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Modeling and Control of Single- 
Link Flexible Arms With Lumped 
Masses 
This paper deals with the modeling and control of a special class of single-link 
flexible arms. These arms consist of flexible massless structures having some masses 
concentrated at certain points of the beam. In this paper, the dynamic model of 
such flexible arms is dewloped and some of the control properties are deduced. A 
robust control scheme to remove the effects of friction in the joins is proposed. The 
control scheme consists of two nested feedback loops, an inner loop to control the 
position of the motor and an outer loop to control the tip position. The inner loop 
is described in other publications. A simple fedforward-feedback controller is de- 
signed for the outer loop to driw the beam accurately along a desired trajectoty. 
Effects of the changes in the tip’s mass are studied. This modeling and control 
method is then generalized to the distributed-mass flexible beam case. Finally, ex- 
perimentaf results are presented. 

1 Introduction 
This paper deals with the modeling and control of a special 

class of single-link, lumped-mass, flexible arms. These arms 
consist of massless flexible structures that have masses con- 
centrated at certain points of the beam (see Fig. 1). Although 
the translations of these masses produce stresses in the flexible 
structure, their rotations do not generate any torque in the 
beam. Therefore, the number of vibrational modes in the struc- 
ture coincides with the number of lumped masses. Book (1979) 
studied the case of two rigid masses connected by a chain of 
massless beams having an arbitrary number of rotation joints. 
Our problem differs from this in the sense that our structure 
has only one rotation joint and an arbitrary number of lumped 
masses. These two particular structures are studied because: 

Some lightweight robots and other applications can be 
reasonably approximated by these models. 
Their dynamics may be easily modeled as compared to 
distributed-mass flexible arms. 
Interesting properties for the control of flexible arms are 
deduced from their dynamic models. 
A method to control these arms is inferred from the struc- 
ture of the model. 
The influence of changes in the tip’s mass are easily char- 
acterized. 
Given a distributed-mass flexible arm, there always exits 
a truncated dynamic model which is of the same form as 
the lumped-mass flexible arm model and which reproduces 
the dynamics of the measured variables. This allows us 
to generate the above mentioned control method to the 
case of distributed-mass flexible arms. 
- 
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A method to control these flexible arms is proposed in this 
paper and is based on a robust control scheme developed by 
Rattan et al. (1988a. 1988b) This method compensates for the 
effects of Coulomb and dynamic (viscous damping) frictions 
in the joints. Coulomb friction is a nonlinearity which is typ- 
ically not taken into account by other methods to control 
flexible arms. This method proposes the use of two nested 
feedback loops, an inner loop to control the motor position 
and an outer loop to control the tip position. 

A new method to control the tip position of flexible arms 
is also proposed in this paper. This method is simpler than the 
other existing methods but, in turn, needs more sensing. Most 
methods (Cannon and Schmitz, 1985; Matsuno et al., 1987; 
Kotnick et al., 1988; etc.) use measurements of the tip and 
motor variables. This proposed method also uses some sensing 
at intermediate points of the beam. The number of sensing 
elements placed on the beam are equal to the number of con- 
centrated masses of the beam. The sensors are located on the 
masses. Two approaches may be used-sensing positions or 
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Fig. 1 Lumped masses flexible beam 
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sensing torques. In the second approach, a sensor is installed 
at the base of the beam instead of the tip mass. The control 
scheme developed in this paper is based on position sensing. 

Effects of the changes in the carried load on the dynamics 
of the system are studies. In order to keep the system’s response 
to a reference input approximately constant, the feedforward 
component of the controller is tuned for a particular payload. 

Section 2 establishes the dynamic model of the flexible arms. 
Some properties that are useful when controlling these arms 
are deduced in Section 3. The control scheme is proposed in 
Section 4. Modeling and control methods are extended to the 
case of distributed mass flexible beams in Section 5.  Experi- 
mental results are presented in Section 6 and conclusions are 
drawn in Section 7. 

2 Modeling 
The model of our flexible arms is divided into two sub- 

models; one describes the behavior of the motor while the 
other describes the behavior of the mechanical structure using 
the angle of the motor as its input. These two submodels are 
coupled by the reaction torque of the beam on the motor (see 
Fig. 2). This model is quite different from the models normally 
used in the control of flexible arms that consider the applied 
torque as the input to the beam (Truckenbrodt, 1979 and LOW, 
1987). Our representation has an advantage in that it identifies 
flexible arms with friction in the joints (Feliu et al., 1988), 
which allows us to compensate for this friction (Rattan et al., 
1988b). We show that another advantage of our model is that 
it allows us to separate the dynamic model terms that depend 
on the geometry of the beam from the terms that depend on 
the lumped masses of the beam. Special attention is paid to 
this issue because this separation of terms will be used in the 
control design. 

2.1 Beam Modeling. Consider the system of Fig. 1. It 
represents a massless flexible beam with n point masses dis- 
tributed along the structure with the last mass located at the 
tip of the beam. The inertia of the motor is included in the 
motor submodel. Let mi, 1 I i s n .  be the values of the masses; 
I; be the distances between consecutive masses i - 1 and i where 
I, is the distance between the rotation axis of the motor and 
the first mass. let Lj  be the distance between the mass mi and 
the axis of the motor. We assume that beam deflections are 
small enough so that the distances between masses mi (meas- 
ured along length of beam) are essentially equal to their pro- 
jections on the X-axis. 

We establish two coordinate systems b g h  with origins at 
the motor axis. The coordinate system X- Y is fixed in space, 
whereas the coordinate system X- Y moves with the motor 
shaft. Thus, y is the distance of a point on the beam from the 
X-axis. We denote F ( x )  and T ( x )  as the force and torque at 
this point; Le., the force and torque acting on the beam just 
to the left of this point due to the action of the beam just to 
the right of the point. 

External forces and torques, F,, and T,,, applied at the tip 
of the beam are considered in our model. F,, represents the 
component of the resultant applied force that is normal to the 
beam and to the joint rotation velocity vector simultaneously. 
T,, is the component of the resultant torque normal to the X- 
Y plane. These two terms represents the interaction of the 
beam with the environment and may be produced by the fol- 
lowing: reaction forces when following a surface, the reaction 
of the next joint when dealing with a multi-link arm, a load, 
frictional effects on the tip (for example in flexible arms 
mounted on an air table), etc. 

Assuming sma!l deflections, a massless beam can be de- 
scribed by the static deflection relation 

d4Y 
dr4 - EI--0 

Fig. 2 Dynamic model of the arm 

If the stiffness EI is constant through each interval of the 
beam, the deflection in the interval [ i -  1, rl is given by a third 
order polynomial 

n ( x )  = U,,O + U,,1(X- L- I ) + 4 . 2  ( x  - L,- I )2 + Ut.3 ( x -  L,-  I l 3  
(1) 

where u , ~  are the polynomial coefficients and are different for 
each interval, and Lo = 0. We assume in the following analysis 
that EIis constant throughout the beam. Notice that expression 
(1) is similar to the equations obtained from finite element 
models. 

2.1.1 Geometric Equations. Imposing continuity condi- 
tions between two consecutive intervals up to the second de- 
rivative, we get 3(n - l) equations 

Y,(Ll) =Y,+i(L,)  = ~ , , 0 + ~ 1 . 1 ~ , + ~ , , 2 ~ f + ~ , , 3 ~ r 3 = ~ , + 1 . 0  

(L;)  =& ( L ; )  = uj.1 + 2u;.21;+ 3 2 4  = u;+ I.1 (2) dx dx 

for the joint between [i-1. JJ and [ i ,  i + l ]  intervals, where 
1 s i < n .  The continuity condition between the motor and the 
beam yields 

Y I  (0) = 9 2  (0) = 0 = UI.0 = 0, 111, I = 0, (3) dx 
and the condition of the applied torque at the tip gives 

(4) 

This set of geometrical equations is completed by expressing 
deflections at specific points i in terms of these polynomials 
as 

U ~ , ~ + U ~ , ~ ~ ; + U ; . ~ ~ ~ + ~ ~ , ~ ~ ~ = ~ ( L ~ ) ;  1 s i s n  ( 5 )  

2.1.2 Dynamic Equations. If we apply Newton’s equa- 
tions to the n masses, we get 

n d2y(Lj) 

dt2 
T(L i )=  C mj(Lj-L;)  

j = i +  1 

-T,,-F,,(L,,-L;) O s i < n  (6) 

+F,, O s i < n  (7) 
d23(L,) 

dr2 
F(L i )  = - mi 

j = i +  1 

whereE(L,) = y ( L j )  +0,,,Lj is the arc position of mass j with 
respect to the origin axis (0, is the angle of the motor). Taking 
into account that 

and combining (6)-(S), we get 

where ~ , , + ~ , 3  = - F,,/6EIis defined according to (8). Expres- 
sion (9) is obtained from (7) using the second equation of (8). 
An equivalent expression may be obtained from (6) since 
expressions (2)-(8) are not independent. But we used (7) be- 
cause the resulting expression is simpler. 
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2.1.3 Dynamic Model of the Beam. Equations (2)-(5) al- 
low us to express coefficients uij as linear functions of y ( L i )  
and T,,. The ui,3 coefficients can be expressed in compact form 
as 

where u is a constant matrix that depends only on the dimen- 
sions of the beam and thelocation of the masses. Denoting 0; 
as the angle between the X-axis and the radial line from the 
origin to mass i (see Fig. l), using the approximation 0; = 
j ( L i ) / L j .  and substituting (10) into (9), we get n linear equa- 
tions of the form 12,c m. d2& ajj3j+b,8,,,+~I P. T,,; l r i < n  (11) 

E1 dt2 jLl 

P 1 --- m n  d2en - 9 unjej + bnem + 2 T,, + - F,,. (12) EI dt2 j = l  EI L,,EI 

Equations (1 1) and (12) can be expressed in compact form as 

M fi -EI[AB + BO,,,] + PT,, + QF,, 
dt2 - 

where M = diag(ml, m2. . . . , m,,), e* = (e,, e,, . . . , e,,). 
A is an n x n  constant matrix, and B, P and Q are constant 
n x  1 column vectors. In particular QT = (0, 0, . . . , 0, L;'). 
In expression (13). A, B, P and Q depend only on the geometry 
of the beam. The values of the lumped masses influence only 
matrix M. 

2.2 Motor Modeling. The dynamic behavior of a dc mo- 
tor may be modeled as 

d20m de,,, 
dt2 dt 

K i = J - +  V-+C,+CF 

where K is the electromechanical constant of the motor, i is 
the current, J i s  the polar inertia of the motor, Vis the dynamic 
friction coefficient, C, is the coupling torque between motor 
and beam and CFis the Coulomb friction. Taking into account 
that C, = - T(0) = - ~ E I U ~ , ~ ,  we can express this torque as 
a linear function 

C, = H e  + hn+ le,,, + hn+2Tnr (15) 
where H = (h, ,  h2, . . . , h,); hi, 1 I is n + 2 are parameters 
that do not depend on the masses of the beam. 

Expressions (13)-(15) suggest an easy way of extending this 
method of modeling to multi link arms. Expression (13) is 
obtained for each link, and expressions (14) and (15) for each 
joint. The coupling between each pair of links is obtained by 
making the T,, of the ith link equal to the C, of the ( i +  1)st 
link. 

3 Properties of the Lumped-Mass Model 
The dynamics of the flexible arm as described by Eqs. (13)- 

(15) are represented in Fig. 2. We assume that F,, and T,, are 
perturbations in the system. In order to perform the analysis 
and design of the control system, we make F, = T,, = 0. Five 
interesting properties from the control point of view are given 
below. 

1. From (13) and using Laplace transforms, we find that 
the transfer functions G;(s) = O;(s)/O,(s), for 1 s i s n ,  have 
terms only of the form s'; O r j r n ,  n being the number of 
lumped masses. Poles and zeros always come from factors of 
the form: ( s 2 + t ) ,  with z generally being a complex number. 
The following cases are possible: 

( a )  z€R,  z>O = two conjugate roots on the imaginary axis. 

( b )  ZER,  z<O = two roots on the real axis, being of the 

( c )  z€C, F ( z )  # 0 = sets of four symmetrical roots with 
same magnitude but opposite sign. 

respect to both real and imaginary axes. 

The mechanical structure is marginally stable because we as- 
sume that there is no friction along the beam (no energy dis- 
sipating phenomena) and the friction on the tip is treated as 
a perturbation. The poles are always of class ( a ) ,  but the zeros 
may be of any of the three classes. Case (b)  appears quite 
often and produces nonminimum phase systems. Control of 
these systems presents some difficulties as stated in Cannon 
and Schmitz (1985). 

2. The difference between the orders of the denominator 
and numerator of Gi(s), Vi, is at least two. This is a conse- 
quence of dealing with flexible arms. If numerator and de- 
nominator were of the same order, it would mean that an 
instantaneous change in the position of the motor would pro- 
duce an instantaneous change in the position of the ith point 
of the flexible arm (Initial Value Theorem of Laplace trans- 
forms, see Kuo (1982), which is not possible because flexible 
beams need some time to propagate the motion along the 
structure. 

3. Separation Property. It was mentioned in the previous 
section that the influence of the lumped masses on the dynamics 
of the arm may be perfectly seprated from the influence of 
the geometrical dimensions of the beam (see Eqs. (13) and 
(15)). This occurs because the beam is modeled as massless; 
thus, its shape is given by static deflection equations that de- 
pend only on the position coordinates. This property is used 
in the controller design. 

4. Zeros Invuriance Property. Zeros of G,, (s) , the transfer 
function between the tip position e,, and the angle of the motor 
e,,,. remain constant and are independent of the payload of the 
tip. 

5.  The coupling torque C, does not depend explicitly on 
the external force, F,,, applied at the tip (see (15)). This is 
because the force applied to the tip does not appear in the 
geometric equations. 

These properties are also verified for distributed-mass flex- 
ible arms and will be used in the next section. 

4 Control Method 
To control our flexible arms, a scheme based on two nested 

feedback loops is proposed. An inner loop is used to control 
the position of the motor and an outer loop is used to control 
the tip position (see Fig. 3). The controller of this outer loop 
generates a control signal which is the reference for the position 
of the motor (e,,,,) in the inner loop. This scheme was shown 
to be robust in the sense that it minimizes the effects of the 
Coulomb friction in the control as well as the effects of un- 
expected changes in the dynamic friction (Rattan et al. 1988a). 

Details of the design of the inner loop may be found in 
Rattan et al. (1988~). Because the motor is a minimum phase 
system, the inner loop uses very high feedback gains relative 
to the gain of the outer loop. The inner loop also incorporates 
compensation terms for the Coulomb friction and the coupling 
torque between the motor and the beam (see Fig. 4). The 
compensation term for the motor-beam coupling may be easily 
implemented in our arms using (15). Because of these high 
gains, the positioning of the motor can be made substantially 
faster than the dynamics of the vibration modes of the beam. 
If the positioning of the motor is much faster than the dynamics 
of the beam, the dynamics of the inner loop can be neglected 
(0, = e,,,,), and the design of the tip position control loop is 
significantly simplified. We assume, in what follows. that 0, 
= e,,,,, and also that T,, = F,, = 0. 

The controller for the tip position is composed of a combined 
feedforward/feedback law (Fig. 5) .  The feedforward com- 
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fig. 3 Control scheme robust to friction 

P. 1 
I pp 

Fig. 7 Feedforward control 

Fig. 4 Computer control loop of t b  motor position 

Fig. 5 Proposed tip position controller 

Fig. 6 Nominal trajectories for the tip position (Pa 

ponent is responsible for driving the tip of the arm close to 
the desired trajectory and the feedback term is responsible for 
correcting tracking errors. Both components are designed con- 
sidering that the input of the system is the desired angle of the 
motor Omr. 

4.1 Feedforward Term. If the transfer function between 
the angle of the motor and the angle of the tip G,,(s) is min- 
imum phase, then a second order parabolic profile can be used 
and the feedforward term can be G;'(s).  But if this transfer 
function is non-minimum phase, then a quasi-parabolic profile 
with derivatives bounded up to the fourth order (see Fig. 6) 
is used in order to guarantee the implementability of the feed- 
foward term (Feliu et al., 1988) and the nominal quasi-para- 
bolic profile is passed through a special filter in order to avoid 
unbounded control signals. We denote that nominal trajectory 

The necessity of the above mentioned filter may be justified 
as Pp. 

from Fig. 7. Assume an open-loop control for the case without 
external perturbations. If we want the $p to follow the ref- 
erence exactly, then the control signal Omr (which is same as 
6, neglecting the dynamics of the inner loop) is obtained by 
passing the desired profile Pp through a block G.(s) that im- 
plements the inverse of the plant G,(s). If this plant had zeros 
in the right half-plane, they would become unstable poles in 
Ci1(s) producing an unbounded amr control signal. In order 
to avoid this, a modified e,,@) term must be used and the tip 
reference would now be given by 

@.As) = GAS)&, (s)Pp(s), (16) 
where Pp(s )  is the Laplace transform of the parabolic or quasi- 
parabolic profile. This filter is chosen in such a way to get a 
reference trajectory 6, as close as possible to the desired ref- 
erence Pp, taking into account the constraint of a bounded 
amr. We choose as a representative index of closeness between 
trajectories, the integral of the squared difference between both 
profiles (see Fig. 7). This can be written as 

where a parabolic profile 2/s3 has been assumed for Pp because, 
from Fig. 6, the quasi-parabolic profile behaves as a parabolic 
trajectory most of the time, becoming a fourth order parabola 
only during the short transitions from maximum to minimum 
acceleration and vice versa. The transfer function G, (s) that 
minimizes (17) is a Weiner filter and gives a better performance 
than any simple feedback controller, provided there are no 
perturbations in the system. A feedback version of the Wiener 
filter also exists, but it gives complex controllers that are dif- 
ficult to implement in a real-time control. An advantage of a 
feedforward controller is that if we know the reference tra- 
jectory, the feedforward signal can be computed off-line in 
advance of the motion. Assuming that G,(s) is of the form 

fl2 6 (s-ai) n W b j )  
j -  I G,(s) =K i - l  

D(s )  , 

where aic0, l s i s n l ;  bj>O, 1 s j < n 2 ,  and all the roots of 
D ( s )  are in the left half-plane of the s-plane. It can be shown 
(Gupta and Hasdorff, 1970 and Feliu et al., 1989) that the 
optimum e,, (s) that minimizes the cost defined in (17) is given 
by 

(18) b2S2 + PIS+ or01 
e n  = q I KD ( s - a i ) n  (s+bj) 

i- 1 j -  I 

where the coefficients a's are obtained from the partial fraction 
"2 

(s+bji) 
'I 1 , m, al, cu2 being the coefficients expansion of ' n2 

s3.n (s-bj) 
j =  1 

corresponding to the terms whose denominators are s, s2, s3, 
respectively. The filter is then written as 
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j =  I 

4.2 Feedback Term. Feedback controllers may be de- 
signed by using any of the standard control design methods. 
Good results are achieved by using optimization techniques 
(Lee and Markus, 1986) to design the controller: y(s) 
= - hr( s ) ,  that drives x from an initial state to the zero state 
minimizing a cost function of the form 

m 

(xT(t)QIX(t) + Q282,Xt))dt (20) 
J =  1., 

where Ql€61bxb, Q2c61 are weighting matrices and x d "  is 
the state vector of the system. From (13) and making T, 
= Q,, = 0, we get the state equation of the system 

- 
A 

where xT(t) = (eT 6') and In~61nX" is the identity matrix. 
Model (21) is simpler than the models used in other approaches 
which relate e,, ( t)  and e,,, ( t )  with motor current i(r). This is 
because it does not include motor dynamics (motor inertia and 
the coupling term) which have been approximately cancelled 
by the motor control loop. This allows the design of simple 
controllers for the tip position. If there were dynamic friction 
in the tip, then F,, would be proportional to the speed of the 
tip mass and a coefficient would appear in the (2n, 2n) position 
of matrix A of equation (21). 

This feedback scheme uses the errors between the desired 
and the actual states to generate the control signal. Defining 
A = (Al Ad; AI,  A2 E @ I x n  we can express the control signal, 
y, as a function of the measured variables as y(s) = (AI + 
A&(e,(s) - 8 (s)). The reference vector for the measured vari- 
ables (e,) may be obtained from the reference e,,, by using the 
following expression 

W s )  =T(s)O,, (22) 

where 

1 
C,,Adj(Ms2- EIA)EIB 

(23) 
where Ci = (0 . . . 0 1 0 . . . 0). the 1 being in the ith column. 
In the case of a non-minimum phase system, the denominator 
of expression (23) has some positive real component roots. 
However, they are cancelled with the zeros of filter (19). leaving 
8, ( I )  bounded. Cancellation may be exactly done because all 
these terms are computed. 

The feedback control scheme proposed in this paper presents 
advantages over the other existing schemes that use less sensors 
when implementing it on a digital computer. These other con- 
trol schemes need to reconstruct the states x from the meas- 
urements of the motor and tip of the arm by means of filters 
and observers. They involve a large amount of computation. 
Also, in many cases, these reconstructions are distorted by the 
noise of the measured signals requiring some filtering of the 
measurements. This requires more complex algorithms (Kal- 
man filters, etc.) and more computations. But in our case, 
because we have simplified the ann dynamics by closing the 
motor position loop and since we are using more sensing in 
the beam, all the states may be obtained easily. Positions are 
measured and velocities may be estimated from measurements 

1 CIAdj(Ms2-EIA)EIB 
C2Adj(Ms2- EIA)EIB 

CJdj  ( Ms' - EIA)EIB 

T(s)  = 

Fig. 8 Detailed scheme of the tip position controller 

by using algorithms that are simpler than the one needed to 
estimate states in methods that use less sensing. In fact, in our 
experiments, where the level of noise was about 1 mrad for a 
range of motion of about 200 mrad, a good estimate of the 
velocity was obtained by using the simple difference equation 
8 ( k T )  = ( e ( k T )  -e( (K- l)T))/T, where Tis thesampling 
period and k is an integer. Because only the first derivative of 
measured signals is needed, this approximation of the velocities 
of the mass points is reasonable in many cases. 

Figure 8 shows the details of this control scheme. Notice 
that the first derivatives of the position error signals are used 
instead of the first derivatives of the position states. 

4.3 Influence of the Payload. In this subsection, effects 
of changes in the payload on the dynamics of the controlled 
system are studied. 

4.3.1 Inner Loop. The motor position control loop is not 
directly affected by changes in the payload. The payload in- 
fluences the dynamics of this loop only through the coupling 
torque between the motor and the beam. This coupling is being 
compensated by the term (IS) that estimates coupling torque 
from position measurements. Coefficients hi are independent 
of the payload and consequently no term of the inner loop 
needs to be tuned as a function of the payload. 

The payload affects this loop indirectly, if we consider the 
saturation limits of the motor current. If the payload is too 
high, the current saturates and control performance deterio- 
rates. However, for the normal range of payloads, perform- 
ance of this inner loop may be considered invariant. 

4.3.2 Feedforward Term. Because of Zero Invariuncy 
Properfy, the filter expressed in (19) is independent of the load 
and variations in the feedforward term (18) are due only to 
the factor D(s)/K. Therefore, &(s) can be easily tuned to 
payload changes by changing only one parameter in its nu- 
merator as will be illustrated in the example. 

4.3.3 Feedback Term. The gain factor and poles of the 
closed-loop transfer functions matrixG(8ds) = G(s)  e,&)) 
change with the payload. However, zeros of the transfer func- 
tions G,,,i; 1 < i s n  of the last row of this matrix remain con- 
stant. Notice that these transfer functions characterize the 
closed-loop dynamic behavior of the tip of the arm. 

Finally, only the numerators of T are affected by the changes 
in the payload. Their dependence on m,, is similar to the de- 
pendence of e,, (s) . 

The control scheme (based on two nested feedback loops) 
described in this paper can be extended to multi-link flexible 
arms. Multi linke arms generally are multivariable and non- 
linear systems. Techniques used for the multi-link rigid arms 
(Craig, 1986) may be combined with this scheme to control 
multi-link flexible arms. In this case, the proposed feedforward 
term can not be used, but the two nested feedback loop schemes 
seems to be effective in controlling multi-link flexible arms 
with Coulomb friction in the joints. In fact, a first results is 
presented in Feliu et al. (1989), where a two degrees of freedom 
lightweight flexible manipulator is modeled and controlled us- 
ing the technique described in this paper. 

5 Generalization to Distributed Mass Flexible Arms 
This section extends the proposed modeling method to the 
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case of flexible arms with distributed masses. The following 
lemma is proposed. 
Lemma: Let us assume that 
1. There are no internal energy dissipating phenomena in 

the structure of a distributed mass flexible arm. Energy dis- 
sipation happens only in the joint (from friction). This means 
that property 1 of Section 3 remains true here. Property 2 is 
also true because the motion propagation from the base to the 
tip of the sturcture is not instantaneous. 

State-space model of the distributed mass flexible arm 
may be truncated keeping in the model just the first and few 
representative vibrational modes and neglecting the other high 
frequency modes. This truncation is typically performed as a 
preliminary step in the design of controllers for flexible arms. 

3. We measure the position at n points of the beam. We 
choose n equal to the number of vibrational modes considered 
in the truncated model of the beam, Nu. 
Then a truncated model of the same form as lumped-mass 
flexible beam models 

2. 

(24) 

(25) 
can be defined that reproduces the dynamics of the distributed 
mass flexible beam for the range of frequencies of interest. 

This model represents the truncated dynamics of the dis- 
tributed mass flexible beam. External perturbations T,, and F,, 
weressumed to be 0 when deriving this model. Notice now 
that A, B depend on the distributed mass of the beam. The 
following procedure is proposed to obtain this model from 
experimental measurements on a distributed-mass system. 

-- 2 - ~ e  +gem 

c, = He + X,,+ lem 

Procedure 
1. Experimentally obtain the frequency response between 

the angle of the motor and the angle of the tip. 
2. Fit a tansfer function G,(s), that relates the angle of 

the tip with the angle of the motor, to this frequency data. 
This transfer function must exhibit properties 1 and 2 of Sec- 
tion 3. The order of the denominator divided by two is the 
number of vibrational models. Nu, considered in the model. 

3. Experimentally obtain the frequency responses, with re- 
spect to the angle of the motor, of other Nu- 1 points of the 
structure. No special conditions about the location of these 
points is required a priori. The only constraint to consider 
when choosing the Nu - 1 sensed points is that the numerators 
pi of the identified transfer functions at the Nu points should 
be linearly independent to permit inversion of the matrix that 
appears in (29). This means that very close points cannot be 
used for sensing. The position at the intermediate points of 
the beam can be obtained by placing LED's at the desired 
points and using a camera that simultaneously tracks them. 
In our experiments, we used a Selspot tacking camera to ob- 
tained the positions at the intermediate points, 

4. Identify other Nu- 1 transfer functions Gi(s) from this 
data. The poles are common to all of the systems so_these 
transfer functions will have the same denominator as G&). 

5. Model Q4) play& obtained fromgese identified t y s -  
- fer functions GI, G2! G,, . . . , G N ~ - I ,  GN" (we denote G, as 
GNJ with the followng procedure: 

is the column vector that represents the 
measured angles 4, e,, . . . , e,, at the selected points of the 
structure; 

Let 8 E 

(26) 
- Oci 0)s G&) = -- 6s , I r i s N ,  

where ST = (1 s2 s4 ... swu), S E ( R ~ V + I ;  

~ i = O c i , o  ~ i . 1  p i t  e-. ~ i . ~ ~ - i ) ,  pi€RNu; 

6=(bo 61 9 e-. 6Nu-I  I), 6c@Nu". 
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Notice that zi is of this form because of properties 1 and 2 
of Section 3, then 

- If siiJ are the elements of x and the elements of column 
Bin Eq. (24), then substituting (26)-(27) in (24) and identifying 
coefficients in the numerator, we get 

N.. 

and the coefficients of model (24) are obtained from - 
BT=@I.NU-I, 1C2,Nu-lr * * * 9 PN, N u - I )  (28) 

] - I  (29) 

AN, Nu 

(0 Pi) - P~J, ,  - 16 = (Ai 0) * 
where rows Ai€@' are calculated from 

(30) 

6. Expression (25) for the motor-beam coupling torque C, 
may be obtained by using the procedure 

( u )  Identification of @e linear part of the dynamics of the 
motor, transfer function G,,,(s) = Om(s) / i ( s ) .  

( b )  Distortions in the identification because of the Cou- 
lomb friction may be avoided by using the procedure described 
in Feliu et al. (1988). 

( c )  Denoting CJs)  = (Nc(s)/Dc(s)) Om(s) and substi- 
tuting in (14) (after making CF = 0), we get 

KD,(s)E,'(s) = (h2+ VS)D,(S) +NC(s). 
Equation (15) expresses C, as a linear combination of the 
positions of the masses and the motor. Then, the transfer 
function C,(s)/O,(s) wil l  have the same poles as transfer 
function Gi(s) = O,(s)/&,(s) and therefore its denomina- 
tor, Dc(s) ,  is given by 6s. Substituting Dc(s) = 6s in the 
above motor dynamics equation, we can obtain motor inertia 
J, friction V and Nc(s). K is obtained from the manufac- 
turer's specifications. 
( d )  (25) is obtained from polynomials Nc and Dc following 

an algebraic process similar to that shown in step 5 of the 
procedure for obtaining this model. 

The model given by Eqs. (24)-(25) allows us to use the 
method of Section 4 to control distributed-mass flexible arms 
with complete generality. Given a model (24)-(25), it is possible 
to build an equivalent lumped-mass flexible arm that exhibits 
these dynamics. It can be easily seen that this can be done 
exactly only when Nu = 1. But for higher Nu. lumped-mass 
flexible arms that approximately reproduced the dynamics (24)- 
(25) can be found. 

A consequence of this last paragraph is that: it it not nec- 
essary to build distributed-mass flexible arms in order to test 
control schemes for flexible arms. Lumped-mass flexible arms 
(which may be easier to build, model and identify) may be 
used in many cases as prototype of real flexible arms, allowing 
us to test control laws on them before implementation on real 
arms. 

6 Experimental Results 
Modeling and control methods described in this paper are 

applied here to a single-link flexible arm with lumped masses 
that has been built in our laboratory. It is composed of two 
lumped masses, yielding a non-minimum phase system. 

6.1 Experimental Setup. The mechanical system consists 
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Fig. 9 Experimental Setup 

Angle '81 
Fig, 10 Two-mass flexible beam 

of a dc motor, a slender arm attached to the motor hub and 
two masses floating on an air table. One mass is attached at 
the middle of the arm and the other at the tip of the beam. 
Figure 9 shows the major parts of the system and Fig. 10 shows 
the arrangement of this two-mass beam. The arm is a piece of 
music wire (12 in long and 0.047 in. in diameter) clamped in 
themotor hub. Bothmassesare 1/16in. thick, 5 3/4indiameter 
fiberglass disks attached at their centers to the middle and end 
of the beam with freely pivoted pin joints. These disks have 
masses of 0.119 Ib and float on the horizontal air table with 
minimal friction. Because the mass of the beam is small com- 
pared to that of these disks, and because the pinned joints 
prevent generation of torques at the middle and end of the 
beam. this mechanical system behaves practically like an ideal, 
two-Iumped-mass flexible arm. 

An Inland direct-drive motor drives the arm. Amplifier cur- 
rent limit is set to 4.12 amp. which corresponds to 9.0 lb in. 
motor torque. Coulomb friction of the motor is about .288 
in. (corresponding to .132 amp) and has a significant effect 
on the control when the torque to the arm is low, as with our 
very slender arm. 

Two sensors are used for the control of the system. A 718 
in., 360 degrees of potentiometer provides the angle of the 
motor shaft. A Selspot tracking camera is used that simulta- 
neously senses the X-Y positions of two infrared LED mounted 
on the two masses of the arm. 

The control algorithm is implemented on a Omnibyte 
OB68KlA, MC 68000 based computer with 512K bytes dy- 
namic RAM and 10 MHZ clock. Because the control computer 
is relatively slow. real computations are done in integer or 
short integer mode. Analog interfacing is provided with 12 bit 
AID and D/A boards. The sampling period used to control 
both arms in 3 ms. 

6.2 Modeling. In this subsection, the dynamic equations 
of the two-mass beam and the coupling between motor and 
beam are developed using the method of Section 2. Parameters 
of the motor submodeled are also given. They can be obtained 

from the identification method described in Feliu et al. (1988). 
The procedure of Section 2 is 
Geometric equations: 

Equations (2): 
Ui ,o+u i , i I i  + U I , ~ ~ : + U I . ~ ~ : = ~ Z . O  

# I , !  +2U1.211+3U1.31:=U~,1 
U1.z + 3U1.311 = u2.2 

Equation (3): u , , ~  = u1.1 = 0. 

Equation (4): ~ ~ , ~ + 3 1 ~ ~ ~ . 3 = ~ ~ .  

Equations (5):  

T2 

ui ,o+IiUi , i  + ~ U ~ . Z + ~ ~ U ~ . ~ = Y ( ~ I )  

k , O +  b 2 , I  + &2,2+ &2,3=Y(II + 12) 

Dynamic equations: 
Equations (9): 

de, ~ E I  
I1 z=x (U1.3-U2.3) 

Dynamic model of the beam: 

r -  
e Equation (10): 

L A  

Substituting in the above equation yI = I ,  (0, - Om), Y Z  
= ( I l  + 12)(02 - e,,,), and combining it with the dynamic 
equations, we obtain from Eq. (13) 

3 

where 

r 

dt2 
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Coupling torque (1  5): 
=zYl c, = - 2EIu1.2 = 2EIl,u,*3 - - 

1: 

m 

= 010 

- P 

P 005. 

0 ,  

-005 

- 0 1 0 .  

.o  15 

-020. 

T2, (33) e,-- 12 12EI(I,+/J 
11(311+ 41J (311 + 41J 

. 

3 5  1 0  1 5  20 2 5  30 3 5  
time (seconds) . 

- 

where 

Substituting the mechanical parameters: E = 30 x lo6 lb/ 
in.2, Z = 0.0474/64 r in.4, ml = m2 = 0.121 Ib and II = l2 
= 6 in. in Eqs. (32) and (33), we get 

a=[ 0 0.121361 ’ ‘=[ 27.59425 -22.0754 ’ 1 0.12136 0 - 176.6032 110.377 

- 0.047619 -6.159 @=[ 0.017857 ] ’ Q= [~.gogp)] ’ x=[ 2.053 ] ’ h3 

Assuming T2 = F2 = 0, we obtain (from (32)) the following 
transfer functions 

(34) 

e2(S) -45.5(.?- 1273.3) 
e,,,(S) s4+ 1637.1.?+~7903.3 (35) -= 

Theoretical natural frequencies of the beam were obtained 
from the poles of the above transfer functions. They are 6.014 
rad/s (0.957 Hz) and 40.0116 rad/s (6.368 Hz). These fre- 
quencies were later measured experimentally and deviations of 
the measured frequencies from the theoretical values were about 
4 percent. The transfer function given by Eq. (35) is non- 
minimum phase, as expected, exhibiting a positive zero at 
35.683. 
Using the identification procedure described earlier, the pa- 

rameters of the motor model (Eq. (14)) were determined as: J 
= 0.005529 Ib in. s2, V = 0.01216 Ib in./rad./s. K = 2.184 
Ib in./amp and CF/K = 0.132 amp. 

6.3 Motor Position Control Loop. The motor position 
control loop is shown in Fig. 4. The parameters of the con- 
trollers were designed (Rattan et al., 1988c) to minimize the 
effects of the friction and to make the motor positioning as 
fast as possible. The sampling period was 3 ms. The response 
of the motor position when a step input of *0.4 rad was 
applied as references e,, to the motor is shown in Fig. 11. In 
this experiment, the tip of the arm was kept f i e d  in the zero 
angle position. There was a significant coupling torque between 
the motor and the beam (a beam deflection of 0.2 rad). The 
settling time was about 50 ms. This is fast as compared to the 
first natural frequency of the beam, but is not much faster as 
compared to the second. However, we will assume that the 
transfer function of the inner loop is 1 and we will show that 
good results are achieved with our method even in this case. 

6.4 Tip Position Control Loop 

6.4.1 Trajectory Design. The transfer function of the 
beam is non-minimum phase. Thus, according to Subsection 
4.1. we choose a quasi-parabolic profile. Acceleration and 
second derivative of the acceleration are chosen taking into 
account the mechanical constraints (maximum allowable de- 
flection of the beam). These are: acceleration = 7875 rad/s2, 
and 2nd derivative of acceleration = 8648.646 rad/s4. In this 
case, using (18). a filter can be obtained as 

(36) 
G,, ( s ) ~ , , ( s )  = (1 + 0.0561~+0.0Ol57s*)~~~~~~ 35.683 - S  + 

Figure 12 shows the ideal quasi-parabolic trajectory PP(s) 
that drives the tip from - 0.1 rad to 0.1 rad, and the optimized 
reference trajectory O,,,(t) resulting from passing Pp through 
filter (36). 

6.4.2 Feedforward Term. The feedforward term can be 
obtained using expression (19) (expressed as a function of the 
payload m2) as 
G,,(s) =(0.12136rn$+ (176.6032m2+2.6791)s2 

1 +0.0561s+ 0 .00157~~ 
+852.81575) 0.67(s+ 35.683)2 (37) 

m2 appears only in the first factor. This feedforward term may 

L - 

-5.51885 ’ a= i 66*2262 J 
= 4.106 and h4 = -0.1429. 

- 

be easily tuned as a function of the payload using the scheme 
shown in Fig. 13. This scheme implements expression (37) in 
such a way that the parameter to be tuned only effects the 
gains of three signals that are known before the motion (ref- 
erence trajectory and its second and fourth derivatives). The 
dynamic component of the filter shown in Fig. 13, which re- 
quires most of the computations of the feedforward term, is 
independent of the payload value. Substituting m2 = 0.12136 
Ib for our beam, we get 

Fig. 11 Experimental response of the motor position control loop to 
step references 

- 0 1 0  w 
Fig. 12 Nominal trajectory P,, and optimum realizable reference trajec- 
tory eb 
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1 + 0.0561s + 0 . 0 0 1 5 7 ~ ~  

0.667 ( s + 35.683 ' 

340, 

8, - 

- 0.40 1 
Fig. 14 Implementation of the feedforward term 

6.4.3 Feedback Confroller. We first need to calculate 
T(s)  which gives the references for the measured variables. 
Using (23). we get [ -98.88m:+ 1273.3 1Z?+ 1273.3 

T(s)  = .?- 1273.3 = [ .?+ 773.3 1 (39) 

The first element of T is a function of the payload and may 
be tuned in the same way as the feedforward term. Figure 14 
shows the plots of the references 0 , ( t ) ,  & ( t )  and 0 , ( f )  (feed- 
forward term). In order to get the feedback controller, we 
chose a cost function (20) of the form: Q1 = diag(1, 2,0, 0). 
Qz = 1, where we weighted the tip position twice the middle 
mass and motor positions. The optimum controller that min- 
imizes the cost function (20) is given by 

A =  (0.4428 0.5572 0.0534 0.1828). (40) 
This places the closed-loop poles at -3.79*,-7.375, and 
-6.61 *j40.506. The closed-loop frequencies are of the same 
order of magnitude as the open-loop frequencies of the beam, 
but the oscillations are substantially damped. This closed-loop 
behavior is experienced only when perturbations are present 
in the arm. If there were no perturbations, the feedforward 
term alone (without the feedback loop) would produce a mo- 
tion completely free of oscillation. Because of the limited cal- 
culation capability of our computer, the feedback loop is 
implemented with a sampling period of 6 ms (twice that of the 
motor control loop). Figure 15 shows the response of the tip 
to reference trajectory. The reference trajectories of the middle 
mass and the tip along with the response of the middle mass 
are shown in Fig. 16. Figure 17 compares the response of the 
motor to the responses of the middle mass and tip. 

The fourth order parabola reaches the target position in 0.36 
s. This is the fastest motion that can be achieved for this arm 
without producing deflections in the structure beyond its me- 
chanical limit. Figure 15 shows that the tip reaches this position 
with an error of less than 2 percent in 0.4 s. It can be seen 
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Fig. 15 Reference trajectory and experimental response of the tip 
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Fig. 16 Reference trajectory and experimental response of the middle 
mass 
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fig. 17 Comparison of the responses of the motor, middle mass, and 
tip 

that fast and accuratemotions are achieved for this arm. Track- 
ing errors in Fig. 15 are significantly smaller when the trajectory 
is slower. Notice the high level of noise of the camera meas- 
urements 0, and 0,. 

Figure 18 shows the simulation results of the tip response 
with and without the feedforward term. It can be seen from 
this figure that the use of the feedforward term removes the 
steady-state error which is otherwise noticeable. This is because 
of the low gains of the feedback controller. Note also that the 
transfer function between the motor and tip positions is of 
type zero whereas the transfer function between the motor 
current and the tip position is of type one or two. In comparing 
the systems with and without the feedforward term, it can be 
seen from this figure that when the feedforward term is active, 
there are no oscillations in the tip position which significantly 
reduces the settling time as compared to system without feed- 
forward term. 

7 Conclusions 
Modeling, identification and control of single-link flexible 
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Fig. 18 Tip responses with and without the feedforward term 

arms with lumped masses is studied in this paper. Most of the 
flexible arms have their mass distributed along the structure. 
But there are some applications in which a model using lumped 
masses may be useful. A typical example is the case of a 
lightweight flexible arm carrying a heavy load. Here, only one 
vibrational mode is normally important allowing an approx- 
imate modeling by a massless beam with a mass attached to 
the tip. Another reason to study flexible arms with lumped 
masses is that some properties and control methods for these 
systems may be extended to the distributed mass case. Tech- 
niques described in this paper refer to the following three 
aspects of flexible arms: modeling, identification, and control. 
In the case of modeling, the division of the arm model into 
motor and beam submodels is general, but the modeling of 
the beam submodel is specific to lumped mass flexible arms. 
The identification technique described in Section 5 can be 
applied to both lumped and distributed-mass flexible arms. 
The result is a dynamic model of the form (24) and (25): 
Provided that the model of a flexible arm is expressed in the 
form given by Eqs. (24) and (25). the control scheme described 
in Section 4 is general and may be applied to any flexible arm. 

A method of modeling these systems has been presented in 
Section 2. In order to deal with nonlinear Coulomb friction, 
two submodels have been defined, one that describes the be- 
havior of the motor (includes friction nonlinearities), and an- 
other linear submodel that describes the mechanical behavior 
of the beam. Both submodels are coupled by the torque at the 
base of the beam. In order to make the model more general, 
perturbations in the tip, represented by a torque and a force, 
have been considered. These perturbations allow us to consider 
the effects of friction in the tip in the model, changes in the 
carried load, or reaction forces produced by the next joint in 
the case of a multiple-link flexible arm. Although not used in 
this paper, some properties have been deduced from these 
dynamic models in Section 3. The most interesting one is the 
Separation Property that defines the influence of the masses 
of the beam in the model. It permits representing the product 
of the mass i and its angular acceleration by a linear combi- 
nation of the deflections of the beam at the points where the 
masses are located. This linear combination depends only on 
the geometry of the beam. 

A control scheme is proposed that minimizes the effects of 
the friction in the joints. This control scheme is composed of 
two feedback nested loops, an inner loop to control the motor 
position and an outer loop to control the tip position. Tip 
position control loop is designed in this paper. The design of 
the inner loop (motor position) was presented in previous pa- 

pers (Rattan et al., 1988a. 1988b, 1988~). The control scheme 
for the tip position has been developed from our model and 
its properties. The controller for the tip position control loop 
is composed of feedforward and feedback terms. Nominal 
trajectory and feedforward term are designed taking into ac- 
count whether the system is minimum or non-minimum phase. 
A method to optimize the feedforward term was presented for 
the non-minimum phase case. Other feedforward control 
methods for flexible arms are based on generating a current 
(torque) to drive the arm (Meckl and Seering, 1988 and Far- 
renkopf, 1979). But, they cannot be used when the joint has 
a significant Coulomb friction. Our method is based on gen- 
erating a motor position command. This simplifies signifi- 
cantly the command signal, allowing it to be generated in real- 
time. Our control scheme is robust to nonlinear friction in the 
joint and is taken care of by the inside loop. Another important 
advantage not exhibited by other methods is that this command 
profile may be easily modified as a function of the actual 
payload, making it suitable for real-time adaptive control. This 
is a consequence of the Zeros inoariancy property. 

A feedback controller was designed using an optimization 
criterion. Effects of changes in the tip’s mass were also studied. 
Modeling and control methods have been generalized in Section 
5 to the distributed-mass flexible arm case. Therefore, the 
results presented in this paper are valid for all single-link flex- 
ible arms. Controllers designed here are simpler than the ones 
obtained using other methods. This is because of the assump- 
tion that the inner loop makes the motor respond to position 
commands without any delay and by using more sensing than 
in other methods. Reconstruction of nonmeasured states from 
only motor and tip measurements, using filters or observers, 
is avoided. Consequently, little computational effort is needed 
and the measured signals can be sampled at a very high rate 
improving the performances of the computer controlled arm 
(Franklin and Powell, 1980). A limitation of our method is 
the necessity of achieving a motor response faster than the 
vibrational modes considered in the model of the beam. 

Finally, some experimental results have been presented. 
Modeling and control methods have been applied to a lumped 
two-mass flexible arm that we built in our laboratory. Results 
that the limitation mentioned in the above paragraph may be 
relaxed in many cases. The control system also proved to be 
quite insensitive to noise in the measurements, and to errors 
in modeling (about 5 percent in the estimation of natural fre- 
quencies). The arm used in this paper is very flexible. This 
means that in order to quickly remove small errors in the tip 
position, relatively large deflections were needed, and the mo- 
tor had to experience large motions. 
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