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In this work, the modeling and control of a batch crystallization process used to produce tetragonal hen egg white lyso-

zyme crystals are studied. Two processes are considered, crystal nucleation and growth. Crystal nucleation rates are

obtained from previous experiments. The growth of each crystal progresses via kinetic Monte Carlo simulations com-

prising of adsorption, desorption, and migration on the (110) and (101) faces. The expressions of the rate equations are

similar to Durbin and Feher. To control the nucleation and growth of the protein crystals and produce a crystal popula-

tion with desired shape and size, a model predictive control (MPC) strategy is implemented. Specifically, the steady-

state growth rates for the (110) and (101) faces are computed and their ratio is expressed in terms of the temperature

and protein concentration via a nonlinear algebraic equation. The MPC method is shown to successfully regulate both

the crystal size and shape distributions to different set-point values. VC 2013 American Institute of Chemical Engineers

AIChE J, 59: 2317–2327, 2013

Keywords: protein crystallization, kinetic Monte Carlo simulation, process control, model predictive control, crystal

shape

Introduction

Protein crystallization is a central activity in the produc-

tion of pharmaceuticals. Additionally, the production of

highly ordered, high quality protein crystals through batch

crystallization processes is vital in devising proteins for ther-

apeutic purposes. Protein structure can be found via nuclear

magnetic resonance and X-ray crystallography.1–3 However,

nuclear magnetic resonance can only be used for proteins of

small molar mass (less than 30,000). For cases with large

molar mass, X-ray crystallography4 can be used as long as

protein crystals are of desired shape and high quality. In this

work, we investigate tetragonal hen egg white (HEW) lyso-

zyme protein crystals which is a naturally occurring enzyme

with antibacterial activity. It is a widely used model for the

study of protein crystallization and is composed of 129

amino acids with a molecular weight of 14,388.

More specifically, in the present work, we focus on both the

nucleation of lysozyme crystals in a batch crystallizer and the

crystal growth that follows after each crystal is nucleated until

the end of the batch simulation. Several attempts aimed at

modeling protein nucleation4,5 and growth6–8 have been made.

These efforts make it possible to manipulate the size distribu-

tion and morphology of the protein crystal, which is a very

critical variable for pharmaceutical products. For the tetragonal

form of lysozyme, experiments indicate that at low supersatu-

ration growth depends on a lattice defect mechanism, whereas

at high supersaturation growth proceeds via two-dimensional

(2-D) nucleation on the crystal surfaces.6,9,10 Kinetic Monte

Carlo (kMC) simulation methods will be used to model the

crystal growth since it is a nonequilibrium process. kMC algo-

rithms are based on a dynamic interpretation of the Master

equation.11,12 These algorithms form the basis for applying the

Monte Carlo method to simulate dynamic processes.13–24 One

more assumption that we will use in the present work is the

solid-on-solid lattice model.25 This approximation will cause

the crystal to be very compact by avoiding voids and over-

hangs while depositing particles onto the crystal lattice.

To implement our kMC methodology in a way that will

consider the entire crystal lattice, in addition to being com-

putationally efficient, we extend the methodology of Ref. 26

to the rate equations originally developed by Durbin and

Feher.25 This methodology has been discussed in our recent

work27 for single crystal growth while allowing molecular

attachment, detachment, and migration events on the (110)

and (101) faces. In the present work, this method is

expanded to account for many crystals in a batch crystalliza-

tion process. Similar to our previous work,27 all attachments
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will be done in monomer units. We also assume that the

monomer is not attached to water, but is a pure protein sol-

ute molecule. In the future, we can consider both the aggre-

gates of lysozyme and water bonded protein molecules.28

Assuming all surface sites are available for attachment, the

attachment rate is considered to be independent for each lat-

tice site. Detachment and migration events, however, are de-

pendent on the local surface micro-configuration. For the

local micro-configuration, we classify each lattice site based

on the number of nearest neighbors surrounding that site. We

consider nearest neighbors to be on the north, south, east, and

west directions which are of the same height or higher com-

pared to the current lattice site. This will allow each lattice

site to have from zero to four nearest neighbors, giving a

total of five classes. These classes are used to lessen the com-

putational cost when calculating the rates for our three micro-

scopic events. Since the solid-on-solid model is assumed,

every lattice site has a nearest neighboring lattice site below

(i.e., no voids or overhangs), and this nearest neighbor will

be taken into account in the pre-exponential factor of the rate

equations, described in the following section. Owing to the

dependence of detachment and migration rates on the surface

configuration, kMC simulations are needed to compute the

net crystal, steady-state, growth rate as a function of tempera-

ture and protein concentration in the continuous phase.

In the next section, we will summarize the methodology

for our kMC simulation method, including open-loop simula-

tions to fit the data of Durbin and Feher.6 Next, we will

present our model predictive control (MPC) methodology to

regulate crystal size and shape. After that we will present

and discuss our simulation results for batch crystal nuclea-

tion and growth under closed-loop conditions. We will finish

with a short conclusion and some ideas for future research.

Modeling and Simulation

As previously stated, we assume the solid-on-solid lattice

model to carry out the crystal growth process simulation. For

this work, we will focus on square lattice models of length

and width N550 sites with periodic boundary conditions rep-

resented by a 2-D array. Previous work29 reports that no fi-

nite size effects were found between systems of sizes N530,

N560, and N5120 sites. Furthermore, the present work will

use the value at each lattice site of our 2-D array to be the

number of particles (i.e., height) at the current location. Each

event of our kMC simulation is chosen randomly based on

the rates of the three microscopic phenomena.

Surface kinetics

The following description of the surface kinetics for our

model was described previously by Nayhouse et al.27 As

noted in the previous work, the following description of the

surface kinetics follows that of Durbin and Feher,25 which

was extended by Ke et al.29 for migration events. As empha-

sized earlier, since each surface site is available for attach-

ment, the attachment rate is independent of each lattice site

and defined as

ra5K1
Dlð Þ5K1

0 exp
Dl

kBT
(1)

where K1

0 is the attachment coefficient, kB is the Boltzmann

constant, T is the temperature in Kelvin, and Dl5kBTln c=sð Þ,
where c is the solute concentration and s is the protein solu-

bility and this term is the crystallization driving force. The

protein solubility is dependent on temperature (�C) and

defined for pH5 4:5 and 4% (w/v) NaCl by Refs. 30 and 31

with the following third-order polynomial

s Tð Þ52:8831024T3
21:6531023T2

14:61931022T

16:00831021
(2)

It is reported that Eq. 2 gives an error of 6.8% for the

selected pH and salt concentration.31 Returning back to the

adsorption rate, we define the total rate of adsorption as

Wa5N2ra (3)

since each lattice site is considered to be independent.

Conversely, the desorption rate is dependent on the sur-

face micro-configuration surrounding that surface particle. A

lattice site with i nearest neighbors has desorption rate

K2 Ebð Þ5K2

0 exp
Eb

kBT

� �

5K2

0 exp 2i
Epb

kBT

� �

(4)

where K2

0 is the desorption coefficient, and Epb is the aver-

age binding energy per bond, and Eb5iEpb is the total bind-

ing energy. From this point forward, we will refer to the

desorption rate which is dependent on the number of nearest

neighbors as

rd ið Þ5K2

0 exp 2i
Epb

kBT

� �

(5)

As expected, the desorption rate is lower when i is higher.
The total rate of desorption is computed by

Wd5

X

4

i50

Wdi ; Wdi5Mird ið Þ (6)

where Wdi is the total rate of desorption for each class and

Mi is the number of lattice sites with i nearest neighbors. To
define the migration rate, Ke et al.29 used a rate similar to

the desorption rate which includes an additional term. This

term causes migration to have a higher rate compared to the

desorption rate and is defined the following way

rm ið Þ5K2

0 exp 2i
Epb

kBT
1

Epb

2kBT

� �

(7)

The total migration rate is computed as

Wm5

X

4

i50

Wmi
; Wmi

5Mirm ið Þ (8)

Now that there is a rate expression for each of the micro-

scopic events, the total rate, Wtot , can be computed by sum-

ming over all rates, i.e., Wtot5Wa1Wd1Wm

As pointed out by Durbin and Feher25 and Ke et al.,29 K1

0

and K2

0 are not independent. At equilibrium, Dl50, and the

attachment and detachment rates must be equal, or

K1
Dl50ð Þ5K2 /ð Þ (9)
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where / is the binding energy per molecule of a fully occu-

pied lattice. Plugging these two values into each equation

will produce the following relationship

K2

0 5K1

0 exp
/

kBT

� �

(10)

With one additional substitution, the desorption and

migration rate equations take the following form

rd ið Þ5K1

0 exp
/

kBT
2i

Epb

kBT

� �

(11)

rm ið Þ5K1

0 exp
/

kBT
2i

Epb

kBT
1

Epb

2kBT

� �

(12)

We note that the binding energies cannot be accessed by

experiments.25,32 Previous simulation work assigned a range

of values to Epb and /, until satisfactory agreement between

the calculated and the experimental growth rates was

achieved.25 We follow the same approach in this work to

obtain growth rate results consistent with the work of Durbin

and Feher.6 Finally, as mentioned previously, the computa-

tion of the growth rate for each face requires the use of

kMC simulations owing to the dependence of the detachment

and migration rates on the surface micro-configuration and it

cannot be computed by simply subtracting the attachment

and detachment rates.

Event execution

To execute an event we generate a uniform random number,

f1 2 0; 1½ Þ. If f1 � Wa=Wtot , then an adsorption event will be

executed. If Wa=Wtot < f1 � Wa1Wdð Þ=Wtot , then a desorp-

tion event will be executed. Last, if f1 > Wa1Wdð Þ=Wtot ,

then a migration event will be executed. For adsorption, a lat-

tice site is chosen at random for the event to take place. For

desorption and migration, the specific class needs to be deter-

mined. In the case of a desorption event, the kth class is deter-

mined to be an integer from 0; 4½ � such that

Wa1

X

k21

i50

Wdi

Wtot

< f1 �

Wa1

X

k

i50

Wdi

Wtot

(13)

Figure 1. Plots of the growth rate data obtained for the (110) face, the (101) face, and the growth rate ratio

between (110) and (101) faces for tetragonal lysozyme protein crystals at pH 54:5.

It is noted that the growth rate ratio, G, is equal to G110 tð Þ
G101 tð Þ and is dimensionless. The data from the open-loop kMC simulation are

plotted to demonstrate the effect of temperature and concentration variations on growth rates. Protein concentration and tempera-
ture range from 41.5 to 48.5 mg mL21 and 4 to 25�C, respectively. [Color figure can be viewed in the online issue, which is avail-
able at wileyonlinelibrary.com.]
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Once the class is determined, a second random number,

f2, is generated to select a random lattice site in class k to

execute the desorption event. Migration events work in an

analogous way to desorption events with a minor modifica-

tion to Eq. 13 as follows

Wa1Wd1

X

k21

i50

Wmi

Wtot

< f1 �

Wa1Wd1

X

k

i50

Wmi

Wtot

(14)

In Durbin and Feher’s original work,25 they found that

only half the lattice sites were available for adsorption on

the (101) face, whereas every lattice site is available on the

(110) face. This is due to the fact that only half the mole-

cules on the (101) face have dangling bonds (i.e., the points

of attachment for incoming molecules), whereas every mole-

cule on the (110) face has dangling bonds.25 In the present

work, we model this behavior by accepting 50% of adsorp-

tion events on the (101) face, compared to 100% on the

(110) face. In the case of desorption, the event is always

accepted for both faces. Similar to desorption events, migra-

tion events are always accepted as long as there exists at

least one available migration site. For this work, an available

migration site is a nearest neighboring site which is lower in

height than the current lattice site where the migration event

is taking place. We assume each available migration site

has equal probability to accept the displaced particle, which

follows from.33

After each event is executed, a time increment, Dt, is

computed based on the total rate of the microscopic events

as follows

Dt52ln fð Þ=Wtot (15)

where f is a uniform random number, f 2 0; 1½ Þ. Events will

continue to take place until the simulation has ended.

Fitting experimental data via open-loop simulations

For a given set of the simulation conditions comprised of

temperature, pH, salt, and protein solute concentrations, the

method described earlier in this section results in averaged ly-

sozyme face growth rates at various values of supersaturation.

In Figure 2, crystals have been grown at supersaturation

2:1�ln c=sð Þ�3:95, where c (mg mL21) is the protein solute

concentration and s (mg mL21) is the solubility, and the esti-

mated growth rate at 4.0% NaCl is compared with the exper-

imentally measured data at 3.5% and 5.0% NaCl from Ref.

10, respectively. The parameters for the kMC simulation in

Figures 2–9 are listed in Table 1. The original parameters

were taken from Ref. 25 and modifications were performed

by making small changes to these parameters to ensure both

validity in the crossover behavior of the growth rates of the

(110) and (101) faces, and that the data were in the correct

regime for the 4% NaCl to make use of available nucleation

rate data.34 The growth rates produced are the average

growth rate for each set of conditions over 10 independent

kMC runs. For Figure 2, c545:0 mg mL21. The solubility is

determined by Eq. 2 in terms of temperature (�C) at

pH5 4:5 and 4% (w/v) NaCl. As is evident in Figures 2 and

3, crossover behavior between the (110) and (101) faces

does, indeed, occur. It is also apparent in Figure 2 that the

kMC simulation models the experimental result by Ref. 25.

We also note that with a different set of experimental data,

the parameters can be fit again to achieve a satisfactory

agreement between simulation and experiment.

Figure 2. The expected growth rate vs. the degree of

supersaturation at c5 45 mg mL21 and 4%

NaCl are shown as the solid (110 face) and

the dashed (101 face) lines.

The (�) and (w) represent the measured experimental
data for 101 and 110 faces with 5% NaCl; (•)/(�) repre-
sent the measured experimental data with 3.5% NaCl;
extracted from Ref. 7 at pH54:6.

Figure 3. The expected growth rate vs. the degree of

the supersaturation at c545 mg mL21 with

Epb=kBT5 0:78=0:83ð Þ and /=kBT5 3:7=2:75ð Þ
for 110 (�) and 101 faces (~), respectively.

Error bars represent two standard deviations of 10 sim-
ulations for each point.
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Furthermore, kMC simulations were carried out to evalu-

ate the effect of nucleation (i.e., crystals nucleated at differ-

ent time as the batch crystallization process proceeds). The

nucleation rates were extracted from Ref. 34, which will be

discussed in MPC Formulation section. As anticipated, for a

given temperature, higher solute concentrations in the contin-

uous phase result in higher supersaturation, and yield both

higher growth rates and higher nucleation rates. However,

for a given concentration, as temperature rises, the supersatu-

ration decreases resulting in a lower nucleation rate and a

lower growth rate. The supersaturation dependence of the

nucleation rate can be seen in Eq. 17, which is presented in

the next section and used to calculate the number of newly

formed crystals. The final crystal shape and size distribution

can be driven to a desired range by the controller design

described in the following section.

MPC of Crystal Size and Shape

In the kMC simulations, crystal nucleation is considered

alongside crystal growth via molecular attachment, detach-

ment, and migration events. Since the nucleation rate

depends on the supersaturation, it has been manipulated by

changing the temperature for a given concentration. In Table

1, parameters of crystal growth have also been appropriately

chosen for kMC simulations to capture the experimentally

observed crossover behavior in the crystal growth rates

between the (110) and (101) faces.6,25 In this section, a

model predictive controller is designed based on the nonlin-

ear growth rate equations (i.e., 3-D plots) for both faces and

the growth rate ratio which has been shown in Figure 1a–c

to suppress the uncertainty in the solute concentration, and

achieve the desired set-point values by manipulating the

temperature. A desired set-point value of the growth rate ra-

tio and minimum crystal sizes for the (110) and (101) faces

are included in the cost function in the MPC formulation.

MPC resolves the drawbacks of the classical control

schemes like proportional integral control, which cannot ex-

plicitly take into account input/state constraints, optimality

considerations, and the nature of the nucleation, attachment,

detachment, and migration processes. Furthermore, dynamic

open-loop optimization may be used. However, open-loop

optimization does not provide robustness against model inac-

curacies and stochastic variation in the protein concentration

and the operating environment.

The population balance equation for protein

crystallization

The evolution of the particle size and shape distribution in

a protein crystallization process is typically described by a

population balance equation (PBE). More specifically, for

the batch crystallizer considered in this work, a population

balance model can be used to describe the evolution of the

crystal size distribution (CSD), n h110; h101; tð Þ, which repre-

sents the number of crystals at time t with height h110 and

h101 on each face. To describe the behavior of the CSD in a

crystallization process, it is necessary to know the nucleation

rate as well as the growth rate. In Liu’s work,35 they only

considered crystal growth from seeds. However, in the pres-

ent work, we consider the nucleation process as well. We

assume that the height of nuclei for the (110) and (101)

faces, h110 and h101, is negligible, and the number of nuclei

newly formed at time t is denoted as n 0; 0; tð Þ. We have two

reasons supporting this assumption. First, a nucleus consists

Figure 4. The final crystal size distribution at the end

of the batch simulation for each face under

closed-loop operation starting from different

initial temperature and aiming at growth rate

ratio set-point value, hGi50:82.

It is noted that the crystal size distribution is a dimen-
sionless variable and is normalized over the entire crys-
tal population so that summing over all histogram bars
for each face will add up to 1, for each different set of
growth rate ratio and starting temperature.
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of 3 (to 4) HEW lysozyme molecules, whose size is negligi-

ble relative to the final crystal size.36 In addition to this,

nuclei cannot be observed until they reach the resolution

limit of the optical microscope, �0.5 mm.37 The resulting

PBE has the following form:

@n h110; h101; tð Þ

@t
1@

G110 h110; tð Þn h110; h101; tð Þð Þ

@h110

� �

1@
G101 h101; tð Þn h110; h101; tð Þð Þ

@h101

� �

50

G5fG T;Cð Þ

G110 h110; tð Þ5f110 T;C; tð Þ

G101 h101; tð Þ5f101 T;C; tð Þ

n h110; h101; tð Þ5
X

t21

k50

D

J 0; 0; kð Þ � V

J 0; 0; tð Þ5fnucleation r tð Þð Þ

(16)

where G110 h110; tð Þ and G101 h101; tð Þ are the growth rates for

(110) and (101) faces, D is the sampling time, V is the vol-

ume of the crystallizer, G5
G110 tð Þ
G101 tð Þ, is the growth rate ratio.

The nonlinear equations, fG, f110, and f101, show their

dependencies on temperature, solute concentration, and time,

respectively. The number of crystals nucleated at time, t, is
obtained from Ref. 34, where the homogeneous nucleation

rate is determined by the supersaturation and NaCl concen-

tration, as well as pH level. In this work, we assume that

heterogeneous nucleation, i.e., nucleation on a surface, is

negligible. The following equation for the nucleation rate,

J 0; 0; tð Þ rð Þ, at time t (with units [cm23�s21]), was extracted

from Ref. 34 at pH5 4:5 and 4% (w/v) NaCl

J 0; 0; tð Þ rð Þ5
0:041r10:063 if r � 3:11
8:031028exp 4:725rð Þ if r < 3:11

�

(17)

Instead of solving Eq. 16 directly, we execute several

kMC simulations with nuclei formed at different times. This

is considered to be equivalent to solving Eq. 16. Also, for a

given supersaturation, the nucleation rate is obtained from

the experimental results by Galkin et al.34 Then, a controller

design method, which was developed by Nayhouse et al.,27

is further generalized to the case with nucleation of crystals,

which is described in the following section.

MPC Formulation

We consider the control of the crystal size and shape for a

crystal population nucleated at different times as the batch

crystallization process proceedes by using a MPC design. The

expected value of the growth rate ratio, hGi, is chosen as the

control objective, where G is defined as the ratio G110=G101.

A desired minimum crystal size is also included in the cost

function of the MPC formulation and the temperature is used

as the manipulated input. Although there are various factors

that affect the protein solubility and crystal morphology during

Figure 5. The final crystal size distribution at the end

of the batch simulation for each face under

closed-loop operation starting from different

initial temperature and aiming at growth rate

ratio set-point value, hGi51:10.

It is noted that the crystal size distribution is a dimen-
sionless variable and is normalized over the entire crys-
tal population so that summing over all histogram bars
for each face will add up to 1, for each different set of
growth rate ratio and starting temperature.
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the crystallization process,38–42 we assume only temperature

and solute concentration vary, while all other parameters

remain constant for the closed-loop simulations (e.g., pH,

NaCl concentration, buffer concentration, etc.). The proposed

modeling and control methods can be easily extended to the

case of multiple inputs since they do not depend on the spe-

cific number of the manipulated variables. To account for a

number of practical considerations, several constraints are

added to the control problem. First, there is a constraint on

the range of variation of the temperature to ensure validity for

the kMC model by imposing a temperature range that will not

damage the protein crystal. Specifically, 4�C � T � 25�C is

the working range for temperature values. Second, another

constraint is imposed on the rate of change of the temperature

to account for actuator limitations. The controller can change

temperature at a maximum of 2�C min21. The other constraint

restricts the number of crystals nucleated during, for example,

the second half of the batch run, which limits the nucleation

Figure 6. Profiles of nucleated crystals and temperature

with time during the batch run under closed-

loop operation for varying initial temperature

and for the growth rate ratio set-point value,

hGi50:82.

It is noted that the nucleation time distribution is a dimen-
sionless variable and is normalized over the entire crystal
population so that summing over all histogram bars, for
each different set of growth rate ratio and starting tem-
perature, will add up to 1.

Figure 7. Profiles of nucleated crystals and temperature

with time during the batch run under closed-

loop operation for varying initial temperature

and for the growth rate ratio set-point value,

hGi51:10.

It is noted that the nucleation time distribution is a dimen-
sionless variable and is normalized over the entire crystal
population so that summing over all histogram bars, for
each different set of growth rate ratio and starting tem-
perature, will add up to 1.
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of very small crystal fines. The control action (optimal tem-

perature) at time t is obtained by solving a finite-dimensional

optimization problem in a receding horizon fashion. The cost

function in the optimal control problem includes a penalty on

the deviation of hGi from its desired crystal shape. It also

includes penalty costs on the negative deviation of the crystal

size when the crystal size is less than the minimum. This

helps to prevent crystal fines at the end of the crystallization

process. For a given solute concentration and temperature,

crystal growth during the time interval is estimated by using

Figure 1, which was previously obtained from the open-loop

simulations. The MPC problem is formulated as follows

minimize
T1;…;Ti;…;Tp

X

p

i51

FhGi;i1Fh110;i1Fh101;i

subject to FhGi;i5 hGi-Gsetð Þ2

Fhj;i5

( hj;min2hhj tið Þi

hj;min

for hhj tið Þi < hj;min

0 for hhj tið Þi � hj;min

Gi5fr T;C; tið Þ

Gj tið Þ5fj T;C; tið Þ

Tmin � Ti � Tmax
�

�

�

�

Ti112Ti

D

�

�

�

�

� RT

n 0; 0; tð Þ � nlimit 8t � tf=2

hhj tið Þi5
hhj ti21ð Þin h110; h101; ti21ð Þ

n h110; h101; tið Þ
1Rj ti21ð ÞD

n h110; h101; tið Þ5n h110; h101; ti21ð Þ1n 0; 0; ti21ð Þ8i

i51; 2;…; p

j 2 110; 101f g

(18)

where t is the current time, ti, i51; 2;…; p, is the time of the

ith prediction step, ti5t1iD, respectively, tf is the length of

the batch simulation, FhGi,i is the cost function expressing the

deviation of hGi from its set-point ratio, Gset, Fh110;i and Fh101;i

are the cost functions expressing the penalty on the negative

deviation of hh110i and hh101i from its minimum crystal size,

h110;min and h101;min , at time ti, p is the number of prediction

steps, pD is the specified prediction horizon, Ti; i51; 2;…; p,
is the temperature at the ith step, Ti5T t1iDð Þ, respectively,
Tmin and Tmax are the lower and upper bounds on the temper-

ature, respectively, RT is the limit on the rate of change of

the temperature, nlimit limits the number of crystals nucleated

during the latter half of the simulation time. The number of

crystals, n h110; h101; tið Þ, and average height of the crystal

face j, hhj tið Þi, at time ti are updated at every sampling time

through the recursive equations (cf. Eq. 18), respectively.

The optimal set of control actions T1; T2;…; Tp
� �

is obtained

from the solution of the multivariable optimization problem

of Eq. 18, and only the first value of the manipulated input

trajectory, T1, is applied to the protein crystallization process

from time t until the next sampling time. At this point, a new

measurement of protein concentration in the continuous phase

is received from the kMC simulation and the MPC problem

Figure 8. The final crystal shape distribution at the end

of the batch simulation under closed-loop

operation for varying initial temperature and

for the growth rate ratio set-point value,

hGi50:82.

It is noted that the crystal shape distribution is a dimen-
sionless variable and is normalized over the entire popu-
lation so that summing over all histograms will add up
to 1 for each starting temperature.

Figure 9. The final crystal shape distribution at the end

of the batch simulation under closed-loop

operation for varying initial temperature and

for the growth rate ratio set-point value,

hGi51:10.

It is noted that the crystal shape distribution is a dimen-
sionless variable and is normalized over the entire crys-
tal population so that summing over all histogram bars
for each different starting temperature will add up to 1.

Table 1. Parameters for Face (110) and (101) at 45 mg
mL21 NaCl and pH5 4.5 at T518�C; additionally,

K1

o 50:211 s21

Face /=kB Epb=kB

(110) 1077.26 227.10
(101) 800.66 241.65
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of Eq. 18 is resolved for the computation of the next optimal

input trajectory. The physical properties of the system (i.e.,

protein solubility and so on) were obtained from experimental

data for the lysozyme protein solution.30 In a previous

work,43 empirical expressions were obtained for the growth

rates by fitting algebraic expressions to the available experi-

mental data. In the present work, the growth rates are com-

puted following the kMC methodology described previously.

Furthermore, the stochastic nature of the system and the

model uncertainty will be accounted for in the protein con-

centration variations. For results on robust-control of crystal-

lization systems and MPC, see Refs. 44 and 45, respectively.

Batch Crystallization under Closed-Loop

Operation

In this section, the proposed model predictive controller of

Eq. 18 is applied to the kMC model described previously. At

each sampling time (1 s), the optimal temperature, obtained

by solving the optimization problem of Eq. 18, is applied to

the closed-loop system until the next sampling time. The

optimization problem is solved via a local constrained mini-

mization algorithm using the nonlinear algebraic models

described previously (cf. Figure 1) to predict the dependence

of the crystal growth rate and growth rate ratio on tempera-

ture and solute concentration, respectively.

The solute concentration randomly varies following the

Gaussian distribution of Eq. 19 to simulate the effect of dis-

turbances at pH 4.5 and 4.0% NaCl, i.e.

hC tð Þi5Cn; hC tð ÞC t0ð Þi5r2C2
n; (19)

where Cn is the nominal concentration of the system and r2

shows how far a set of measured concentrations deviates

from its nominal value. Also, it is important to note that the

concentration variation results in a change of the attachment

rate (cf. Eq. 1). For all closed-loop simulations, the nominal

concentration is 45 mg mL21 with r52:5% of Cn. The max-

imum rate of change of the temperature is 2�C min21. The

volume of the crystallization batch is 1.0 L. The limit on the

number of crystals nucleated during the latter half of the

simulation time nlimit5 500. The following heuristic is also

taken into account: It starts from a high enough supersatura-

tion region in the beginning that many crystals are nucleated.

Then, it moves on to a low enough supersaturation region to

keep the rate of nucleation low to avoid the nucleation of

the small crystal fines in the end of the batch run. This opti-

mal strategy is taken into consideration in this work as one

of the constraints restricting the number of crystals nucleated

during the latter half of the simulation time. See, e.g., Fig-

ures 4a and 6a. Since the MPC formulation uses steady-state

growth rates (cf. Figure 1b and c), the number of prediction

steps is set to be p5 1. The time interval between the two

sampling times is 1 s. The prediction horizon of each step is

fixed at pD51 s. The solute concentration varies every 1 s.

The computational time that is used to solve the optimization

problem with the current available computing power is negli-

gible with respect to the sampling time interval. The closed-

loop simulation duration tf54000 s.

In the closed-loop simulations associated with controlling

the growth rate ratio to the desired set-point values, the con-

trol objective is to separately regulate the expected ratio to

the desired values, hGi50:82 and hGi51:10, respectively.

Thus, the cost function of this problem contains a penalty on

the deviation of the expected growth rate ratio from the set-

point value. Also, the minimum thickness constraints

described previously were imposed on each face to avoid

undesirable crystal sizes.

The results of the closed-loop simulations are shown in

Figures 4–9. Specifically, Figures 4 and 5 show results for

six simulated batch runs under the different set-point growth

rate ratios (hGi50:82 and 1.10) and different starting tem-

peratures (To55�C, To515�C, and To523�C). Note that we

chose three starting temperatures, one at both extremes and

one in the middle, in addition to two growth rate ratios at

opposite ends to show a wide range of testing that can help

guide practitioners while looking to achieve a desired shape

and size distribution. In Figure 8, the lower desired crystal

growth rate ratio, <G > 50:82, has shown that final crystal

shape distribution is very narrow when the initial tempera-

ture is close to the optimal temperature. Depending on the

growth rate ratio set-point value and the initial temperature

of the crystallizer, it takes a different amount of time until

the temperature reaches the desired set-point value as it is

seen in Figures 4 and 6. In this case, the optimal temperature

is �23�C. Figures 4a and 6a display that starting from a low

initial temperature leads to nucleation of most of the crystals

within the first 600 s of the batch simulation and thus a nar-

row size distribution but, in Figure 8, a broad shape distribu-

tion is achieved. In Figures 4b and 6b, since the initial

temperature is closer to the optimal temperature, the system

reaches its optimal temperature faster resulting in a less nar-

row size distribution and, in Figure 8, a less broad shape dis-

tribution. Last, Figures 4c and 6c display that the system

reaches its optimal temperature very early and hence the size

distribution is broader but, Figure 8, the shape distribution

becomes very narrow.

In contrast to <G > 50:82, the case of the higher desired

crystal growth rate ratio, <G > 51:10, has shown that the

sensitivity of the system to the initial temperature is much

less and the final crystal shape distribution is extremely nar-

row when the growth rate ratio set-point is 1.10 as it is seen

in Figure 9. The reason is that the system reaches its optimal

temperature faster, and thus the crystals uniformly nucleated

along the batch go through the optimal temperature from the

beginning. As stated earlier, a higher growth rate ratio as

well as a higher nucleation rate is obtained at a low-tempera-

ture region.

In particular for Figures 5 and 7, the optimal temperature

is �13�C. The system reaches its optimal temperature faster,

and crystals are uniformly nucleated along the batch and

thus a broad size distribution but, in Figure 9, a narrow

shape distribution is achieved. We note that if the tempera-

ture reaches its optimal state earlier in the batch simulation,

undesirable effects of the nucleation and growth rates are

minimized. In addition to this, as it is shown in Figure 1,

variation in the solute concentration has less effect on the

growth rates as well as the growth rate ratio for hGi51:10,
and thus the system reaches its steady-state much faster,

which is shown in Figures 6 and 7.

Therefore, qualitatively speaking, MPC successfully drives

the final crystal shape distribution to the desired set-point

value, and a narrow size distribution can be achieved

depending on the desired crystal morphology. For instance,

for <G > 51:10, it is much more likely to obtain a broad

CSD, because the system reaches its optimal temperature

faster regardless of the starting temperature. Although
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disturbance results in the fluctuation of the solute concentra-

tion, the model predictive controller can successfully drive

the growth rate ratio to the desired set-point. The desired

distribution of the protein crystal shape can be estimated

from Figure 8 and it is slightly elongated along the (101)

direction for the lower set-point ratio while it is more

equidimensional for the higher set-point ratio, shown in

Figure 9.

Conclusions and Future Work

The present work focuses on the application of modeling,

simulation, and control to a batch protein crystallization pro-

cess to model multiple lysozyme protein crystals with the

consideration of crystals nucleated at different times in the

batch simulation. Based on the assumption that the two inde-

pendent crystal faces are the (110) and (101) faces, depend-

ence of the crystal growth of the two faces on temperature

and protein solute concentration, obtained from kMC open-

loop simulations, was observed. The crystal shape of the

resulting lysozyme crystals as well as the nucleation rate

was controlled through temperature variations. This was

achieved via a nonlinear steady-state model generated from

open-loop kMC simulations. Moreover, the nucleation rate

data was obtained from experiments and is a function of

supersaturation. The nonlinear model captures the protein

solute concentration and temperature dependence of the

growth rate ratio, thereby describing the key elements of the

protein crystallization process. The other key achievement of

the present work is that it takes nucleation into account

resulting in different crystals nucleated at different times

throughout the batch simulation.

An MPC strategy, which uses the steady-state model, was

then designed to drive the final CSD to the desired set-point

value while satisfying constraints on the magnitude and rate

of change of temperature. As mentioned previously, the tem-

perature is chosen as the manipulated input and this is in ac-

cordance with standard batch crystallization practice. The

minimum thickness for each face is also imposed to avoid

crystal fines. Simulation results demonstrated that the pro-

posed controller was able to control the final crystal shape

and size distribution by appropriately manipulating the tem-

perature. The present methodology shows that more than

90% of the final crystals can be produced at the desired

shape, either cubic or elongated crystals, as shown in Figures

8 and 9. Moreover, to implement this strategy in practice

only protein solute concentration and temperature measure-

ments are necessary. Once these measurements are available,

the controller uses the algebraic model connecting the pro-

tein solute concentration and the temperature to the crystal

growth rate ratio to compute the control action (i.e., tempera-

ture change); no crystal size/shape measurements are needed

in the controller. These temperature changes are feasible due

to the constraints put onto the controller.

Furthermore, the proposed kMC simulation offers a num-

ber of advantages compared to previous work. In previous

simulations, such as Ke et al.,29 they only considered the

crystal seeds to initiate the crystallization. In contrast, in the

present simulation, the nucleation rate was extracted from

experiments and an appropriate region was picked and tested

to model the experimental data. In the present work, a con-

troller is designed to drive existing crystals as well as newly

formed nuclei to desired crystal shape and size.

For the future work, in addition to monomer growth,

aggregates of two or more molecules can be considered dur-

ing adsorption events onto a crystal surface. To select either

a monomer or an aggregate in every attachment event,

another random number should be generated.29 This consid-

eration can potentially produce more realistic growth rates

depending on the desired simulation range.
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