)

C(uc),

(2.24)

and let M
sym

1 (·) and M
sym

2 (·) denote their corresponding symmetric parts. Further-

more, let us select a K-matrix and a constant λ in (2.23) as

K(x) =





L−1(iℓ) 0

0 C−1(uc)




, λ =

µ2 − µ1

2
,

where µ1 = µ
(

M̃1

)

and µ2 = µ
(

M̃2

)

represent the infima of the eigenvalues of the

matrices M̃1 � L−1/2(iℓ)M
sym

1 L−1/2(iℓ) and M̃2 � C−1/2(uc)M
sym

2 C−1/2(uc), respec-

tively. Hence, by substituting the latter into (2.23) yields





Q̃(x)=





−M1(x) −Λt

ΛT
t −M2(x)




+ λ





−L(iℓ) 0

0 C(uc)





P̃ (x)= λP +
1

2

(

∇iℓP
)T

L−1(iℓ)∇iℓP +
1

2

(

∇ucP
)T

C−1(uc)∇ucP ,

which enables us to proof the following theorem.

Theorem 2.4 Under the condition that

µ1 + µ2 ≥ δ, δ > 0, (2.25)

and P̃ (x) → ∞ as |x| → ∞, then all trajectories of (2.17) tend to the set of equi-

librium points as t → ∞.
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Proof. The proof follows along the same lines as the proof of Theorem 5 in [10],

and basically consists in evaluating the sign of

dP̃

dt
=

(

dx

dt

)T

∇P̃ (x) =

(

dx

dt

)T

Q̃(x)
dx

dt

=

(

dx

dt

)T

Q̃sym(x)
dx

dt
,

for all x, i.e., we need to show that under condition (2.25) the matrix Q̃sym(x) is

negative definite. Defining I � L1/2(diℓ)/(dt) and U � C1/2(duc)/(dt) (for sake of

brevity we omit the arguments), one can write

(

dx

dt

)T

Q̃sym(x)
dx

dt
=−IT

(

L−1/2M
sym

1 L−1/2
)

I−

UT
(

C−1/2M
sym

2 C−1/2
)

U − λ
(

ITI − UTU
)

=−ITM̃1I − UTM̃2U − λ
(

ITI − UTU
)

≤−(µ1 + λ)I
TI − (µ2 − λ)UTU

≤−
µ1 + µ2

2

(

ITI +UTU
)

< 0,

for all I, U � 0. This proves the theorem. Q.E.D.

It is directly noticed that if the inductors and capacitors are linear, the matrices in

(2.24) reduce to M1(iℓ) = ∇2
Gr(iℓ) and M2(uc) = ∇2

Ig(uc), respectively. In that

case, Theorem 2.4 reduces to Theorem 2.3 (i.e., Theorem 5 in [10]). However,

in case of nonlinear inductors and capacitors, the difference between Theorem

2.4 reduces to Theorem 2.3 are the additional terms involving the gradients of

L−1(iℓ) and C−1(uc). We also observe that in contrast to Theorem 2.3, the stability

condition of Theorem 2.4 now also depends on the topology of the network since

the interconnection matrix Λt now appears in the matrices (2.24), and thus in the

stability criterion.

Remark 2.3 So far, we have derived a new stability theorem that omits the restric-

tions imposed by the existing stability theorems originally proposed by Brayton

and Moser. The result is mainly based on the generalization of Theorem 2.3. How-

ever, the characterization of the pair (2.23) also naturally suggest to generalize The-

orem 2.1 and 2.2. This would mean that we have to select the K-matrix in Lemma
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2.2 either as

K(·) =





α
(

∇2
Gr(iℓ)

)−1
0

0 0




, (2.26)

or

K(·) =





0 0

0 β
(

∇2
Ig(uc)

)−1




, (2.27)

respectively, where α and β are arbitrary constants. As discussed before, invertibil-

ity of ∇2
Gr(iℓ) (∇2

Ig(uc)) implies that at least every inductor (capacitor) should

contain a series (parallel) resistor with a strictly convex constitutive relation. These

conditions seem more restrictive than the conditions imposed by Theorem 2.4, but

follow along the same lines.

2.3 From PHD to BM and Back

As observed in the previous sections, the mixed-potential function can be built

up from contributions of each single one- or multi-port non-energetic element

in the subnetwork M (of Figure 1.1), like the energy in the port-Hamiltonian

formulation is the sum of the energy associated to each energetic element. It is

therefore not so surprising that the Brayton-Moser (BM) equations bear a marked

similarity in structure to the port-Hamiltonian (PH, or PHD when dissipation is

included) equations discussed in Section 1.6. In view of its practical applications

related to controller design, we want to establish a connection between the two

formulations and discuss their advantages and disadvantages. The most trivial

‘duality’ is that PH systems requires the inductors and capacitors to be flux- and

charge-controlled, while the BM equation impose the restriction that these ele-

ments are controlled by the dual variables, namely currents and voltages, respec-

tively. Another duality is that the mixed-potential has the units of power, while

the Hamiltonian function has the units of energy. If the formulations are used to

design feedback controllers, the controller will consequently rely on some output

or state measurements, i.e., measurements of fluxes and charges or currents and

voltages. In a practical situation, the off-the-shelf available sensors give as output

the measurements in terms of current or voltage quantities only. In the linear case,

the relation between flux and current or charge and voltage is an easily obtained

bijective relation, but if a system contains nonlinear elements complicated state

transformations have to be included or quality degrading approximations have to
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be made. Since in general the elements may not have bijective relations, it may not

even be possible to use one the formulations.

One reason to work with PH systems is that the dynamic equations are formulated

in physical or ‘natural’ variables [63]. In case of lossless (LC) networks this can

be considered a reasonable argument. However, the inclusion of non-energetic

elements, like sources and resistors, seems not so natural in the PH framework.4

In principal, the constitutive relations of sources and resistive elements are rather

considered in terms of currents or voltages (i.e., in terms of Ohmian relations),

instead of fluxes or charges, see e.g., Section 1.3. The inclusion of such elements

seems more natural for the BM formalism. Therefore, it is of interest to study

if there exists some fundamental relation, in a mathematical sense, between both

frameworks. Indeed, as will be shown in the remaining part of this chapter, under

some reasonable assumptions such a relation exists. As a consequence, essential

and important properties of one framework can be translated to the other. For ex-

ample, the established relations enable us to translate (already available) controller

structures from one framework to the other.

Observation 1

Consider a topologically complete linear time-invariant RLC network without any

independent sources. The PHD formulation (see Section 1.6) of such network

takes the explicit form

dz

dt
=









0 −Λt

ΛT
t 0



−




R 0

0 G









︸����������������������︷︷����������������������︸

J−D

∇H (z), (2.28)

where we recall that z ∈ E is a vector containing the inductor fluxes and the capaci-

tor charges, R and G are the resistance and conductance matrices, respectively, and

the Hamiltonian H (x) represents the total stored energy, which for linear time-

invariant inductors and capacitors reduces to the quadratic function

H (z) =
1

2
zT





L 0

0 C





−1

z. (2.29)

4We also remark that, unlike voltage and current whose initial values can be measured at any

initial time t0, Eq.’s (1.2) and (1.3) show that the initial flux p0 initial charge q0 are not measurable

quantities and must therefore be prescribed a priori. For that reason, p0 and q0 have no physical

significance other than an arbitrary point of reference from which to reckon p and q.
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Suppose now that Λt , R, and G are such that J−D is full-rank , then we may rewrite

(2.28) as

(J − D)−1 dz

dt
= ∇H (z). (2.30)

Furthermore, let Q′
� J − D. Hence, we actually have two possible pairs,

{

Q′, H
}

and
{

(Q′)−1, H
}

, describing the same network dynamics. Inspired by the ideas pre-

sented in Section 2.2.1, the question arises if there exists more pairs, say
{

Q′′, H ′},

such that the network dynamics can be written as

Q′′ dz

dt
= ∇H

′(z). (2.31)

By Lemma 2.1, such pairs exist under the condition that Q′′Q′∇H (z) ≡ ∇H
′(z)

for all z. Now, the key observation is that there is a choice for λ and K in (2.20)

such that (2.31) shapes to a set of BM equations. Indeed, if we set λ = 0 and select

K =





R Λt

ΛT
t −G



, (2.32)

we observe that (2.31) becomes




−L 0

0 C





−1

︸������︷︷������︸

Q′′

dz

dt
= ∇H

′(z), (2.33)

where the ‘new’ Hamiltonian H
′(z) takes the form

H
′(z)=

1

2
pT
ℓ L

−1RL−1pℓ
︸�����������︷︷�����������︸

Gr

−
1

2
qT

c C−1GC−1qc

︸������������︷︷������������︸

Ig

+ pT
ℓ
L−1ΛtC

−1qc

︸����������︷︷����������︸

Gt−It

.
(2.34)

First, we directly notice that Q′′ corresponds to (2.12) in the sense that Q′′
= Q−1.

Second, since L−1pℓ = iℓ and C−1qc = uc, we recognize in (2.34) the content and

co-content terms (2.4), (2.5), and (2.6). Moreover, the ‘new’ Hamiltonian H
′(z)

precisely coincides with (2.7) for linear resistors and conductors — with the ex-

ception of pℓ and qc.

Remark 2.4 Obviously, the above observation also holds for nonlinear networks.

In such case, one might need to apply Lemma 2.2, and select a state-dependent K-

matrix, i.e., K = K(z). The main restriction, for both linear or nonlinear networks,

is the full rank condition of the J − D matrix. However, if J − D is rank deficient

then the network has equilibria at points which are not extrema of the total stored

energy. For that reason, the full rank condition seems not restrictive in physical

applications.
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Observation 2

Consider the BM equations (2.17). Since Q(x) is non-singular for all x, we may

rewrite (2.17) as

dx

dt
= Q−1(x)∇P (x), (2.35)

which directly reveals a marked similarity with the PHD equations (1.71). How-

ever, before we may refer to (2.35) as a PHD type of system, we first need to de-

compose Q−1(x) into a skew-symmetric and a symmetric matrix which play a role

similar to that of the structure matrix J and the dissipation matrix D in the PHD

framework. Such decomposition is defined by

Q−1(x) � J ′(x) − D′(x) :






J ′(x)�
1

2
Q−1(x) −

1

2
Q−T(x)

D′(x)�−
1

2
Q−1(x) −

1

2
Q−T(x).

(2.36)

Hence, Eq. (2.35) extends to

dx

dt
=

(

J ′(x) − D′(x)
)

∇P (x). (2.37)

However, the ‘structure’ matrix J ′(x) equals zero since Q−1(x) is symmetric, while

the ‘dissipation’ matrix D′(x) is in general indefinite.

As we have seen in Section 2.2, we can, using Lemma 2.1, always try to search

for another pair
{

Q̃, P̃
}

such that (2.35) can equivalently be described as

dx

dt
= Q̃−1(x)∇P̃ (x), (2.38)

and such that Q̃−1(x) can be decomposed into a (non-zero) skew-symmetric matrix

and a (positive semi-definite) symmetric matrix as discussed above. Suppose, for

example, that the voltage-controlled resistors (i.e., the conductors) are linear and

G is full-rank, and select in Lemma 2.1 λ = 1, and

K =





0 0

0 2G−1



 ,

then

Q̃(x) =





−L(iℓ) 2ΛtG
−1C(uc)

0 −C(uc)



 . (2.39)
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As before, let Q̃−1(x) � J̃ ′(x) − D̃′(x). Hence, the network dynamics can be written

in the form

dx

dt
=

(

J̃ ′(x) − D̃′(x)
)

∇P̃ (x). (2.40)

Notice that (2.40) is ‘dissipative’ if and only if D̃′(x) ≥ 0, which clearly holds true

if the constitutive relations of the network elements are such that Theorem 2.2

is satisfied. In such case, Eq.’s (2.40) constitute a port-Hamiltonian system with

dissipation (PHD).

Remark 2.5 Since the criteria of Theorem 2.2 determine wether the PHD system

(2.40) is ‘dissipative’ or not, we may associate a dissipativity interpretation with

the stability condition (2.15). Similar interpretations hold for the conditions of

Theorem 2.1 and Theorem 2.3 (as well as Theorem 2.4). See [6], for material

closely related with these observations. A dissipativity interpretation of Theorem

2.3 will be of particular interest in Chapter 4.

2.4 Retrospection

In the first part of this chapter, we briefly reviewed the main ideas behind the con-

cept of the mixed-potential function introduced by Brayton and Moser in the early

sixties. The second part of this chapter is concerned with the extension of the sta-

bility criteria introduced in [10] to a broader class of networks. The key to this

result is the generalization of the pair in Lemma 2.1 to the set of pairs in Lemma

2.2. The same lemmata have proven to be useful to establish certain relations, in

a mathematical sense, between the Brayton-Moser (BM) equations (‘old fish’) and

the port-Hamiltonian (PHD) equations (‘new fish’), as is shown in the third and

final part of this chapter. Lemma 2.1 and 2.2 will be of main importance to estab-

lish many of our results in the remaining of this thesis. For example, the relation-

ship between the BM and PHD formulations, as outlined for linear time-invariant

networks in the previous section, will be particulary useful in Chapter 4 and 7.

Furthermore, the idea of writing the PHD equations (2.28) in the non-standard

form (2.30) is used in Chapter 7 and 8.
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Chapter 3

A Novel Passivity Property of RLC

Networks: Synthesis and Applications to

Stabilization

Arbitrary interconnections of passive (possibly nonlinear) resistors, inductors and

capacitors define passive systems, with as power port variables the external sources

voltages and currents, and as storage function the total stored energy. In this chap-

ter, we identify a class of nonlinear RLC networks for which it is possible to ‘add

a differentiation’ to the port terminals preserving passivity — with a new stor-

age function that is directly related to the network power. For linear networks

the new passivity property is characterized in terms of an order relation between

the average stored magnetic and electric energy. The results are of interest in net-

works theory, but also has applications in control as it suggests the paradigm of

Power-Shaping stabilization as an alternative to the well-known method of Energy-

Shaping. Furthermore, in contrast with Energy-Shaping designs, Power-Shaping

is not restricted to systems without pervasive dissipation and naturally allows to

add ‘derivative’ actions in the control. These important features, that stymie the

applicability of Energy-Shaping control, make Power-Shaping very practically ap-

pealing. To establish our results we exploit the geometric property that voltages

and currents in RLC networks live in orthogonal spaces, i.e., Tellegen’s theorem,

and heavily rely on Brayton and Moser’s theorems as presented in the preceding

chapter.
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3.1 Introduction

Passivity is a fundamental property of dynamical systems that constitutes a cor-

nerstone for many major developments in network and systems theory, see e.g.

[33, 105] and the references therein. It is well-known that (possibly nonlinear)

RLC networks consisting of arbitrary interconnections of passive resistors, induc-

tors, capacitors and voltage and/or current sources define passive systems with as

conjugated port variables the external source voltages and currents, and as storage

function the total stored energy [26]. This property was exploited by Youla [115],

who proved that terminating the port variables of a passive RLC network with a

passive resistor would ensure that ‘finite energy inputs will be mapped into finite

energy outputs’, what in modern parlance says that injecting damping to a pas-

sive system ensures L2-stability. Passivity can also be used to stabilize a non-zero

equilibrium point, but in this case we must modify the storage function to assign a

minimum at this point. If the storage function is the total stored energy this step is

referred to as Energy-Shaping, which combined with damping injection constitute

the two main stages of Passivity-Based Control (PBC) [79].

As explained in [77, 105], there are several ways to achieve Energy-Shaping, the

most physically appealing being the so-called Energy-Balancing PBC (or control

by interconnection) method. With this procedure the storage function assigned to

the closed-loop passive map is the difference between the total energy of the system

and the energy supplied by the controller, hence the name Energy-Balancing. Un-

fortunately, Energy-Balancing PBC is stymied by the presence of pervasive dissipa-

tion, that is, the existence of resistive elements whose power does not vanish at the

desired equilibrium point [81]. Another practical drawback of Energy-Balancing

control is the limited ability to ‘speed up’ the transient response. Indeed, as tuning

in this kind of controllers is essentially restricted to the damping injection gain, the

transients may turn out to be somehow sluggish, and the overall performance level

below par (see [85] for some representative examples).

The main contribution of this chapter is the proof that for all RL or RC net-

works1, and a class of RLC networks it is possible to ‘add a differentiation’ to one

of the port variables (either voltage or current) preserving passivity, with a storage

function that is directly related to the network power. Since the supply rate (the

product of the passive conjugated port variables) of the standard passivity prop-

erty, as defined in e.g. [33, 105], is voltage × current, it is widely known that the

1It should be mentioned that the result for RL and RC networks was already presented in [78].

This brief note formed the basis for the developments in the present chapter.
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differential form of the corresponding energy-balance establishes the active power-

balance of the network. Since the new supply rate is voltage × the time-derivative

of the current (or current × the time-derivative of the voltage) — quantities which

are sometimes adopted as suitable definitions of the supplied reactive power — our

result unveils some sort of reactive power-balance. The new passivity property,

which is by itself of interest in network theory, has two key features that makes

it attractive for control design as well. First, the storage function is not the total

energy, but a function directly related with the power in the network. Second, the

utilization of power (instead of energy) storage functions immediately suggests

the paradigm of Power-Shaping stabilization as an alternative to the method of

Energy-Balancing control. It will be shown that, in contrast with Energy-Balancing

designs, Power-Shaping is applicable also to systems with pervasive dissipation.

The only restriction for stabilization is the degree of (under-)actuation of the net-

work. Further, establishing passivity with respect to ‘differentiated’ port variables

allows the direct incorporation of (approximate) derivative actions, whose predic-

tive nature can speed-up the transient response.

The chapter is organized as follows. In Section 3.2, we briefly review some fun-

damental results in networks theory, like the classical definition of passivity and

Tellegen’s Theorem. The new passivity property for RL and RC networks is es-

tablished in Section 3.3. In Section 3.4, this result is extended to the class of RLC

networks with convex energy functions and weak electromagnetic coupling using

the classical Brayton-Moser equations. In Section 3.5, it will be shown that in case

of a linear network the characterization of the new passivity property has a clear

interpretation in terms of the phase of the driving point impedance, and an order

relationship between the average electric and magnetic energy stored in the net-

work. Finally, in Section 3.6, we present the Power-Shaping stabilization method.

3.2 Tellegen’s Theorem and Passivity

Consider an arbitrary (possibly nonlinear) RLC network which is driven by ns

independent (possibly time-varying) voltage and/or current sources. Let us pull

out all the independent sources as shown in Figure 3.1 and denote the remain-

ing network by N . In a similar fashion as before, let iγ ∈ Iγ and uγ ∈ Uγ, with

γ ∈
{

r, g, ℓ, c
}

, denote the vectors of branch currents and voltages associated to the

network elements, respectively. Recall that we may distinguish between two sets of

resistors: current-controlled resistors and voltage-controlled resistors, for which

the associated currents and voltages are denoted by the subscript ‘r’ and ‘g’, respec-
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tively. Linear or one-to-one resistors belong to either one of the two sets. In the

this setting, Tellegen’s theorem [83] leads to the observation that

iTs us =

∑

γ

iTγuγ, (3.1)

where we have adopted the standard sign convention for the (instantaneous) sup-

plied power iTs us. Thus, at each instant of time the power that enters the network

through its ports gets distributed among the elements of the network, so that none

is lost [83]. Consequently, equality (3.1) implies that

N

us1 is1

usk

isk

Fig. 3.1. Nonlinear RLC network with

external power ports.

uT
s

dis

dt
=

∑

γ

uT
γ

diγ

dt
, (3.2a)

as well as

iTs
dus

dt
=

∑

γ

iTγ
duγ

dt
. (3.2b)

Another immediate consequence of Tellegen’s

theorem is the following, slight variation of the

classical result in network theory, see e.g., Sec-

tion 19.3.3 of [26], whose proof is provided for

the sake of completeness.

Proposition 3.1 A network N consisting of arbitrary interconnections of induc-

tors and capacitors with passive resistors verify the energy-balance inequality

E
(

pℓ(t1), qc(t1)
)

− E
(

pℓ(t0), qc(t0)
)

≤
∫ t1

t0

iTs (t)us(t)dt, (3.3)

for all t1 ≥ t0, where E (pℓ, qc) = Eℓ(pℓ) + Ec(qc) represents the total stored energy

in the network. If, furthermore, the inductors and capacitors are also passive, then

N is passive with respect to the supply rate iTs (·)us(·) and storage function the total

stored energy.

Proof. First, notice that the time-derivative of the total stored energy equals

dE (pℓ, qc)

dt
= iTℓuℓ + iTc uc,
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where we have used the relations iℓ = ∇Eℓ(pℓ) and uc = ∇Ec(qc), together with

uℓ = dpℓ/dt and ic = dqc/dt. Then, by (3.1), we have that

dE (pℓ, qc)

dt
= iTs us −

(

iTr ur + iTg ug

)

. (3.4)

Hence, since for passive resistors the dissipated power iTr ur+ iTg ug ≥ 0, and integrat-

ing (3.4) over the interval [t0, t1], we obtain (3.3). The passivity statement follows

from non-negativity of the total stored energy E (pℓ, qc) for passive inductors and

capacitors. Q.E.D.

In other words, for passive networks the total stored energy is just a non-negative2

function which increases along the trajectories more slowly than the rate at which

energy is supplied through the external ports (or decreases more rapidly than the

rate at which energy is extracted from the ports).

3.3 A New Passivity Property for RL and RC Networks

In the remaining of this chapter, our aim is to consider passivity from a differ-

ent perspective using the networks power flow instead of the total stored energy.

To illustrate the basic idea of the new passivity properties, we first consider net-

works consisting solely of inductors, resistors and independent sources, i.e., RL

networks N(C=�), and networks consisting solely of capacitors, resistors and inde-

pendent sources, i.e., RC networks N(L=�). The results will be generalized to a class

of RLC networks in the following sections. For ease of reference, let us recall some

additional definitions and concepts which will be instrumental to formulate our

results. Recall from Chapter 1, Definition 1.7, that to a set of reciprocal (one- or

multi-port) nonlinear current-controlled resistors (this includes linear or one-to-

one resistors as special cases) we may associate a scalar function Gr : Ir → R, called

the resistor’s content. Similarly, for a set of voltage-controlled resistors we may

associate a scalar function Ig : Ug → R, called the resistor’s co-content.

Proposition 3.2 Arbitrary interconnections of passive inductors for which the en-

ergy storage can be expressed by a convex function, resistors, and independent

sources, verify the inequality

Gr

(

ir(t1)
)

− Gr

(

ir(to)
)

≤
∫ t1

to

uT
s (t)

dis(t)

dt
dt, (3.5a)

2We could equally well require only that E (·) is bounded from below.
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for all t1 ≥ t0. If the resistors are passive, then N(C=�) is passive with respect to the

supply rate uT
s dis/dt and storage function the total resistors content.

Similarly, arbitrary interconnections of passive capacitors with convex energy

function, conductors and independent sources, verify the inequality

Ig

(

ug(t1)
)

− Ig

(

ug(to)
)

≤
∫ t1

to

iTs (t)
dus(t)

dt
dt, (3.5b)

for all t1 ≥ t0. If the conductors are passive, then N(L=�) is passive with respect to

the supply rate iTs dus/dt and storage function the total conductors co-content.

Proof. The proof of the new passivity property for RL networks is established as

follows. First, differentiate the resistors content with respect to time:

dGr(ir)

dt
= uT

r

dir

dt
. (3.6)

Then, by using the fact that diℓ/dt = ∇2
Eℓ(pℓ)dpℓ/dt, and uℓ = dpℓ/dt, we obtain

uT
ℓ

diℓ

dt
= uT

ℓ

(

∇2
Eℓ(pℓ)

∣
∣
∣
∣
pℓ=p̂ℓ(iℓ)

)

uℓ ≥ 0, (3.7)

where non-negativeness stems from the convexity assumption of the inductors en-

ergy function. Finally, by substitution of (3.6) and (3.7) into (3.2a), with γ = {r, ℓ},

and integrating over the interval [t0, t1] yields the result.

The proof for RC networks follows verbatim, but now invoking (3.2b) instead

of (3.2a), with γ = {g, c}, as well as the relation ic = dqc/dt,

iTc
duc

dt
= iTc

(

∇2
Ec(qc)

∣
∣
∣
∣
qc=q̂c(uc)

)

ic ≥ 0,

and the co-content. Q.E.D.

Remark 3.1 The new passivity properties of Proposition 3.2 differ from the stan-

dard result of Proposition 3.1 in the following respects. First, while passivity in

the classical sense is defined with respect to the total stored energy, the new passiv-

ity properties are established using the resistors content or co-content functions.

Recall that these functions are proportional to the heat generated in the network,

and thus to the dissipated power (in the linear case content and co-content equal

half the dissipated power, see Section 1.4), we may consider (3.5a) and (3.5b) as

power-balance inequalities. Second, while Proposition 3.1 holds for general RLC

networks, the new properties are valid only for RL or RC systems. Using the fact
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that passivity is invariant with respect to negative feedback interconnections it is,

of course, possible to combine RL and RC networks and establish the new passiv-

ity property for some RLC networks. A class of RLC networks for which a similar

property as in Proposition 3.2 holds will be identified in Section 3.4. Third, the

condition of convexity of the energy functions required for Proposition 3.2 is suf-

ficient, but not necessary for passivity of the dynamic L and C elements. Hence,

the class of admissible dynamic elements is more restrictive than in the classical

case of Proposition 3.1.

3.4 Passivity of Brayton-Moser Networks

The previous developments show that, using the
Na

Nb

is1

isk

Fig. 3.2. Topologically complete

RLC network driven by independent

voltage sources.

resistors content and co-content as ‘storage’ func-

tions, we can identify new passivity properties of

nonlinear RL and RC networks yielding alterna-

tive supply rates containing time-derivatives on

either the source currents or source voltages. In

this section, we will establish similar properties

for a large class of RLC networks that can be de-

scribed by the Brayton-Moser equations. For this

purpose, we strongly rely on some fundamental

results reported in [10]. We confine ourselves to

topologically complete RLC networks.3 Furthermore, for simplicity we only al-

low for a total of ns independent voltage sources, denoted by Es, in series with the

inductors, see Figure 3.2.

3.4.1 Framework

The networks belonging to the class of RLC networks under consideration are gov-

erned by the Brayton-Moser equations

Q(x)
dx

dt
= ∇P (x), (3.8)

where x contains the inductor currents and capacitor voltages, Q(x) is a matrix of

the form (2.12), and P (x) represents the mixed-potential function (see Chapter

2 for details). In order to be able to distinguish between the network’s internal

and external behavior, we need to extract the voltage sources and subdivide P into

3Recall from Chapter 1 that a topologically complete RLC network can be split into two subnet-

works, Na and Nb, such that Na contains all the inductors and current-controlled resistors, and such

that Nb contains all capacitors and voltage-controlled resistors.
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two parts: internal mixed-potential Po and an interaction potential Ps.
4 Since the

power supplied to the network of Figure 3.2 equals iTs Es, we have that

Ps(x) � iTs Es

∣
∣
∣
∣
is=Λ

T
s x

,

where

Λs =





Λ′s

0



 ,

with Λ′s some nℓ×ns matrix having the entries +1, 0, or −1. Hence, we may rewrite

the Brayton-Moser equations (3.8) as

Q(x)
dx

dt
= ∇

(

Po(x) − Ps(x)
)

. (3.9)

3.4.2 Generation of New Storage Function Candidates

Let us next consider how the equations (3.9) can be used to generate power-like

storage functions for RLC networks. Suppose we take the time-derivative of the

internal mixed-potential Po(x) along the trajectories of (3.9), i.e.,

dPo(x)

dt
= (dx/dt)T∇Po(x)

= (dx/dt)TQ(x)dx/dt + (dx/dt)T∇Ps(x),
(3.10)

or equivalently

dPo(x)

dt
= (dx/dt)TQ(x)dx/dt + (dx/dt)TΛsEs. (3.11)

That is, dPo(x)/dt consists of the sum of a term which is quadratic in dx/dt plus

the inner product of the power port variables associated with the external voltage

sources in the desired form: (dx/dt)TΛsEs = (diℓ/dt)TΛ′sEs = (dis/dt)TEs (compare

with the left-hand side of (3.5a) of Proposition 3.2). Unfortunately, even under the

reasonable assumption that the inductor and capacitor have convex energy func-

tions, the presence of the negative sign in the first main diagonal block of Q(x)

makes the quadratic form (dx/dt)TQ(x)dx/dt sign-indefinite, and not negative

(semi-)definite as desired. Hence, we cannot establish a power-balance inequal-

ity from (3.11). Moreover, to obtain a passivity property similar to Proposition

4This terminology is adopted from [73], where it is used for affine Hamiltonian control systems.
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3.2, an additional difficulty stems from the fact that the internal mixed-potential

Po(x) is also not sign-definite.

To overcome these difficulties, we invoke Lemma 2.1 and look for other suitable

pairs, Q̃(x) and P̃o(x), which we call ‘admissible’, that preserve the form of (3.9).

More precisely, similar to the proofs of the stability theorems in Chapter 2, we want

to find matrix functions Q̃(x) of appropriate dimension, verifying

1

2

(

Q̃(x) + Q̃T(x)
)

≤ 0, (3.12)

and scalar functions P̃o : E∗ → R (if possible, positive semi-definite), such that the

network dynamics (3.9) can be rewritten as

Q̃(x)
dx

dt
= ∇P̃o(x) − ΛsEs. (3.13)

Hence, if the symmetric part of Q̃(x) is negative semi-definite, i.e., if (3.12) is sat-

isfied and thus (dx/dt)TQ(x)dx/dt ≤ 0, we may state that

dP̃o(x)

dt
≤ ET

s (dis/dt), (3.14)

from which we could establish a power-balance inequality with a similar supply

rate as in Proposition 3.2. Furthermore, if P̃o(x) is positive semi-definite we are

able to establish the required passivity property.

Remark 3.2 Since Po(x) has the units of power and P̃o(x) = λPo(x) + ‘a quadratic

term in the gradient of Po(x)’, the new mixed-potential P̃o(x) also has the units

of power. However, to ensure that the solution of the differential equation (3.13)

precisely coincides with the solution of (3.9), we need to select λ and K in Lemma

2.1 such that Q̃(x) is full-rank in order to verify

Q−1(x)
(

∇Po(x) − ΛsEs

)

≡ Q̃−1(x)
(

∇P̃o(x) − ΛsEs

)

.

Observe that in order to preserve the port variables (Es, dis/dt), an extra require-

ment is that we must ensure Q−1(x)ΛsEs coincides with Q̃−1(x)ΛsEs. This naturally

restricts the freedom in the choices for λ and K in Lemma 2.1.

Remark 3.3 Some simple calculations show that a non-singular change of coordi-

nates z = Φ(x), with Φ : E∗ → Rn, does not change the sign of Q.
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3.4.3 Power-Balance Inequality and the New Passivity Property

The main result can be stated as follows:

Theorem 3.1 Consider a topologically complete RLC network N satisfying (3.9).

Assume that:

A.1. The inductors and capacitors are passive and have strictly convex energy

functions.

A.2. The (voltage-controlled) resistors in Nb are passive and constant, with co-

content function

Ig(uc) =
1

2
uT

c Guc > 0,

for all uc � 0, where G denotes the conductance matrix and |G| � 0.

A.3. Uniformly in x, we have
∥
∥
∥C1/2(uc)G

−1ΛT
t L−1/2(iℓ)

∥
∥
∥ < 1, where ‖ · ‖ denotes

the spectral norm of a matrix.

Under these conditions, we have the following power-balance inequality

P̃o

(

x(t1)
)

− P̃o

(

x(t0)
)

≤
∫ t1

t0

ET
s (·)

dis(t)

dt
dt, (3.15)

for all t1 ≥ t0, where dis/dt = ΛT
s dx/dt and

P̃o(x)=Gr(iℓ) +
1

2
iTℓΛtG

−1ΛT
t iℓ

+
1

2

(

ΛT
t iℓ − Guc

)T
G−1(ΛT

t iℓ − Guc

)

.

(3.16)

If, furthermore

A.4. The (current-controlled) resistors in Na are passive, i.e., Gr(iℓ) ≥ 0.

Then, the network N defines a passive system with as supply rate ET
s dis/dt and as

storage function (3.16).

Proof. The proof consists in selecting λ and K in Lemma 2.1 such that, under

the conditions A.1–A.4, the resulting Q̃(x) satisfies (3.12) and P̃o(x) is a positive
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semi-definite function. Let λ = 1 and K = diag(0, 2G−1), then, by invoking (2.20),

we obtain

Q̃(x) =





−L(iℓ) 2ΛtG
−1C(uc)

0 −C(uc)




.

Observe that with this choice Q−1(x)ΛsEs = Q̃−1(x)ΛsEs. Furthermore, Assump-

tion A.1 ensures that the incremental inductance matrix L(iℓ) and the capacitance

matrices C(uc) are both positive definite. Hence, like in Section 2.2, a Schur com-

plement analysis [35] proves that, under Assumption A.3, the inequality (3.15)

holds. This proves the power-balance inequality. Passivity follows from the fact

that, under Assumption A.2 and A.4, the mixed-potential function P̃o(x) is posi-

tive semi-definite for all x. Q.E.D.

We have treated here only networks that are driven by independent voltage

sources. Some lengthy, but straightforward, calculations suggest that networks

driven by a set of independent current sources, denoted as Is, can be treated anal-

ogously using an alternative definition of the mixed-potential. Indeed, suppose

that

Ps(x) � uT
s Is

∣
∣
∣
∣
us=Λ

T
s x

,

where now

Λs =





0

Λ′′s



 ,

with Λ′′s some nc × ns matrix having the entries +1, 0, or −1. Hence, the network

equations satisfy (3.8), or equivalently

Q̃(x)
dx

dt
= ∇P̃o(x) − ΛsIs. (3.17)

Since the construction of the new passivity property follows verbatim along the

lines of the present section, we state without proof:

Theorem 3.2 Consider a topologically complete RLC network N , with passive

inductors and capacitors having a strictly convex energy function, satisfying (3.17).

Furthermore, assume that:
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A.2’. The (current-controlled) resistors in Na are passive and constant, with con-

tent function

Gr(iℓ) =
1

2
iTℓRiℓ > 0,

for all iℓ � 0, where R denotes the resistance matrix and |R| � 0.

A.3’. Uniformly in x, we have
∥
∥
∥L1/2(iℓ)R

−1ΛtC
−1/2(uc)

∥
∥
∥ < 1.

Under these conditions, we have the following power-balance inequality

P̃o

(

x(t1)
)

− P̃o

(

x(t0)
)

≤
∫ t1

t0

IT
s (·)

dus(t)

dt
dt, (3.18)

for all t1 ≥ t0. where dus/dt = ΛT
s dx/dt and

P̃o(x)=Ig(uc) +
1

2
uT

c Λ
T
t R−1Λtuc

+
1

2

(

Λtuc − Riℓ
)T

R−1(Λtuc − Riℓ
)

.

(3.19)

If, furthermore

A.4’. The (voltage-controlled) resistors in Nb are passive, i.e., Ig(uc) ≥ 0.

Then, the network N defines a passive system with supply rate IT
s dus/dt and stor-

age function (3.19).

Remark 3.4 Assumption A.3 (A.3’) is satisfied if the conductances G (resistances

R) in Nb (Na) are ‘small’. This means that the electromagnetic coupling between

the subnetworks Na and Nb, that is, the coupling between the inductors and ca-

pacitors, is sufficiently weak — with the capacitors (inductors) ‘short-circuited’

(‘disconnected’) in the limiting case G → ∞ (R → 0). Moreover, as will be shown

in the following section, weak electromagnetic coupling could also be interpreted

as an order relationship between the magnetic and electric energies.

Remark 3.5 Assumptions A.2 and A.2’ guarantee the existence of a proper con-

stant K-matrix in Lemma 2.1. However, these assumptions can be relaxed by in-

voking 2.2, which allows for a nonconstant K-matrix. Notice that such choices

lead to matrices of the form (2.27) and (2.26), respectively.
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Remark 3.6 Observe that if the network does not contain any capacitors, the stor-

age power function (3.16) reduces to the resistors content. Similarly, if the network

does not contain any inductors, the storage power function (3.19) reduces to the

conductors co-content. Consequently, the properties of Theorem 3.1 and Theo-

rem 3.2 coincide with the respective properties of Proposition 3.2.

Example 3.1 Consider the RLC network depicted in Figure 3.3. For simplicity,

assume that all the network elements are linear and time-invariant, except for the

resistor R1 whose constitutive relation is given by ur1
= ûr1

(ir1
). The internal mixed-

potential for the network is readily found as

Po(iℓ, uc) =

∫ iℓ

0

ûr1
(ir1

)dir1
−

1

2R2

u2
c + iℓuc.

Clearly, since L, C, and R2 (= G−1) are linear, the conditions in A.1 and A.2 of

Theorem 3.1 are satisfied. Selecting λ = 1 and K = diag(0, 2R2) yields

Q̃ =





−L 2R2C

0 −C




,

which by A.3 is negative definite if and only if

R2 <

√

L

C
. (3.20)

Furthermore, if R1 is also passive:

P̃0(iℓ, uc) =

∫ iℓ

0

ûr1
(ir1

)dir1
+

1

2
R2

(

iℓ −
uc

R2

)2

+
1

2
R2i2
ℓ ≥ 0,

for all iℓ, uc. Hence, if (3.20) is satisfied, then the network defines a passive system

with respect to the supply rate Esdis/dt and storage function P̃o(iℓ, uc).

3.5 Linear Time-Invariant RLC Networks

The previous sections have shown that there exists a class of nonlinear RLC net-

works, with convex energy functions and weak electromagnetic coupling, where it

is possible to ‘add a differentiation’ to the external port variables preserving pas-

sivity. In this section, we focus our attention on linear time-invariant (LTI) RLC
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ûr1
(·)

R2Es

is

C

L

Fig. 3.3. Nonlinear RLC Network.

networks. It will be shown that the class of LTI RLC networks that admit a dif-

ferentiation to its external port variables — preserving passivity — allow a clear

interpretation in terms of the phase of the network’s driving-point impedance. A

rather complete characterization of this class is presented in terms of an order re-

lationship between the average electric and magnetic energy stored in the network.

For sake of clarity, the driving-point impedance analysis is carried out first for one-

port networks, that is, networks excited by either an independent voltage source or

an independent current source. The multi-port version is deferred to Remark 3.7.

The energy characterization, however, is presented exclusively for one-port net-

works.

3.5.1 Preliminaries: Frequency Response Analysis

Consider a network N with linear passive resistors, inductors, and capacitors. Let

the network be driven by only one sinusoidal source in the first branch. Let the

source voltage be represented by u1 = us and let the source current in the associated

reference direction be represented by i1 = is, see Figure 3.4 (a). Furthermore, let

the branches inside N be numbered from 2 to b, and assume that the network is in

the sinusoidal steady state at an angular frequencyω. In that case, we can represent

the branch voltage uk by a complex number Uk(jω) and the branch current ik by

Ik(jω), for all k = 1, . . . , b. Clearly, Uk(jω) and Ik(jω) also satisfy Tellegen’s theorem,

and so does the conjugate I∗
k
(jω) = Ik(−jω), [26]. Therefore, by (3.1) we have

1

2
Us(jω)I∗s (jω) =

1

2

b∑

k=2

Uk(jω)I∗k (jω). (3.21)

The terms 1
2
Uk(jω)I∗

k
(jω) are defined as being the complex power absorbed by

the k–th branch, while 1
2
Us(jω)I∗s (jω) is the complex power supplied through the
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NNus

(a) (b)

is

Zd

Fig. 3.4. Linear one-port network.

port to the rest of the network (hence − 1
2
Us(jω)I∗s (jω) would be a measure of the

amount of complex power recuperated to the ports by the rest of the network).

Equality (3.21) is the mathematical formulation of the principle of conservation of

complex power. This principle can be used to derive many important properties of

driving-point impedance functions.

The driving-point impedance Zd of a given LTI network N is defined as the ra-

tio of the input voltage divided by the input current, see Figure 3.4 (b). In the com-

plex frequency domain this means that Zd(jω) = Us(jω)I−1
s (jω). The impedance of

the k-th branch, with either resistors, inductors and/or capacitors, is given by

Zk(jω) = Rk + jωLk +
1

jωCk

. (3.22)

For further developments, we need to recall some additional definitions and con-

cepts that are well-known in network theory [26]. First, for an LTI RLC network

operating in sinusoidal steady state regime at an angular frequency ω, the average

power dissipated by the network equals

S (ω) =
1

2

b∑

k=2

Rk|Ik(jω)|2, (3.23)

with Rk the resistance of the k-th branch.5 Furthermore, the average magnetic and

5Notice that (3.23) is simply obtained by taking the complex frequency domain counterparts of

the instantaneous dissipated power pdiss(t) =
∑b

k=2 Rki2
k
(t) — averaged over one period. The average

magnetic and electric energies are obtained similarly.
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electric energy stored in the network are defined by

Eℓ(ω)=
1

4

b∑

k=2

Lk|Ik(jω)|2, (3.24)

Ec(ω)=
1

4

b∑

k=2

1

ω2Ck

|Ik(jω)|2, (3.25)

respectively, where Lk, Ck are the inductance and capacitance of the k-th branch.

Proposition 3.3 [26] Consider the RLC network of Figure 3.4. If the network is in

sinusoidal steady state, the complex power S (jω) delivered to the one-port by the

source is given by

S (jω) = S (ω) + 2jω
(

Eℓ(ω) − Ec(ω)
)

. (3.26)

Proof. Since Uk(jω) = Zk(jω)Ik(jω), the complex power associated to the network

can, using (3.21), be written as

S (jω) =
1

2

b∑

k=2

Zk(jω)|Ik(jω)|2



=

1

2

b∑

k=2

Zd(jω)|Is(jω)|2



. (3.27)

or equivalently, by writing out the separate sums of the resistors, inductors, and

capacitors according to (3.22), we obtain

S (jω) =
1

2

b∑

k=2

(

Rk|Ik(jω)|2 + jωLk|Ik(jω)|2 +
1

jωCk

|Ik(jω)|2
)

Exhibiting the real and imaginary part of S (jω) yields

S (jω) :






Re
{

S (jω)
}

=
1

2

b∑

k=2

Rk|Ik(jω)|2

Im
{

S (jω)
}

= 2ω

b∑

k=2

(

Lk

4
|Ik(jω)|2 −

1

4ω2Ck

|Ik(jω)|2
)

,

from which we directly recognize the average power (3.23) and energy terms (3.24),

(3.25), implying (3.26). Q.E.D.

At this point, it is interesting to remark that the imaginary part of S (jω) is

referred in the literature as the (average) reactive power, denoted by Q(ω). Thus,

we may write (3.26) as

S (jω) = S (ω) + jQ(ω). (3.28)
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Additionally, notice that the driving-point impedance can be expressed in terms of

the average dissipated power and the reactive power as

Zd(jω) =
2

|Is|2
(

S (ω) + 2jQ(ω)
)

, (3.29)

where |Is| is the peak amplitude of the source current.

3.5.2 The New Passivity Property and LTI Networks

Our objective is to clarify the rationale behind the new passivity properties found

in the previous section for the class of networks that can be described by the

Brayton-Moser equations. Obviously, the derivations in the present setting ap-

ply to general RLC networks — though, consisting of LTI elements only. Before we

present our main results regarding the new passivity property, let us briefly con-

sider passivity of N in the classical sense. From the Kalman-Yakubovich-Popov

lemma, we know that passivity of LTI systems is equivalent to positive realness of

the transfer function of the overall system. For the network in Figure 3.4, passivity

is established as follows. Suppose the network is driven by a current source Is(jω),

which we regard here as the ‘input’ of the system. Hence, the corresponding ‘out-

put’ is the voltage Us(jω) across the port. Since a transfer function is defined by

the ratio of the output divided by the input, it is easily verified that passivity of the

network in Figure 3.4 is equivalent to requiring that

Re
{

Zd(jω)
}

=
2

|Is|2
S (ω) ≥ 0, (3.30)

which follows directly by non-negativeness of (3.23) for passive resistors Rk ≥ 0.

On the other hand, if the network has a voltage source as ‘input’, it is important to

realize that the transfer function of interest is then represented by the driving-point

admittance Yd(jω) = Is(jω)U−1
s (jω) instead of its impedance Zd(jω), where

Yd(jω)= Z−1
d (jω)

=
|Is|2

2





S (ω)

S
2
(ω) + 4Q

2
(ω)

− 2j
Q(ω)

S
2
(ω) + 4Q

2
(ω)



 .
(3.31)

Obviously, Yd(jω) is a positive real function since by non-negativeness of (3.23) for

passive resistors Rk ≥ 0, we have that

Re
{

Yd(jω)
}

=
|Is|2

2





S (ω)

S
2
(ω) + 4Q

2
(ω)



 ≥ 0. (3.32)
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Us(jω) Is(jω) jωIs(jω)
Yd(jω) jω

Fig. 3.5.

In the framework presented in Section 3.4, the new port variables of interest are us

and (dis/dt), constituting the supply rate us(dis/dt). A similar framework for the

LTI case can be schematically drawn as in Figure 3.5, where, in order to be con-

sistent with the framework of Section 3.4, we need to consider the source voltage

Us(jω) as the ‘input’ and the source current jωIs(jω) as the ‘output’ of the network.6

Hence, the class of LTI RLC networks for which it is possible to ‘add a differenti-

ation to the ‘output’ port variable is characterized by the existence of admittances

Yd(jω) such that the ‘new’ driving-point admittance

Ỹd(jω) � jωIs(jω)U−1
s (jω) = jωYd(jω) (3.33)

is positive real. Interestingly, from a graphical viewpoint, this means that the

Nyquist plot of Ỹd(jω) must remain in the first quadrant of the complex frequency

plane for all ω ∈ R.7

Theorem 3.3 [14] Consider an LTI RLC one-port network driven by a single sinu-

soidal voltage source. Then

Eℓ(ω) ≥ Ec(ω), (3.34)

for all ω ∈ R, if and only if the network N defines a passive system with respect to

the supply rate Us(jω)(jωIs(jω)).

Proof. From (3.31), it is easily shown that the real part of (3.33) can be written as

Re
{

Ỹd(jω)
}

= |Is|2




ωQ(ω)

S
2
(ω) + 4Q

2
(ω)



 .

Recalling that Q(ω) = 2ω
{

Eℓ(ω) − Ec(ω)
}

, it is directly noticed that Re
{

Ỹd(jω)
}

is

positive if and only if (3.34) holds. This concludes the proof. Q.E.D.

6Recall that differentiation in the time domain corresponds to multiplication with jω in the com-

plex frequency domain. Thus, the complex frequency domain counterpart of dis/dt is represented

by jωIs(jω).
7The author thanks G. Blankenstein and Prof. J.C. Willems for this insightful observation.
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Is(jω) Us(jω) jωUs(jω)
Zd(jω) jω

Fig. 3.6.

The inequality (3.34) implies that networks for which it is possible to add a differ-

entiation to the source current are those having a non-negative (average) reactive

power function Q(ω). Recall that for networks with passive elements the aver-

age stored energy is always non-negative. Hence, all passive RL networks with

E ℓ(ω) ≥ 0 naturally satisfy (3.34) since Nb = � ⇒ E c(ω) = 0, which was already

proved in Section 3.3 for the general nonlinear case. On the other hand, as shown

in the theorem below, networks whose (average) reactive power is non-positive

admit a differentiation to the source voltage. This scenario is shown in Figure 3.6.

Theorem 3.4 [14] Consider a LTI RLC one-port network driven by a single sinu-

soidal current source. Then

Ec(ω) ≥ Eℓ(ω), (3.35)

for all ω ∈ R, if and only if the network N defines a passive system with respect to

the supply rate Is(jω)(jωUs(jω)).

Proof. According to Figure 3.6, the proof now consist in showing that under con-

dition (3.35), the driving-point impedance

Z̃d(jω) � jωUs(jω)I−1
s (jω) = jωZd(jω)

is positive real for all ω ∈ R. From (3.29), it is easily shown that the real part of

Z̃d(jω) can be written as

Re
{

Z̃d(jω)
}

= −
4ω

|Is|2
Q(ω).

Thus, in this case Re
{

Z̃d(jω)
}

is positive if and only if Q(ω) ≤ 0, or equivalently, if

and only if (3.35) holds. Q.E.D.

Remark 3.7 If a network is driven by multiple sources, a square (strictly) stable

multi-variable transfer (matrix) function, say H(jω), is positive real if and only if
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H(jω)+HT(−jω) ≥ 0, for allω ∈ R. Henceforth, for multi-port networks, Theorem

3.3 and 3.4 read as follows: Any LTI multi-port RLC network satisfying

jω
(

Yd(jω) − YT
d (−jω)

)

≥ 0, (3.36)

for all ω ∈ R, is passive with respect to the supply rate UT
s (jω)(jωIs(jω)), where

Us(jω) and Is(jω) are vectors of appropriate dimensions. Similarly, any LTI multi-

port RLC network satisfying

jω
(

Zd(jω) − ZT
d (−jω)

)

≥ 0, (3.37)

for all ω ∈ R, is passive with respect to the supply rate IT
s (jω)(jωUs(jω)).

It is an interesting fact that the conditions in the previous two Theorems depend

not only on the topology of the network but lead to similar conditions on the

parameters as in Theorem 3.1 — that obviously appear in the definitions of E ℓ(ω)

and E c(ω) — shown in the following examples.

Example 3.2 Consider the RLC network of Example 3.1, but now with linear re-

sistor R1, i.e., ur1
= R1ir1

with R1 ∈ R. The driving-point admittance is found as

Yd(jω) =
1 + jωR2C

R1 + R2 + jω(R1R2C + L) −ω2R2LC
. (3.38)

Adding a differentiation to the source current yields that the resulting driving-

point admittance is of the form Ỹd(jω) = jωYd(jω). Suppose that the network is in

sinusoidal steady state. Then the expressions for the average magnetic and electric

energies are given by

Eℓ(ω)=
ω2

(

1 + R2
2C2

)

LC2

4Φ(ω)
> 0

Ec(ω)=
ω2R2

2C3

4Φ(ω)
> 0,

with

Φ(ω)� 1 +ω2
(

R2
1C2
+ 2LC + 2R1R2C2

)

+

ω4
(

L2C2
+ R2

1R2
2C4

)

+ω6R2
2L2C4 > 0,

for all ω ∈ R. Evaluation of the difference between E ℓ(ω) and E c(ω) yields

E ℓ(ω) − E c(ω) =
ω2

(

L − R2
2C + R2

2C2ω2
)

C2

4Φ(ω)
.
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Fig. 3.7. (a) Series RLC network; (b) Parallel RLC network.

From the latter expression we can deduce that condition (3.34) of Theorem 3.3 is

fulfilled if and only if

R2 <

√

L

C
.

(Compare with condition (3.20) of Example 3.1.) Note that if the network was

driven by a current source we would have the condition that

R1 >

√

L

C
.

Example 3.3 Another interesting example is a series RLC network (Figure 3.7 (a))

driven by a voltage source. Adding a differentiation to the source current yields a

driving-point admittance of the form

Ỹd(jω) = −
ω2C

1 + jωRC −ω2LC
. (3.39)

In sinusoidal steady state, we can compute

Eℓ(ω)=
ω2LC2

4Φ(ω)
> 0

Ec(ω)=
C

4Φ(ω)
> 0,

with Φ(ω) � 1 + ω2
(

R2C2
+ 2LC

)

+ ω4L2C2 > 0, for all ω ∈ R. Evaluation of the

difference

E ℓ(ω) − E c(ω) =
C
(

ω2LC − 1
)

4Φ(ω)
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we observe that the condition of Theorem 3.3 is not fulfilled for all ω ∈ R since

condition (3.34) is satisfied if and only if

LCω2 > 1.

Hence, we cannot add a differentiation to the source current preserving passiv-

ity. Note that application of Theorem 3.1 yields a similar conclusion because a

series RLC network does not satisfy Assumptions A.2 and A.3. A similar result is

obtained for a parallel RLC network (Figure 3.7 (b)) driven by a current source

(LCω2 < 1).

3.6 Power-Shaping: A New Paradigm for Stabilization of RLC Networks

In this section, we will use the material of the previous sections to establish a new

stabilization method, called Power-Shaping. This method, in its turn, forms an

alternative to overcome the limitations of Energy-Balancing PBC.

3.6.1 Energy-Balancing PBC and Pervasive Dissipation

Let us for the moment return to general nonlinear m-port systems described by

dz

dt
= f (z) + g(z)u, y = h(z), (3.40)

with state vector z = col(z1, . . . , zn) ∈ Rn, and power port variables u, y ∈ Rm.

Obviously, the system (3.40) satisfies the energy-balance inequality if, along all

trajectories corresponding with u : [0, t] → Rm, we have

E
(

z(t)
)

− E
(

z(0)
)

≤
∫ t

0

uT(t′)y(t′)dt′, (3.41)

where E : Rn → R represents the stored energy function. Additionally, if E (·) ≥ 0,

then the system is passive with respect to the supply rate uT(·)y(·).
Basically, the method of Energy-Balancing PBC can be summarized as follows.

For simplicity, we present only the case of static feedback. The dynamic case — also

called Control by Interconnection — may be found in [80, 105]. Consider m-port

systems of the form (3.40) that satisfy the energy-balance inequality (3.41). If there

exists a vector function û : Rn → Rm such that the partial differential equation

(

f (z) + g(z)û(z)
)T∇Ea(z) = −ûT(z)h(z) (3.42)
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can be solved for the scalar function Ea : Rn → R, and the function Ed(z) � E (z) +

Ea(z) has an isolated minimum at z⋆, then the state-feedback u = û(z) is an Energy-

Balancing PBC. Consequently, z⋆ is a stable equilibrium of the closed-loop system

with Lyapunov function Ed(z), satisfying

Ed

(

z(t)
)

= E
(

z(t)
)

−
∫ t

0

uT(t′)y(t′)dt′ + κ, (3.43)

where κ ∈ R represents a constant determined by the initial conditions. Thus Ed(z)

equals the difference between the stored and the supplied energy. However, it is

shown in [80] that, beyond the realm of mechanical position control systems, the

applicability of Energy-Balancing PBC is severely stymied by the system’s dissipa-

tion structure. Indeed, it is easily seen that a necessary condition for the global

solvability of the partial differential equation (3.42) is that ûT(z)h(z) vanishes at

all the zeros of f (z) + g(z)û(z). Now, since f (z) + g(z)û(z) is obviously zero at the

equilibrium z⋆, the power extracted from the controller should also be zero at the

equilibrium. This means that Energy-Balancing PBC is applicable only to systems

that do not pervasively dissipate as t → ∞, i.e., if the system can be stabilized ex-

tracting a finite amount of energy from the controller. A detailed discussion on the

subject can be found in Chapter 8.

3.6.2 A Motivating Example

Let us illustrate with a simple example how
us ur(iℓ)

L(iℓ)
iℓ

Fig. 3.8. Nonlinear RL network.

the limitations of Energy-Balancing PBC

can be overcome via Power-Shaping. For

that, consider a two element nonlinear se-

ries RL network connected to a control-

lable voltage source us = ûs(·). Assume that the resistor is current-controlled and

that the inductor has a convex energy function. The dynamics of the network are

described by the state equation

diℓ

dt
=

1

L(iℓ)

(

us − ûr(iℓ)
)

. (3.44)

Of course, if the resistor is passive, the network defines a passive system with re-

spect to the supply-rate usiℓ and storage function Eℓ(iℓ). Now, Suppose that we de-

fine as our control objective the stabilization of an equilibrium i⋆L of (3.44), whose

corresponding equilibrium supply voltage is given by u⋆s = ûr(i
⋆
ℓ
). If we further as-

sume that the function ûr(iℓ) is zero only at zero, it is clear that, at any equilibrium
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i⋆
ℓ
� 0, the extracted power ûr(i

⋆
ℓ
)i⋆
ℓ

is nonzero, hence the network is not Energy-

Balancing stabilizable — not even in the linear case!

To overcome this problem, let us apply the theory of the previous sections and

consider the resistor’s content function Gr(iℓ) instead of the inductor’s energy. (Re-

call that for passive resistors this function is non-negative and non-decreasing.)

Hence, if we translate the Energy-Balancing ideas to the ‘power domain’, we should

thus aim at shaping the resistor’s content function. That is, to look for functions

ûs(iℓ) and Ga(iℓ) such that

dGa(iℓ)

dt
= −ûs(iℓ)

diℓ

dt
, (3.45)

which is equal to zero at the constant equilibrium i⋆
ℓ

. If we furthermore ensure that

i⋆
ℓ
= arg min

{

Gr(iℓ) + Ga(iℓ)
}

, then i⋆
ℓ

will be a stable equilibrium with Lyapunov

function Gr(iℓ)+Ga(iℓ), that is, the system is stabilized via Power-Shaping! Clearly,

for any choice of Ga(iℓ), the differential equation (3.45) is trivially solved with the

control ûs(iℓ) = −∇Ga(iℓ). If the resistor’s characteristic is exactly known we can

take

Ga(iℓ) = −Gr(iℓ) +
1

2
Ra

(

iℓ − i⋆ℓ

)2
,

with Ra > 0 some tuning parameter. But, to assign the desired minimum, we ob-

viously only need to ‘dominate’ Gr(iℓ) which (together with the fact that L(iℓ) is

allowed to be completely unknown) illustrates the robustness of the design proce-

dure.

3.6.3 Stabilization via Power-Shaping

Let us next show how to apply the Power-Shaping ideas in a more general setting.

For sake of brevity, we consider only networks that admit a Brayton-Moser de-

scription of the form (3.9), i.e., networks driven by (controllable) voltage sources

in series with the inductors. It is required that the inductors and capacitors have

strictly convex energy function. On the other hand, it is not necessary to require

the Assumptions A.3 or A.4 of Theorem 3.1, but the number of available control

signals should be ‘sufficiently large’ to shape the mixed-potential function and add

the damping.

Theorem 3.5 Consider an RLC network described by (3.9) and satisfying Assump-

tions A.1 and A.2 of Theorem 3.1. Suppose (i⋆
ℓ

, u⋆c ) ∈ E∗ is a desired (admissible)

equilibrium and assume there exists a function Pa : Iℓ → R verifying:
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A.5. (Realizability) (Λ′s)
⊥∇Pa(iℓ) = 0, where (Λ′s)

⊥ denotes a left-annihilator of

Λ′s, i.e., (Λ′s)
⊥Λ′s = 0.

A.6. (Equilibrium assignment) ∇Pa(i
⋆
ℓ
) +∇Gr(i

⋆
ℓ
) + ΛtG

−1ΛT
t i⋆
ℓ
≡ 0.

A.7. (Damping injection) Uniformly in iℓ, ∇2
Pa(iℓ) + ∇2

Gr(iℓ) ≥ RaI for some

sufficiently large Ra > 0, Ra ∈ R.

Under these conditions, the network is stabilizable via Power-Shaping. More pre-

cisely, the control law

us = −
(

(Λ′s)
TΛ′s

)−1
(Λ′s)

T∇Pa(iℓ) (3.46)

ensures that all bounded trajectories satisfy limt→∞
(

iℓ(t), uc(t)
)

= (i⋆
ℓ

, u⋆c ). Fur-

thermore, if the constitutive relations of the inductors and capacitors are such that

both pℓ = p̂ℓ(iℓ) and qc = q̂c(uc) are global diffeomorphisms, then all trajectories

are bounded and the equilibrium is globally attractive.

Proof. From (3.9), we know that the network dynamics is described by (for sake

of brevity, we omit the arguments unless stated otherwise)





−L 0

0 C









diℓ

dt

duc

dt





=





∇iℓPo

∇ucPo




−





Λ′sus

0




. (3.47)

Now, under Assumption A.5, the control law (3.46) satisfies Λ′sus = −∇Pa. This

leads to the closed-loop dynamics

Q
dx

dt
= ∇Pd, (3.48)

where Pd � Po + Pa. From Assumption A.1, we have that Q is full-rank and

consequently the equilibria are the extrema of Pd. Under Assumption A.2, the

internal mixed-potential takes the form Po = Gr − 1
2
uT

c Guc + iℓΛtuc, so that

∇Pd =





∇Gr + Λtuc +∇Pa

ΛT
t iℓ − Guc




. (3.49)

Hence, since all admissible equilibria satisfy u⋆c = G−1ΛT
t i⋆
ℓ

, we clearly have that

∇Pd = 0 at (i⋆
ℓ

, u⋆c ). On the other hand, Assumption A.2 and A.7 ensure that the

function Pa + Gr +
1
2
iT
ℓ
ΛtG

−1ΛT
t iℓ is strongly convex, and consequently that it has
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a unique global minimum at the point where its gradient is zero. This, together

with Assumption A.6, ensures (i⋆
ℓ

, u⋆c ) is the unique equilibrium of the closed–

loop system. Once we have achieved the Power-Shaping, we will apply Lemma 2.1

to generate another admissible pair
{

Q̃, P̃d

}

, such that the Q̃ + Q̃T < 0 — note

the strict inequality. At this point we make the important observation that, since

by (2.21) ∇P̃d = Q̃Q−1∇Pd, the extrema of all shaped mixed-potentials P̃d will

coincide with the extrema of Pd. Applying the transformations of Lemma 2.1 to

the closed-loop system (3.48), with λ = 1 and K = diag
(

2R−1
a , 0

)

, yields

Q̃ =





−2R−1
a

(

∇2
Pa +∇2

Gr + I
)

L 0

−2R−1
a Λ

T
t L −C




, (3.50)

whose symmetric part is negative definite for sufficiently large Ra > 0. Conse-

quently, along the closed-loop dynamics, which can now equivalently be described

by

Q̃
dx

dt
= ∇P̃d, (3.51)

we have

dP̃d

dt
=

1

2

(

∇P̃d

)T
Θ∇P̃d ≤ −δ

∣
∣
∣P̃d

∣
∣
∣
2
, (3.52)

for some δ > 0, and where we have defined Θ � Q̃−T
(

Q̃ + Q̃T
)

Q̃−1. Convergence

of all bounded trajectories follows immediately from LaSalle’s invariance principle

and the fact that
∣
∣
∣P̃d

∣
∣
∣ = 0 only at the desired equilibrium.8

Finally, to prove boundedness of the trajectories, we apply a change of coor-

dinates and rewrite the closed-loop system (3.48) in flux-charge coordinates to

obtain




dpℓ

dt

dqc

dt





=





0 −Λt

Λt −G









∇Eℓ

∇Ec





−





∇Gr

(

ΛT
r îℓ(pℓ)

)

+∇Pa

(

îℓ(pℓ)
)

0




,

(3.53)

where we have used the constitutive relation iℓ = îℓ(pℓ), together with iℓ = ∇Eℓ and

uc = ∇Ec. From Assumption A.1, we know that the total stored energy E = Eℓ + Ec

8The explicit expression of P̃d is of no interest for our derivations, as LaSalle’s invariance princi-

ple imposes no particular positivity constraint on this function.
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is a non-negative and radially unbounded function. Evaluating it time-derivative

along the trajectories of the closed-loop system (3.53), we get

dE

dt
= −

(

∇Ec

)T
G∇Ec −

(

∇Ec

)T
(

∇Gr

(

ΛT
r îℓ(pℓ)

)

+∇Pa

(

îℓ(pℓ)
))

. (3.54)

Since Assumption A.7 ensures that the function Gr(·) +Pa(·) is strongly convex, it

is ensured that that the second right-hand term of (3.54) is positive outside some

ball |iℓ| = ε, and consequently (dE )/(dt) is negative outside some compact set.

This proves global boundedness of the solutions and completes the proof. Q.E.D.

Remark 3.8 Clearly, all assumptions of Theorem 3.5 are constraints related with

the ‘degree of under-actuation’ of the network. All conditions are obviated in the

extreme case where Λ′s is the identity matrix I when we can add an arbitrary power

function Pa. Also, the rather restrictive Assumption A.3 of Theorem 3.1 is con-

spicuous by its absence — this means that we do not assume that the network to

be controlled is already passive.

3.7 Retrospection

The main contribution of this chapter is the establishment of a new passivity prop-

erty for RL, RC, and a class of RLC networks. It is proved that for this class of

networks it is possible to ‘add a differentiation’ to the port variables preserving

passivity with respect to a storage function which is directly related to the net-

work’s power. For LTI networks there exists a relation between these new passivity

properties and an order relationship of the stored magnetic and electric energy.

The main motivation behind the new passivity properties was to propose an

alternative to the well-known method of Energy-Shaping stabilization of physical

systems — in particular, to the physically appealing technique of Energy-Balancing

(also known as control by interconnection for dynamic controllers) which, as dis-

cussed in [80, 105], is severely stymied by the existence of pervasive damping. This

has led, for a class of complete nonlinear RLC networks, to the paradigm of Power-

Shaping stabilization which is shown not to be restricted to networks with finite

dissipation. A different approach to overcome the dissipation obstacle will be dis-

cussed in Chapter 8.

Instrumental for our developments was the exploitation of Tellegen’s theorem.

Dirac structures, as proposed in [105], provide a natural generalization to this the-

orem, characterizing in an elegant geometrical language the key notion of power

preserving interconnections. It seems that this is the right notion to try to extend
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our results beyond the realm of RLC networks, e.g., to mechanical or electrome-

chanical systems. A related question is whether we can find Brayton-Moser like

models for this class of systems. The answer to this question will be answered in

detail in Chapter 7.

Interestingly, the new supply rates uT
s dis/dt or iTs dus/dt have a direct relation-

ship with the notion of reactive power, as classically defined for linear networks.

Indeed, if we take the average of this signal on a period and expand in Fourier se-

ries, the first component coincides with the standard definition of reactive power

for a two terminal network with sinusoidal voltage. Adopting this new ‘definition’

of reactive power for nonlinear networks might prove instrumental to formally

study problems of reactive power compensation — an area of intense research ac-

tivity in power electronics. We come back to reactive power compensation in the

following chapter. Additionally, there are close connections of our result and the

Shrinking Dissipation Theorem of [114], which is extensively used in analog VLSI

network design. Exploring the ramifications of our research in that direction is a

question of significant practical interest.

Finally, although we have elaborated only on overcoming the dissipation obsta-

cle in Energy-Balancing PBC, it has also been mentioned in the introduction that

Power-Shaping naturally allows the addition of (approximate) derivative actions

in the control to enhance the transient response. Indeed, following the procedure

of Subsection 3.2 of [77] it is possible to show that we can add to the controller

(3.46) an approximate differentiation term

jωIℓ(jω) ≈





−
k1jω

τ1jω + 1
. . .

−
knℓ jω

τnℓ jω + 1





Iℓ(jω),

with kj, τj > 0, j = 1, . . . , nℓ, preserving the same stability properties of Theo-

rem 3.5. The theoretical and practical implications of adding derivative actions in

Power-Shaping is still under development.
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Chapter 4

Reactive Hamiltonians: A Paradigm for

Reactive Power Compensation

This chapter first addresses the question when a given (possibly nonlinear) RLC

network can be rewritten as a port-Hamiltonian (PH) system — with state vari-

ables the inductor currents and capacitor voltages instead of the fluxes and charges,

respectively. The question has an affirmative answer for a class of networks that

fulfills a certain regularity condition. This class includes networks where all dy-

namic elements are linear, and the associated resistors and conductors are passive

— though possibly nonlinear. Interestingly, the resulting Hamiltonian function

appears to be closely related with the network’s instantaneous reactive power as-

sociated with the inductors and capacitors. This novel network representation,

called a reactive port-Hamiltonian description, naturally suggests the derivation

of a very simple, and physically interpretable, expression for the rate of change of

the network’s instantaneous reactive power, and a procedure for its regulation with

external sources.

4.1 Introduction

Historically, in the design of (reactive) power compensation schemes the loads

have been assumed to be linear, and mostly inductive. The usual purpose of the

compensator is to reduce the reactive power, which is a scalar quantity propor-

tional to the sine of the phase shift between voltage and current caused by the

(inductive) load. Due to the linearity assumption, the design of a power compen-

sator is usually based on sinusoidal steady-state considerations. However, we have

witnessed in the last ten years an exponential increase of nonlinear loads, such as
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adjustable AC drives and all sort of switching devices, that inject high-frequency

harmonics to the power network establishing a non-sinusoidal regime. It is clear

that, in these circumstances, classical design methods may become inadequate. For

non-sinusoidal networks, a substantial amount of literature has reported about the

definition of reactive power, see e.g. [60, 111], for a modern account. Despite of

all the literature, there does not seem to be one definition that covers all aspects of

the extension of the reactive power definition for LTI networks to other types of

networks.

The main contribution of this chapter is the construction of a framework that

enjoys the following features (in order of appearance):

✦ The framework has a port-Hamiltonian structure, but instead of the fluxes

and charges as state variables, the inductor currents and capacitor voltages

are state variables, respectively.

✦ For LTI networks the Hamiltonian coincides — up to a factor — with the

classical definition of reactive power. This suggests an alternative definition

for instantaneous reactive power for non-sinusoidal steady-state regimes.

✦ A very simple expression is given for the rate of change of this quantity with

the attractive feature that, in the case of LTI inductors and capacitors, it is

solely determined by the resistors (that may be nonlinear) and can be af-

fected adding regulated sources.

✦ Passivity is established with respect to a storage function that is directly re-

lated to the network’s reactive power, reflecting the physical pertinence of

our approach.

4.2 A Reactive Port-Hamiltonian Description

The proposition below forms the basis for the main results of this paper. Basi-

cally, we show that, under some physically interpretable conditions, the Brayton-

Moser model (2.17) can be rewritten as a port-Hamiltonian system with dissipa-

tion. There are at least two motivations for rewriting (2.17) in a port-Hamiltonian

form. First, in the resulting port-Hamiltonian description the state variables are

the inductor currents and capacitor voltages instead of their fluxes and charges.

For control applications, where the usual measured quantities are voltages and cur-

rents, this constitutes a clear practical advantage. Also, as will be shown later on,
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§4.2. A Reactive Port-Hamiltonian Description

the new model naturally suggests a new set of passive port variables, fundamen-

tally different from the ones identified with the classical model [105], where the

associated storage function is not energy but a reactive power-like function.

4.2.1 The New Model

As before, we consider networks that can be described by the Brayton-Moser equa-

tions (see Chapter 2)

dx

dt
= Q−1∇P (x), (4.1)

with the only exception that Q is now assumed to be a constant matrix, that is,

the inductors and capacitors are linear.1 Recall that the sources are captured in the

mixed-potential function, which is of the form (2.7). Let us define

D(x) �





∇2
Gr(iℓ) 0

0 ∇2
Ig(uc)




, (4.2)

and

J �





0 −Λt

ΛT
t 0




, (4.3)

where Gr(iℓ) and Ig(uc), are the resistors content and co-content, and and Λt rep-

resents the interconnection matrix. The main assumption throughout the paper

is that J − D(x) is regular for all x. In most physical systems this property seems

rather natural (see Remark 4.1).

Proposition 4.1 Consider the Brayton-Moser equations (4.1) with linear passive

inductors and capacitors. Assume that J−D(x) is regular. Then, the Brayton-Moser

equations (4.1) can be transformed into an autonomous port-Hamiltonian system

dx

dt
= Q̃−1(x)∇H̃ (x), (4.4)

where Q̃−1(x) can be decomposed into Q̃−1(x) = J̃(x) − D̃(x), with

J̃(x) =
1

4

(

J − D(x)
)−1 −

1

4

(

J − D(x)
)−T

,

1Although all derivations and definitions can be carried over to the nonlinear case, this requires

more involved steps. In Section 4.6, we will briefly discuss how to treat the nonlinear case as well.
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satisfying the skew-symmetry property J̃(x) = −J̃T(x), and

D̃(x) = −
1

4

(

J − D(x)
)−1 −

1

4

(

J − D(x)
)−T

,

with the property D̃(x) = D̃T(x). The Hamiltonian for the network H̃ : E∗ → R is

given by

H̃ (x) =
(

∇P (x)
)T

K∇P (x), (4.5)

where K is a symmetric and positive-definite matrix of the form

K =





L 0

0 C





−1

. (4.6)

Furthermore, if the resistors and conductors are passive with convex content and

co-content functions, then D̃(x) ≥ 0. Hence, (4.4) defines a port-Hamiltonian

system with dissipation.

Proof. The proof makes use of Lemma 2.1, where we select λ = 0 and K as in (4.6)

in order to ensure

KQ =





−Inℓ 0

0 Inc



 .

Hence, it is easily verified that Q̃(x) = 2
(

J − D(x)
)

. Under the assumption of regu-

larity of J − D(x), we can invert this matrix to obtain

J̃(x) − D̃(x) =
1

2

(

J − D(x)
)−1 (

= Q̃−1(x)
)

. (4.7)

Convexity of G (iℓ) and I (uc) ensures that D(x) ≥ 0, and thus D̃(x) ≥ 0. Hence, the

system (4.4) is dissipative. Q.E.D.

Remark 4.1 We notice that the only condition needed for the derivation of (4.4)

is that J̃(x) − D̃(x), or equivalently J − D(x), is full-rank. This full-rank condition

does not seem restrictive in physical applications. On one hand, it will be verified if

all inductors and capacitors are ‘leaky’, which is the case for real-life inductors that

always possess some resistance. On the other hand, if J̃(x) − D̃(x) is rank deficient

then the network has equilibria at points which are not extrema of (4.5), and con-

sequently of the original mixed-potential (2.7). See [81], for a similar discussion

in the conventional port-Hamiltonian framework. See also Chapter 8.
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Remark 4.2 It is interesting to point out that, in contrast to conventional port-

Hamiltonian systems, the (independent) voltage and current sources are captured

in H̃ (x) and therefore do not appear as external ports in the formulation like

in Subsection 1.6.1. For that reason, (4.4) may be considered as an autonomous

Hamiltonian system. However, if a network is driven by one or more time-varying

sources, the resulting Hamiltonian description is extended as

dx

dt
= Q̃−1(x, t)∇H̃ (x, t). (4.8)

This will be illustrated in Example 4.1.

In the following subsection, we provide a physical interpretation of the new Hamil-

tonian function (4.5).

4.2.2 Total Instantaneous Reactive Power

To justify the title above, we make the following observation. The new Hamilto-

nian (4.5) can, by substitution of (4.1), be written in the form

H̃ (t) = uT
ℓ (t)

diℓ(t)

dt
+ iTc (t)

duc(t)

dt
. (4.9)

If, for simplicity, we restrict the discussion to an LTI RLC network driven by a sin-

gle sinusoidal voltage source Es(t) = E′
s cos(ωt), where E′

s denotes the peak value of

Es(t), we know from e.g., [26], that the total supplied (average) power is expressed

by

Ps =
1

T

∫ T

0

is(t)us(t)dt, (4.10)

where the quantity is(t)us(t) equals the total supplied instantaneous power Ps(t),

with is(t) = i′s cos(ωt ± φ), and φ the displacement angle between the port signals

Es(t) and is(t). Using basic trigonometric identities, Eq. (4.10) can be rewritten in

terms of the RMS-values2 of the supplied voltage and current as P s = IsUs cosφ. If

2For any periodic signal y(t), the RMS (root-mean-square) value is defined

Y �

√

1

T

∫ T

0

y2(t)dt.

For a purely sinusoidal signal, i.e., y(t) = y′ cos(ωt), the RMS value is simply given by Y = y′/�2.
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the displacement angle φ � 0, one can decompose Is into two components: a real

component and an imaginary component as

I2
s =

√
(

Re{Is}
)2
+
(

Im{Is}
)2

,

where Re{Is} = Is cosφ and Im{Is} = Is sinφ, respectively. Hence, (4.10) can alter-

natively be written as Ps = Re{Is}Us, or equivalently, as Ps = IsUs cosφ.

A very important quantity in the study of electrical networks is the total sup-

plied reactive power, as already briefly discussed in the previous chapter. This

quantity, denoted by Qs, is classically defined as the product of the imaginary cur-

rent component Im{Is} and Us, i.e., Qs � Im{Is}Us, or equivalently, Qs � IsUs sinφ.

Interestingly, it is easily proved that in a similar fashion as (4.10), we may relate

to Qs an alternative definitions involving time-derivatives of the conjugated port

variables is(t) and us(t), i.e.,

Qs =
1

T

∫ T

0

Qs(t)dt, (4.11)

where Qs(t) is either represented by the supply-rates: Qs(t) = ω
−1is(t)dus(t)/dt, or

Qs = ω
−1us(t)dis(t)/dt. This fact establishes the relationship between the average

behavior of the port variables (is(t), us(t)) and the classical definition of reactive

power. The above discussion suggests that we can give to Qs(t) an interpretation

of supplied instantaneous reactive power. Hence, regarding (4.9), the quantities

uT
ℓ
diℓ/dt and iTc duc/dt can also be considered as some generalized powers related to

the energy storing elements in the network. Moreover, as illustrated in the simple

example below, we relate (4.9) with the total instantaneous reactive power.

Example 4.1 Consider the LTI RC network shown in Figure 4.1.

R1

R2Es C

is

Fig. 4.1. Example RC network.

Suppose that the network is driven by a time-varying voltage source us(t). The dy-

namics can be described in the form (4.1) as follows. Since there are no inductors
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and no current-controlled resistors, we have that the content Gr(iℓ) = 0 and Λt = 0.

However, the network’s co-content is defined by

Ig(uc, t) =
1

2
Gu2

c − G1ucus(t),

where G1 = 1/R1 and G = 1/R1 + 1/R2. Thus, P (uc, t) = −Ig(uc, t), which yields

for the dynamics that

duc

dt
=

1

C
∇P (uc, t) =

1

C

(

G1us(t) − Guc

)

.

Now, according to Proposition 4.1, the network dynamics can be expressed in the

form (4.5) as

duc

dt
= Q̃−1∇H̃ (uc, t), (4.12)

with Q̃ = −2G, and H̃ (uc, t) = C−1
(

G1us(t)−Guc

)2
, from which it is clear that this

is equivalent to saying H̃ (t) = ic(t)duc(t)/dt. Now consider the time-derivative of

H̃ (t) along the trajectories of (4.12), i.e.,

dH̃ (t)

dt
= −2G (u̇c)

2
+ 2

G1

C

(

G1us(t) − Guc

)dus(t)

dt
.

For this simple example we can actually compute an explicit solution for H̃ (t).

Indeed, the latter equation can be expressed in terms of H̃ (t) as

dH̃ (t)

dt
= −2

G

C
H̃ (t) + 2

√

G2
1

C
H̃ (t)

duc(t)

dt
.

Consider then the case when us(t) = E cos(ωt), then the solution of the differential

equation above is easily obtained as

H̃ (t) =
ω2G2

1CE2

(G2 +ω2C2)2

(

ωC cos(ωt) − G sin(ωt)
)2
+ εt ,

where εt are exponentially decaying terms due to the initial conditions.

As expected, the average value of H̃ coincides — up to a factor ω — with the

classical definition of the reactive power associated with the capacitor, in the sense

that

1

T

∫ T

0

H̃ (t)dt = ωQc,
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Fig. 4.2. The instantaneous reactive power flow (dashed line) versus the classical average reactive

power (solid line) for the component values: E = 1 V, ω = 100π rad/sec., R1 = 1 Ω, R2 = 100 Ω, and

C = 100 µF.

(compare with (4.11)) as computed for instance in Example 11.7 of [15]. Figure

4.2 demonstrates the instantaneous reactive power flow (dashed line) for some

particular values of the network components. The classical average reactive power

Qc (solid line) associated with the capacitor is obtained by averaging the product

Im{Ic}Uc with a running window over one cycle of the fundamental frequency ω.

From the previous discussions, we observe that the Hamiltonian function (4.9),

and thus (4.5), is related to the the total instantaneous reactive power in the net-

work, providing some justification to the following definition.

Definition 4.1 A system of the form (4.4), together with (4.5), is called a reactive

port-Hamiltonian system. Furthermore, if the resistors are passive, it is called a

reactive port-Hamiltonian system with dissipation.

In the remaining sections, we will illustrate the usefulness of (4.4) by highlight-

ing some theoretical properties and potential implications for control.

4.3 Towards a Regulation Procedure of Instantaneous Reactive Power

So far, we have introduced a new port-Hamiltonian equation set that admits the

interpretation of a reactive power-like description (recall that the original port-

Hamiltonian equations, as defined in [105], have the interpretation of an energy
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description since the Hamiltonian function equals the total stored energy). In the

proposition below we generalize the ideas illustrated in Example 4.1, and derive a

simple expression for the time evolution of the total instantaneous power — that

highlights the role of dissipation and suggests a procedure to regulate it with the

inclusion of regulated voltage and/or current sources. For ease of presentation, we

will assume first that the external sources, which are contained in Gr(iℓ) and/or

Ig(uc), are constant.

Proposition 4.2 Consider an RLC network described by (4.4). Assume that the

voltage sources and/or current sources are constant. Then, along the trajectories

of the network we have that the rate of change of the reactive Hamiltonian satisfies

dH̃ (x)

dt
= −2

(

dx

dt

)T

D(x)
dx

dt
, (4.13)

where D(x) is defined in (4.2). In particular, if the resistors have convex content

and co-content functions, we have that

dH̃ (x)

dt
≤ 0. (4.14)

Proof. Since the external sources are constant by assumption, equation (4.13)

follows directly by pre-multiplying (4.4) by both Q̃(x) and (dx)/(dt), i.e.,

(

dx

dt

)T

Q̃(x)
dx

dt
=

(

dx

dt

)T

∇H̃ (x) =
dH̃ (x)

dt
.

Negative semi-definiteness follows from the convexity assumption of both the re-

sistive content Gr(iℓ) and co-content Ig(uc). Q.E.D.

Note that the previous observations remain valid if we include current-dependent

voltage sources, with characteristic function usr = ûsr (iℓ), in series with the in-

ductors and/or voltage-dependent current sources, with characteristic function

isg = îsg (uc), in parallel with the capacitors. Indeed, the expressions (4.9) and (4.13)

remain valid if we replace Gr(iℓ) with a new content function

G̃r(iℓ) = Gr(iℓ) −
∫ iℓ

0

ûsr (i
′
ℓ)di′ℓ, (4.15)

and Ig(uc) with a new co-content function

Ĩg(uc) = Ig(uc) −
∫ uc

0

îsg (u′
c)du′

c, (4.16)
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respectively. The characteristic functions ûsr (iℓ) and îsg (uc) can be chosen by the

designer. As indicated in (4.13), and illustrated in the example below, these con-

trol actions enter through the Hessians of the content and co-content functions.

Henceforth, the reactive Hamiltonian H̃ (x) can be regulated via a suitable selec-

tion of the ‘slopes’ of the characteristic functions of the sources.

Example 4.2 Consider the network realization of a Van der Pol oscillator network

shown in Figure 4.3 (a). The nonlinear resistor is usually characterized by a func-

tion îg(ug) = αug

(

u2
g − β

)

, with ug = uc and α,β ∈ R.

îg(ug)

îg(ug)

îg(ug)

usr
(·)

isg
(·)

L

L

L

C

C

C

(a)

(b)

(c)

Fig. 4.3. Van der Pol Oscillator: (a) uncontrolled, (b) current-regulated, (c) voltage-regulated.

It is easily shown that the reactive Hamiltonian reads

H̃ (iℓ, uc) =
1

L
u2

c +
1

C

(

iℓ − îg(uc)
)2

, (4.17)

while its time evolution is determined by

dH̃ (iℓ, uc)

dt
= −2

(

∇îg(uc)
)
(

duc

dt

)2

.

As indicated above, the total instantaneous reactive power in the network can be

‘controlled’ adding regulated sources. For instance, let us add a voltage-dependent
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current source in parallel with the capacitor, see Figure 4.3 (b). Let the control

action be given by isg = îsg (uc), with îsg : Uc → R a function to be defined. One can

easily verify that the quantities of Proposition 4.2 remain unaffected, and that only

the network’s co-content function

Ig(uc) =

∫ uc

0

îg(uc)duc

has to be changed to

Ĩg(uc) =

∫ uc

0

îg(uc)duc −
∫ uc

0

îsg (uc)duc.

The rate of change of the total instantaneous reactive power now becomes

dH̃ (iℓ, uc)

dt
= −2

(

∇îg(uc) −∇îsg (uc)
)
(

duc

dt

)2

.

The previous expression shows how we can modify the total instantaneous reac-

tive power via a suitable selection of the ‘slope’ of the function îsg (uc). A similar

effect is obtained, but now modulated by the quantity (diℓ/dt)2, placing a current-

dependent voltage source in series with the inductor (see Figure 4.3. (c)). This line

of reasoning will generalized to some extend in the following section.

4.4 Input-Output Representation and Passivity

For control applications it is convenient to write the equations with the manipu-

lated inputs appearing explicitly. For that purpose, we need to extract the control-

lable sources from the reactive Hamiltonian. This is easily done as follows.

4.4.1 Input-Output Representation

Consider the Brayton-Moser equations (4.1). In a fashion similar to Section 3.4.1,

let us extract the (possibly regulated) sources from the resistors content Gr(iℓ) and

co-content Ig(uc)) such that the mixed-potential function P (x) can be decom-

posed into an internal mixed-potential, denoted by Po(x), and an interaction po-

tential, denoted by Ps(x), i.e., P (x) = Po(x) − Ps(x). Hence, the Brayton-Moser

equations (4.1) can be written as

dx

dt
= Q−1∇

(

P0(x) − Ps(x)
)

. (4.18)

A similar discussion holds for the reactive Hamiltonian description (4.4), as illus-

trated by the following proposition.
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Proposition 4.3 The reactive port-Hamiltonian system representation (4.4) ad-

mits an input-output representation of the form





dx

dt
= Q̃−1(x)∇H̃o(x) + g̃(x)φs(·)

y = g̃T(x)∇H̃o(x),

(4.19)

where H̃o(x) =
(

∇Po(x)
)T

K∇Po(x) is the internal reactive Hamiltonian, and the

forcing term is given by

g̃(x)φs(·) � Q−1∇Ps(x), (4.20)

with g̃(x) ∈ Rn×m and φs ∈ Rm representing the external (regulated) voltage and/or

current sources, and y ∈ Rm represents the natural outputs of the system.

Proof. The proof for the ‘internal’ part (i.e., φs = 0) follows along the same lines

of the proof of Proposition 4.1, while (4.20) follows by construction. Q.E.D.

There are several reasons for adopting y = g̃T(x)∇H̃o(x) as the set outputs for the

system. First, a similar duality between the inputs and outputs is introduced as

with standard port-Hamiltonian systems [105]. Second, differentiating the inter-

nal reactive Hamiltonian along the trajectories of the system we obtain some reac-

tive power-balance, as will be shown in the following section. Let us illustrate the

input-output description using our Van der Pol example.

Example 4.3 Consider again the controlled Van der Pol network, denoted by N ,

of Example 4.2, but now with a regulated voltage source usr = ûsr (iℓ) in series with

the inductor (see Figure 4.3. (c)). Since Gr(iℓ) = 0, the modified content (4.15)

reads

G̃r(iℓ) = −
∫ iℓ

0

ûsr (i
′
ℓ)di′ℓ.

In order to obtain an input-output description we set Ps(iℓ) = G̃r(iℓ), while the in-

ternal reactive Hamiltonian H̃o(iℓ, uc) equals (4.17). Consequently, the controlled

Van der Pol network in the form (4.19) reads

N :










diℓ

dt
duc

dt





=
1

2





−∇îg(uc) −1

1 0









∇iℓH̃o(iℓ, uc)

∇ucH̃o(iℓ, uc)




+





L−1

0



φs

y =





L−1

0





T




∇iℓH̃o(iℓ, uc)

∇ucH̃o(iℓ, uc)




,

(4.21)
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with φs = ûsr (iℓ). To this end, it is interesting to observe that the natural (‘reactive

power conjugated’) output for the latter reactive port-Hamiltonian system equals

y =
1

LC

(

iℓ − îg(uc)
)

,

which, by using (4.1), can also be written as y = L−1duc/dt. Hence, there is a ‘natu-

ral’ differentiation in the output (compare with Section 3.4). This observation will

be of key importance in the following section.

4.4.2 Yet Another Passivity Property

From the previous chapter, it is evident that arbitrary interconnections of passive

resistors, inductors and capacitors define passive systems, with respect to the power

supplied by the external sources. The associated storage function equals the total

stored energy. Based on the mixed-potential, we have identified in Section 3.4

a class of RLC networks for which it is possible to ‘add a differentiation’ to the

port terminals preserving passivity — with a new storage function that is directly

related to the network power. Additionally, for LTI networks, the class verifying

these new passivity properties is identified in terms of an order relation between

the magnetic and the electric energy. This has led to the paradigm of a new control

strategy, called Power-Shaping control in Chapter 3. The following proposition

reveals yet a new passivity property, which is independent of the energy relations.

It yields a set of passive outputs, different from the ones in Section 3.4, that will be

shown to be useful for reactive power compensation purposes.

Proposition 4.4 Consider the reactive port-Hamiltonian input-output system de-

scribed by (4.19). If Gr(iℓ) and Ig(uc) are convex, then the network defines a passive

system with respect to the supply-rate yTφs, where

y = g̃T(x)∇H̃o(x), (4.22)

and non-negative storage function H̃o(x).

Proof. In a similar fashion as before, the proof consists in showing that

H̃o

(

x(t1)
)

− H̃o

(

x(t0)
)

≤
∫ t1

t0

yT(t)φs(t)dt, (4.23)

for all t1 ≥ t0. First, differentiation of H̃o(x) along the trajectories of (4.19) yields

dH̃ (x)

dt
= yTφs +

(

∇H̃ (x)
)T

Q̃−1(x)∇H̃ (x). (4.24)
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Due to the convexity assumption of Gr(iℓ) ≥ 0 and Ig(uc) ≥ 0, we have that the

symmetric part of Q̃−1(x) ≤ 0. Hence, the proof is completed integrating (4.24)

from t0 to t1. Q.E.D.

Remark 4.3 Notice that we may interpret the inequality (4.23) as a reactive power-

balance inequality.

Example 4.4 For the controlled Van der Pol oscillator of Figure 4.3. (c) we found

in (4.21) that y = L−1duc/dt. According to (4.24), we have

dH̃o(iℓ, uc)

dt
= L−1ûsr (·)

duc

dt
− 2∇îg(uc)

(

duc

dt

)2

.

If iℓ(0) = uc(0) = 0 and ∇îg(uc) ≥ 0, then

H̃o

(

iℓ(t), uc(t)
)

≤
1

L

∫ t

0

usr (·)
duc(t

′)

dt′
dt′. (4.25)

For all values of uc for which ∇îg(uc) is non-negative, the Van der Pol network

defines a passive system with respect to the supply-rate L−1usr duc/dt and storage

function H̃o(iℓ, uc). On the other hand, it is clear that if ∇îg(uc) < 0, the network

can be rendered passive by defining a suitable control usr = ûsr (·) that dominates

the term

∥
∥
∥
∥
∥
∥
2∇îg(uc)

(

duc

dt

)2
∥
∥
∥
∥
∥
∥

,

such that (4.25) is satisfied for all (iℓ, uc) ∈ E∗. In that case, the system is stabilized

via Reactive Power-Shaping! (see Chapter 3 for Power-Shaping.)

4.5 A Different Perspective of PI(D) Control

Motivated by the foregoing discussion, we have the following proposition:

Proposition 4.5 Consider a reactive port-Hamiltonian input-output system of the

form (4.19), with passive resistors having convex content and co-content func-

tions. Assume H̃o(x) admits a local minimum, that we denote by x⋆.3 Let φ̂s :

3Note that x⋆ is clearly an equilibrium point of the open loop system, that is furthermore stable

due to the convexity assumption of the resistors.
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Rn → Rm be defined by






φ̂s(x, ξ)=−KPg̃T(x)∇H̃o(x) − KIξ(x)

dξ

dt
= g̃T(x)∇H̃o(x),

(4.26)

with KP, KI some positive definite symmetric m × m matrices. Then, the system

(4.19) in closed-loop with the control φs = φ̂s(x, ξ), has x⋆ as an asymptotically

stable equilibrium point.

Proof. The closed-loop dynamics reads

Ncl :






dx

dt
= Q̃−1(x)∇H̃o(x) + g̃(x)φ̂s(x, ξ)

dξ

dt
= g̃T(x)∇H̃o(x) (= y).

(4.27)

Next, we define the Lyapunov function candidate

W (x, ξ) = H̃o(x) +
1

2
ξTKIξ,

and differentiate W (x, ξ) along the trajectories of (4.27), i.e.,

dW (x, ξ)

dt
=

(

∇H̃o(x)
)T
(

Q̃−1(x) − g̃T(x)KPg̃(x)
)

∇H̃o(x), (4.28)

Since the symmetric part of Q̃−1(x) is negative semi-definite by assumption and

g̃T(x)KPg̃(x) > 0, we have that Ẇ (x, ξ) ≤ 0, for all x. Hence, we conclude that y

and ξ are bounded, and thus x⋆ is (Lyapunov) stable. The claim that the equilib-

rium point is asymptotically stable follows directly from application of LaSalle’s

invariance principle. Q.E.D.

Remark 4.4 Proposition 4.5 has close relations with Proposition 9 (page 49) of

[85], where a similar type of control is proposed for conventional pre-controlled

port-Hamiltonian systems.

At a first glance, the proposed control strategy is of course structurally equiva-

lent to the well-know and widely used PI (proportional-integral) control. How-

ever, since the present construction of the control action is achieved through some

kind of shaping process of the reactive power in the network, and more impor-

tantly, since it involves a completely different set of outputs, the application of PI
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control in the reactive port-Hamiltonian context seems novel. Moreover, depend-

ing on the structure of the network, the passive outputs may ‘naturally’ contain

derivative actions on the signals (see e.g., Example 4.4, where y was found to be

y = L−1duc/dt). This means that adding an integral term to the ‘differentiated’

output signals results in a proportional feedback, while a proportional feedback of

a signal containing derivatives results in a differentiating action. Indeed, as will be

illustrated, using our Van der Pol network example, the integral action reduces to a

simple proportional controller, while the proportional part of the control reduces

to a differentiating (D) action.

Example 4.5 To motivate the use of the theory developed above, consider again

the controlled Van der Pol oscillator of Figure 4.3(c). Recall that the characteristic

function of the conductor is usually defined by îg(uc) = αuc(u
2
c − β), where α and β

are some (constant) design parameters, and assume that the initial conditions are

zero. It is easily observed that

∇îg(uc)






positive if |uc| ≥
√

β/3

active if |uc| <
√

β/3.
(4.29)

According to (4.29), the network is only passive, with respect to the supply-rate

L−1(duc/dt)usr , for all |uc| ≥
√

β/3. Straightforward application of Proposition 4.5

yields that

φ̂s(x, ξ) = −
KP

LC

(

iℓ − îg(uc)
)

︸������������︷︷������������︸

KP
L

duc
dt

−KIξ,

with

dξ

dt
=

1

LC

(

iℓ − îg(uc)
)

⇒
1

L

∫ t

0

duc(t
′)

dt′
dt′ =

uc

L
,

for uc(0) = 0. Hence, the network dynamics in closed-loop with the PI controller

(4.26) are given by

Ncl :






−L
diℓ

dt
=K ′

P

duc

dt
+
(

1 + K ′
I

)

uc

C
duc

dt
= iℓ − îg(uc),

(4.30)

where we have defined K ′
P � L−1KP and K ′

I � L−1KI , respectively.
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Regarding the discussion above, it is indeed directly recognized that the P-action,

i.e., the term −K ′
Pduc/dt, actually represents a D-action, while the I-action,

−K ′
I

∫ t

0

duc(t
′)

dt′
dt′ = −K ′

Iuc,

reduces to a simple P-action. (Thus, the PI controller acts as a PD controller.)

Substitution of the second equation of (4.30) into the first and rearranging the

terms yields

−L
diℓ

dt
= K ′′

P iℓ + uc −
(

K ′′
P∇îg(uc) − K ′

I

)

uc,

where we have defined K ′′
P � K ′

P/C. It is directly noticed that −K ′′
P iℓ represents a

damping term, which plays a similar role as if there where a real resistor connected

in series with the inductor. Note that the third right-hand term,
(

K ′′
P∇îg(uc)−K ′

I

)

uc,

destroys the reciprocal structure, and thus the port-Hamiltonian/Brayton-Moser

form of the closed-loop system. Now, suppose that we select a voltage depending

gain K ′
I = K̂ ′

I(uc) = K ′′
P∇îg(uc), the resulting closed-loop dynamics become

Ncl :






−L
diℓ

dt
=K ′′

P iℓ + uc

C
duc

dt
= iℓ − îg(uc).

Evaluating (4.28) along the closed-loop dynamics suggests that if we choose K ′′
P

large enough, that is, choose K ′′
P such that it dominates ∇îg(uc), the network will be

stable for all (iℓ, uc) ∈ E∗. Indeed, we at least need to require that

K ′′
P >

√

L

C
,

which according to Theorem 2.1 is sufficient for stability (see Section 2.2).

4.6 Retrospection

In this chapter we have shown that, under some regularity assumptions on the

mixed-potential function, the Brayton-Moser equations can be transformed into a

port-Hamiltonian system with dissipation—with state variables inductor currents

and capacitor voltages, and with Hamiltonian a function related with the reactive

power of the network. For that reason, and with some obvious abuse of notation,
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the new description is coined a reactive port-Hamiltonian system. Furthermore,

the reactive port-Hamiltonian framework naturally suggests a new passivity prop-

erty that — unlike the passivity property of Chapter 3 — does not impose any

order relationships between the electric and magnetic energies. The new passivity

property has been shown to be potentially useful for some control application, in-

cluding the challenging and widely elusive reactive power compensation problem.

Although we have restricted here to the case of linear active elements, the main

ideas apply as well to the nonlinear case. Indeed, it is easy to show that the effect of

the nonlinearities appears as some additional terms on the diagonal of the matrix

Q̃(x), that is

Q̃(x) = 2





−∇2
Gr(iℓ) +⋆ −Λt

ΛT
t −∇2

Ig(uc) −⋆




,

denoted here with a ‘⋆’ (see Section 2.2). Given that these terms have a compli-

cated expression that require additional compensation steps we have preferred to

present here the linear case which has very nice and physically intuitive interpreta-

tions.
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Switched-Mode Power Converters
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Chapter 5

Power-Based Modeling of Switched-Mode

Networks

This chapter presents a systematic method to describe a large class of switched-

mode power converters within the Brayton-Moser (BM) framework. The ap-

proach forms an alternative to the switched Lagrangian and port-Hamiltonian

formulation, which are introduced in the works of e.g., [77, 90, 96, 97], and [29],

respectively. The proposed methodology allows us to include often encountered

devices like diodes, nonlinear (multi-port) resistors, and equivalent series resistors

(ESR’s), a feature that does not seems feasible in the switched Lagrangian formula-

tion. Additionally, and besides the fact that the BM equations allow for almost any

type of nonlinear resistor, the framework constitutes a practical advantage since

in most control applications the usual measured quantities are voltages and cur-

rents — instead of fluxes and charges as with the Lagrangian or port-Hamiltonian

approaches.

5.1 Introduction

In the last two decades, modeling, design and control techniques for switched-

mode power converters have obtained a lot of attention from researchers in both

the power electronics and control community. Power converters play a primary

role in modern power systems [8, 56] for many applications, but in the applica-

tions so far, the controller design is most often based on the linearized models. In

recent developments, the power converters have been considered from an energy

storage modeling point of view, with the prime objective to design Lyapunov-based

controllers, such that the nonlinearities of the models are taken into account. It is
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shown in [96, 97, 77, 90] that the well-known models of a large class of power con-

verters can be constructed via the Lagrangian, or Hamiltonian [29], equations. An

important feature is that the physical properties, e.g., energy and interconnection,

of the power converters are underscored. These properties can advantageously be

exploited at the feedback controller design stage since the nonlinear phenomena

and features are explicitly incorporated in the model, and thus in the correspond-

ing controller. In particular, the Passivity-Based Controller (PBC) design approach

is emerging as an advantageous physically motivated controller design methodol-

ogy since it exploits the energy and dissipation structure of Lagrangian systems.

The terminology PBC has its origins in the field of robotics (see [77] and the ref-

erences therein),

However, as has been shown in Chapter 1, the Lagrangian formalism for general

nonlinear networks leads to an implicit set of second-order differential-algebraic

equations. In all the references cited above, the Lagrangian equations first need

to be transformed into a normal-form equation set in order to be suitable for the

PBC design. Hence, the particular Lagrangian structure is thus, in principal, dis-

regarded at the controller design stage.1 The switched BM approach allows us to

include the characteristics of general resistors, like diodes, nonlinear (multi-port)

resistors, and equivalent series resistors (ESR), a feature that does not seem feasible

in the switched Lagrangian formulation. As argued in the previous chapter, a prob-

lem with the port-Hamiltonian approach is that the equations are formulated in

terms of the inductor flux-linkages and the capacitor charges. However, the char-

acteristics of resistors are usually expressed in terms of their (instantaneous) cur-

rents and voltages using generalizations of Ohm’s law. Also, the port-Hamiltonian

framework is restricted to resistors of which their characteristic curves pass the ori-

gin. Besides the fact that the BM equations allow for almost any type of (smooth)

nonlinear resistors, they additionally constitute a clear practical advantage since in

most control applications the usual measured quantities are voltages and currents

— instead of fluxes and charges.

The remaining of this chapter is organized as follows. In Section 5.2, we de-

scribe the main building block of an idealized power converter topology, namely

the ideal switch. Based on the operation of the ideal switch, we proceed in Section

5.3 with defining a set of switched BM parameters. As an illustration of the pro-

posed methodology, we study some well-known power converter networks, such

1For mechanical systems PBC designs only aim at shaping the potential energy and the injection

of additional damping. As shown in [77], for electrical systems the design of PBC’s involve the

shaping of the total energy stored in the network.
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as the elementary single-switch DC/DC Boost and Buck converters, in Section 5.4.

A multi-switch example is given in Section 5.5. In Section 5.6, we illustrate the

inclusion of non-ideal diodes. Finally, in Section 5.7, we show how to solve some

subtle discrepancies, in comparison with the conventional state models, that oc-

cur when formulating the switched Lagrangian equations for some particular con-

verter topologies.

5.2 Ideal Switching Devices

An ideal switch2 can be considered as a lossless el-

0

iσ

uσ

iσ = 0

u
σ
=

0

Fig. 5.1. Ideal switch characteristic

ement since it can conduct current at zero volt-

age, while it is closed or ‘ON’, and hold a voltage

at zero current, while it is open or ‘OFF’. Both po-

sitions are assumed to be controllable by an input

σ, which takes values in the discrete set {0, 1}. The

constitutive relation of an ideal switch is described

by the parameterized curve of Figure 5.1, which

corresponds to the relations:

Mode 1 : σ = 1 (ON) ⇒ iσ ∈ R, uσ = 0

Mode 2 : σ = 0 (OFF) ⇒ iσ = 0, uσ ∈ R.

Note that an ideal switch can conduct current in both directions (bidirectional)

and that the power satisfies uσiσ = 0 at all time.

5.3 The Switched Brayton-Moser Equations

Let us first consider a network containing a single controllable ideal switch — even

though the method and definitions can easily be extended to the multi-switch case,

as will be shown using an example later on. The switch position, denoted by the

scalar function σ, is assumed to take values in the discrete set {0, 1}. We assume

that for each of the switch positions, the associated network topology is complete

so that it can be characterized by a set of BM parameters.3 In other words, we

assume that when the switch position function takes the valueσ = 1, the associated

2A practical switch is usually realized by a semi-conductor device such as a transistor, MosFet,

IGBT, or a thyristor.
3This terminology is adopted from [96], where the Lagrangian function, the Rayleigh dissipation,

and the forcing function is referred to as the set of Lagrangian (or EL) parameters.
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network, denoted by N
1, is characterized by a known set of BM parameters

N
1
=

{

Q1, P 1} (5.1)

satisfying

N
1 : Q1(x)

dx

dt
= ∇P

1(x), (5.2)

Similarly, when the switch position function takes the value σ = 0, we assume that

the associated network, denoted by N
1, is characterized by

N
0
=

{

Q0, P 0} (5.3)

satisfying

N
0 : Q0(x)

dx

dt
= ∇P

0(x). (5.4)

A (matrix) function ψσ(·) � ψ( · ,σ), parameterized by σ, is said to be consistent

with the (matrix) functions ψ1(·) and ψ0(·) whenever

ψσ(·)
∣
∣
∣
∣
σ=1
= ψ1(·); ψσ(·)

∣
∣
∣
∣
σ=0
= ψ0(·). (5.5)

Hence, in accordance to the latter definition, we may also introduce a set of

switched BM parameters
{

Qσ, P σ
}

as a set of functions parameterized by σ which

are consistent with respect to the BM parameters of the networks N
1 and N

2. A

switched network arising from the networks N
1 and N

2 is a switched BM system

whenever it is completely characterized by the set of switched BM parameters

N
σ
=

{

Qσ, P σ}. (5.6)

Hence, we consider switched BM models of the form

N
σ : Qσ(x)

dx

dt
= ∇P

σ(x), (5.7)

with the switched mixed-potential

P
σ(x) = σP

1(x) + (1 −σ)P 0(x). (5.8)

Note that since the topology of the network is only determined by P
σ(x), the Q-

matrices are not altered by the switch, i.e., Qσ(x) = Q1(x) = Q0(x) = Q(x).
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The following section presents some applications of the switched BM equations to

the derivation of switched-mode models of DC/DC power converters. The pro-

posed methodology is illustrated in detail for the elementary single-switch Boost

and Buck converters. Application to more general converter structures consist-

ing of multiple switches, like the three-phase AC/DC voltage-source converter, is

illustrated in Section 5.5.

5.4 Modeling of DC/DC Converters with Ideal Switches

Let us first consider the application of the switched mixed-potential methodology

to the single-switch DC/DC Boost converter.

5.4.1 Boost Converter

Consider the switched-mode Boost converter network topology depicted in Figure

5.2, where iℓ and uc represent the input inductor current and the output capacitor

voltage, respectively. The positive quantity Es represents a constant external DC

voltage source, and the parameter σ ∈ {1, 0} represents the switch position value.

The aim of the Boost converter is to produce a output voltage uc ≥ Es.

Consider the case that σ = 1. In this situation two separate, or decoupled, net-

works are obtained and the switched BM formulation can be carried out as fol-

lows. Recall from Chapter 2, that the mixed-potential is defined as the difference

between the content and co-content functions. These quantities are readily found

to be

G
1(iℓ) = −Esiℓ, I

1(uc) =
1

2Ro

u2
c ,

respectively. Hence, the associated mixed-potential for σ = 1 reads

P
1(iℓ, uc) = G

1(iℓ) − I
1(uc) = −Esiℓ −

1

2Ro

u2
c , (5.9)

and evidently, the BM equations (5.2) yield the dynamic equations of the (decou-

pled) network for σ = 1, i.e.,

N
1 :






−L
diℓ

dt
=∇iℓP

1(iℓ, uc) =−Es

C
duc

dt
=∇ucP

1(iℓ, uc)=−
1

Ro

uc.
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Es

Es

Es

C

C

C

L

L

L

Ro

Ro

Ro

σ

σ = 1

σ = 0

0
1

Fig. 5.2. Boost converter topology.

Consider then the case that σ = 0. The associated content and co-content

functions for this mode are

G
0(iℓ, uc) = −Esiℓ +

1

2
iℓuc, I

0(iℓ, uc) =
1

2Ro

u2
c −

1

2
uciℓ,

respectively. The associated mixed-potential for σ = 0 reads

P
0(iℓ, uc) = −Esiℓ −

1

2Ro

u2
c + iℓuc, (5.10)

The dynamic equations of the network for σ = 0 are obtained from (5.4) as

N
0 :






−L
diℓ

dt
=∇iℓP

0(iℓ, uc) = uc − Es

C
duc

dt
=∇ucP

0(iℓ, uc)= iℓ −
1

Ro

uc.

Then, according to (5.5), the following consistent parameterization for the set of

switched BM equations is given by:

P
σ(iℓ, uc) = −Esiℓ −

1

2Ro

u2
c + (1 −σ)iℓuc. (5.11)
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Indeed, note that in the cases whereσ takes the valuesσ = 1 orσ = 0, one recovers

the mixed-potential functions P
1(x) and P

0(x) in (5.9) and (5.10), respectively,

from the proposed switched mixed-potential function (5.11).

N
σ :






−L
diℓ

dt
=∇iℓP

σ(iℓ, uc) = (1 −σ)uc − Es

C
duc

dt
=∇ucP

σ(iℓ, uc)= (1 −σ)iℓ −
1

Ro

uc.

(5.12)

The proposed switched-mode dynamics represented by (5.12) precisely coincide

(as they should!) with the state model developed in e.g. [67].

Remark 5.1 As shown in Subsection 1.5.4, it is possible to associate a Lagrangian

type of function to the switched BM model (5.12). Let the Lagrangian function be

defined by the difference between the stored magnetic and electric co-energy, i.e.,

L
σ(x) �

1

2
Li2
ℓ −

1

2
Cu2

c .

Hence, the dynamics of the Boost converter (5.12) can be rewritten as

N
σ :






d

dt

(

∇iℓL
σ(x)

)

=−∇iℓP
σ(x)

d

dt

(

∇ucL
σ(x)

)

=−∇ucP
σ(x).

(5.13)

We come back to this in Section 5.7.

5.4.2 Buck Converter

The single-switch DC/DC Buck converter network topology is depicted in Figure

5.3. This converter is complementary to the Boost converter in the sense that it

is used to produce an output capacitor voltage uc ≤ Es. Since the switch σ ∈
{1, 0} only affects the external voltage source, the switched content and co-content

functions are easily found to be

G
σ(iℓ, uc) = −σEsiℓ +

1

2
iℓuc, I

σ(iℓ, uc) =
1

2Ro

u2
c −

1

2
uciℓ,

respectively, and thus

P
σ(iℓ, uc) = −σEsiℓ −

1

2Ro

u2
c + iℓuc. (5.14)
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Fig. 5.3. Buck converter topology

Hence, the resulting switched BM equations for the Buck network read

N
σ :






−L
diℓ

dt
=∇iℓP

σ(iℓ, uc) = uc −σEs

C
duc

dt
=∇ucP

σ(iℓ, uc)= iℓ −
1

Ro

uc.

(5.15)

5.5 Networks with Multiple Switches

So far, we have only concentrated on networks with a single controllable switch. A

power converter network with multiple switches is treated similarly. For simplicity,

let us illustrate the modeling procedure using a three-phase AC/DC voltage-source

rectifier example as shown in Figure 5.4. Here, iℓk , with k = 1, 2, 3, denote the input

inductor currents through the input filter inductances Lk, uco denotes the voltage

across the output filter capacitor Co, the load is represented by a linear conductance

Ro, and the external three-phase voltage source Es(t) is represented by its separate
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components

Es(t) =





Es1
(t)

Es2
(t)

Es3
(t)





.

The switches σk can take two positions, denoted ‘a’ and ‘b’, which represent the

values ‘1’ (ON) or ‘0’ (OFF), respectively. We will consider two particular descrip-

tions: (i) the phase-to-phase description, and (ii) the line-to-line description.

Es1

Es2

Es3

C

L1

L2

L3

Ro

σ1

σ2

σ3

a

a

a

b

b

b

io

iℓ1

iℓ2

iℓ3

uco

Fig. 5.4. Idealized network topology of a three-phase AC/DC voltage-source rectifier.

5.5.1 Phase-to-Phase Description

There are eight different network topologies arising from each admissible switch

position, as depicted in Figure 5.5. The relation between the phase voltages uk �

Esk
− uℓk , where uℓk represents the voltages across the input inductors, and the

output capacitor voltage uco is determined by

uk =



σk −
1

3

3∑

k=1

σk



uco . (5.16)

Furthermore, the output current io is determined by the input inductor phase cur-

rents iℓk through the relation

io =

3∑

k=1

σkiℓk . (5.17)
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The differential equations describing the phase-to-phase behavior of the rectifier

are determined by [27]

N
σ :






Lk

diℓk
dt
= Esk

(t) −




σk −

1

3

3∑

j=1

σj




uco

Co

duco

dt
=

3∑

k=1

σkiℓk −
1

Ro

uco , k = 1, 2, 3.

(5.18)

Since the existence of a standard BM formulation relies upon the symmetry of the

voltage and current relations (reciprocity), we need to impose the assumption that

the rectifier is balanced, i.e.,

3∑

k=1

Esk
(·) = 0 ⇒

3∑

k=1

iℓk = 0 (L1 = L2 = L3). (5.19)

In that case, we may rewrite (5.17) as

io =

3∑

k=1




σk −

1

3

3∑

j=1

σj




iℓk , (5.20)

which means that the input-output power-balance of the switching matrix takes

the form

3∑

k=1

ukiℓk ≡ iouco ≡
3∑

k=1




σk −

1

3

3∑

j=1

σj




iℓk uco . (5.21)

Following the procedure presented in the previous sections for each admissible

positions of the three switches yields for the switched content and co-content

G
σ(·)=−

3∑

k=1

Esk
(t)iℓk +

1

2

3∑

k=1

ukiℓk

=−
3∑

k=1

Esk
(t)iℓk +

1

2

3∑

k=1

iℓk




σk −

1

3

3∑

j=1

σj




uco ,

(5.22)

and

I
σ(·)=−

1

2
iouco +

1

2Ro

u2
co

=−
1

2

3∑

k=1

iℓk




σk −

1

3

3∑

j=1

σj




uco +

1

2Ro

u2
co

,

(5.23)
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σ1σ1

σ1σ1
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σ3σ3

σ3σ3

σ3σ3
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11
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00

00
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iℓ1iℓ1

iℓ1iℓ1

iℓ1iℓ1

iℓ2iℓ2

iℓ2iℓ2

iℓ2iℓ2

iℓ2iℓ2
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uco
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Fig. 5.5. There are eight different network topologies for the three-phase AC/DC voltage-source

rectifier arising from each admissible switch configuration.
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respectively. Hence, the switched mixed-potential takes the form

P
σ(iℓ, uco , t)=−

3∑

k=1

Esk
(t)iℓk −

1

2Ro

u2
co

+

3∑

k=1

iℓk




σk −

1

3

3∑

j=1

σj




uco ,

(5.24)

Under the condition (5.19), the differential equations (5.18) are equivalently de-

scribed by

N
σ :






−Lk

diℓk
dt
=∇iℓk

P
σ
=−Esk

(t) +




σk −

1

3

3∑

j=1

σj




uco

Co

duco

dt
=∇uco

P
σ
=

3∑

k=1




σk −

1

3

3∑

j=1

σj




iℓk −

1

Ro

uco , k = 1, 2, 3

0=

3∑

k=1

iℓk .

(5.25)

Remark 5.2 The algebraic constraints, as imposed by the balanced assumption

(5.19) have not been eliminated yet. This implies, in a system theoretic parlance,

that the state-space of the above equation set is non-minimal. A minimal equation

set can be obtained by deleting the dynamic equation for, say iℓ3 , and substitute

iℓ3 = −iℓ1 − iℓ2 into the dynamical equation for uco . However, it is easily shown

that the particular BM structure will then be lost. The most efficient and useful

minimal equation sets are obtained if the system is transformed by an orthogonal

transformation into the so-called αβ reference frame, as will be discussed in the

Subsection 5.5.3.

5.5.2 Line-to-Line Description

As shown in the previous subsection, the phase-to-phase description requires the

converter to be balanced in order to guarantee the existence of the switched BM

equations. Such restriction is omitted if we consider the line-to-line behavior of

the rectifier. For that, we define the following vectors:

ill =





i12

i23

i31





�





iℓ1 − iℓ2
iℓ2 − iℓ3
iℓ3 − iℓ1





, Ell(t) =





E12(t)

E23(t)

E31(t)





�





Es1
(t) − Es2

(t)

Es2
(t) − Es3

(t)

Es3
(t) − Es1

(t)





,
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and

σll =





σ12

σ23

σ31





�





σ1 −σ2

σ2 −σ3

σ3 −σ1





,

which represent the line-to-line input currents, the line-to-line source voltages,

and the line-to-line switching functions, respectively [34]. Letting Lf = Lk, the

differential equations are given by

N
σ :






−Lf

dill

dt
=−Ell(t) +σlluco

Co

duco

dt
=σT

ll ill −
1

Ro

uco ,

(5.26)

which clearly defines a reciprocal system. (Note that there are still eight different

network topologies arising from each admissible switch position.)

It is now straightforward to relate the following switched content and co-content

to the model (5.26):

G
σ
= −ET

ll (t)ill +
1

2
iTllσlluco , I

σ
= −

1

2
iTllσlluco +

1

2Ro

u2
co

. (5.27)

Hence, the differential equations (5.26) can be written as

N
σ :






−Lf

dill

dt
=∇illP

σ(ill, uco , t)

Co

duco

dt
=∇uco

P
σ(ill, uco , t),

(5.28)

where the switched mixed-potential is given by

P
σ(ill, uc, t)=−ET

ll (t)ill + iTllσlluco −
1

2Ro

u2
co

. (5.29)

5.5.3 Orthogonal Transformations

In three- or multi-phase networks it is often assumed, or practically the case, that

the source voltages satisfy constraints of the form (5.19). Generally, for an m-phase

network with m external voltage sources that form a balanced source, these con-

straints are of the form Es1
+· · ·+Esm = 0. For a symmetrical m-phase network with

a balanced source and no neutral line this results in constraints on the currents
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through the input inductances as well. As argued briefly before, from a system

theoretic point of view, the latter implies that the system is non-minimal in the

present description. In general there are many ways to deal with this type of alge-

braic dependence. In the field of electrical machines and power electronics, a very

often used and convenient method is to transform the system into an orthogonal

fixed αβ reference frame using a Park transformation [59]. In case of a three-phase

network, this transformation is defined as follows. If Esk
, with k = 1, 2, 3, satisfy

the relation

3∑

k=1

Esk
= 0,

then there exist a mapping Φαβ : R3 → R2 such that Esk
can be expressed as





Eα

Eβ



 =

√

2

3





1 − 1
2

− 1
2

0 1
2

�
3 − 1

2

�
3





︸������������������������︷︷������������������������︸

Φαβ





Es1

Es2

Es3





. (5.30)

Now, let us return to our three-phase rectifier example of the previous section,

and let





iα

iβ



 = Φαβ





iℓ1
iℓ2
iℓ3





,





σα

σβ



 = Φαβ





σ1

σ2

σ3





. (5.31)

The switched mixed-potential in terms of the transformed Park variables is then

simply obtained by replacing Es = Φ
T
αβEsαβ , etc..4 Hence,

P
σ
αβ

(iα, iβ, uco , t)= uco

(

σαiα +σβiβ
)

−Eα(t)iα − Eβ(t)iβ −
1

2Ro

u2
co

,
(5.33)

4Note that the input power satisfies:

(

iℓ1 iℓ2 iℓ3

)





Es1

Es2

Es3





=

(

iα iβ
)




Eα

Eβ



 , (5.32)

which implies that ΦαβΦ
T
αβ = I, i.e., the Park transformation is power conserving.
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giving the switched BM equations in the αβ-frame:

N
σ
αβ :






−Lα
diαβ

dt
=∇iαP

σ
αβ =−Eα +σαuco

−Lβ
diαβ

dt
=∇iβP

σ
αβ =−Eβ +σβuco

Co

duco

dt
=∇uco

P
σ
αβ =σαiα +σβiβ −

1

Ro

uco ,

(5.34)

where Lα = Lβ = Lk.

5.6 Networks with Non-Ideal Switches

The ideal switch considered in the previous sections is conducting in both direc-

tions (bidirectional). In real power converters this is often not the case. In order

to more realistically describe the behavior we must include the characteristics of

diodes as well. An ideal diode is a typical example of a passive (i.e., uncontrollable)

unidirectional switch. It is operation can be summarized as follows:

Mode 1 : ON ⇒ id ≥ 0, ud = 0

Mode 2 : OFF ⇒ id = 0, ud ≥ 0.

}

(5.35)

However, a more realistic curve is shown Figure 5.6, which we will use for the con-

struction of the model. Let us illustrate the modeling procedure using the DC/DC

Boost converter described in Subsection 5.4.1, but now including a clamping diode

as depicted in Figure 5.7. The switch is still assumed to be ideal.

Consider first the case that σ = 1. Notice that in this case the diode acts as a

voltage-controlled resistor (i.e., a conductor). As before, the content function is

determined by the power supplied by the constant external voltage source, i.e.,

G
1(iℓ) = −Esiℓ,

while the characteristic of the diode is captured by the co-content function

I
1(uc) =

1

2Ro

u2
c +

∫ uc

îd(ud)dud.

Thus, the mixed-potential for σ = 1 reads

P
1(iℓ, uc) = −Esiℓ −

1

2Ro

u2
c −

∫ uc

îd(ud)dud, (5.36)
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yielding the dynamic equations of the (decoupled) network for σ = 1, i.e.,

N
1 :






−L
diℓ

dt
=∇iℓP

1(iℓ, uc) =−Es

C
duc

dt
=∇ucP

1(iℓ, uc)=−
1

Ro

uc − îd(uc).

Gd

Id

‘ON’

‘OFF’

id

ud0

Gd =

∫

uddid

Id =

∫

iddud

Fig. 5.6. Typical diode characteristic.

Consider then σ = 0. In this case the diode acts as a current-controlled resistor

and therefore needs to be captured in the content function

G
0(iℓ, uc) = −Esiℓ +

1

2
iℓuc +

∫ iℓ

ûd(id)did,

and thus the co-content reduces to

I
0(iℓ, uc) =

1

2Ro

u2
c −

1

2
uciℓ,

and hence

P
0(iℓ, uc) = −Esiℓ +

∫ iℓ

ûd(id)did −
1

2Ro

u2
c + iℓuc, (5.37)
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Es
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C

C

C

L

L

L

Ro

Ro

Ro

σ

σ = 1

σ = 0

ud = ûd(id)

id = îd(ud)

d

Fig. 5.7. Single-switch DC/DC Boost converter with clamping diode.

giving the dynamic equations of the network for σ = 0:

N
0 :






−L
diℓ

dt
=∇iℓP

0(iℓ, uc) = uc + ûd(iℓ) − Es

C
duc

dt
=∇ucP

0(iℓ, uc)= iℓ −
1

Ro

uc.

In a similar fashion as before, one then proceeds to formally obtain the switched

mixed-potential by combining the individual mixed-potentials (5.36) and (5.37)

along the lines of (5.5), i.e.,

P
σ(iℓ, uc)=−Esiℓ + (1 −σ)

∫ iℓ

ûd(id)did

+σ

∫ uc

îd(ud)duc −
1

2Ro

u2
c + (1 −σ)iℓuc,

(5.38)
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which, finally, results in the switched BM equations

N
σ :






−L
diℓ

dt
=∇iℓP

σ(iℓ, uc) = (1 −σ)
(

uc + ûd(iℓ)
)

− Es

C
duc

dt
=∇ucP

σ(iℓ, uc)= (1 −σ)iℓ −
1

Ro

uc +σîd(uc).

(5.39)

Remark 5.3 A typical diode characteristic, like the one depicted in Figure 5.6, can

be expressed as a single expression [23]

id = îd(ud) = Io

(

exp(γud) − 1
)

, γ =
qe

ηkT
, (5.40)

where Io is the reverse saturation current, qe is the electron charge (1.6e−19 JV−1), k

is Boltzmann’s constant (1.38e−23 JK−1), T is the absolute temperature (in Kelvin),

and η denotes an empirical constant between 1 and 2, sometimes referred to as the

exponential ideality factor. Conversely, the characteristic can also be expressed in

terms of the current

ud = ûd(id) =
1

γ

(

ln(id + Io) − ln(Io)
)

. (5.41)

Substitution of the latter into (5.38) gives

P
σ(iℓ, uc)=−Esiℓ +

1 −σ
γ

(

(iℓ + Io)ln(iℓ + Io) − iℓln(Io) − iℓ
)

+σ
Io

γ

(

exp(γuc) − γuc

)

−
1

2Ro

u2
c + (1 −σ)iℓuc + κ,

(5.42)

where κ represents a constant due to the initial conditions, yielding the dynamic

equations

N
σ :






−L
diℓ

dt
= (1 −σ)

(

uc +
1

γ
ln(iℓ + Io) −

1

γ
ln(Io)

)

− Es

C
duc

dt
= (1 −σ)iℓ −

1

Ro

uc +σIo

(

exp(γuc) − 1
)

.

(5.43)

5.7 Some Issues Regarding Lagrangian Modeling

In this section, we show that straightforward application of the Lagrangian mod-

eling approach for switched-mode power supplies, as proposed in e.g. [96, 77, 90],

may lead to dynamical models which are slightly different than the models ob-

tained using conventional modeling techniques. Typically, this problem occurs
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when modeling a switched electrical network where the practically relevant equiv-

alent series resistors (ESR’s) of the capacitors are taken into account. First, a simple

solution, based on the notion of equivalent transfer impedances, is proposed on a

case-by-case basis to ensure that the Lagrangian approach remains applicable to

such networks. Second, in view of a more general solution, the switched BM equa-

tions are shown to be an interesting alternative.

5.7.1 Background

For switched power converters containing a single controllable switch, the switched

Lagrangian formulation [97, 77] is characterized by a set of switched Lagrangian

parameters

N
σ
=

{

T
σ, V σ, Dσ, Fσ}, (5.44)

where






T
σ
= Switched total stored magnetic co-energy in the inductors

V
σ
= Switched total stored electric energy in the capacitors

D
σ
= Switched Rayleigh dissipation function (resistors content)

F
σ
= Switched forcing functions (external sources).

These parameters are functions of the generalized coordinates, qℓ and qc, i.e., the

charges on the inductors and capacitors, and their corresponding generalized ve-

locities, q̇ℓ and q̇c, i.e., the currents through the inductors and capacitors. Let

L
σ
= T

σ − V
σ denote the (switched) Lagrangian, then the switch-position pa-

rameterized differential equations corresponding to the Lagrangian parameters

(5.44), that is, the switched Lagrangian equations, are given by (for sake of brevity,

we omit the arguments, unless stated otherwise)

N
σ :






d

dt

(

∇q̇ℓL
σ
)

−∇qℓL
σ
=−∇q̇ℓD

σ
+F

σ
ℓ

d

dt

(

∇q̇cL
σ
)

−∇qcL
σ
=−∇q̇cD

σ
+F

σ
c .

(5.45)

The class of (switched-mode) networks that can be described using the Lagrangian

equations (5.45) is quite restricted since the all the Kirchhoff laws should be in-

cludable in the Rayleigh dissipation function — unless one defines rather unusual

expressions for the state variables [77]. A larger class of networks is described using

the constraint Lagrangian equations proposed in [90], see also Subsection 1.5.2.
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5.7.2 Problem Formulation

To illustrate the use and to demonstrate the validity of the Lagrangian model, con-

sider the single-switch DC/DC Boost converter shown in Figure 5.8. Here Ro de-

notes the output resistance (load) and Rc represents the parasitic effects of the

capacitor. Such resistor is usually referred to as the equivalent series resistor, or

briefly ESR. Consider first the case that ESR equals zero, i.e., Rc = 0. The state

equations describing the network are given by (see also (5.12))

ẋ1 =
Es

L
− (1 −σ)

x2

L

ẋ2 = (1 −σ)
x1

C
−

x2

RoC
, (5.46)

where x1 = iℓ represents the current flowing through the inductor and x2 = uc rep-

resents the voltage across the capacitor.

Let us now (re)derive the latter equations using the Lagrangian modeling proce-

dure as outlined above. The corresponding Lagrangian parameters are easily rec-

ognized to be (see [97] for a detailed derivation):

N
σ
=






T
σ
=

1

2
Lq̇2
ℓ

V
σ
=

1

2C
q2

c

D
σ
=

1

2
Ro

(

(1 −σ)q̇ℓ − q̇c

)2

F
σ
=





Es

0



 ,

(5.47)

where q̇ℓ and q̇c are the currents through the inductor and capacitor, respectively,

and qc is the charge on the capacitor plates. (Notice that there is no need for an ar-

tificial inductor charge qℓ in the formulation.) Substitution of the latter parameters

into the Lagrange equation (5.45) yields the following set of equations

N
σ :






Lq̈ℓ = Es − (1 −σ)Ro

(

(1 −σ)q̇ℓ − q̇c

)

qc

C
= Ro

(

(1 −σ)q̇ℓ − q̇c

)

.
(5.48)

Evidently, after substitution of the second equation into the first, and solving the

second equation for q̇c, the resulting switched Lagrangian equations immediately
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Es

C

L

Ro

Rc

σ
0

1

Fig. 5.8. Boost converter with equivalent series resistor (ESR).

restore to (5.46), where q̇ℓ = x1 and C−1qc = x2. Thus, the definition of the La-

grangian parameters of the form (5.47) results in a valid dynamical model of the

Boost converter. (Compare with (5.12).) Let us next consider the case that the

equivalent series resistor Rc � 0.

In [77] it is suggested that the Lagrangian parameters should be of the form

N
σ
=






T
σ
=

1

2
Lq̇2
ℓ

V
σ
=

1

2C
q2

c

D
σ
=

1

2
Rcq̇

2
c +

1

2
Ro

(

(1 −σ)q̇ℓ − q̇c

)2

F
σ
=





Es

0



 .

(5.49)

(Note that only the Rayleigh dissipation function has changed in comparison with

the Lagrangian parameters found under (5.47)). Evaluating (5.45) then yields the

set of equations:

N
σ :






Lq̈ℓ = Es − (1 −σ)Ro

(

(1 −σ)q̇ℓ − q̇c

)

qc

C
=−Rcq̇c + Ro

(

(1 −σ)q̇ℓ − q̇c

)

.
(5.50)

Hence, in similar fashion as before, the differential equations describing the dy-

namic behavior of the network are then determined by substitution of the sec-

ond equation of (5.50) into the first, solving for q̇c, and by letting x1 = q̇ℓ and
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x2 = C−1qc, i.e.,

ẋ1 =
Es

L
− (1 −σ)2 RoRc

RγL
x1 − (1 −σ)

Ro

RγL
x2 (5.51a)

ẋ2 = (1 −σ)
Ro

RγC
x1 −

1

RγC
x2, (5.51b)

where we have defined Rγ � Ro + Rc.

To see whether the model (5.51) is correct or not, the state equations are also

calculated using conventional network analysis techniques. This produces the fol-

lowing set of state equations for the Boost converter with Rc � 0

ẋ1 =
Es

L
− (1 −σ)

RoRc

RγL
x1 − (1 −σ)

Ro

RγL
x2 (5.52a)

ẋ2 = (1 −σ)
Ro

RγC
x1 −

1

RγC
x2 (5.52b)

see also [106]. It is directly recognized that there is now a difference between both

sets of equations (5.51) and (5.52). The difference is found in the equation for the

inductor current. In (5.51a), the factor multiplied by x1 contains the term (1−σ)2,

whereas in (5.52a) this term equals (1 − σ). It is clear that when Rc = 0, both

equations coincide as shown in the previous section. Since σ is assumed to take

only values in the discrete set {0, 1}, we have that

(1 −σ)2
∣
∣
∣
∣
σ∈{0,1}

≡ 1 −σ, (5.53)

and hence no numerical differences will occur, even though the equations are for-

mally speaking not the same. However, in case the model is used for controller

design, where usually the switching function is replaced by its duty ratio function

taking then values in the closed interval [0, 1], the two sets of equations describe

different dynamics. We come back to the use and definition of duty ratio functions

in the next chapter.

An explanation for this discrepancy can be given as follows. The Lagrangian equa-

tion (5.45) in its present form is an alternative representation of Kirchhoff ’s volt-

age law, while Kirchhoff ’s current law are incorporated in the Rayleigh dissipation

function.5 When the ESR of the capacitor is zero, the Rayleigh dissipation func-

tion of the load resistor Ro is expressed as a superposition of the currents q̇c and

5The inclusion of Kirchhoff ’s current law is generalized in [90] by introducing Lagrange multi-

pliers.
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(1 − u)q̇ℓ related with node a in Figure 5.8. On the other hand, when the capacitor

has an ESR, the pulsating current through the ESR causes a small square wave volt-

age [106, 103, 107]. The voltage across Ro is then defined by the voltage across Rc

superimposed on the capacitor voltage C−1qc. In fact, the Rc, Ro-configuration in

Figure 5.8 constitutes a three-terminal resistor invoking a mixed dissipation func-

tion. To see this, let us redraw Figure 5.8 as shown in Figure 5.9.

Es

CL Ro

Rc

σ a

b

c

M

Fig. 5.9. Subnetwork interpretation of a Boost converter with ESR.

The role of the Rc, Rc-configuration can be interpreted as a lossy transformer, i.e, a

voltage divider such that

Λt =
Ro

Rγ
. (5.54)

As a result, the dissipation structure, in the present setting, can no longer be ex-

pressed in terms of the currents only, but suggests a voltage term uc = C−1qc as

well. Thus, the dissipation function should be a function of the capacitor voltage

as well, i.e., D
σ(C−1qc, q̇ℓ, q̇c), which does not coincide with the usual form of the

Rayleigh dissipation function used in Lagrangian modeling. Resistive structures of

this kind naturally suggest the use of the switched BM equations. We come back

to this later on. Let us first consider a possible solution to handle such topologies

in the Lagrangian context.

5.7.3 Equivalent Transfer Impedance

This section presents an alternative method to ensure that the Lagrangian model-

ing technique can be applied without introducing any discrepancies in comparison

to the conventional state models. The main idea is based on the notion of equiv-

alent transfer impedances. For that, consider the RC network depicted in Figure
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C

Ro

Rc R′
c

R′
o

aa

bb

c

C′

(a) (b)

Fig. 5.10. Equivalent RC networks.

5.10(a). In case we assume the elements to be linear and time-invariant, the trans-

fer impedance Z(jω) of the network in the complex frequency domain reads

Z(jω) =
RcRoCjω + Ro

RγCjω + 1
.

Recall that Rγ � Ro + Rc.

Consider next the RC network shown in Figure 5.10 (b). In a similar manner we

find its transfer impedance

Z′(jω) =
R′

cR
′
oC′jω + R′

γ

R′
cC

′jω + 1
,

where R′
γ � R′

o +R′
c. It then follows by inspection that Z(jω) ≡ Z′(jω) if and only if

R′
o =

RoRc

Rγ
, R′

c =
R2

o

Rγ
, and C′

= C
R2
γ

R2
o

. (5.55)

The relation between the original capacitor voltage uc = C−1qc and the capacitor

voltage of the network in Figure 5.10(b), denoted by u′
c = C′−1q′

c, is defined by

u′
c =

Ro

Rγ
uc. (5.56)

Let us return to our Boost converter example of Figure 5.8, but interchange

the RC network connected between the nodes a and b by the network of Figure
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5.10(b). The Lagrangian parameters for the resulting network then read

N
σ
=






T
σ
=

1

2
Lq̇2
ℓ

V̄
σ
=

1

2C′
(

q′
c

)2

D̄
σ
= (1 −σ)

1

2
R′

oq̇2
ℓ +

1

2
R′

c

(

(1 −σ)q̇ℓ − q̇′
c

)2

F
σ
=





Es

0



 .

(5.57)

Evaluating (5.45) using (5.57), we obtain

N
σ :






Lq̈ℓ = Es − (1 −σ)R′
oq̇ℓ − (1 −σ)2R′

cq̇ℓ + (1 −σ)R′
cq̇

′
c

q′
c

C′ = (1 −σ)R′
cq̇ℓ − R′

cq̇
′
c.

(5.58)

As before, the state equations are then obtained by letting q̇ℓ = x1 and C′−1q′
c = x′

2,

i.e.,

ẋ1 =
Es

L
− (1 −σ)

R′
o

L
x1 − (1 −σ)

x′
2

L

ẋ′
2 = (1 −σ)

x1

C′ −
x′

2

R′
cC

′ . (5.59)

One easily verifies using (5.55) and (5.56) that the latter set of equations precisely

coincides with (5.52), which shows that the proposed method based on equivalent

transfer impedances solves the problem stated in Section 5.7.2. It it interesting to

observe that if we had defined

D̄
σ(q̇ℓ, q̇′

c)
∣
∣
∣
∣
q̇′c=

Ro
Rγ

q̇c

= (1 −σ)
RoRc

2Rγ
q̇2
ℓ +

R2
o

2Rγ

(

(1 −σ)q̇ℓ −
Rγ

Ro

q̇c

)2

(5.60)

instead of the Rayleigh dissipation function in (5.49), we would have arrived at the

correct set of state equations in the first place. Notice that in case Rc = 0, then

R′
o = 0 and R′

c = Ro. In that case, the network topologies are again identical so

that D̄
σ(q̇ℓ, q̇′

c), defined by (5.60), coincides with the Rayleigh dissipation function

D
σ(q̇ℓ, q̇c), defined in (5.47). However, the derivation of D̄

σ(q̇ℓ, q̇′
c) directly from

the original network topology of Figure 5.8 is not straightforward.
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5.7.4 Some Other Converter Topologies

Let us next take a look at two other well-known members of the family of single-

switch DC-to-DC power converters topologies: the Buck and the Buck-Boost con-

verters.

Buck Converter

Consider the single-switch DC/DC Buck type converter with ESR depicted in Fig-

ure 5.11.

Es

C

L

Ro

Rc

σ

0
1

Fig. 5.11. Buck converter with equivalent series resistor (ESR).

Following the procedure as outlined in Section 5.7.2, the Lagrangian parameters

for the Buck converter are readily found as

N
σ
=






T
σ
=

1

2
Lq̇2
ℓ

V
σ
=

1

2C

(

qc

)2

D
σ
=

Rc

2
q̇2

c +
Ro

2

(

q̇ℓ − q̇c

)2

F
σ
=σ





Es

0



 .

(5.61)

which, after substitution into (5.45) and setting q̇ℓ = x1 and C−1qc = x2, gives the

state equations

ẋ1 =σ
Es

L
−

RoRc

RγL
x1 −

Ro

RγL
x2

ẋ2 =
Ro

RγC
x1 −

1

RγC
x2.
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It is easily checked that the latter equations are precisely the ones as would be ob-

tained when using conventional techniques, hence no discrepancies occur for the

Buck converter when Rc � 0. Notice that the definition of D
σ(q̇ℓ, q̇c) of (5.61) co-

incides with the Rayleigh dissipation function in (5.49) for σ = 0. Moreover, it

is interesting, though not surprising, to observe that for the Buck converter with

capacitor ESR we actually have two possible Rayleigh function candidates: the one

given in (5.61), and the one resulting from the equivalent RC network representa-

tion of Figure 5.10 (b). This is easily checked since by (5.55),

D̄
σ(q̇ℓ, q̇′

c) =
1

2
R′

oq̇2
ℓ +

1

2
R′

c

(

q̇ℓ − q̇′
c

)2

precisely coincides with the Rayleigh dissipation function defined in (5.61).

Buck-Boost Converter

Consider the single-switch DC/DC Buck-Boost type converter with ESR depicted

in Figure 5.12. Like the Boost and Buck converters treated previously, the Buck-

Boost converter suggests to take as the Lagrangian parameters

N
σ
=






T
σ
=

1

2
Lq̇2
ℓ

V
σ
=

1

2C

(

qc

)2

D
σ
=

Rc

2
q̇2

c +
Ro

2

(

− (1 −σ)q̇ℓ − q̇c

)2

F
σ
=σ





Es

0



 .

(5.62)

Since this converter is a combination of the Buck and the Boost converter, as its

name already suggests, it seems reasonable to expect the same type of discrepancy

as occurs with the Boost converter for Rc � 0. Indeed, after substitution of the

Lagrangian parameters into (5.45) and by setting q̇ℓ = x1 and C−1qc = x2, the

resulting state model reads

ẋ1 =σ
Es

L
− (1 −σ)2 RoRc

RγL
x1 + (1 −σ)

Ro

RγL
x2

ẋ2 =−(1 −σ)
Ro

RγC
x1 −

1

RγC
x2,
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which again shows the term (1−σ)2, while the model following from application of

conventional techniques generates a term (1−σ) only. Using the equivalent trans-

fer impedance network of Figure 5.10 (b), a correct Rayleigh dissipation function

should, instead of (5.62), be of the form

D̄
σ(q̇ℓ, q̇′

c) = (1 −σ)
R′

o

2
q̇2
ℓ +

R′
c

2

(

− (1 −σ)q̇ℓ − q̇′
c

)2
,

which (up to a sign) coincides with the Rayleigh function (5.57), as obtained for

the Boost converter with ESR.

Es

C

L Ro

Rc

σ

1 0

Fig. 5.12. Buck-Boost converter with equivalent series resistor (ESR).

5.7.5 Discussion

It is shown that straightforward application of the switched Lagrangian modeling

technique proposed in [96, 77, 90] may lead to slightly different dynamical models

than the models obtained using conventional techniques. Although the analysis

was carried out in detail using the single-switch DC/DC Boost converter, it was

observed that the same type of discrepancy also appeared when deriving the La-

grangian models of other converter topologies, like the Buck-Boost converter with

capacitor ESR’s. On the other hand, the Lagrangian model of the Buck converter

with capacitor ESR did not show any discrepancies compared to the conventional

model. This is due the fact that in the Buck converter no switchings occur be-

tween the inductor and the capacitor. For that reason, since the Buck, Boost and

Buck-Boost converters describe a rather large family of switched-mode networks

in form and function, it seems reasonable to expect that if a given converter con-

tains ESR structures like in Figure 5.10 (a), while directly preceded by one or more

controllable switches, one should be careful in applying the Lagrangian modeling

approach to obtain the model. The method of equivalent transfer impedances is
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helpful to arrive at the correct equations while following the switched Lagrangian

modeling technique of [96, 77, 90].

However, if it is not necessarily desired to formulate the dynamic behavior in terms

of Lagrange parameters, then the switched BM equations form an excellent alter-

native. Consider, for example, the Buck-Boost converter. The BM parameters for

each switch position, σ = 1 and σ = 0, read:

N
1
=






G
1
=−Esiℓ

I
1
=

1

2Rγ
u2

c ,
(5.63)

and

N
0
=






G
0
=

RoRc

2Rγ
i2
ℓ +

Ro

2Rγ
iℓuc

I
0
=

1

2Rγ
u2

c −
Ro

2Rγ
iℓuc,

(5.64)

respectively, which constitute a switched mixed-potential of the form

P
σ
= (1 −σ)

(

RoRc

2Rγ
i2
ℓ +

Ro

Rγ
iℓuc

)

−
1

2Rγ
u2

c −σEsiℓ. (5.65)

Finally, we obtain

N
σ :






−
diℓ

dt
=

1

L
∇iℓP

σ
=−σ

Es

L

+(1 −σ)
RoRc

RγL
iℓ − (1 −σ)

Ro

RγL
uc

duc

dt
=

1

C
∇ucP

σ
=−(1 −σ)

Ro

RγC
iℓ −

1

RγC
uc,

(5.66)

which are the correct state equations for the DC/DC Buck-Boost converter.

Remark 5.4 As argued before, the switched BM equations are closely related to

switched Lagrangian equations if we choose as generalized velocities the indepen-

dent currents through the inductors and the independent voltages across the ca-

pacitors. It then turns out that we have no need for the generalized coordinates (qℓ
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and qc are vacuous), i.e.,

N
σ :






d

dt

(

∇iℓL
σ
)

=−∇iℓP
σ

d

dt

(

∇ucL
σ)
=−∇ucP

σ,

(5.67)

where the switched Lagrangian is defined as L
σ is defined as the difference be-

tween the total stored magnetic and electric co-energy. Equations of the form

(5.67) can be considered as a hybrid Lagrangian model.

5.8 Retrospection

In this chapter we have shown how, using the Brayton-Moser equations, we can

systematically derive mathematical models that describe the dynamical behavior

of a large class of switched-mode power converters. The methodology allows us

to include often encountered devices like (non-ideal) diodes and equivalent se-

ries resistors. The key feature of our approach is that for each of the operating

modes we consider a different topological mixed-potential function. Appropriate

combination of each of the individual mixed-potentials yields a single switched

mixed-potential that captures the overall physical power structure of the power

converter. The methodology is illustrated using the elementary DC/DC single-

switch Boost and Buck converters. These two structures describe a large family of

other, more complex, power converters in form and function. For that reason, the

switched mixed-potential for other converters can easily be obtained by inspection

and mimicking the results presented in this chapter. Similar arguments hold for

power converter structures that contain multiple switches, as illustrated using the

well-known three-phase AC/DC voltage-source rectifier. Some advantageous and

novelties of the proposed methodology are:

✦ The dynamics are expressed in terms of directly measurable quantities (cur-

rents and voltages), instead of indirectly measurable quantities (fluxes and

charges) as used in switched Lagrangian and Hamiltonian models, consti-

tuting a clear advantage in control applications. Additionally, the inclusion

of (nonlinear) resistors can be argued to be more natural since the consti-

tutive relations, i.e., the Ohmian laws, are directly expressed in currents and

voltages.

✦ The BM equations allow for a very broad range of resistor characteristics,

either positive, active, or passive.
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✦ In contrast to the switched Lagrangian and Hamiltonian approaches, which

are based on the energy in the network, the switched BM equations empha-

size the physical structure of the network in terms of the networks power

flow. The role of power analysis in power electronics can hardly be overesti-

mated.

✦ The switched BM equations, and in particular the switched mixed-potential

function, can be used as a Lyapunov-like function to determine conditions

for stability and non-oscillatory responses. This feature will be used in the

following chapters to provide solutions to the open problem of controller

commissioning in passivity-based controller (PBC) design. Additionally, the

mixed-potential can be used to determine conditions for stability, even if the

network contains non-positive or non-passive resistors.
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Chapter 6

Passivity-Based Control in the

Brayton-Moser Framework

Nonlinear passivity-based control algorithms for switched-mode power convert-

ers have proved to be an interesting alternative to other, mostly linear, control

techniques. The control objective is usually achieved through an energy reshap-

ing process and by injecting damping to modify the dissipation structure of the

system. However, a key question that arises during the implementation of the con-

troller is how to tune the various control parameters. From a circuit theoretic

perspective, a PBC forces the closed-loop dynamics to behave as if there are artifi-

cial resistors — the control parameters — connected in series or in parallel to the

real circuit elements. In this chapter, a solution to the tuning problem is proposed

that uses the classical Brayton-Moser equations. The method is based on the study

of a certain ‘mixed-potential function’ which results in quantitative restrictions on

the control parameters. These restrictions seem to be practically relevant in terms

stability, overshoot and non-oscillatory responses. The theory is exemplified using

the elementary single-switch Buck and Boost converters, and the more elaborate

multi-switch three-phase voltage-source rectifier.

6.1 Introduction and Motivation

In recent years, passivity-based control (PBC) design for switched-mode power

converters has become quite an active area in both the field of system and con-

trol theory and power electronics. One particular PBC technique is based on the

classical Euler-Lagrange (EL) equations. As already briefly highlighted in the pre-

vious chapter, the application of EL-based PBC design to single-switch DC-to-DC
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power converters was first proposed in [97] and is generalized to larger networks,

like the (coupled-inductor) Ćuk converter, and three-phase rectifiers and inverters

in e.g., [27], [51], [77], [89], [90], and [91]. See [16, 28] for some experimental

applications. One of the major advantages of using the EL approach is that the

physical structure (e.g., energy, dissipation and interconnection), including the

nonlinear phenomena and features, is explicitly incorporated in the model, and

thus in the corresponding PBC. This in contrast to conventional techniques that

are mainly based on linearized dynamics and corresponding PID (Proportional-

Integral-Derivative) or lead-lag control. Since many power converters are non-

linear non-minimum phase systems, controllers stemming from linear techniques

are sometimes difficult to tune as to ensure robust performance, especially in the

presence of large setpoint changes and disturbances that cause circuit operation to

deviate from the nominal point of operation. Therefore, incorporating knowledge

about the nonlinear dynamics in the controller design may be beneficial.

The basic idea behind PBC design is to modify the energy of the system and add

damping by modification of the dissipation structure. In the context of EL-based

PBC designs for power-converters, two fundamental questions arise:

Q.1. Which variables have to be stabilized to a certain value in order to regulate

the output(s) of interest toward a desired equilibrium value? In other words,

are the zero-dynamics of the output(s) to be controlled stable1 with respect

to the available control input(s), and if not, for which state variables is it

stable?

Q.2. Where to inject the damping and how to tune the various parameters asso-

ciated to the energy modification and to the damping assignment stage?

It is hard to give a general answer to the first question since we are not able to

give explicit formulations of the zero-dynamics for a general converter structure.

Application of PBC to, for example, the boost, buck-boost [97] and the (coupled-

inductor) Ćuk [89] converter, leads to an indirect regulation scheme of the output

voltage through regulation of the input current. Since there is no general answer to

the first question yet, we continue with checking the stability of the zero-dynamics

on a case by case basis.

1We should emphasize that in general PBC is a technique that aims at energy shaping and not

at imposing any specific behaviors to certain signals (i.e., outputs to be controlled). However, in

some applications (including a large class of power-converters), EL-based PBC designs may lead to a

partial system inversion. In that case, a thorough study of the zero-dynamics becomes a subproduct

of the method. For a detailed discussion, see [77].
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A first attempt to develop some guidelines for adjusting the damping parame-

ters is done by studying the disturbance attenuation properties and look for upper

and lower bounds on these parameters using L2-gain analysis techniques in [92].

Since the L2-gain analysis can be argued to be intrinsically conservative and, in

case of large converter structures, the necessary calculations may become rather

complex, we study a more practical approach. To our knowledge, apart from L2-

gain analysis, there are some recent interesting works revealing Hamiltonian-based

results related to tuning (see for instance [85]). However, Hamiltonian-based

PBC’s differ from EL-based PBC’s, as considered herein.

In previous works about EL-based PBC, the location where to add the damping

is mainly motivated by the form of the open-loop dissipation structure in the sense

that damping is added to those states that do not contain any damping terms a pri-

ori. For example, for the boost converter this means that only damping is injected

on the input current — called series damping — because the output voltage al-

ready contains a damping term due to the load resistance, e.g., [77, 97]. The latter

control scheme leads to a PBC regulated circuit that is highly sensitive to load vari-

ations and also needs an expensive current sensor to measure the inductor current.

This holds for many other switching networks too. Here, we study an alternative

damping injection strategy that overcomes some these drawbacks.

6.2 Switch Regulation Policy

Most control methodologies for switched-mode power converters can be classified

into two groups: (i) controllers that directly generate the discrete switching signal,

e.g., σ ∈ {0, 1}, or (ii) controllers that require an auxiliary pulse-width modulation

(PWM) device to determine the switch position. A typical example of the first class

of controllers is Sliding-Mode Control (SMC), see e.g. [87], while the second class

covers well-known methods like Linear Averaged Control (LAC), Feedback Lin-

earization Control (FLC), and EL-based PBC as treated in [77, 97] and the present

chapter.

For a switch taking values in the discrete set {0, 1}, a PWM policy may be specified

as follows:

σ(t) =






1, for tk ≤ t < tk + µ(tk)Ts

0, for tk + µ(tk)Ts ≤ t < tk + Ts

(6.1)

for all tk+1 = tk + Ts and k = 0, 1, 2, . . .. Here tk represents a sampling instant, the

parameter Ts = F−1
s is the fixed sampling period (with Fs the switching frequency),
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and the sampled values of the state vector x(t) of the converter are denoted by x(tk).

The function µ(·) is the duty ratio function, acting as an external control input to

the average PWM model of the converter [95]. The value of the duty ratio func-

tion µ(tk) determines at every sampling instant tk the width of the upcoming ON

pulse as µ(tk)Ts (during this period the switch is fixed at the position represented

by σ = 1). Now, the duty ratio function µ(·) is evidently a function limited to take

real values in the closed interval [0, 1]. While the discrete switching controllers are

designed directly from the exact (mixed) description of the models such as treated

in the previous chapter, the control algorithms that use a PWM policy, such as

(6.1), are designed based on approximate (continuous- or discrete-time) averaged

PWM models. Under some reasonable conditions on the switching frequency, the

latter models are obtained from the exact descriptions by simply replacing the dis-

crete switch position function σ by its associated duty ratio function µ, and its

actual state vector x by its associated approximate average state vector z. We come

back to this later on. The origin of averaging methods for power converter models

can be traced back to the pioneering work by R.D. Middlebrook and S. Ćuk in the

mid seventies, e.g. [67].

In the remaining of this chapter we continue with the averaged PWM models only

— unless stated explicitly otherwise.

6.3 EL-Based PBC

Let us briefly recall the rationale behind the EL-based PBC design methodology. As

discussed in [97], under the condition that the switching frequency is sufficiently

high, the switched-mode description of a large class of power converters can be

replaced by its continuous-time averaged approximate model, which in matrix-

vector representation takes the general form:

Mż − J(µ)z +Dz = S(µ), (6.2)

where z denotes the average state vector containing the average values of the in-

ductor currents and capacitor voltages. Furthermore, M = MT > 0 is a matrix of

appropriate dimensions containing the inductances and the capacitances, i.e.,

M =





L 0

0 C



 ,
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the matrix J(µ)

J(µ) =





0 −Λt(µ)

ΛT
t (µ) 0



 ,

is the structure matrix2 satisfying the property of skew-symmetry J(µ) = −JT(µ),

D =





R 0

0 G



 ,

where R = RT
(

G = GT
)

denotes the symmetric resistance (conductance) matrix

with a dimension equal to the number of independent inductors (capacitors),3 and

S(µ) is a vector containing the external independent sources. Considering (6.2),

one can easily arrive at the averaged energy-balance equation

H
(

z(t1)
)

− H
(

z(t0)
)

︸�������������������︷︷�������������������︸

Stored Energy

=

∫ t1

t0

zT(t)S
(

µ, t
)

dt

︸���������������︷︷���������������︸

Supplied Energy

−
∫ t1

t0

zT(t)Dz(t)dt

︸��������������︷︷��������������︸

Dissipated Energy

.

As briefly discussed in Section 6.1, the EL-based PBC methodology for power con-

verter control can be summarized by a two-step procedure.

Procedure 6.1

1. Make a copy of (6.2) in terms of an auxiliary vector ξ and add damping in

terms of the error e � z − ξ, i.e.,

Mξ̇ − J(µ)ξ +Dξ = S(µ) +Da(·)e, (6.3)

where Da(·) = DT
a (·).

2. Since (6.3) defines an implicit definition of the PBC, we need to solve (6.3)

explicitly for the control µ.

2In a similar fashion as before, the matrix J(µ) can be considered as a bank of ideal transformers

with a µ-modulated ‘turns-ratio’ matrix Λt(µ) (see Chapter 1).
3There exists converter structures in which switches appear in the dissipation matrices [57]. In

such case, we simply replace D by D(µ).
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The first step gives rise to question Q.1 of Section 6.1, which is usually answered

by selecting a Da(·) such that D +Da(·) > 0. The second step gives rise to the ques-

tion Q.2 and involves a study of the zero-dynamics yielding either a regulation

scheme based on forcing the inductor currents to their desired values or a regula-

tion scheme based on the forcing the capacitor voltages to their desired values.

The rationale behind the approach can be explained as follows. Consider the aver-

aged stored stabilization error energy function

Hd(e) =
1

2
eTMe. (6.4)

The time-derivative of (6.4) along the controlled trajectories of (6.2) now satisfies

dHd(e)

dt
= −eTDe +Φa(e, ξ), (6.5)

where the last term directly follows from the averaged converter dynamics (6.2),

completing the squares, and by using the skew-symmetry property of J(µ), i.e.,

Φa(e, ξ) = eT
(

S(µ) − Mξ̇ + J(µ)ξ − Dξ
)

. (6.6)

Since D is usually only a positive semi-definite matrix, additional terms are added

to (6.6) in order to invoke simple Lyapunov arguments to proof asymptotic stabil-

ity of the controlled dynamics. Indeed, if we add the term Da(·)e to (6.6) — such

that D+Da(·) > 0 — and eliminate the cross terms by letting ξ satisfy the differen-

tial equation (6.3), we force the time-derivative of the averaged stored stabilization

error energy function to satisfy

dHd(e)

dt
= −eTDd(·)e < 0, (6.7)

with Dd(·) � D +Da(·).

Remark 6.1 For completeness, we remark that, whenever (6.3) holds, the error

state satisfies the asymptotically stable differential equations

Mė − J(µ)e +Dd(·)e = 0, (6.8)

called the stabilization error-dynamics, as well as the closed-loop error energy-

balance equation:

Hd

(

e(t1)
)

− Hd

(

e(t0)
)

= −
∫ t1

t0

eT(t)Dd(·)e(t)dt. (6.9)
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6.4 Damping Assignment Revisited: A Motivating Example

So far, as shown in the previous section, in the design of a PBC the form of the

damping terms has only been justified from a mathematical point of view — in the

sense that Da(·) needs to be chosen such that D+Da(·) > 0 — in order to guarantee

asymptotic stability based on Lyapunov ideas. However, as will be shown using a

simple example below, such choice is not necessarily the most satisfactory one.

6.4.1 Conventional Damping Injection

Consider the single-switch DC/DC Buck converter shown in Figure 6.1.

Es C

L

µiℓ

µEs

Ro

Fig. 6.1. Averaged Buck converter topology. The discrete switch is replaced by an ideal DC trans-

former composed of two controlled sources and modulated by the duty-ratio function µ.

If we assume that the switching frequency is sufficiently high, the averaged dynam-

ics are described by (6.2) with (see also (5.15))

M =





L 0

0 C



, J =





0 −1

1 0



, D =





0 0

0 R−1
o



, S(µ) =





µEs

0



, (6.10)

and z = col(z1, z2), where z1 and z2 denote the averaged inductor current and the

averaged capacitor voltage, respectively.

An implicit definition of an EL-based PBC candidate is obtained if we proceed by

making a copy of the model in terms of some auxiliary vector variable ξ and add

damping along the lines described above. This means that we need to select

Da =





Ra 0

0 0



 ⇒ Dd =





Ra 0

0 R−1
o



 > 0, (6.11)
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for some control parameter value Ra > 0, which by (6.3) yields the implicit con-

troller equations

Lξ̇1 = µEs − ξ2 + Ra

(

z1 − ξ1
)

Cξ̇2 = ξ1 −
1

Ro

ξ2.
(6.12)

As pointed out in [97], both a direct and indirect regulation scheme is possible.

This is due to the fact that the converter exhibits no zero dynamics for a direct

output capacitor voltage control scheme, while the zero dynamics are stable for an

indirect inductor current control scheme. This means that we have two possibil-

ities to solve for the control signal µ. Given a desired constant value, say Ud ≤ E,

for the output capacitor voltage of the Buck converter, an explicit definition of the

control signal can be obtained from (6.12) by setting ξ2 = Ud. This implies that

ξ̇2 = 0, and thus that ξ1 = R−1
o Ud. Substituting the latter into the first equation of

(6.12), yields for the control:

µ =
1

Es

(

Ud − Ra

(

z1 −
Ud

Ro

))

. (6.13)

If we substitute the latter into (6.2)–(6.10), we obtain the closed-loop dynamics

Lż1 = E′ − Raz1 − z2

Cż2 = z1 −
1

Ro

z2, E′
=

(

Ra + Ro

Ro

)

Ud.
(6.14)

(Note that precisely the same result would have been obtained if we set ξ1 = Id

— thus, following an indirect regulation scheme — since Id = R−1
o Ud.) It is easily

recognized that the latter set of equations constitute a network representation as

depicted in Figure 6.2, where the control parameter Ra acts as a ‘virtual’ series

resistor.4 Since the network is linear, time-invariant and fully damped, asymptotic

(exponential) stability already follows from physical considerations.

Remark 6.2 It is easy to see, by substituting z1 in terms of z2 and ż2, that (6.13) is

just a classical PD (proportional derivative) controller.

Unfortunately, a major disadvantage of the ‘series damping injection’ method is

the fact that the additional damping term in (6.13) depends on the load resistor

4Virtual in the sense that power is dissipated by the controller and not by the real network!
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Es E′
s =

Ra+Ro

Ro
Ud C

L

ideal

Ra

Ro

Fig. 6.2. Closed-loop network interpretation for the series damping PBC controlled Buck converter.

Ro. Hence, if the actual load resistor contains an uncertainty, say Ro + ∆Ro, with

∆Ro > −Ro, the error term e1 � z1 − R−1
o Ud in (6.13) will not converge to zero,

resulting in a steady-state error on both the inductor current and capacitor voltage.

Of course, we could try to design an additional adaptive mechanism [77] or add

an outer-loop PI (proportional integral) controller [57]. However, in our case this

would be at the cost of simplicity, while passivity of the closed-loop is completely

lost — hence, the physical motivations behind the PBC methodology abolish.

6.4.2 Parallel Damping Injection

Let us illustrate with the same example how the load sensitivity of conventional EL-

based PBC can be overcome using a different damping injection strategy. Consider

again the averaged Buck dynamics (6.2), defined by the matrices (6.10). Suppose

now that, instead of (6.11), we set

Da =





0 0

0 R−1
a



 ⇒ Dd =





0 0

0 R−1
o + R−1

a



 ≥ 0, (6.15)

for some control parameter value Ra > 0. Note that now Dd is only semi-definite,

which will be justified later on for a general class of power converters. Following

the same procedure as before yields an implicit PBC of the form

Lξ̇1 = µEs − ξ2 (6.16a)

Cξ̇2 = ξ1 −
1

Ro

ξ2 +
1

Ra

(

z2 − ξ2
)

. (6.16b)

An explicit definition of the control signal µ can be obtained in various ways. One

possible solution is setting ξ1 = Id, substituting (6.16a) into (6.16b), and solving
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the resulting equation for µ̇ in terms of µ and z2, i.e.,

µ̇ = −
1

C

(

RaRo

Ro + Ra

)−1

µ +
1

C

(

Ud

EsRo

+
z2

EsRa

)

. (6.17)

Hence, by taking the time-integral of the latter equations we obtain the actual con-

trol signal µ. Since the control objective is to maintain a constant desired output

voltage Ud ≤ Es, we are only interested in the actual capacitor dynamics. For that,

we substitute the control (6.17) into (6.2)–(6.10), and eliminate for z1, yielding the

linear second-order differential equation

z̈2 +
1

C

(

RoRa

Ro + Ra

)−1

ż2 +
1

LC
z2 =

1

LC
Ud. (6.18)

As for the series damping case, it is worth noting that equation (6.18) implies that

there is a ‘virtual’ resistor Ra connected in parallel with the capacitor and the load

resistor. For that reason, we may refer to Ra as a virtual parallel damping resistor.

Since all coefficients in (6.18) are positive and linear, the closed-loop is (exponen-

tially) stable, i.e., t → ∞, z2 → Ud, independent of the load Ro — even if Ro is

replaced by Ro + ∆Ro! In other words, unlike for the conventional series damping

controller, the equilibrium output voltage of the parallel damping controlled buck

converter is independent of the load resistor. Summarizing, we have proved the

following proposition.

Proposition 6.1 Given a desired constant value Ud ≤ E for the output capacitor

voltage of a Buck converter, the parallel damping-based duty ratio function (6.17)

globally exponentially stabilizes the state trajectories of the average PWM model

(6.2)–(6.10), with load uncertainty ∆Ro, towards the equilibrium point (z∗1 , z∗2 ),

with

z∗1 =
Ud

Ro + ∆Ro

, ∆Ro > −Ro, (6.19)

and z∗2 = Ud, while µ converges to a constant value µ∗ = E−1Ud.

The observation of parallel damping injection is of course easy to justify and an-

alyze using a simple example such as the linear Buck converter. In the remaining

sections, the idea is generalized to a reasonably large class of nonlinear power con-

verters. To establish our results we again heavily rely on the work of Brayton and

Moser [10].

150



§6.5. Power-Based PBC

6.5 Power-Based PBC

The previous observations suggest that, using a slightly different damping injection

strategy, the EL-based PBC’s can be made robust against load variations. Besides

that, damping assignment in conventional PBC controllers often involves a full-

state desired damping matrix in order to proof stability of the closed-loop in terms

of simple Lyapunov statements. In this section, we show, using the switched BM

equations as a starting point, that either a series or a parallel damping injection

scheme is sufficient for closed-loop stability. Additionally, the conditions under

which a parallel damping injection leads to a robust PBC are discussed using illus-

trative examples.

6.5.1 Averaged BM Equations

As explained in Section 6.2, under the condition that the PWM frequency is suffi-

ciently high, the switched-mode description of a large class of power converters can

be replaced by its continuous-time averaged approximate model. The continuous-

time averaged approximate model of a PWM regulated power converter is thus

given by the same nonlinear model except that the discrete control σ (i.e., the

‘ON/OFF’ switch) is replaced by its continuous bounded duty ratio function µ.

In order to emphasize the difference between the actual switched-mode nonlinear

model and its continuous-time average, the actual state x(t) is replaced by the av-

erage state z(t). For the switched BM equations (5.7) this means that we replace

the switched mixed-potential P
σ(x) by its averaged version P

µ(z) — called the

averaged mixed-potential. Hence, we consider averaged BM models of the form

Qż = ∇P
µ(z). (6.20)

For networks containing a single switch, the averaged mixed-potential P
µ(z) can

be considered as a weighted ratio, with weighting parameter µ, between P
1(z) and

P
0(z), and satisfying the consistency conditions:

P
µ(z)

∣
∣
∣
∣
µ=1
= P

1(z), P
µ(z)

∣
∣
∣
∣
µ=0
= P

0(z).

6.5.2 Averaged Mixed-Potential Shaping

Before we can advantageously use the BM equations as a tool for designing PBC’s,

we first need to mimic the design procedure outlined in Section 6.3 in terms of

the averaged switched BM equations (6.20). Regarding Step 1 of Procedure 6.1, we
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start by making a copy of (6.20) in terms of some auxiliary state ξ and add damping

in the errors e � z − ξ. This is tantamount to modifying the mixed content and

co-content functions associated with the averaged mixed-potential, resulting in a

desired closed-loop error potential of the form

P
µ

d
(e) = P

µ(e)
∣
∣
∣
∣
S(µ)=0

−
(

G
µ
a (e) − I

µ
a (e)

)

. (6.21)

The choice of the ‘injected content’ and ‘injected co-content’, represented by G
µ
a (e)

and I
µ

a (e), respectively, follows from the definition of Da(·) in (6.3). To simplify

the notation, let us assume that Da is a constant block diagonal matrix, which can

be partitioned as follows:

Da =





Ra 0

0 Ga



 ,

where Ra (resp., Ga) denotes the symmetric injected resistance (conductance) ma-

trix with a dimension equal to the number of independent inductors (capacitors).

In that case, we may define a resistive ‘injected content’ function

G
µ
a (e1, . . . , enℓ) � −

1

2

nℓ∑

h,j

Rahj
ehej, (6.22)

where Rahj
= Rajh

, and a conductive ‘injected co-content’ function

I
µ

a (enℓ+1, . . . , en) � −
1

2

nc∑

k,l

Gakl
enℓ+kenℓ+l, (6.23)

where Gakl
= Galk

. Note that the minus sign in both functions stems from the fact

that energy is extracted by the controller. This finally yields the desired closed-loop

stabilization error dynamics

Qė −∇P
µ

d
(e) = 0. (6.24)

The associated implicit controller dynamics can be obtained by taking the respec-

tive gradients of the controller mixed-potential

P
µ
c (ξ, e) = P

µ(ξ)
↑

copy of (6.20)

+
(

G
µ
a (eℓ) − I

µ
a (ec)

↑
damping injection

)

, (6.25)

with eℓ = col(e1, . . . , enℓ) and ec = col(enℓ+1, . . . , en), i.e.,

Qξ̇ = ∇P
µ
c (ξ, e). (6.26)

An explicit definition of the controller is obtained proceeding with Step 2 of Pro-

cedure 6.1.

152



§6.5. Power-Based PBC

6.5.3 Tuning of the Power-Based PBC

So far, we have derived the procedure to obtain a PBC strategy in terms of the BM

equations, as is developed in [97, 77] based on the EL formulation. We empha-

size that the PBC design procedure in terms of the BM equations yields exactly the

same controllers as one would obtain using EL-based PBC. However, using the BM

formulation, the controller design procedure is now expressed in terms of a closed-

loop mixed-potential shaping process. Furthermore, it will be shown next that the

present setting provides us a systematic tool for tuning the PBC controllers.

As shown in Chapter 2, the stability criteria developed in [10], can be used to

rule out the existence of self-sustained oscillations. Hence, if we translate the ideas

of [10] to our closed-loop setting, where we assume that the closed-loop error

system is in BM form (6.24), we have strong criteria to tune the various control

parameters. In other words, we can assign lower bounds to the entries of Ra and

Ga appearing in the injected content and co-content functions (6.22) and (6.23),

respectively, as to assure a desired dynamic behavior in terms of, for example, over-

shoot and robustness against load variations.

For the closed-loop error mixed-potential function, a qualitative Lyapunov-

based stability condition for the system (6.24) is stated as follows. Let G
µ

d
and

I
µ

d
denote some desired error content and co-content functions, which can be

deduced from (6.21) as:

G
µ

d
(e) = G

µ(e)
∣
∣
∣
∣
S(µ)=0

− G
µ
a (eℓ), (6.27)

and

I
µ

d
(e) = I

µ(e)
∣
∣
∣
∣
S(µ)=0

− I
µ

a (ec), (6.28)

respectively, and define the matrices






Rd(eℓ)�∇2
eℓ
G
µ

d
(e)

Gd(ec)�∇2
ec
I
µ

d
(e).

Theorem 6.1 (Series Damping) If Rd > 0 is constant, Id(e) → ∞ as |e| → ∞, and
∥
∥
∥
∥L

1
2 R−1

d Λt(µ)C
− 1

2

∥
∥
∥
∥ ≤ 1 − δ, (6.29)

with 0 < δ < 1, then for all |µ| ∈ [0, 1] the solutions of (6.24) tend to zero as

t → ∞.5

5Here, the notation
∥
∥
∥K

∥
∥
∥ denotes the norm of K, defined as

∥
∥
∥K

∥
∥
∥

2
=max

|z|=1

{

(Kz)TKz
}

.
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Proof. Detailed proofs when Λt is a constant matrix are given in [10]. The proofs

for Λt(µ)|µ=1 and Λt(µ)|µ=0, follow in a similar way. Stability of Λt(µ) for any ad-

missible µ follows from the fact that Λt(µ) satisfies the Lipschitz condition since µ

is bounded. Q.E.D.

Remark 6.3 Notice that δmay be considered as a fine-tuning parameter. The prac-

tical relevance of the criterium is illustrated in the following section.

Remark 6.4 Of course, in the previous section we already concluded that if

Dd =





Rd 0

0 Gd



 > 0,

the closed-loop error dynamics converge to zero according to (6.7). However, The-

orem 6.1 (and also Theorem 6.2, as stated below) forms a somewhat more conser-

vative condition to ensure convergence of (6.8), or equivalently, convergence of

(6.24). Moreover, the theorem provides a lower bound on the control parameters

to ensure a ‘reasonably nice’ response in terms of e.g., overshoot, settling-time etc..

To illustrate this point, consider the linearization of (6.24) in the vicinity of the

equilibrium point z̃ = z̃∗ = 0 and µ = µ∗, i.e., δ ˙̃z = Aδz̃, where A denotes the

linearized system matrix. Based on the linearized system it can be shown, in terms

of the complex frequency domain, that if one of the Theorems is satisfied, each

eigenvalue of A lies either on the real axis (away from the origin) or on a circle in

the left-half plane. The radius of this circle can be made arbitrarily small with δ.

The interested reader is referred to [10] for a detailed discussion of this fact.

Although it is assumed that Rd is constant in the first place, the criterion of The-

orem 1 places a constraint on Rd in terms of L, C and Λt(µ) — from which the

control parameter Ra can be determined. Therefore, if Λt(µ) is not constant, it may

be desirable to choose Rd, and thus Ra, as a function of µ in order to fulfill equation

(6.29). Notice that if Theorem 1 is satisfied, stability is guaranteed regardless of Id!

A similar criterion for the Gd-matrix can be stated as follows

Theorem 6.2 (Parallel Damping) If Gd > 0 is constant, Gd(e) → ∞ as |e| → ∞,

and

∥
∥
∥
∥C

1
2 G−1

d Λ
T
t (µ)L− 1

2

∥
∥
∥
∥ ≤ 1 − δ, (6.30)

with 0 < δ < 1, then for all |µ| ∈ [0, 1] the solutions of (6.24) tend to zero as t → ∞.
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6.5.4 Series/Parallel Damping Injection

Apart from the qualitative behavior of the closed-loop system, the criteria of Theo-

rem 6.1 and Theorem 6.2 enable us to choose between two different damping injec-

tion strategies: Theorem 6.1 suggests to add damping at all the inductor currents

by injecting series resistors, while the criterion of Theorem 6.2 suggests to inject

damping at the capacitor voltages by injecting parallel resistors (conductances),

i.e, according to the theorems it is sufficient to modify either the converters con-

tent G
µ(z) or its co-content I

µ(z) according to (6.27) or (6.28), respectively. The

complete PBC design procedure for a power converter network Np can be summa-

rized as follows:

Procedure 6.2

1. Derive the averaged equations of motion in terms of the averaged mixed-

potential, i.e., equate the dynamics of the converter in the form

Np : Qż = ∇zP
µ(z).

2. Choose a desired dissipation structure for the closed-loop error dynamics

Nd : Qė = ∇eP
µ

d
(e),

by selecting either

✦ Series damping injection or

✦ Parallel damping injection,

and invoke Theorem 6.1 or Theorem 6.2, respectively.

3. Derive the implicit controller dynamics from

Nc : Qξ̇ = ∇ξP µ
c (ξ, e),

and solve explicitly for the control µ along the lines of step 2 in Procedure

6.1.

6.6 Examples of Series Damping Power-Based PBC

In this section, we consider two illustrative examples of the series damping PBC

strategy of Theorem 6.1. First, we treat an example where the interconnection
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matrix Λt is constant using the Buck converter, as treated before in Section 6.4.

Secondly, a series damping PBC for the Boost converter is developed and its tuning

rules are derived. Again we point out that the main reason for studying these

two converters is that they describe in form and function a large family of power

converter structures. A complicating property of the Boost converter, as for many

more converter structures, is that due to the nonlinear behavior of the conversion

ratio the converter’s natural resonance frequency is varying with the desired output

voltage6. This means that the tuning criterion will also depend on the desired

output voltage.

6.6.1 The Buck Converter

Let us again consider the single-switch DC/DC Buck converter. The average open-

loop mixed-potential for the Buck network Np reads

P
µ(z) = −µEsz1 −

1

2Ro

z2
2 + z1z2, (6.31)

yielding the averaged dynamics

Np :






−Lż1 =∇z1
P
µ(z) = z2 − µEs

Cż2 =∇z2
P
µ(z) = z1 −

1

Ro

z2,

where z1 and z2 represent the averaged current through the inductor and the volt-

age across the capacitor, respectively, and µ ∈ [0, 1].

In a similar fashion as in Subsection 6.4.1, we first aim at a series damping

injection PBC. According to Procedure 6.2 (step 2), in the BM framework this is

accomplished by selecting a desired closed-loop error mixed-potential of the form

P
µ

d
(e)=P

µ(e)
∣
∣
∣
∣
Es=0
+ G

µ
a (e1)

= e1e2 −
1

2Ro

e2
2 + G

µ
a (e1),

where we set

G
µ
a (e1) = −

1

2
Rae2

1, (6.32)

6This means that for every admissible constant µ, the converter exhibits a different (driving

point) impedance.
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and ej = zj − ξj, for j = 1, 2. This results for the closed-loop error dynamics in

Nd :






−Lė1 =∇e1
P
µ

d
(e) = e2 + Rae1

Cė2 =∇e2
P
µ

d
(e) = e1 −

1

Ro

e2.

The main motivation of writing the closed-loop error dynamics in the latter form

is that we can go one step further than the conventional EL-based approach and

advantageously apply Theorem 6.1. Since

G
µ

d
(e) =

1

2
Rae2

1 +
1

2
e1e2,

we have that Rd = Ra (compare with (6.11)). Hence, substitution of all relevant

parameters into Theorem 6.1 yields
∥
∥
∥
∥
∥
∥
∥

1

Ra

√

L

C

∥
∥
∥
∥
∥
∥
∥

≤ 1 − δ⇔ Ra ≥
1

1 − δ

√

L

C
, (6.33)

for all 0 < δ < 1.

The associated implicit controller dynamics can be obtained by taking the re-

spective gradients of the controller mixed-potential

P
µ
c (ξ, e1) = P

µ(ξ) + G
µ
a (e1), (6.34)

i.e.,

Nc :






−Lξ̇1 =∇ξ1P
µ
c (ξ, e1) = −µEs + ξ2 − Ra(z1 − ξ1)

Cξ̇2 =∇ξ2P
µ
c (ξ, e1) = ξ1 −

1

Ro

ξ2.

(compare with (6.12)). An explicit definition of the controller is obtained pro-

ceeding with Step 2 of Procedure 6.1, resulting in the same controller as found in

(6.13).

6.6.2 The Boost Converter

Let us next study the series PBC of the elementary Boost converter shown in Figure

5.2. Replacing the actual variables by their average values, the open-loop averaged

mixed-potential for the network Np takes the form

P
µ(z) = −Esz1 −

1

2Ro

z2
2 + (1 − µ)z1z2. (6.35)
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Hence,

Np :






−Lż1 =∇z1
P
µ(z) = (1 − µ)z2 − E

Cż2 =∇z2
P
µ(z) = (1 − µ)z1 −

1

Ro

z2,
(6.36)

where z1 and z2 denote the average inductor current and capacitor voltage, respec-

tively. In a similar fashion as for the Buck converter, we aim at a desired closed-loop

error mixed-potential of the form

P
µ

d
(e)=P

µ(e)
∣
∣
∣
∣
Es=0
+ G

µ
a (e1)

= (1 − µ)e1e2 −
1

2Ro

e2
2 + G

µ
a (e1),

where we again set

G
µ
a (e1) = −

1

2
Rae2

1, (6.37)

and ej = zj − ξj, for j = 1, 2. This results for the closed-loop error dynamics in

Nd :






−Lė1 =∇e1
P
µ

d
(e) = (1 − µ)e2 + Rae1

Cė2 =∇e2
P
µ

d
(e) = (1 − µ)e1 −

1

Ro

e2,

where, like in the Buck converter case, Rd = Ra. Hence, substitution of all relevant

parameters into Theorem 6.1 yields
∥
∥
∥
∥
∥
∥
∥

1 − µ
Ra

√

L

C

∥
∥
∥
∥
∥
∥
∥

≤ 1 − δ⇔ Ra ≥
1 − µ
1 − δ

√

L

C
, (6.38)

for all 0 < δ < 1.

The associated implicit controller dynamics can be obtained by taking the re-

spective gradients of the controller mixed-potential

P
µ
c (ξ, e1) = P

µ(ξ) + G
µ
a (e1), (6.39)

i.e.,

Nc :






−Lξ̇1 =∇ξ1P
µ
c (ξ, e1) = −Es + (1 − µ)ξ2 − Ra(z1 − ξ1)

Cξ̇2 =∇ξ2P
µ
c (ξ, e1) = (1 − µ)ξ1 −

1

Ro

ξ2.
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An explicit definition of the controller is obtained proceeding with Step 2 of Proce-

dure 6.1. As shown in [77], this is accomplished by choosing an indirect regulation

scheme selecting the control law

µ = 1 −
1

ξ2

(

Es − Ra(z1 − ξ∗1 )
)

, ξ2(0) > 0,

where the desired inductor current is given by ξ∗1 = U2
d
/(EsRo), and ξ2 is the solu-

tion of the nonlinear differential equation

Cξ̇2 = ∇ξ2P
µ
c (ξ, e1)

∣
∣
∣
∣
µ=1−ξ−1

2
(Es−Ra(z1−ξ∗1 ))

.

6.7 Examples of Parallel Damping Power-Based PBC

In this section, we illustrate the concept of parallel damping injection. As is done

for the series damping injecting controllers, we again use the Buck and Boost type

converters to illustrate the rationale of the approach. It is shown before that this

concept has some advantages in contrast to the series damping injection strategy,

since it provides an easier solution to preserve the desired equilibrium in case of an

unknown load. Moreover, it is shown that parallel damping injection also enables

us to regulate a non-minimum phase circuit by measuring its non-minimum phase

output only — as is the case for the Boost converter shown in this section.

6.7.1 The Buck Converter

The parallel damping scheme is accomplished as follows. Instead of injecting

damping in the undamped error state e1, we aim at injecting conductance only,

resulting in a desired error mixed-potential

P
µ

d
(e) = e1e2 −

1

2Ro

e2
2 − I

µ
a (e2),

where we set

I
µ

a (e2) = −
1

2Ra

e2
2. (6.40)

Hence, the closed-loop error dynamics now read

Nd :






−Lė1 =∇e1
P
µ

d
(e) = e2

Cė2 =∇e2
P
µ

d
(e) = e1 −

(

1

Ro

+
1

Ra

)

e2.
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The remaining part of the PBC design goes along the lines of Procedure 6.2, where

we now need to invoke Theorem 6.2. Let Go = R−1
o and Ga = R−1

a , then Gd = Go+Ga,

and hence, the tuning criterion for the injected damping Ga yields

Ga ≥
1

1 − δ

√

C

L
− Go. (6.41)

Remark 6.5 Interestingly, another way to obtain a lower bound on Ga is recently

proposed in [51]. This method uses the impedance properties of the storage ele-

ments, L and C, to find a precise match with the (closed-loop) load conductance

Go + Ga. For the parallel damping PBC regulated buck converter we need to con-

sider the closed-loop error equation for the average capacitor voltage e2, i.e.,

ë2 +
Go +Ga

C
︸���︷︷���︸

2βωo

ė2 +
1

LC
︸︷︷︸

ω2
o

e2 = 0,

where ωo is the resonance frequency and β is the damping factor. From classical

control theory we know [84] that in order to have a perfect damping, β has to

satisfy β = 1 (critical damping). This is accomplished if

(
Go +Ga

C

)2

= 4ω2
o,

and thus by letting

Ga =
1

Zc

− Go =
1 − GoZc

Zc

, (6.42)

where Zc �
1
2

√

L/C is referred to as the characteristic impedance of the circuit. If

now β > 1, then still a non-oscillatory response is guaranteed as long as the injected

damping satisfies Ga > (1−GoZc)/Zc. However, for values β≫ 1, the response will

become sluggish. Notice that if Go > Z−1
c , the necessary injected damping to satisfy

equation (6.42) becomes negative, i.e., Ga < 0. Strictly speaking, the controller

then provides energy to the circuit and loses its passivity properties. On the other

hand, consider the time-derivative of the closed-loop error energy function H (e)

along the trajectories of the closed-loop error dynamics Ḣd(e) = −(Go+Ga)e
2
2 ≤ 0.

It is easily checked from equation (6.42) that the closed-loop dissipation Go + Ga

remains non-negative for all Zc > 0, even if equation (6.42) leads to Ga < 0, and

thus passivity of the closed-loop system is preserved. Hence, by using Lyapunov

theory and La Salle’s invariance principle, see e.g. [105], one can easily proof that
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the proposed controller indeed stabilizes the closed-loop dynamics of the system

for all 0 ≤ |Ga| < Go <∞. For this reason, we refer to a PBC based on the parallel

damping strategy as a passivity-preserving controller (PPC).

Remark 6.6 It is easily checked that for δ = 1
2
, the BM criterion (6.41) precisely

coincides with the characteristic impedance matching criterion (6.42).

6.7.2 The Boost Converter

Similar to the Buck converter, the regulation scheme based on parallel damping

injection for the Boost converter can be summarized as follows. The desired error

mixed-potential is set as

P
µ

d
(e) = (1 − µ)e1e2 −

1

2Ro

e2
2 − I

µ
a (e2),

where

I
µ

a (e2) = −
1

2Ra

e2
2, (6.43)

such that the closed-loop error dynamics now read

Nd :






−Lė1 =∇e1
P
µ

d
(e) = (1 − µ)e2

Cė2 =∇e2
P
µ

d
(e) = (1 − µ)e1 −

(

1

Ro

+
1

Ra

)

e2.

Hence, application of Theorem 6.2 yields

Ga ≥
1 − µ
1 − δ

√

C

L
− Go. (6.44)

where Go = R−1
o and Ga = R−1

a .

Proposition 6.2 Given a desired constant value Ud ≥ Es for the output capacitor

voltage of a Boost converter and under the condition that (6.44) is satisfied, the

dynamically generated parallel damping-based duty ratio function

µ = 1 −
Es

ξ2
, (6.45)

where ξ2, for ξ2(0) > 0, is the solution of the nonlinear differential equation

Cξ̇2 = Go

U2
d

ξ2
− (Go +Ga)ξ2 +Gaz2, (6.46)
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locally asymptotically stabilizes the state trajectories of the average PWM model

(6.36) with load uncertainty ∆Ro, towards the equilibrium point (z∗1 , z∗2 ), with

z∗1 =
U2

d
(

Ro + ∆Ro

)

Es

, ∆Ro > −Ro, (6.47)

and z∗2 = Ud, while µ converges to a constant value µ∗ = 1 − EsU
−1
d

.

Proof. The associated implicit controller dynamics are obtained by taking the

respective gradients of the controller mixed-potential

P
µ
c (ξ, e1) = P

µ(ξ) − I
µ

a (e2), (6.48)

yielding

−Lξ̇1 =∇ξ1P
µ
c (ξ, e1) = −Es + (1 − µ)ξ2

Cξ̇2 =∇ξ2P
µ
c (ξ, e1) = ξ1 − Goξ2 +Ga(z2 − ξ2).

Since we can not control the output capacitor voltage directly due to its unstable

zero-dynamics, we control it indirectly by setting ξ∗1 = U2
d
/(ERo), which yields after

a few algebraic manipulations the controller (6.45)–(6.46).

In order to show that this is indeed a suitable controller for the stabilization

task with respect to the internal stability, i.e., although we only measure the non-

minimum phase output variable z2, we need to show that the zero-dynamics of

the controller remain stable, we proceed by eliminating ξ2 from equation (6.46) by

using equation (6.45). Then, after some algebraic manipulations we obtain

µ̇ = Go

U2
d

CE2
(1 − µ)3

+Ga

z2

CE
(1 − µ)2 −

Go +Ga

C
(1 − µ). (6.49)

The zero-dynamics are obtained by letting z2 coincide with its desired value in

equation (6.49), that is z2 = Ud. The phase-plane diagram of equation (6.49), de-

picted in Figure 6.3, shows that µ⋆ = 1 − EU−1
d

for all E ≤ Ud < ∞ is a locally

stable equilibrium point, while µ = 1 (Ud = ∞) is unstable. Instability of µ = 1

corresponds to the fact that if the switch is in the ON-position for too long, the

current through the inductor increases until the converter blows up. We conclude

that the controller, although based on measuring the non-minimum phase output

voltage only, is feasible for all µ in the range 0 ≤ µ < 1. The proof of local asymp-

totic stability for the parallel damping PBC follows from Theorem 6.2 and by the

fact that Λt(µ) is Lipschitz. Furthermore, the proof that z∗2 = Ud is preserved in the

equilibrium in spite of uncertainties in the load is easily seen by considering the

equilibria of equation (6.36) and equation (6.46). Q.E.D.
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0 µ = µ∗ µ = 1

µ

µ̇

Physically meaningful area

Stable Unstable

Fig. 6.3. Zero-dynamics for the parallel damping PBC controlled boost converter.

6.7.3 Discussion

The design of the passivity-preserving control algorithms based on either series or

parallel damping injection scheme is carried out for the average PWM models of

the buck and boost type converters. If the constant PWM switching frequency is

chosen sufficiently high these models will capture the essential dynamic behavior

of the converters, and, as a result, the controllers are well defined. Although we

have only treated two simple examples, the design and tuning methodology is also

applicable to a broad class of other power electronic circuits, as long as the average

PWM model of such circuit has a BM structure. A multi-switch AC/DC converter

will be treated in Section 6.8.

Ga(µ)

✻

✲

✲ ✲

✲

✛

✲

✛

❄

Ts

✛✛
Setpoint

µ̂

µ Passivity–Preserving

Duty Ratio Synthesizer

Power Converterµ̂-to-PWM

✲

uc

Limiter

iℓ

Fig. 6.4. General feedback representation of a parallel damping PBC regulated power converter.
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6.7.4 Numerical Results

The general closed-loop representation of the parallel damping PBC design phi-

losophy regulating a real power converter, i.e., with the actual current and voltage

states instead of the average ones, is depicted in Figure 6.4. Here Fs = T−1
s de-

notes the PWM frequency and Ga(µ) is a matrix representing the virtual injected

parallel damping conductances. Notice that in principle only the capacitor volt-

ages used for feedback have to be measured, except in some situations where it is

also possible to design a controller based on capacitor current feedback as is done

here for the buck type converter. If the converter has more than one switch, say

m switches, then µ represents an m-dimensional column vector. In the remainder

of this section, we test and compare both series and parallel tuning criteria using

Matlab/Simulink. We will use a boost converter with the discrete values for the

switch. This means that for the series damping injection scheme the only signal

used for feedback is the actual (i.e., not averaged) inductor current x1 ≥ 0, and for

the parallel damping scheme we only use the ‘real’ capacitor voltage x2 ≥ 0. The

design parameters of the Boost converter are chosen as follows:

Es = 1 V, L = 10 µH, C = 50 µF, Go =
1

5
Ω

−1,

and the PWM switching frequency is set to Fs = 50 kHz. The initial conditions are

set to x1(0) = x2(0) = 0 and ξ2(0) = 1. In Figure 6.5, a typical open-loop start-up

response is shown for the boost converter. The response shows a large overshoot

and is highly oscillatory. Let us next close the loop and set the injected damping Ra

(Ga) as follows:

Ra(µ) =
1 − µ
1 − δ

√

L

C
,



Ga(µ) =
1 − µ
1 − δ

√

C

L
− Go



 .

In Figure 6.6 and 6.7, the responses of the output capacitor voltage are depicted for

different setpoints. We observe that for both schemes the controller, with δ = 1
2
,

rapidly stabilizes the capacitor voltages without any overshoot and oscillations.

However, the series damping PBC of Figure 6.6 does not reach the desired voltage

x2 = Ud (dashed line), while the parallel scheme of Figure 6.7 reaches the setpoints

within 2% accuracy. The steady state error caused by the series damping PBC is

due to the fact that the ripple in the inductor current is usually much higher than

the ripple in the output voltage. A better accuracy could be obtained by increasing

the PWM frequency or by filtering the feedback signals using a Notch filter. Notice

that the ‘undershoot’ in the capacitor voltage is caused by the non-minimum phase
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Fig. 6.5. Typical open-loop start-up response for Ud = 5V.

nature of the converter. Furthermore, Figures 6.8 and 6.9 show the closed-loop re-

sponse for load perturbations. These perturbations are set to ∆Go = +
1
2
GoΩ

−1,

while both schemes are adjusted to a nominal capacitor voltage of 5V. As expected

from the theory, the parallel damping scheme rapidly manages to restore the ca-

pacitor voltage to its nominal value, while the series damping scheme does not

manage to restore but forces the closed-loop to deviate from the desired voltage.
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Fig. 6.6. Closed-loop response for different setpoints Ud based on series damping: output capacitor

voltage response (top); injected damping Ra(µ) (bottom).
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Fig. 6.7. Closed-loop response for different setpoints Ud based on parallel damping: output capaci-

tor voltage response (top); injected damping 1/Ga(µ) (bottom).
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Fig. 6.8. Closed-loop response for load perturbations ∆Go = +
1
2
Go: series damping PBC.
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Fig. 6.9. Closed-loop response for load perturbations ∆Go = +
1
2
Go: parallel damping PBC.

6.8 Power-Based PBC of a Multi-Switch Converter

So far, the ideas were only studied for relatively simple DC/DC switched-mode

converters (like the elementary Buck and Boost converters). In this section, we

study a more elaborate switched-mode converter that is widely used and studied

in industry: the three-phase AC/DC voltage-source (Boost type) rectifier treated

in Section 5.5. As will become clear, for the three-phase voltage-source rectifier

the nice robustness properties of the parallel damping injection PBC strategy will

be lost due to the structure at the AC-side of the system. However, comparing the

structure of the system with the DC/DC Boost converter system results in a pre-

compensation scheme that can be interpreted as a cancellation of the AC-structure

in the system. Then, the ideas of previous sections can be applied straightfor-

wardly, such that the parallel damping injection scheme results in a robust against

load variation PBC scheme.

6.8.1 Averaged Model

In the previous chapter, Section 5.5, we have studied two different switched-mode

models of the three-phase voltage-source rectifier for discrete values of the switch.
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We prefer to take line-to-line description (5.28) as a starting point for our analysis.

For the derivation of a power-based PBC we need to consider the rectifiers

pulse-width modulated (PWM) dynamics, instead of the discrete switched-mode

behavior. Recall that, under the condition that the switching frequency is suffi-

ciently high, we may replace the discrete switching function by its corresponding

duty-ratio. For the three-phase rectifier (5.28) this means that we interchange the

line-to-line switching vectorσll with its corresponding duty ratios µ. Furthermore,

let zi = col(zi1 , zi2 , zi3) denote the average line-to-line input currents, zo denote the

average output capacitor voltage, and let the line-to-line source voltages be the

balanced set

Ell(t) :






E12(t)=Uf cos(ωt)

E23(t)=Uf cos(ωt − 2π/3)

E31(t)=Uf cos(ωt + 2π/3),

with Uf the peak amplitude, and ω the radial frequency. Hence, we need to con-

sider an averaged parameterized mixed-potential P
µ(z), which for the rectifier of

Figure 5.4 takes the form (see (5.29))

P
µ(z, t) = −ET

ll (t)zi + zT
i µzo −

1

2Ro

z2
o . (6.50)

Taking the respective gradients of (6.50) yields the corresponding averaged differ-

ential equations

Np :






−Lf żi =∇zi
P
µ(z, t) =−Ell(t) + µzo

Cożo =∇zoP
µ(z, t)= µTzi −

1

Ro

zo.
(6.51)

Remark 6.7 Note that when the duty ratio functions take the extreme values µ =

(0, 0, 0), µ = (0, 0, 1), . . . ,µ = (1, 1, 1), one recovers the corresponding parameter-

ized potentials P
σ — which are eight in total (see Section 5.5).

6.8.2 Power-Based Control: Parallel Damping Injection

The rectifier must fulfill two objectives:

C.1 The output capacitor voltage should maintain a constant desired value z∗o =

Ud;
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C.2 The rectifier should operate with unity power factor, which means that the

line-to-line input inductor currents zi should be in phase with the line-to-

line source voltages Ell, i.e., zi = If U−1
f

Ell, where If denotes the amplitude of

the averaged input currents, respectively.7

Consider then the error variables ei = zi − ξi, and eo = zo − ξo, where ξ(·) are some

auxiliary variables (i.e., desired trajectories for zi and zo) to be defined later. Fol-

lowing the parallel damping-based PBC methodology, we like to shape the closed-

loop error mixed-potential to:

P
µ

d
= eT

i µeo −
1

2

(

Go +Ga

)

e2
o, (6.52)

where Go = R−1
o and Ga = R−1

a is the injected ‘virtual’ conductance in parallel with

the output capacitor Co. This yields the desired closed-loop stabilization error

dynamics

Nd :






−Lf ėi = µeo

Coėo = µ
Tei −

(

Go +Ga

)

eo,
(6.53)

Invoking Theorem 6.2, we can deduce from the latter set of equations that the

control objective is achieved if we set

Ga ≥
max

{

µ
}

1 − δ

√

Co

Lf

− Go, (6.54)

where 0 < δ < 1 is a fine-tuning parameter. The associated (implicit) controller dy-

namics can be obtained by taking the respective gradients of the controller mixed-

potential

P
µ
c (ξ, zo) = P

µ(z)

∣
∣
∣
∣
∣
z=ξ

−
1

2
Ga

(

zo − ξo
)2

, (6.55)

i.e.,

Nc :






−Lf ξ̇i =−Ell + µξo

Coξ̇o = µ
Tξi − Goξo +Ga

(

zo − ξo
)

.
(6.56)

Since the derivation of an explicit definition of the control involves a partial

system inversion it is necessary to ensure that the associated state(s) are minimum

7Note that this defines a tracking problem.
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phase, i.e., the zero-dynamics of the part of the system to be inverted are stable. It is

shown in e.g. [32] that the only feasible solution is to indirectly control the output

voltage via regulation of the input inductor currents by setting ξi = z∗i , where z∗i =

If U−1
f

Ell denote the desired ‘equilibrium’ values for the input inductor currents.

Hence, by substituting ξi = z∗i in the implicit controller dynamics resulting from

the respective gradients of (6.55) and solving for µ, yields the explicit control laws:

µ =
2

ξo

(

Ell − Lf ż∗i
)

, (6.57)

where the auxiliary variable ξo, with ξo(0) > 0, is the solution of the nonlinear

differential equation

ξ̇o =
1

Co

∇ξoP
µ
c (ξ, zo)

∣
∣
∣
∣
µ=2ξ−1

o (Ell−Lf ż∗
i )

. (6.58)

Convergence of the errors ei → 0, eo → 0, as well as ξo → Ud can be proved by

substituting (6.57) into (6.53), and by simultaneously evaluating (6.58).

The unavoidable practical problem that arises is when the load resistor is not

exactly known. This is most easily shown as follows. Suppose the load is composed

of a known nominal value Go and a bounded uncertainty ∆Go, such that Go +

∆Go > 0. In that case, the input current amplitude, If , is directly dependent on the

unknown load resistor, i.e.,

If (G
′
o) = G′

o

U2
d

Uf

, (6.59)

where G′
o � Go + ∆Go. On the other hand, since ∆Go is unknown, the nominal

set-point used for the indirect regulation scheme is

In = Go

U2
d

Uf

, (6.60)

which means that (6.57) can be rewritten

µ =
2

ξo

(

Ell −
Lf In

Uf

Ėll

)

, (6.61)

where the entries of Ėll take the form −ωUf sin(ωt ± · · · ), etc.. Hence, if ∆Go � 0,

the current error ei will not converge to zero as desired, but instead ei → If −In � 0.

A similar discussion holds for eo, resulting in the fact that z∗o � Ud. Since it is physi-

cally impossible to manipulate ∆Go, the nice features of parallel damping injection,
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as for the class of DC/DC converters before, are lost. This means for the current

control scenario that the only solution to robustify the closed-loop is to extend the

PBC with an adaptive mechanism (or outer-loop PI controller [57]) to estimate the

actual load resistor G′
o = Go+∆Go. However, this results in a computationally more

expensive controller. Additionally, the passivity properties of the closed-loop will

then be lost. Thus, we look for a (pre-)compensation scheme that does not have

these drawbacks. In order to make a more transparent analysis of the problem, it is

beneficial to consider the Park transformation, which is done in the next section.

6.8.3 Pre-Compensation Scheme

Since the three-phase source is balanced8, we apply a Park transformation to the

open-loop dynamics (6.51). This means that, instead of the three-phase input

inductor currents zi and duty ratios µ, we consider their associated direct and

quadrature values, zd, zq, µd, and µq, respectively, in the so-called dq-frame, which

rotates at a constant angular frequency ω. For details, see e.g., [59]. The resulting

open-loop dynamics in the dq-frame read:

Np :






Lf żd =

√

3

2
Uf −ωLf zq − µdzo

Lf żq =ωLf zd − µqzo

Cożo = µdzd + µqzq − Gozo.

(6.62)

In the dq–frame, the control objective can be reformulated as follows: Find con-

trols µd and µq such that for all unknown G′
o > 0:

C.1’ The output capacitor voltage converges to its desired equilibrium value z∗o =

Ud;

C.2’ The power factor of the rectifier asymptotically converges to one. That is,

z∗
d
= Id and z∗q = 0, where

Id(G′
o) = G′

o

U2
d

U ′
f

, U ′
f �

√

3

2
Uf . (6.63)

Thus, the control objective reduces to a set-point regulation problem. Via the

Park transformation, the cross terms −ωLf zq and +ωLf zd are directly related to

8See Section 5.5.
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µdzo

µqzo

µdzd µqzq zo Go + ∆GoCL

L

zd

zq

U ′
f

Fig. 6.10. Equivalent network representation of the pre-compensated rectifier.

the derivative terms Lf ξ̇i in (6.57), which are causing the sensitivity to unmodeled

changes in the load resistor. If we design a PBC based on (6.62), these cross terms

appear in the controls µd and µq, which according to (6.63) emphasizes this sen-

sitivity. To overcome this problem, suppose that we are able to precisely cancel

the cross terms −ωLf zq and +ωLf zd. Theoretically, this could be accomplished by

selecting controls of the form (some closely related ideas can be found in [34])

µd =−
ωLf zq

zo

+ µ′d

µq =+
ωLf zd

zo

+ µ′q,

(6.64)

for all zo(0) > 0, and where µ′
d

and µ′q are some new control inputs. We come back

to the practical issues later on. Hence, substitution of (6.64) into (6.62) yields for

the resulting ‘pre-compensated’ dynamics

N
′

p :






Lf żd =U ′
f
− µ′

d
zo

Lf żq =−µ′qzo

Cożo = µ
′
d
zd + µ

′
qzq − Gozo.

(6.65)

It is recognized that we now have two separate DC input stages which are con-

nected to the DC output stage as shown in Figure 6.10.

In a similar fashion as before, we can define a desired mixed-potential in terms of

the error variables ed = zd −ξd, eq = zq −ξq, and eo = zo −ξo, and try again a parallel

172



§6.8. Power-Based PBC of a Multi-Switch Converter

damping injection scheme, i.e.,

P
µ

d
(e) =

(

µ′ded + µ
′
qeq

)

eo −
1

2
Goe2

o −
1

2
Gae2

o.

The error stabilization dynamics are

N
′

d :






−Lf ėd =∇ed
P
µ

d
(e)= µ′

d
eo

−Lf ėq =∇eqP
µ

d
(e) = µ′qeo

Coėo =∇eoP
µ

d
(e) = µ′

d
ed + µ

′
qeq −

(

Go +Ga

)

eo.

Again by invoking Theorem 6.2, the control objective is achieved if we set

Ga ≥
max

{

µd,µq

}

1 − δ

√

Co

Lf

− Go, (6.66)

for all 0 < δ < 1, whereas the associated (implicit) controller dynamics are ob-

tained by taking the respective gradients of the controller mixed-potential

P
µ
c (ξ, e) = −U ′

f ξd +
(

µ′dξd + µ
′
qξq

)

ξo −
1

2
Goξ

2
o −

1

2
Ga

(

zo − ξo
)2

, (6.67)

i.e.,

Nc :






−Lf ξ̇d =−U ′
f
+ µ′

d
ξo

−Lf ξ̇q = µ
′
qξo

Coξ̇o = µ
′
d
ξd + µ

′
qξq − Goξo +Ga

(

zo − ξo
)

.

The explicit PBC controls µ′
d

and µ′q are found by letting ξd = GoU2
d
/U ′

f
and ξq = 0,

i.e.,

µ′d =
U ′

f

ξo
, µ′q = 0, (6.68)

where the auxiliary variable ξo, with ξo(0) > 0, now is the solution of

ξ̇o =
1

Co

∇ξoP
µ
c

∣
∣
∣
∣
∣
µ′

d
=ξ−1

o U ′
f
, µ′q=0

. (6.69)
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Three-Phase AC/DC
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Fig. 6.11. Feedback representation of a parallel damping injection PBC regulated three-phase

voltage-source rectifier.

The rectifier dynamics (6.62), with ∆Go � 0, in closed-loop with the inner-

loop pre-compensator (6.64) and the outer-loop parallel damping injection PBC

scheme (6.68)—(6.69) then take the form:

N
′

cl :






Lf żd =U ′
f −

Ud

ξo
zo

Lf żq = 0

Cożo =

U ′
f

ξo
zd −

(

Go + ∆Go

)

zo

Coξ̇o =Go

U2
d

ξo
−
(

Go +Ga

)

ξo +Gazo.

(6.70)

We note that control objective C.2 is always satisfied since the closed-loop is stable

by construction, the direct and quadrature current equations are decoupled, and

the time-variation of zq is always zero. Regarding C.1, it is easily observed that,

by setting the left-hand sides of (6.70) equal to zero, zo → ξo, which implies that

zo = z∗o = Ud and necessarily zd = z∗
d
= Id, for time goes to infinity.

6.8.4 Practical Issues

We have shown that, under the condition that we can find controls (6.64), the ro-

bustness ideas using parallel damping injection presented in the previous sections
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still remain valid. Of course, one practical assumption is that zd, zq and zo are

available for measurement (i.e., full-state knowledge is necessary). Additionally, in

order to fully cancel the cross terms in the dq–frame, the terms ‘±ωLf ’ needs to

be known exactly. Another problem is the fact that the pre-compensation scheme

involves a division by zo, which is usually equal to zero at start-up. Since in a ‘real-

world’ rectifier the input inductances and ω are usually constant, or at most (very)

slowly varying, we could extend the controller with an adaptive mechanism that

estimates the value of of the terms ‘±ωLf ’ during the start-up of the rectifier. In

this way, we have shifted the problem of a constant adaptation of the load resistor,

as it is usually done, to only a temporary adaptation of the inductance values and

the value the angular frequency. This is an additional computational effort, how-

ever, in practice this is often far less costly than the computational effort that would

be necessary for changes in the load resistor. Concerning the division problem, it

is easily shown that if we replace zo in (6.64) by its desired equilibrium value Ud,

which is strictly positive by definition, we obtain the same equilibrium results as

concluded at the end of the previous section. Summarizing, we have the following

statement.

Proposition 6.3 Consider the rectifier dynamics (6.62), in closed-loop with the

controller

µd = −
ωLf zq

Ud

+
Ud

ξo
, µq =

ωLf zd

Ud

, (6.71)

where ξo, with ξo(0) > 0, is the solution of (6.58). Under the condition that the

injected parallel conductance Ga satisfies (6.66), then the trajectories of the closed-

loop system converge to their desired equilibrium values in a non-oscillatory way,

regardless of ∆Go > −Go.

6.8.5 Numerical Results

The general closed-loop representation of the parallel damping PBC design phi-

losophy regulating the ‘real’ switched three-phase rectifier, i.e., with the switched

current and voltage states instead of the average ones, is depicted in Figure 6.11.

Here, Fs denotes the PWM (pulse-width modulation) frequency. Limiters are used

to ensure the duty-ratios of the actual switch control signals do not exceed their

physical boundaries. For demonstrating the validity of the theoretical derivations

and developments, a simulation study using Matlab/Simulink is performed. The
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Fig. 6.12. Closed-loop response to step changes in the load resistor. The top figure shows the

responses of the input inductor currents in the dq-frame, while the bottom figure shows the output

capacitor response. At t = 0.02 sec a load perturbation of ∆Go = − 1
2
Go is applied, and at t = 0.1 sec

∆Go = +
1
2
Go.

design parameters of the rectifier are set as follows:

Uf = 100 V; Lf = 10 mH; Co = 47 µF; Go =
1

220
Ω

−1; Fs = 20 kHz.

Suppose it is desired that the rectifier operates at a constant DC output voltage

Ud = 150 V. The load perturbations are set as follows:

∆Go =






0 for 0 ≤ t < 0.02

− 1
2
Go for 0.02 ≤ t < 0.1

+
1
2
Go for 0.1 ≤ t < 0.2.

The results are depicted in Figure 6.12. The top figure shows the responses of

the switched-mode input inductor currents id(t) and iq(t), and the bottom figure

shows the response of the switched-mode output capacitor voltage uco(t). As pre-

dicted from theoretical analysis in the previous section, the currents store to their
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Fig. 6.13. AC-side current responses in steady state for ∆Go = − 1
2
Go. The dashed lines represent the

scaled three-phase source voltages.

desired equilibrium values i∗
d
= Id and i∗q = 0, and the output capacitor voltage

rapidly restores to its desired value Uo without any overshoot due to the parallel

damping resistor value defined in (6.66). Hence, the control objective C.1–C.2 is

achieved. Also notice that the input inductor currents are precisely in phase with

the source voltages as shown in Figure 6.13.

6.9 Retrospection

In this chapter, the passivity-based controller (PBC) design procedure for Euler-

Lagrange EL systems in the context of power converters is rewritten in terms of the

Brayton-Moser equations. Besides the stability theorems proposed in this paper,

the advantage of this setting is that the states to be used for feedback are directly

in terms of physically measurable quantities, i.e., currents and voltages. This in

contrast to Lagrangian or Hamiltonian systems, where the coordinates are usu-

ally the charges and the fluxes, which in most cases can not be measured directly.

Additionally, the assignment of parallel damping does in general not involve the

use of current sensors but only needs the measurements of the voltages. Based

on the studied DC/DC converter examples, it appears that a major advantage of

parallel damping in comparison with series damping injection is that it robusti-

fies the closed-loop system in the sense that it does not require adaptive extensions

in case the load is unknown or varying. However, in the case of AC/DC convert-

ers, it may be necessary to apply a pre-compensation on the AC input stage first.

This pre-compensation scheme may give rise to another type of robustness prob-

lems, namely a closed-loop system that is not robust against variations of the input
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inductances. Nevertheless, it seems that this can be easily solved by adding an ad-

ditional adaptive mechanism that compensates for these variations. This appears

to be more practically appealing than the alternative of adding an adaptive mech-

anism for the load variations. Additionally, the idea of parallel damping injection

provides a method to control non-minimum phase circuits based on the corre-

sponding non-minimum phase output(s) only.
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Nonlinear Physical Systems
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Chapter 7

A Novel Power-Based Description of

Mechanical Systems

This chapter is focused on the construction of a power-based modeling framework

for a class of mechanical systems. Mathematically this is first formalized by prov-

ing that every standard mechanical system (with or without dissipation) can be

written as a gradient vectorfield with respect to an indefinite metric. The novel

aspect of the method is that the gradient vectorfield is represented by a potential

function having the units of mechanical power. The form and existence of this

function appears to be the precise mechanical analogue of Brayton and Moser’s

mixed-potential function discussed in previous chapters for nonlinear electrical

systems. Finally, the method is extended to general port-Hamiltonian systems in

which the difference between the interconnection and the damping matrix is reg-

ular. This enables us to apply the previous developed theory to systems beyond

nonlinear electrical networks.

7.1 Introduction and Motivation

It is well-known that a large class of physical systems (e.g., mechanical, electri-

cal, electro-mechanical, thermodynamical, etc.) admits, at least partially, a rep-

resentation by the Euler-Lagrange or Hamiltonian equations of motion, see e.g.

[1, 61, 77, 104, 105] and the references therein. A key aspect of both sets of equa-

tions, which lie at the heart of theoretical physics, is that the energy storage in

the system plays a central role. For standard mechanical systems with n degrees

of freedom, and locally represented by n generalized displacement coordinates
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q = col(q1, . . . , qn), the Euler-Lagrange equations of motion are given by

d

dt

(

∇q̇L (q, q̇)
)

−∇qL (q, q̇) = τ, (7.1)

where q̇ = col(q̇1, . . . , q̇n) denote the generalized velocities, and L (q, q̇) represents

the Lagrangian function, which is defined by the difference between the kinetic

co-energy T
∗(q, q̇) = 1

2
q̇TM(q)q̇ and the potential energy V (q), i.e., L (q, q̇) =

T
∗(q, q̇) − V (q). The positive definite symmetric n × n matrix M(q) is a called

the inertia (or generalized mass) matrix, Usually the forces τ are decomposed into

dissipative forces and generalized external forces. Equations of the form (7.1) rep-

resent a force-balance.

The relation between the Euler-Lagrange equations and the Hamiltonian equa-

tions is classically established as follows. If we define the generalized momenta

p = ∇q̇L (q, q̇), with p = col(p1, . . . , pn), then the equations of motion, as originally

described by the set of second-order equations (7.1), can be described by a set of

2n first-order equations:

dq

dt
=∇pH (q, p)

dp

dt
=−∇qH (q, p) + τ.

(7.2)

Here, H (q, p) represents the Hamiltonian function, obtained by taking the Legen-

dre transformation [1] of L (q, q̇), i.e., H (q, p) = T (q, p) + V (q), where

T (q, p) =
1

2
pTM−1(q)p

denotes the kinetic energy. (Notice that M−1(q) is well defined since M(q) > 0 for

all q by definition.) Equations of the form (7.2) are referred to as the Hamiltonian

system equations of motion.

The relationship between (7.1) and (7.2) is graphically represented in the dia-

gram shown in Figure 7.1 (solid lines). As discussed above, the dynamics of a me-

chanical system described by the Euler-Lagrange equations (7.1) are represented

in the displacement and velocity space, i.e., qi ∈ Q and q̇i ∈ V, i = 1, . . . , n, respec-

tively. Similarly, the dynamics of a mechanical system described by the Hamilto-

nian equations (7.2) are represented in the displacement and momentum space,

i.e., qi ∈ Q and pi ∈ P, respectively. Figure 7.1 also suggests that there exists a dual

form of the equations (7.1) in the sense that a mechanical system is expressed in
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V Q

PF

d
dt

d
dt

L

??? H

L
∗

Fig. 7.1. Mechanical configuration space quadrangle: The symbols Q, P, V and F denote the spaces

of the generalized displacements, momenta, velocities and forces. The solid and dashed diagonal

lines represent the directions for the Legendre transformations of the Lagrangian and co-Lagrangian,

respectively, in relation to the Hamiltonian; the question marks denote the fourth equation set to be

explored in this paper. Notice that the relation between the spaces Q and V, and similarly between P

and F, is the d/dt operator.

terms of a set of generalized momenta and its time-derivatives, which represent a

set of generalized forces.

In [61], a description of the dynamics in the generalized momentum and force

spaces P and F, respectively, is called a co-Lagrangian system, where the Lagrangian

function L (q, q̇) in (7.1) is replaced by its dual form L
∗(p, ṗ), which is defined

as L
∗(p, ṗ) = V

∗(ṗ) − T (p, ṗ), and the external forces are replaced by external

velocities τ∗, i.e.,

d

dt

(

∇ṗL
∗(p, ṗ)

)

−∇pL
∗(p, ṗ) = τ∗, (7.3)

with pi ∈ P and ṗi ∈ F, i = 1, . . . , n. Hence, in contrast to (7.1), a second-order

equation set of the form (7.3) represents a velocity-balance equation.

So far, we have considered three representations of the dynamics of a mechani-

cal system. The first two equation sets, (7.1) and (7.2), are well-known in the stan-

dard literature, while (7.3) is less known but is sometimes used for solving special

modeling problems [61]. The underlying relationship between the three differ-

ent sets of equations is the existence of a (well-defined) Legendre transformation
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between Q, V, P and F. Furthermore, the quadrangle depicted in Figure 7.1 also

suggest a fourth equation set, represented by the question marks. Intuitively, at

this point, one could be tempted to call a dynamic description on the spaces V and

F the co-Hamiltonian equations of motion. Starting from the Hamiltonian equa-

tion set, if both the Legendre transformations of P to V and Q to F are considered

simultaneously, one obtains

H
∗(q̇, ṗ) = T

∗(q̇, ṗ) + V
∗(ṗ), (7.4)

which indeed appears to be a bona-fide candidate co-Hamiltonian. Based on

the latter observation, and in comparison to (7.2), this would suggest that the

dual form of (7.2), that is, the ‘co-Hamiltonian’ equation set, should read: v̇ =

∇f H
∗(v, f ) and ḟ = −∇vH

∗(v, f ) + φ, with v = q̇, f = ṗ, and H
∗(v, f ) = T

∗(v, f ) +

V
∗(f ), respectively. However, the latter set of equations is not correctly describing

the dynamics. This is already seen from the units of v̇ (resp. ḟ ) that do not coincide

with the units of ∇f H
∗(v, f ) (resp. ∇vH

∗(v, f )).1 Furthermore, it is also not clear

how the external signals, represented by φ, relate to the original external signals

τ and/or τ∗. Hence, the existence, form and meaning of the fourth description

remains to be clarified.

It is our objective to identify the left-hand side (represented by the question

marks) of the quadrangle depicted in Figure 7.1, as to formally complete the rela-

tionships between the different sets of equations. It will be shown that the fourth

equation set is actually constituting a mechanical analogue to the Brayton-Moser

(BM) equations (see Chapter 2.17). Although there is a widely accepted standard

analogy between simple mechanical and electrical systems, like, for example, the

mass-inductor or the spring-capacitor analogy, with the corresponding velocity-

current (resp. flux-momenta) or force-voltage (resp. displacement-charge) analo-

gies, the existence of a well-defined analogy for more general mechanical systems is

not straightforward. One of the main reasons for making such analogy difficult is

the presence of the so-called Coriolis and centrifugal forces in the mechanical do-

main, which do not appear as such in the electrical domain. For that reason we can,

in general, not equate the dynamics of a mechanical systems mutatis-mutandis

along the lines of [10]. Another difficulty is that, in contrast to electrical circuits,

mechanical systems are in general not nodical. Hence, a mechanical system can

not always be considered as an interconnected graph.

1Note that the units of ∇f H
∗(v, f ) and ∇vH

∗(v, f ) are displacement (or position) and momenta,

while the units of v̇ and ḟ are the time-derivatives of velocity (i.e., acceleration) and force, respec-

tively.
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Although there have been earlier attempts towards the formalization of a mechan-

ical analogue of [10], see [46, 57, 93], in our opinion, the mechanical analogue of

[10] presented in this chapter seems the most natural and general one. Besides the

motivation to formally clarify the missing part of the quadrangle, an additional

advantage is that once we have obtained a useful mechanical analogue of the BM

equations it may be used to investigate the stability of a mechanical system’s equi-

librium points in a different manner than is usual. Also, the BM equations seem

to be a natural equation set in relation with bond-graph theory since the canoni-

cal state variables live in the V and F spaces, i.e., the state variables associated to a

canonical BM description represent the flows and efforts in the system directly.

The chapter is organized as follows. In Section 7.2, a lemma similar to Lemma

2.1 will be introduced which forms the key behind the main results. Section 7.3

contains illustrative examples using two well-known mechanical systems. The role

of dissipative forces and velocities is studied in Section 7.4. Finally, in Section 7.5,

a retrospection and an outlook towards some applications of the new equation

set and future research will be discussed. Throughout this chapter, the following

definition is used:

Definition 7.1 We call a set of differential equations of the form (2.17), defined on

the voltage and current space U and I, respectively, together with a mixed-potential

of the form (2.7) — having the units of power — and (2.12), a set of canonical

BM equations of electrical type. Equations of a form similar to (2.17), and not

necessarily defined on the spaces U and I, are called a homonymous BM equation

set.

For completeness, we recall from Chapter 2 that the class of nonlinear electrical

networks that fulfills the BM equations allow a similar quadrangle as depicted in

Figure 7.1 (see Figure 1.7). Following the classical spring-capacitor, mass-inductor,

and damper-resistor analogy [61], we may relate the mechanical spaces Q, P, V

and F to the electrical space of charge, flux, current and voltage, respectively. This

would mean that the electrical analogue of the Lagrangian (resp. co-Lagrangian)

represents the difference between the magnetic co-energy (resp. electric co-energy)

and the electric energy (resp. magnetic energy), while the electrical analogue of

the Hamiltonian represents the sum of the electric and magnetic energies. The BM

equations are defined on the electrical analogue of the force and velocity space, i.e.,

U ↔ F and I ↔ V, thus constituting the fourth equation set of the quadrangle for

the electrical domain.
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7.2 Standard Mechanical Systems

As discussed in Section 7.1, for a standard mechanical system without dissipation

the equations of motion can be represented by a Hamiltonian equation set of the

form (7.2). For ease of presentation, we set the external forces τ = 0 and rewrite

(7.2) in a more compact form as

ż = J∇H (z), (7.5)

where z = col(q, p), the function H (z) is the Hamiltonian as defined before, and J

is a skew-symmetric matrix of the form

J =





0 In

−In 0




= −JT , (7.6)

where In denotes the n×n identity matrix. Clearly, for standard mechanical systems

J−1
(

= JT
)

is well-defined. Hence, the Hamiltonian equations (7.5) can be rewritten

as

J−1ż = ∇H (z). (7.7)

Although the form of the latter equation gives rise to the suggestion of a BM type

of gradient system (compare with (2.17)), the matrix J−1 is dimensionless, while

the ‘potential’ function H (z) still has the units of energy instead of power. How-

ever, in a similar fashion as in Chapter 2, we may so far conclude that the dynamics

of a mechanical system is thus completely determined by the pair
{

J, H
}

, or equiv-

alently
{

J−1, H
}

. The following lemma is inspired by [10], see also Lemma 2.1, and

will be instrumental to proof our main results in the paper.

Lemma 7.1 Consider a mechanical system described by (7.5). If ∇2
H (z) is full-

rank, then for any constant non-singular symmetric matrix K the dynamics of

(7.7) can be equivalently expressed by

J̃−1(z)ż = ∇H̃ (z), (7.8)

where

H̃ (z) =
1

2

(

∇H (z)
)T

K∇H (z), (7.9)

and

J̃−1(z) = ∇2
H (z)KJ−1. (7.10)
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Proof. The proof follows along the same lines as the proof of Lemma 2.1. Q.E.D.

Having made these observations, our task is now to select a constant and sym-

metric matrix K in (7.9) and (7.10), such that (7.8) defines a BM description of

mechanical type in the sense of Definition 7.1.

Theorem 7.1 Consider a standard mechanical system described by the Hamilto-

nian equations (7.5). The dynamics of (7.5) can be equivalently expressed as

Q(z)ż = ∇P (z), (7.11)

where

Q(z) =





∇qV (q) +
1

2
∇2

q

(

pTM−1(q)p
)

−∇q

(

pTM−1(q)
)

∇q

(

M−1(q)p
)

−M−1(q)





, (7.12)

and P (z) represents the mixed-potential of mechanical type:

P (z)=
(

∇V (q)
)T

M−1(q)p

+
1

2

(

∇q

(

pTM−1(q)p
))T

M−1(q)p.
(7.13)

Hence, the pair (7.12) and (7.13) defines a homonymous BM description of me-

chanical type.

Proof. In order to use Lemma 7.1, we first have to select K in (7.9) and (7.10) such

that the structure of J−1 in (7.8) corresponds to the sign-indefinite Q-matrix (2.12)

in the BM electrical framework, i.e.,

KJ−1
=





In 0

0 −In




. (7.14)

Thus, in order to satisfy (7.14), K should be chosen as

K =





In 0

0 −In




J =





0 In

In 0




= KT .

Hence, if we define Q(z) � J̃−1(z) and P (z) � H̃ (z), then by substitution of K into

(7.10) and (7.9), we obtain (7.12) and (7.13) from

Q(q, p) =





∇2
q −∇q∇p

∇p∇q −∇2
p




H (q, p),
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and P (q, p) =
(

∇qH (q, p)
)T∇pH (q, p), respectively. The claim that the pair (7.12)

and (7.13) defines a homonymous BM description (Definition 7.1) follows from

the fact that, although expressed in terms of q and p, the units and form of P (q, p)

coincide with power, and can be viewed as a mechanical analogue of a mixed-

potential for a conservative electrical circuit. This is most easily seen by noticing

from (7.2) that the generalized velocities are defined

q̇ = ∇pH (q, p) =M−1(q)p,

and the generalized forces2 by

ṗ = −∇qH (q, p) = −
1

2
∇q

(

pTM−1(q)p
)

−∇qV (q).

Thus, according to the latter equations, P (q, p) as defined in (7.13), can be written

in terms of q̇ ∈ V and ṗ ∈ F as

P (·) = −q̇Tṗ, (7.15)

i.e., P (·) = (minus) velocity × force = power. Q.E.D.

Remark 7.1 We may interpret the quantity q̇Tṗ as a measure of the interaction

between the kinetic and potential energy contributions. Note that for an LC circuit

without any sources Gr(iℓ) = 0 and Ig(uc) = 0, and thus (7.15) can be considered

as a mechanical analogue of P (iℓ, uc) = iT
ℓ
Λtuc (see Chapter 2).

So far, we found an equation set, described solely by the pair
{

Q, P
}

defined in

(7.12) and (7.13), which has close relations to the original BM equations (2.17).

However, it is directly noticed that Q(q, p) in its present form is not (yet) inter-

pretable as the precise mechanical analogue of (2.12). This stems from the fact

the dynamics are still expressed in terms of the generalized displacements and

momenta, instead of the generalized forces and velocities, respectively (i.e., the

mechanical analogues to voltages and currents). As is highlighted in [46], and

according to Definition 7.1, the precise mechanical analog (or, in a different par-

lance: a canonical BM equation set of mechanical type) of the BM equations can

only be obtained if the Legendre transformations from P to V and Q to F, and

preferably vice-versa, are well-defined relations. Unfortunately, in general this is

not always the case. For example, if a system operates under the influence of a

2The term 1
2
∇q

(

pTM−1(q)p
)

is part of the centrifugal and Coriolis forces [105].
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(constant) gravitational force, the mapping q �→ f (recall that f represents the gen-

eralized forces) simply does not exist.3 On the other hand, suppose for simplicity

that M(q) is constant, i.e., M(q) =M, then (7.12) reduces to

Q(q) =





∇2
q V (q) 0

0 −M−1




.

Hence, the equation (7.11), together with the pair defined in (7.12) and (7.13), can

be written as




∇2
q V (q) 0

0 −M−1









q̇

ṗ




=





∇qP (q, p)

∇pP (q, p)




=





∇2
q V (q)M−1p

M−1∇qV (q)




. (7.16)

Clearly, since M−1 is globally invertible by assumption (even in the non-constant

case!), the Legendre transformation of p �→ q̇ is well-defined, i.e., p =Mq̇, or equiv-

alently, q̇ = M−1p. Let again v = q̇, v ∈ V, denote the generalized velocities, then

the second equation in (7.16) can be written in terms of the generalized velocities

v as follows:

−Mv̇ = ∇qV (q). (7.17)

Moreover, if ∇2
q V (q) is full-rank and there exists a mapping q �→ f , we have with

V
∗(f ) �

n∑

k=1

fkqk − V (q),

where f = ∇qV (q), that the first equation in (7.16) can be rewritten on the (V,F)-

space as ∇2
f
V

∗(f )ḟ = v. Hence, by elimination of the q-dependency of ∇qV (q) in

(7.17) by q = ∇f V
∗(f ), yields

−Mv̇ = ∇qV (q)
∣
∣
∣
∣
q=∇f V

∗(f )
= f .

Then, we obtain the precise mechanical analogue of (2.17), see also (2.8), given by





∇2
f
V

∗(f ) 0

0 −M





︸��������������︷︷��������������︸

� Q̃(f )





ḟ

v̇




=





∇f P (f , v)

∇vP (f , v)




, (7.18)

3Of course, we could treat gravity as an external force, input or disturbance. However, in Hamil-

tonian mechanics gravity is usually included using the potential energy function.
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where the associated mixed-potential is defined

P̃ (f , v)�P (q, p)
∣
∣
∣
∣q = ∇f V

∗(f )

p =Mq̇

=

n∑

k=1

fkvk =
〈

f , v
〉

∈ F×V.

(7.19)

Additionally, the previous observations clarify the role played by H
∗(f , v), i.e., the

co-Hamiltonian, as discussed in Section 7.1, since





∇2
f
V

∗(f ) 0

0 M









ḟ

v̇




=

d

dt





∇f H
∗(f , v)

∇vH
∗(f , v)




.

A similar discussion hold for non-constant inertia matrices M(q) > 0, but it yields

a more complex analysis which is omitted for sake of brevity. In conclusion for this

part, we summarize the latter discussion in the following corollary:

Corollary 7.1 Consider a standard mechanical system described by the Hamilto-

nian equations (7.5). If the mapping q �→ f is well-defined, then (7.11), together

with the pair defined in (7.12) and (7.13), is the canonical mechanical analogue of

the BM equations (2.17) of electrical type.

7.3 Some Examples

In this section, we illustrate the application of Theorem 7.1 using two examples.

First, a linear mass-spring system is considered. The second example involves a

nonlinear spherical pendulum.

7.3.1 Linear Mass-Spring System

Consider a linear mass-spring, depicted in Figure 7.2. The Hamiltonian equation

set describing the dynamics of the system are readily found as





q̇1

q̇2

ṗ1

ṗ2





=





0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0





︸���������������︷︷���������������︸

J





∇q1
H

∇q2
H

∇p1
H

∇p2
H





, (7.20)
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q1 q2

v1 v2

k1 k2
m1 m2

Fig. 7.2. Linear mass-spring system.

where H (q1, q2, p1, p2) is the sum of the kinetic energy stored by the masses, m1

and m2, and the potential energy stored in the springs, k1 and k2, i.e.,

T (p1, p2)=
1

2m1

p2
1 +

1

2m2

p2
2

V (q1, q2)=
1

2
k1(q1 − q2)2

+
1

2
k2q2

2.

Now, application of Theorem 7.1 yields after a few algebraic manipulations that

the homonymous pair
{

Q, P
}

should read:

Q =





k1 0 0 0

0 k2 0 0

0 0 −m−1
1 0

0 0 0 −m−1
2





,

and

P (q1, q2, p1, p2) =
1

m1

p1(k1q1 − k2q2) +
k2

m2

p2q2 −
1

m2

p2(k1q1 − k2q2).

Henceforth, the mechanical system (7.20) can alternatively be expressed as

Qż = ∇P (z).

Following the discussion at the end of the previous section and Corollary 7.1, for

this example we are able to obtain a canonical BM equations set by observing that

the mapping q �→ f is globally defined by qj = k−1
j fj, j = 1, 2 (Hooke’s law). Simi-

larly, we have that pj = mjvj, j = 1, 2. Substitution of the later into P (q1, q2, p1, p2)

yields the canonical mixed-potential (7.19) of mechanical type

P̃ (f1, f2, v1, v2) = v1(f1 − f2) − v2(f1 − f2) + v2f2,
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q1

q2

m

ℓ

mg

Fig. 7.3. A frictionless spherical pendulum.

together with Q̃ = Q−1, which yields the canonical BM equations

Q̃ẇ = ∇P (w),

where we have defined w = col(f1, f2, v1, v2).

7.3.2 Spherical Pendulum

As a second example, consider a frictionless spherical pendulum [102] depicted

in Figure 7.3. The system consists of a massless rigid rod of length ℓ fixed in one

end by a spherical joint and having a bulb of mass m at the other end. Let q1

and q2 denote angles of the vertical and horizontal movements, and p1 and p2 the

corresponding momenta. The configuration space of the system is S2, however we

will assume that q1 and q2 remain inside the domain ]0,π[ and ]0, 2π[, respectively.

The total stored energy — the Hamiltonian — is given as

H (q, p) =
1

2
pTM−1(q)p − mgℓ cos(q1),

where

M−1(q) =





1

mℓ2
0

0
1

mℓ2 sin2(q1)





.
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The centrifugal and Coriolis forces are defined by the gradient of the kinetic energy

with respect to q1 and q2, i.e.,

1

2
∇q

(

pTM−1(q)p
)

=





−
cos(q1)

mℓ2 sin3(q1)
p2

2

0





,

and the potential forces are

∇V (q) =





mgℓ sin(q1)

0




.

Application of Theorem 7.1 yields that the homonymous mixed-potential for the

system is given by

P (q, p) =
g

ℓ
sin(q1)p1 −

cos(q1)

m2ℓ4 sin3(q1)
p2

2p1.

Furthermore, we compute the matrix Q(q, p) as

Q(q, p) =





Φ(q, p) 0 0
2 cos(q1)

mℓ2 sin3(q1)
p2

0 0 0 0

0 0 −
1

mℓ2
0

−
2 cos(q1)

mℓ2 sin3(q1)
p2 0 0 −

1

mℓ2 sin2(q1)





,

where

Φ(q, p) � mgℓ cos(q1)p1 −
3 cos2(q1)

mℓ2 sin4(q1)
p2

2p1 −
1

mℓ2 sin2(q1)
p2

2p1.

We observe that the system is not minimal in the sense that Q(q, p) is rank deficient.

However, since q2 does not explicitly contribute to the dynamics (also not in the

original Hamiltonian model), we may delete the second row and column of Q(q, p)

as to obtain a minimal homonymous BM description. Also note that the mapping

q �→ f is not globally defined, and thus we can not obtain a canonical BM equation

set for this system.
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7.4 On the Role of Dissipation

In the previous sections we have concentrated on standard mechanical systems

without any external disturbances or dissipative forces. In this section we gen-

eralize our developments further by studying the effect of dissipative forces and

velocities working on the system. An ideal (translational or rotational) mechanical

dissipator is defined as an object which exhibits no kinetic or potential effects. In

the analysis hereafter, we assume for simplicity that the dissipators are linear and

time-invariant.

7.4.1 Mechanical Content and Co-Content

According to [105], linear dissipation is included into a Lagrangian or Hamilto-

nian equation set by applying a constant negative gain feedback of the associated

velocities and forces. For a mechanical system of the form (7.5) this means that the

resulting (closed-loop) system takes the form:

ż =
(

J − D
)

∇H (z), (7.21)

where

D =





G 0

0 R



 , (7.22)

with G = GT ≥ 0 and R = RT ≥ 0. We can define in a manner analogues to the

definition of electrical resistors

Gr(v) �

∫ v
(

Rv′)T
dv′
=

1

2
vTRv (7.23)

as the mechanical content associated to the dissipators contained in mechanical

‘resistance’ matrix R. Note that (7.23) coincides with the usual definition of the

Rayleigh dissipation function. Conversely, the quantity

Ig( f ) �

∫ f
(

Gf ′
)T

df ′ =
1

2
f TGf (7.24)

is referred to as the mechanical co-content associated to the dissipators contained

in the mechanical ‘conductance’ matrix G. Consequently, the co-content (7.24)

should then be considered as some Rayleigh co-dissipation function. This func-

tion, although (to our knowledge) not very well-known in the literature, has a

clear physical significance as illustrated in the following example.
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q1q2

v1v2

k1

k2

m1

d1

Fig. 7.4. Example system for mechanical co-content.

Example 7.1 Consider the linear mass-spring-damper system depicted in Figure

7.4. Although the equivalent velocity of the damper can be expressed as vd = v1−v2

(= q̇1 − q̇2), the problem, however, is that q2 (resp. v2) is not related to a mass ele-

ment and can therefore not serve as a displacement (resp. velocity) coordinate. As

a result, the damper can not be described in terms of a Rayleigh dissipation func-

tion Gr(v), but needs to be described by its dual form; the Rayleigh co-dissipation

function, or in the terminology used here: the co-content. Let fj = kjqj, j = 1, 2,

denote the forces related to the linear springs with elasticity constants kj, then

Ig( f1, f2) =
1

2d

(

f2 − f1

)2
.

The Hamiltonian equations (7.21) can be used to obtain a valid equation set for

this system, however the corresponding dissipation matrix D, as introduced in

(7.22), should for this particular example be changed to

D =





G 0

0 0



 ,

where G = GT is given by

G =
1

d





1 −1

−1 1



 ≥ 0,

for all d > 0.

We are now ready to extend Theorem 7.1 to standard mechanical system with (lin-

ear) dissipation.
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Theorem 7.2 Consider a standard mechanical system with dissipation described

by a Hamiltonian system of the form (7.21) Then, the dynamics of (7.21) can be

equivalently expressed by (7.11), where Q(z) is of the form (7.12), while

P (q, p)=Gr(q, p) +
(

∇qV (q)
)T

M−1(q)p

+
1

2

(

∇q

(

pTM−1(q)p
))T

M−1(q)p − Ig(p, q),
(7.25)

where






Gr(q, p) =
1

2

(

pTM−1(q)
)T

RM−1(q)p

Ig(q, p)=
1

2

(

∇qV (q)
)T

G∇qV (q)

+
1

2

(

∇q

(

pTM−1(q)p
))T

G∇q

(

pTM−1(q)p
)

.

(7.26)

Proof. In this case, we select K in (7.9) and (7.10) such that

K(J − D)−1
=





In 0

0 −In




.

Hence,

K =





In 0

0 −In




(J − D) =





−G In

In R




,

which, since R = RT and G = GT , ensures that K = KT . The remaining part of

the proof follows along the same lines of the proof of Theorem 7.1 and by using

v = ∇q,pH (z) and f = ∇qH (q, p). Q.E.D.

Corollary 7.2 Consider a standard mechanical system with dissipation of the form

(7.21). If the mapping q �→ f is well-defined, then (7.11), together with the pair

defined in (7.12) and (7.25), is precisely the mechanical analogue of the BM equa-

tions (2.17) and, hence, identifies the fourth equation set — including dissipation

— suggested by the quadrangle of Figure 7.1. A description with the latter proper-

ties is referred to as a canonical BM equation set of mechanical type.
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7.4.2 External Signals

So far, we have assumed that the external signals (e.g., sources and disturbances),

as modeled in Section 7.1 by the vector τ, are zero. The previous analysis remains

unaffected if we include (possibly velocity-dependent) external forces. Indeed, the

expressions remain valid if we replace Gr in (7.26) by a new content function of the

form

G̃ (q, p, τ) = Gr(q, p) −
∫ v

τTdv′
∣
∣
∣
∣
v=∇pH (q,p)

. (7.27)

A similar discussion holds for the inclusion of (possibly force-dependent) external

velocity sources.

7.5 Retrospection

The results reported in this chapter are the first steps towards a general power-

based modeling and analysis framework for physical systems. The present work

first shows that a large class of mechanical systems (referred to as standard mechan-

ical systems) can be described by a homonymous BM equation set. This set appears

to be precisely the ‘missing link’ between the classical Lagrangian, co-Lagrangian

and Hamiltonian equation sets on the one-side (defined on the (Q,V), (P,F) and

(Q,P) spaces, respectively), and the equation set defined on the (V,F) space — as is

illustrated by the quadrangle in Figure 7.1. Besides the completion of the ‘general’

quadrangle, the mechanical analogue of the BM equations can be useful for many

other features, among them we might cite:

✦ Stability analysis along the lines of [10]. Additionally, the stability criteria

stemming from this method can be used to find lower bounds on the control

parameters when applying Passivity-Based Control (PBC), see Chapter 6.

✦ Definition of new passivity properties along the lines of Chapter 3. This

includes the definition of alternative conjugated port-variables with respect

to an alternative storage function (the mixed-potential), and, of course, the

closely related method of Power-Shaping.

In this chapter, the analysis was carried out only for standard mechanical systems

with linear dissipation and a constant structure matrix of the form (7.6). In case J

and/or D are state-dependent, i.e., J(z) = −JT(z) and D(z) = DT(z), it is necessary
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to extend Lemma 7.1 with a state-modulated K-matrix. Consequently, a new pair

{J̄⋆, H ⋆} is then obtained as follows:

Q(z) =
1

2

(

∇2
H (z)K(z) +∇

((

∇H (z)
)T

K(z)
))(

J(z) − D(z)
)−1

,

where J̄(z) = J(z) − D(z), and

P (z) =
1

2

(

∇H (z)K(z)
)T∇H (z).

For mechanical systems having a structure matrix of the form J(z) = −JT(z), the

corresponding Hamiltonian equation set is usually referred to as a generalized

Hamiltonian (or port-Hamiltonian) system [105]. Besides the fact that the state-

space is (locally) not restricted to 2n (i.e., an even number of) generalized coordi-

nates (q, p), it can be argued to be an excellent tool to describe a very large class of

physical models, ranging from standard mechanical systems treated in this chapter

to electrical, electro-mechanical or even distributed parameter systems in various

domains. For that reason, the next step is the search for a general BM equation set,

starting from a port-Hamiltonian system description.
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Chapter 8

An Energy-Balancing Perspective of

IDA-PBC of Nonlinear Systems

Stabilization of nonlinear feedback passive systems is achieved assigning a storage

function with a minimum at the desired equilibrium. For physical systems, a natu-

ral candidate storage function is the difference between the stored and the supplied

energies — leading to the so-called Energy-Balancing control as already briefly in-

troduced in Section 3.6. Unfortunately, as already briefly highlighted in Chapter 3,

Energy-Balancing stabilization is stymied by the existence of pervasive dissipation,

that appears in many engineering applications. The first successful attempt1 to

overcome the dissipation obstacle is the method of Interconnection and Damping

Assignment Passivity-Based Control (IDA-PBC), that endows the closed-loop sys-

tem with a special — port-Hamiltonian — structure, has been proposed. If, as in

most practical examples, the open-loop system already has this structure, and the

damping is not pervasive, both methods are equivalent. In this chapter, we show

that the methods are also equivalent, with an alternative definition of the supplied

energy, when the damping is pervasive. Instrumental for our developments is the

observation that, swapping the damping terms in the classical dissipation inequal-

ity, we can establish passivity of port-Hamiltonian systems with respect to some

new external variables — but with the same storage function.

1That is, before the method of Power-Shaping introduced in Chapter 3.
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8.1 Introduction and Background Material

It is by now well-understood that equilibria of nonlinear systems of the form2

ẋ = f (x) + g(x)u (8.1)

with x ∈ Rn, u ∈ Rm, can be easily stabilized if it is possible to find functions

α, h : Rn → Rm such that the system

ẋ = f (x) + g(x)α(x) + g(x)v

y = h(x)

is passive with respect to the supply-rate vTy and a storage function that has a min-

imum at the desired equilibrium, say x⋆ ∈ Rn. This class of systems is called feed-

back passive and stabilization is achieved feeding-back the ‘passive output’ y with a

strictly passive operator — a technique that is generically known as Passivity-Based

Control (PBC). (See [12, 105, 37], or [3] for a recent tutorial that contains most

of the background material reviewed in this section). From [12] it is known that

necessary conditions for passification of the system (f , g, h) are that it has relative

degree {1, . . . , 1} and is weakly minimum phase. The process is completed verify-

ing the conditions of the nonlinear Kalman-Yakubovich-Popov lemma. The latter

involves the solution of a partial differential equation (PDE) — which is difficult

to find, in general. An additional complication stems from the minimum require-

ment on the storage function that imposes some sort of ‘boundary conditions’ on

the PDE.

Designing PBC’s can be made more systematic for systems belonging to the

following class, which contains many physical examples [80]:

Definition 8.1 The system (8.1) with output y = h(x) is said to satisfy the energy-

balancing inequality if, for some function H : Rn → R,

H
(

x(t1)
)

− H
(

x(t0)
)

≤
∫ t1

t0

uT(t)y(t)dt, (8.2)

for all t1 ≥ t0, along all trajectories compatible with u : [t0, t1] → Rm.3

2Throughout the chapter, if not otherwise stated, it is assumed that all functions and mappings

are C
∞.

3Notice that no assumption of non-negativity on H (x) is imposed. Clearly, if it is non-negative,

then the system is passive with respect to the supply-rate uT(·)y(·) and storage function H (x). Also,

notice that (8.2) implies h(x) = gT(x)∇H (x).
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§8.1. Introduction and Background Material

Typically, u, y are conjugated variables, in the sense that their product has units of

power, and H (x) is the total stored energy — hence qualifying the name Energy-

Balancing (EB). The EB inequality reflects a universal property of physical systems

and it would be desirable to preserve it in closed-loop. On the other hand, since

H (x) does not have (in general) a minimum at x⋆ it is suggested to look for a

control action u = α(x) + β(x)v such that the closed-loop system satisfies the new

EB inequality

Hd

(

x(t1)
)

− Hd

(

x(t0)
)

≤
∫ t1

t0

uT(t)y(t)dt, (8.3)

for some new output function ỹ = h̃(x) (that may be equal to y) and some function

Hd : Rn → R+ that has an isolated (local) minimum at x⋆. (As discussed in [3, 80],

see also below, the inclusion of a new output function adds considerable flexibility

to the design procedure without loosing the physical insight.)

A first, natural, approach to solve the problem above is to try to make Hd(x)

equal to the difference between the stored and the supplied energies. For that, we

must find a function α(x) such that the energy supplied by the controller can be

expressed as a function of the state. Indeed, from (8.2) we see that if we can find

a function α(x) such that, for some function Ha : Rn → R and for all x and all

t1 ≥ t0, we have

Ha

(

φ(x, t1)
)

−Ha

(

φ(x, t0)
)

=

−
∫ t1

t0

αT(φ(x, t)
)

h
(

φ(x, t)
)

dt, (8.4)

where φ(x, t) denotes the trajectory of the system with control u = α(x)+v starting

from the initial condition at time t0, then the closed-loop system satisfies (8.3) with

y = ỹ and a new energy function

Hd(x) =H (x) +Ha(x). (8.5)

Hence, x⋆ can be easily stabilized with the desired storage (Lyapunov) function,

and we refer to this particularly appealing class of PBCs as EB-PBC’s.

The design of EB-PBC’s also involves the solution of a PDE, namely,

(

f (x) + g(x)α(x)
)T∇Ha(x) = −αT(x)h(x), (8.6)

that results taking the limit of (8.4), that is, Ḣa(x) = −αT(x)h(x). However, its ap-

plicability is mainly stymied by the presence of pervasive dissipation in the system.
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Indeed, it is clear that a necessary condition for the solvability of the PDE (8.6) is

the implication f (x̄) + g(x̄)α(x̄) = 0 ⇒ αT(x̄)h(x̄) = 0. Evaluating, in particular, for

x̄ = x⋆ we see that the power extracted from the controller (= αT(x)h(x)) should

be zero at the equilibrium. (The interested reader is referred to [80] where the

effect of pervasive dissipation is illustrated with simple linear time-invariant RLC

circuits.)

The first succesful attempt to overcome the dissipation obstacle, the method of

Interconnection and Damping Assignment (IDA) PBC, that assigns a special —

port-Hamiltonian (PH) — structure to the closed-loop system, has been proposed

in [81]. More specifically, in IDA-PBC we fix the matrices Jd(x) = −JT
d
(x) ∈ Rn×n

and Rd(x) = RT
d
(x) ≥ 0 ∈ Rn×n, that represent the desired interconnection and

dissipation structures, respectively, and solve the PDE4

f (x) + g(x)α(x) =
(

Jd(x) − Rd(x)
)

∇Hd(x),

which implies that

g⊥(x)f (x) = g⊥(x)
(

Jd(x) − Rd(x)
)

∇Hd(x). (8.7)

Recall g⊥(x) is a left annihilator of g(x), that is, g⊥(x)g(x) = 0. The PDE (8.7)

characterizes all energy functions that can be assigned to the closed-loop PH sys-

tem with the given interconnection and dissipation matrices, and the control that

achieves this objective is

α(x) =
(

gT(x)g(x)
)−1

gT(x)
{(

Jd(x) − Rd(x)
)

∇Hd(x) − f (x)
}

,

where we have assumed (without loss of generality) that the matrix g(x) is full

(column) rank. Taking the derivative of Hd(x) along the closed-loop trajectories

yields

Ḣd(x) = −
(

∇Hd(x)
)T

Rd(x)∇Hd(x) ≤ 0.

Again, if we can find a solution for (8.7) such that x⋆ = arg min
(

Hd(x)
)

, then sta-

bility of x⋆ is ensured.

The main interest of IDA-PBC is that, in contrast with EB-PBC, the PDE (8.7) is

still solvable (in principle) when the extracted power is not zero at the equilibrium,

4IDA-PBC is presented in [81] only for systems in PH form, but it is clear that all derivations

carry on to general (f , g, h) systems.
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hence the method is applicable to systems with pervasive dissipation. Another

advantage of IDA-PBC is that the free parameters in the PDE (8.7), Jd(x) and Rd(x),

have a clear physical interpretation, while there are no simple guidelines for the

selection of α(x) in (8.6).

Although ‘Hamiltonianizing’ the system may seem like an artifice, there are

close connections between IDA-PBC and EB-PBC.5 Namely, in [81] conditions on

the damping are given so that IDA-PBC is an EB-PBC. More precisely, it is shown

that if

✦ the system is PH, that is6, the vector fields f (x) and g(x) satisfy

f (x)=
(

J(x) − D(x)
)

∇H (x)

h(x)= gT(x)∇H (x),

for some J(x) = −JT(x) ∈ Rn×n and D(x) = RT(x) ≥ 0 ∈ Rn×n, respectively;

✦ Rd(x) = D(x), that is, no additional damping is injected to the system;

✦ the assigned energy function Hd(x) and the natural damping satisfy

D(x)∇
(

Hd(x) − H (x)
)

= 0, (8.8)

(This property was called ‘dissipation obstacle’ in [80] and, roughly speak-

ing, states that there is no damping in the coordinates where the energy func-

tion is shaped.)

then, Ḣd(x) = Ḣ (x) − αT(x)h(x), and the storage function Hd(x) is equal to the

difference between the stored and the supplied energies.

The main contribution of this chapter is the establishment of a similar equivalence

between IDA-PBC and EB-PBC when the damping is ‘not admissible’, that is when

(8.8) is not satisfied. Specifically, using an alternative definition of the supplied en-

ergy, we prove that the methods are also equivalent when the damping is pervasive.

Instrumental for our developments is the observation that, swapping the damping

terms in the EB inequality, we can establish passivity of PH systems with respect to

some new external variables.

5See [80] for the interpretation of IDA-PBC as control by interconnection [105].
6In [81] it is shown that all asymptotically stable vector fields admit such a PH realization.
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8.2 A New Passivity Property for a Class of PH Systems

The following lemma is instrumental for the proof of our main result.

Lemma 8.1 Assume the matrices J(x) = −JT(x) and D(x) = DT(x) ≥ 0 are such

that rank
{

J(x) − D(x)
}

= n, then

zT(J(x) − D(x)
)−1

z ≤ 0, (8.9)

for all z ∈ Rn.

Proof. The proof is completed with the following observation:

zT(J(x) − D(x)
)−1

z =
1

2
zT

{(

J(x) − D(x)
)−1
+
(

J(x) − D(x)
)−T

}

z

=
1

2
zT

{(

J(x) − D(x)
)−1

{(

J(x) − D(x)
)

+
(

J(x) − D(x)
)T
} (

J(x) − D(x)
)−T

z

=
1

2
z̃T

{

J(x) − D(x) +
(

J(x) − D(x)
)T
}

z̃,

where we have defined z̃ �
(

J(x) − D(x)
)−T

z, with (·)−T
=

(

(·)−1
)T

. Hence, we

conclude that iff D(x) ≥ 0, then

zT(J(x) − D(x)
)−1

z = −z̃TD(x)z̃ ≤ 0, Q.E.D.

Note that, if J(x) − D(x) is rank deficient then the open-loop system has equilibria

at points which are not extrema of the energy function. Hence, the assumption

rank
{

J(x) − D(x)
}

= n does not seem to be restrictive in applications. For this class

of PH systems the proposition below establishes passivity with respect to a new set

of external variables.

Proposition 8.1 Consider the PH system

ẋ =
(

J(x) − D(x)
)

∇H (x) + g(x)u

y = gT(x)∇H (x).
(8.10)

Assume J(x) − D(x) is full rank. Then, the system satisfies the new EB inequality

H
(

x(t1)
)

− H
(

x(t0)
)

≤
∫ t1

t0

uT(t)ỹ(t)dt, (8.11)
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where ỹ = h̃(x, u), with

h̃(x, u)=−gT(x)
(

J(x) − D(x)
)−T

{(

J(x) − D(x)
)

∇H (x) + g(x)u
}

=−gT(x)
(

J(x) − D(x)
)−T

ẋ. (8.12)

Furthermore, if H (x) is bounded from below, the system is passive with respect to

the supply-rate uT(·)ỹ(·) and storage function H (x).

Proof. Under the assumption that rank
(

J(x) − D(x)
)

= n, we can rewrite the PH

system (8.10) in the following form

(

J(x) − D(x)
)−1

ẋ = ∇H (x) +
(

J(x) − D(x)
)−1

g(x)u. (8.13)

Premultiplying (8.13) by ẋ we obtain

Ḣ (x) = ẋT∇H (x)

= ẋT(J(x) − D(x)
)−1

ẋ − ẋT(J(x) − D(x)
)−1

g(x)u

≤−ẋT(J(x) − D(x)
)−1

g(x)u

= uTỹ,

where we have invoked Lemma 8.1 to obtain the inequality, replaced ẋ and used

(8.12) in the last equality. The proof is completed integrating the expression above

from 0 to t. Q.E.D.

Remark 8.1 From the derivations above we have that

Ḣ (x) = − ˙̃xTD(x) ˙̃x + uTỹ,

where ˙̃x �
(

J(x)−D(x)
)−T

ẋ. Comparing with the classical power balance equation,

Ḣ (x) = −
(

∇H (x)
)T

D(x)∇H (x) + uTy,

reveals that the new passivity property is established ‘swapping the damping’.

Proposition 8.1 lends itself to an alternative interpretation that reveals the close

connections with the results reported in Chapter 3. In this chapter a new passivity

property for RLC circuits is established and used to propose Power-Shaping, as an

alternative to Energy-Shaping, to overcome the dissipation obstacle for stabiliza-

tion of systems with pervasive damping. From the proof of the proposition it is

clear that, introducing an input change of coordinates

ũ =
(

J(x) − D(x)
)−1

g(x)u, (8.14)
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we also have passivity with respect to the supply-rate ũTẋ — hence, in some respect,

we have ‘added a differentiation’ to the port variables as done in Chapter 3. It

appears that the input change of coordinates (8.14) has close relations with the

well-known Thévenin-Norton equivalent representation used in circuit theory.

Interestingly, as a kind of partial converse, the new passivity property has no

influence on systems that do not suffer from pervasive dissipation (in the sense

that the new output ỹ coincides with the original output y, i.e., ỹ = y). These facts

will be illustrated in Section 8.4

8.3 IDA-PBC as an Energy-Balancing Controller

As a corollary of Proposition 8.1 we prove in this section that, even when the damp-

ing is pervasive, IDA-PBC is an EB-PBC with the new definition of supplied power

uTỹ.

Proposition 8.2 Consider the PH system (8.10), where J(x) − D(x) is full-rank, in

closed-loop with an IDA-PBC, u = α(x), that transforms the system into

ẋ =
(

J(x) − D(x)
)

∇Hd(x). (8.15)

Then,

Hd

(

x(t)
)

=H
(

x(t)
)

−
∫ t

0

uT(t)ỹ(t)dt + κ. (8.16)

where ỹ = h̃(x, u), with h̃(x, u) defined in (8.12), and κ a constant determined by

the initial condition.

Proof. The PH system (8.10), with u = α(x), matches (8.15) if and only if

(

J(x) − D(x)
)−1

g(x)α(x) = ∇Ha(x), (8.17)

where we have used (8.5) and the assumption rank
{

J(x) − D(x)
}

= n. Multiplying

the latter equation by ẋT, we obtain Ḣa(x) = −uTỹ, which upon integration yields

the desired result. Q.E.D.

Remark 8.2 The proposition above is restricted to IDA-PBC designs that do not

modify the interconnection and damping matrices of the open-loop system, but
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only shape the energy function. When Jd(x) � J(x) and/or Rd(x) � D(x) the match-

ing condition becomes, see [81],

(

Jd(x) − Rd(x)
)−1

{(

Ja(x) − Ra(x)
)

∇H (x)

+g(x)α(x)
}

= ∇Ha(x),

where Jd(x) = J(x) + Ja(x) and Rd(x) = D(x) + Ra(x). Some simple calculations

show that a term, that is independent of α(x), appears in Ḣa. Therefore, the latter

cannot be made equal to some (suitably defined) supplied power.

8.4 Some Illustrative Examples

In this section we illustrate with several examples the application of Proposition

8.1. First, we prove that for some practically relevant multi-domain systems, the

new passivity property has a natural interpretation in terms of classical concepts

from circuit theory. Then, we show that for (simple) mechanical systems and for all

single-input single-output systems that do not suffer from the dissipation obstacle

the new passive output ỹ coincides with y, hence Proposition 8.1 does not reveal

any new property.

8.4.1 Connection with Thévenin-Norton Equivalence

We will now prove that for electromechanical (EM) systems with nℓ unsaturated

windings, permanent magnets and one mechanical coordinate7 the new passivity

property appears as a corollary of the well-known Thévenin and Norton equiv-

alence [26].8 For this class of systems x = col(p, q, p) ∈ Rnℓ+2, with p ∈ Rnℓ the

magnetic fluxes, q, p ∈ R the mechanical displacement and momenta, respectively,

and u denoting the external voltages applied to some of the windings. The resulting

PH model is defined with the matrices

J =





0 0 0

0 0 1

0 −1 0





, D =





R 0 0

0 0 0

0 0 0





, g =





B

0

0





, (8.18)

where R = RT > 0 ∈ Rnℓ×nℓ represents the resistances of the unsaturated windings,

and B ∈ R(nℓ+2)×m defines the actuated electrical coordinates. We recall at this point

7This class of systems has been thoroughly studied in [77], to which we refer the reader for further

details on the model.
8A nonlinear version of Thévenin’s and Norton’s theorems can be found in [20].
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Fig. 8.1. (Left) Thevenin representation of electromechanical systems with passive port variables

(u, BTL−1(q)p); (Right) corresponding Norton equivalent with passive port variables (R−1Bu, ṗ).

that the electrical equations of this system are of the form

ṗ = −RL−1(q)p + Bu,

with L(q) = LT(q) > 0 the inductance matrix. The dynamics of the system is

completed applying Newton’s second law to the mechanical subsystem, but this

equation is not relevant for the analysis given here.

The natural power port variables are the external voltage sources u and the

corresponding electrical currents y = BTL−1(q)p. On the other hand, replacing the

matrices (8.18) in (8.14) we get that

ũTẋ = ṗTR−1Bu,

where R−1Bu are the current sources obtained from the Norton equivalent of the

Thévenin representation of the classical passivity property, with ṗ the associated

inductor voltages. The equivalence is depicted in Figure 8.1; Figure 8.1.a represents

the Thévenin representation, whereas Figure 8.1.b represents its associated Norton

equivalent representation.

Remark 8.3 Notice that the systems considered in this section are not stabilizable

with EB-PBC (using the natural outputs of the system y = BT∇H (x)) due to the

fact that all non-trivial equilibria there is a current flowing through the ‘unactuated

resistors’ B⊥R. Hence, the power extracted from the natural ports is nonzero at any

nonzero equilibrium point.
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In the following subsection we explore the implications of Proposition 8.1 for some

systems that are EB stabilizable and, as a partial converse result, prove that in this

case the new passivity property exactly coincides with the classical one.

8.4.2 Systems Without the Dissipation Obstacle

Consider, as a first example, the position regulation of (simple) mechanical sys-

tems, which is the prototypical case study of EB stabilizable systems. For these

systems the total energy function is given by

H (q, p) =
1

2
pTM−1(q)p + V (q),

where the vectors q, p ∈ Rn/2 are the generalized displacements and momenta, re-

spectively, M(q) = MT(q) > 0 is the inertia matrix, and V (q) : Rn/2 → R is the

potential energy. Denoting x = col(q, p) ∈ Rn, the system is described by the PH

model (8.10) with the matrices

J =





0 I

−I 0



 , D =





0 0

0 R



 , g =





0

B



 ,

where R = RT ≥ 0 contains the friction coefficients, B ∈ Rn/2×m, and u ∈ Rm are the

external forces. Replacing the expressions above in (8.12), and doing some simple

calculations, we get

ỹ =−gT(J − D)−T((J − D)∇H (x) + gu
)

= gT





I 2R

0 I



∇H (x) − gT





−R I

−I 0



 gu

= BT∇pH (x)

= y,

which completes our claim.

Let us move now to a second example. As discussed in Section 8.1, a necessary

condition for an IDA-PBC to be an EB controller is that — for all assignable energy

functions Hd(x) — the damping verifies the condition (8.8), whose violation is

referred as ‘dissipation obstacle’. The proposition below shows that for single-port

PH systems that do not suffer from the dissipation obstacle we again have ỹ = y.
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Proposition 8.3 Consider a single input-output PH system (8.10) with u, y ∈ R1

and satisfying

rank
{

J(x) − D(x)
}

= n.

Assume all energy functions that can be assigned using IDA-PBC, where Jd(x) =

J(x) and Rd(x) = D(x), satisfy (8.8). Then, the new output ỹ coincides with the

natural output y.

Proof. All energy functions that can be assigned using IDA-PBC with Jd(x) = J(x)

and Rd(x) = D(x) are given by (8.5), where Ha(x) follows from the integration of

(8.17) — for a given α(x). For ease of reference we repeat the latter equation here

∇Ha(x) =
(

J(x) − D(x)
)−1

g(x)α(x).

Combining (8.8) and (8.17) yields D(x)∇Ha(x) = 0, or equivalently

D(x)
(

J(x) − D(x)
)−1

g(x) = 0. (8.19)

Hence, it remains to show that ỹ = y. Using (8.19), we may write

(

J(x) − D(x)
)(

J(x) − D(x)
)−1

g(x) = g(x)

⇒ J(x)
(

J(x) − D(x)
)−1

g(x) = g(x)

⇒ gT(x)
(

J(x) − D(x)
)−T

g(x) = 0,

and by replacing the latter into (8.12), we obtain

ỹ =−gT(x)
(

J(x) − D(x)
)−T(

J(x) − D(x)
)

∇H (x)

= gT(x)∇H (x)

= y.

This completes the proof. Q.E.D.

8.5 Retrospection

Summarizing, we have shown that, for the class of systems with pervasive dissipa-

tion, the basic IDA-PBC methodology reduces to an EB-PBC design. Thus, if one

accepts a set outputs other than the natural ones, we can give an Energy-Balancing

interpretation of IDA-PBC. Instrumental for our developments is that we swap the
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damping in the classical power-balance in order to conclude passivity with respect

to a different set of external port variables, while using the same storage function.

The only necessary condition for swapping the damping is that J(x) − D(x) needs

to be full rank. However, if J(x)−D(x) is rank deficient then the open-loop system

has equilibria at points which are not extrema of the energy function. Therefore,

the full rank condition seems not restrictive in physical applications.
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Chapter 9

Concluding Remarks

“The only things you are going to regret in this life

are the risks you didn’t take.”

Grumpy Old Men (1993)

This thesis is primarily devoted to the development new ways to advantageously

use the Brayton-Moser equations, as originally proposed in the early sixties, in

modern modeling and control problem settings are presented. As each individual

chapter already closes with its own retrospection, we briefly highlight the main re-

sults and also discuss some remaining issues that we think are interested for future

research within the context of this thesis.

Preliminary Insights

The first part of Chapter 1 surveys the basic elements and its characteristics of

nonlinear RLC networks. The class of networks being surveyed may contain multi-

port resistors, inductors, and capacitors, as well as constant and time-dependent

voltage and current sources. Two commonly used descriptions of the network dy-

namics are presented, namely the current-voltage and the flux-charge formulation,

and conditions for their existence are given. In the second part of the chapter, the

concepts of (co-)content and (co-)energy are introduced. The formulation of the

dynamics in terms of these scalar functions provides a compact and elegant net-

work description. Equations of this kind in network theory are the Lagrangian

and Hamiltonian equations, as well as the Brayton-Moser equations. The Brayton-

Moser equations, treated exclusively in Chapter 2, provide a natural framework to

model a large class of nonlinear networks in terms of a power function. The main

application of this scalar function — called the mixed-potential — is its use to
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prove stability of operating points. So far, the known mixed-potential based sta-

bility theorems all make restrictions on the type of nonlinearities allowed in the

network. We have shown that the admissible class of networks can considerably

be enlarged providing a generalization of the existing approach. Furthermore, a

dissipativity interpretation of Brayton and Moser’s stability criteria is given by es-

tablishing a direct relationship between the Brayton-Moser equations and port-

Hamiltonian systems. The methodologies and insights gained in Chapter 2 have

been of prime importance to establish many of the results in the main body this

thesis.

New Passivity Properties and Control

One of the main contributions of Chapter 3 is the establishment of a new passivity

property for nonlinear RL, RC, and a class of nonlinear RLC networks. It is proved

that for this class of networks it is possible to ‘add a differentiation’ to the port

variables preserving passivity with respect to a storage function which is directly

related to the network’s power (the mixed-potential). Based on these new passiv-

ity properties we proposed a new control strategy coined Power-Shaping Control.

This novel control method forms an alternative to, and is also used to overcome

certain obstacles of, the widely appreciated method of Energy-Balancing control

(also known as control by interconnection for dynamic controllers). Interestingly,

the new passivity properties have a direct relationship with the notion of reactive

power. Additionally, there are close connections of our result and the Shrinking

Dissipation Theorem of [114], which is extensively used in analog VLSI network

design. Exploring the ramifications of our research in that direction is a question

of significant practical interest.

The relation with reactive power is explored further in Chapter 4, were it is shown

that, under some regularity assumptions on the mixed-potential function, the

Brayton-Moser equations can be transformed into a dissipative port-Hamiltonian

system — with state variables inductor currents and capacitor voltages, and with

Hamiltonian a function related with the reactive power in the network. For that

reason, the new description is coined a reactive port-Hamiltonian system, and

has been shown to be potentially useful for control applications, including the

challenging and widely elusive reactive power compensation problem. However,

many problems remain open. For example, in a typical control configuration, the

compensator is a multi-port which is placed between the generator and the load.

Therefore, the generator now ‘sees’ a new load consisting of the cascade of the
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compensator and the original load. Following the philosophy of [13, 14], see also

Chapter 3, where loads are classified in terms of passivity of some suitably defined

multi-ports, the aim of the compensator is then to modify the passivity properties

of the new multi-port associated to this new load. How to formalize this concep-

tual scheme, and propose a practical implementation for it, are open questions to

be investigated.

Switched-Mode Networks

In Chapter 5, we have shown how, using the Brayton-Moser equations, we can

systematically derive mathematical models that describe the dynamical behavior

of a large class of switched-mode power converters. The methodology allows us

to include often encountered devices like (non-ideal) diodes and equivalent series

resistors. The key feature of our approach is that for each of the operating modes

we consider a different topological mixed-potential function. Appropriate combi-

nation of each of the individual mixed-potentials yields a single switched mixed-

potential that captures the overall physical power structure of the power converter.

Nevertheless, it remains as a future work to include more non-ideal effects due to

turn-on and turn-off time associated to the switching devices. Some interesting

ideas can be found in [94]. Furthermore, in Chapter 6 the celebrated Passivity-

Based Control (PBC) methodology has been successfully rewritten in terms of the

Brayton-Moser equations. Besides the fact that the controller dynamics are directly

expressed in term of the easily measurable quantities, current and voltage, two dif-

ferent damping injection schemes have been proposed, namely, series damping

and parallel damping. We have observed that while the series damping scheme

entails the usual robustness problems in case of changes in the load, the parallel

damping scheme naturally avoids these problems without the need for adaptive

extensions.

Taking the elementary DC/DC Buck and Boost converters, as well as the more elab-

orated three-phase AC/DC rectifier, as examples, we have carried out a compara-

tive study between the two different schemes. In order to ensure load robustness of

the AC/DC rectifier, it is necessary to apply a pre-compensation on the AC input

stage first. A disadvantage is that in this case the system is not robust against vari-

ations in the input inductances due to the pre-compensation scheme. However,

in applications the input inductances are usually constant or only slowly varying.

Thus, an adaptive mechanism to compensate for these variations is likely to be less

difficult to implement and computationally less costly than an adaptive mecha-
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nism that has to compensate for load variations. Further study on the robustness

of the closed-loop dynamics and issues regarding the practical implementation is

recommended.

Beyond Electrical Networks

Although it is well-known that there is a standard analogy between simple mechan-

ical and electrical systems, like e.g., the mass-inductor or spring-capacitor analogy,

the existence of a well-defined analogy for more general mechanical and electro-

mechanical systems is not straightforward. One of the main reasons for making

such analogy difficult is the presence of the so-called coriolis and centrifugal forces

in the mechanical domain, which do not appear as such in the electrical domain.

Nevertheless, some preliminary findings presented in Chapter 7 of extending the

power-based modeling and control ideas to mechanical systems look very promis-

ing. Though, a thorough further study on a more general level, starting with simple

electro-mechanical systems, is required.

Dissipation Obstacle Revisited

In chapter 8 have shown that, for the class of systems with pervasive dissipation,

the basic Interconnection and Damping Assignment (IDA-PBC) methodology re-

duces to an Energy-Balancing (EB-PBC) design. Hence, the so-called Dissipation

Obstacle is evaded. Instrumental for our developments was the observation that

under certain regularity conditions we can ‘swap’ the influence of the damping and

establish passivity with respect to a different set of external port variables, while

using the same storage function. Thus, if one accepts a set outputs other than the

original ones, we can give an Energy-Balancing interpretation of IDA-PBC. More-

over, for a large class of electro-mechanical systems it is shown that ‘swapping’ of

the damping terms coincides with the well-known Thévenin-Norton equivalence

transformations.
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[107] V. Vorpérian. Simplified analysis of PWM converters using model of the

PWM switch i: Continuous conduction mode. IEEE Trans. Aerosp. Electron.

Syst., 26:490–496, 1990.

225



Bibliography

[108] L. Weiss, W. Mathis, and L. Trajkovic. A generalization of Brayton-Moser’s

mixed-potential function. IEEE Trans. Circuits and Systems - I, 45(4):423–

427, April 1998.

[109] D.A. Wells. Application of the Lagrangian equations to electrical circuits. J.

Appl. Phys., 9:312–320, May 1938.

[110] D.A. Wells. A power function for the determination of Lagrangian general-

ized forces. J. Appl. Phys., 16:535–538, September 1945.

[111] N. La White and M. Ilic. Vector space decomposition of reactive power

for periodic nonsinusoidal signals. IEEE Trans. Circ. Syst. I, 44(4):338–346,

April 1997.

[112] J.C. Willems. Dissipative dynamical systems. part I: General theory. Arch.

Rat. Mech. and Analysis, 45(5), 1972.

[113] A.N. Wilson, Jr. Nonlinear Networks: Theory and Analysis. IEEE Press, 1975.

[114] J.L. Wyatt. Little-known properties of resistive grids that are useful in analog

vision chip designs. Vision Chips: Implementing Vision Algorithms with

Analog VLSI Circuits, Eds. C. Koch and H. Li, IEEE Computer Science Press,

NJ., 1995.

[115] D. Youla, L. Castriota, and H. Carlin. Bounded real scattering matrices and

the foundations of linear passive networks. IRE Trans. Circuit Th., 4(1):102–

124, 1959.

226



Summary

Modeling and Control of Nonlinear Networks

— A Power-Based Perspective

Increasing demands on efficient power management and conversion, together with

demands on reduced harmonic generation, higher bandwidths, and reliability,

make it necessary to design devices (e.g., controllers, compensators, filters etc.)

that ensure a system to meet certain directives. Such devices are most often devel-

oped and studied using linear signal-based approaches. However, since virtually

all modern systems are highly complex and inherently nonlinear, linear analysis

and design techniques might become insufficient as to ensure certain predefined

behaviors, robustness and reliability under all operating conditions, especially if

the (controlled or compensated) system is subject to large set-point changes, dis-

turbances, or errors that cause the system to deviate from its nominal point of op-

eration. For that reason, the development of dedicated tools that take the systems

nonlinearities into account is of utmost importance.

This thesis is concerned with the development of new modeling, analysis and con-

trol methods for nonlinear electrical networks. A unified power-based framework

that provides a systematic dynamical description of a broad class of networks, in-

cluding switched-mode power converters, is presented. A major advantage of the

method is that the underlying physical structure, like the interconnection of the

individual elements, nonlinear phenomena and the power flow, are explicitly in-

corporated in the model. Taking the network power-flow as a starting point, the

concept of passivity is considered from a fairly different point of view with re-

spect to the existing energy-based approaches. The resulting passivity properties

are of interest in network theory, but also have applications in control as they sug-

gest a so-called Power-Shaping stabilization method which forms an alternative

to the existing method of Energy-Shaping. In addition, useful relations with re-

active power are established and lead to the notion of reactive Hamiltonians. In
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the context of the recently proposed Passivity-Based Control (PBC) strategy for

switched-mode power converters, the power-based framework reveals and justifies

a revised damping injection scenario that significantly improves the robustness of

the closed-loop. Some preliminary steps are taken to extend the power-based mod-

eling and control approach to mechanical and electro-mechanical systems. The

developments throughout the thesis heavily rely on the ideas of R.K. Brayton and

J.K. Moser stemming from in the early sixties. Where applicable, the newly ob-

tained results are compared with well-known existing energy-based methods, like

the Lagrangian and Hamiltonian approach, and several structural relationships

between the methods are established.

Dimitri Jeltsema
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Modelleren en Regelen van Niet-Lineaire Netwerken

— Een Vermogensgebaseerde Aanpak

De continue ontwikkelingen omtrent het efficiënt beheersen en omvormen van

vermogen, tesamen met de strenge eisen op het gebied van maximaal toelaatbare

harmonische vermorming en betrouwbaarheid, zorgen ervoor dat er apparaten

(regelaars, compensatoren, filters etc.) ontwikkeld worden die er voor zorgen dat

een systeem voldoet aan de internationaal gestelde richtlijnen. Deze apparaten

worden veelal ontworpen en bestudeerd op basis van signaal-gebaseerde en lin-

eaire technieken. Echter, door de complexiteit, alsmede het inherent niet-lineaire

karakter, van de meeste moderne systemen, kan een lineaire analyse en een daar

uit voortkomend ontwerp ontoereikend zijn voor het nauwkeurig, veilig en ro-

buust regelen van het systeem — zeker als het (geregelde of gecompenseerde) sys-

teem onderhevig is aan grote veranderingen in het referentiesignaal, en storingen

of fouten die zorgen voor afwijkingen van het nominale werkpunt. Derhalve is het

zeer van belang dat er methoden worden ontwikkeld die de niet-lineaire structuur

van het te regelen of te compenseren systeem in acht nemen.

In dit proefschrift worden nieuwe modelvormings-, analyse- en regelmethoden

ontwikkeld voor niet-lineaire elektrische netwerken. Er wordt een gestruktureerde

modelvormingsmethode gepresenteerd die het mogelijk maakt om de dynamica

van een grote klasse van niet-lineaire netwerken (inclusief geschakelde vermogens-

omzetters) te beschrijven op basis van het vermogen. De onderliggende fysische

structuur, zoals de samenhang van de individuele elementen en de onderlinge ver-

mogensstromen, van het systeem wordt op deze manier benadrukt. Op basis van

deze vermogensgebaseerde modellen worden nieuwe inzichten verkregen op het

gebied van passiviteit en stabiliteit. De hieruit voortvloeiende resultaten zijn van

netwerk-theoretisch belang, maar suggereren ook relevante toepassingen in the

regeltechniek. Zo leidt de vermogensgebaseerde beschouwing van passiviteit tot de
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zogenaamde Power-Shaping methode. Power-Shaping vormt een alternatief voor

het reeds bestaande Energy-Shaping en omzeilt een aantal obstakels die deze me-

thode met zich mee brengt. Daarnaast wordt een aantal bruikbare relaties gelegd

met het begrip reactief vermogen. Dit geeft aanleiding tot de definitie van een re-

actief Hamiltoniaanse systeembeschrijving. Deze systeembeschrijving is uitermate

geschikt als basis voor het ontwerpen van regelaars voor het compenseren van re-

actief vermogen in niet-lineaire elektrische netwerken. Een herbeschouwing van

de recentelijk ontwikkelde passiviteitsgebasseerde regelstrategie (Eng: Passivity-

Based Control ofwel PBC) voor geschakelde vermogensomzetters op basis van het

vermogen leidt tot aanzienlijke verbeteringen van de robustheid van het gesloten-

lus system. Tenslotte wordt ook gekeken naar mechanische en electro-mechanische

systemen. De ontwikkelingen in dit proefschrift zijn sterk gebasseerd op de ideeën

van R.K. Brayton en J.K. Moser uit de vroege zestiger jaren. De nieuw verkregen

resultaten worden vergeleken met gevestigde methoden, zoals de Lagrangiaanse en

de Hamiltoniaanse aanpak.

Dimitri Jeltsema
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