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Abstract - As the penetration of intermittent energy
sources grows substantially, loads will be required to playan
increasingly important role in compensating the fast time-
scale fluctuations in generated power. Recent numerical
modeling of thermostatically controlled loads (TCLs) has
demonstrated that such load following is feasible, but analyt-
ical models that satisfactorily quantify the aggregate power
consumption of a group of TCLs are desired to enable con-
troller design. We develop such a model for the aggregate
power response of a homogeneous population of TCLs to uni-
form variation of all TCL setpoints. A linearized model of the
response is derived, and a linear quadratic regulator (LQR)
has been designed. Using the TCL setpoint as the control
input, the LQR enables aggregate power to track reference
signals that exhibit step, ramp and sinusoidal variations.Al-
though much of the work assumes a homogeneous popula-
tion of TCLs with deterministic dynamics, we also propose
a method for probing the dynamics of systems where load
characteristics are not well known.

Keywords - Load modeling; load control; renewable
energy; linear quadratic regulator.

1 INTRODUCTION

AS more renewable power generation is added to
power systems, concerns for grid reliability increase

due to the intermittency and non-dispatchability associ-
ated with such sources. Conventional power generators
have difficulty in manoeuvering to compensate for the
variability in the power output from renewable sources.
On the other hand, electrical loads offer the possibility of
providing the required generation-balancing ancillary ser-
vices. It is feasible for electrical loads to compensate for
energy imbalance much more quickly than conventional
generators, which are often constrained by physical ramp
rates.

A population of thermostatically controlled loads
(TCLs) is well matched to the role of load following. Re-
search into the behavior of TCLs began with the work of
[1] and [2], who proposed models to capture the hybid dy-
namics of each thermostat in the population. The aggre-
gate dynamic response of such loads was investigated by
[4], who derived a coupled ordinary and partial differen-

tial equation (Fokker-Planck equation) model. The model
was derived by first assuming a homogeneous group of
thermostats (all thermostats having the same parameters),
and then extended using perturbation analysis to obtain the
model for a non-homogeneous group of thermostats. In
[5], a discrete-time model of the dynamics of the temper-
atures of individual thermostats was derived, assuming no
external random influence. That work was later extended
by [6] to introduce random influences and heterogeneity.

Although the traditional focus has been on direct load
control methods that directly interrupt power to all loads,
recent work in [3] proposed hysteresis-based control by
manipulating the thermostat setpoint of all loads in the
population with a common signal. While it is difficult to
keep track of the temperature and power demands of in-
dividual loads in the population, the probability of each
load being in a given state (ON - drawing power or OFF -
not drawing any power) can be estimated rather accurately.
System identification techniques were used in [3] to obtain
an aggregate linear TCL model, which was then employed
in a minimum variance control law to demonstrate the load
following capability of a population of TCLs.

In this paper, we derive a transfer function relating the
aggregate response of a homogeneous group of TCLs to
disturbances that are applied uniformly to the thermostat
setpoints of all TCLs. We start from the hybrid temper-
ature dynamics of individual thermostats in the popula-
tion, and derive the steady-state probability density func-
tions of loads being in the ON or OFF states. Using these
probabilities we calculate aggregate power response to a
setpoint change. We linearize the response and design a
linear quadratic regulator to achieve reference tracking by
the aggregate power demand. While our analytical model
assumes a homogeneous population of loads, numerical
studies are proposed to explore situations where there is
noise and heterogeneity.

2 STEADY STATE DISTRIBUTION OF LOADS

2.1 Model development

The dynamic behavior of the temperatureθ(t) of a
thermostatically controlled cooling-load (TCL), in the ON
and OFF state and in the absence of noise, can be modeled
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by [5],

θ̇ =







− 1
CR (θ − θamb + PR) , ON state

− 1
CR (θ − θamb) , OFF state

(1)

where θamb is the ambient temperature,C is the ther-
mal capacitance,R is the thermal resistance, andP is the
power drawn by the TCL when in the ON state. This re-
sponse is shown in Figure 1.
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time0
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Figure 1: Dynamics of temperature of a thermostatic load.

In steady state the cooling period drives a load from
temperatureθ+ to temperatureθ−. Thus solving (1) with
initial conditionθ(0) = θ+ gives

θ(t) = (θamb − PR)
(

1− e−
t

CR

)

+ θ+e
−

t

CR . (2)

From (2) we can calculate the steady state cooling timeTc

by equatingθ(Tc) to θ−,

Tc = CR ln

(

PR+ θ+ − θamb

PR+ θ− − θamb

)

. (3)

A similar calculation for the heating time gives,

Th = CR ln

(

θamb − θ−
θamb − θ+

)

. (4)

In general, the expressions for the timestc(θf ) andth(θf )
taken to reach some intermediate temperatureθf during
the cooling and heating periods, respectively, are,

tc(θf ) = CR ln

(

PR+ θ+ − θamb

PR+ θf − θamb

)

(5)

th(θf ) = CR ln

(

θamb − θ−
θamb − θf

)

. (6)

For a homogeneous1 set of TCL in steady state, the
number of loads in the ON and OFF states,Nc andNh

respectively, will be proportional to their respective cool-
ing and heating time periodsTc andTh. In the absence
of any appreciable noise, which ensures that all the loads
are within the temperature deadband,Nh + Nc = N , we
obtain,

Nc =
Tc

Tc + Th
N (7)

Nh =
Th

Tc + Th
N (8)

By analogy, it follows that the number of ON-loads
nc(θ) within a temperature band of[θ, θ+] is proportional
to the time takentc(θ) to cool a load down fromθ+ to an
arbitrary temperatureθ ≥ θ−,

nc(θ) = tc(θ)
Nc

Tc

= tc(θ)
N

Tc + Th
(9)

where (8) was used to obtain (9). Likewise,

nh(θ) = th(θ)
N

Tc + Th
. (10)

We will denote the ON probability density function by
f1(θ) and the OFF probability density function byf0(θ),
while the corresponding cumulative distribution functions
are denotedF1(θ) and F0(θ), respectively. It is to be
noted that,F0(θ) is the probability of a load being in OFF
state and having a temperatureθ ∈ [θ−, θ] while F1(θ)
is the probability of a load being in ON state and having
a temperatureθ ∈ [θ−, θ]. Thus,F0(θ) = nh(θ)/N and
F1(θ) = (Nc − nc(θ))/N . We can therefore write,

f0(θ) =
dF0(θ)

dθ
=

d

dθ

(

nh(θ)

N

)

=
1

N

dth(θ)

dθ

N

Tc + Th

=
1

Tc + Th

dth(θ)

dθ

=
CR

(Tc + Th)(θamb − θ)
(11)

and

f1(θ) =
dF1(θ)

dθ
=

d

dθ

(

Nc − nc(θ)

N

)

=
CR

(Tc + Th)(PR + θ − θamb)
. (12)

2.2 Simulation

Figure 2 shows a comparison of the densities calcu-
lated using (11) and (12) and those computed from ac-
tual simulation of the dynamics of a population of 10,000
TCLs that included a small amount of noise. The result
suggests that the assumptions underlying (11) and (12) are
realistic.
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Figure 2: Steady state densities.

1 All loads share the same values for parametersθamb, C, R andP .



3 SETPOINT VARIATION

Control of active power can be achieved by making a
uniform adjustment to the temperature setpoint of all loads
within a large population [3]. It is assumed that the tem-
perature deadband moves in unison with the setpoint. Fig-
ure 3 shows the change in the aggregate power consump-
tion of a population of TCLs for a small step change in
the setpoint of all devices. The resulting transient varia-
tions in the OFF-state and ON-state distributions for the
population are shown in Figure 4.
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Figure 3: Change in aggregate power consumption due to a step change
in temperature setpoint.
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(a) OFF-state distribution.
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(b) ON-state distribution.

Figure 4: Variation in distribution of loads due to setpoint disturbance.

The aggregate power consumption at any instant in
time is proportional to the number of loads in the ON state
at that instant. The first step in quantifying the change in
power due to a step change in setpoint is therefore to an-
alyze the behavior of the TCL probability distributions.
Figure 5 depicts a situation where the setpoint has just
been increased. The original deadband ranged fromθ0−
to θ0+, with the setpoint at(θ0

−
+ θ0+)/2. After the posi-

tive step change, the new deadband lies betweenθ− to θ+,

with the deadband width∆ = θ0+−θ0
−
= θ+−θ− remain-

ing unchanged. The setpoint is shifted byδ = θ− − θ0− =
θ+ − θ0+. To solve for the power consumption, we need to
consider four different TCL starting conditions immedi-
ately after the step change in setpoint, i.e.a-d in Figure 5.
Using Laplace transforms, we compute the time depen-
dence of the power consumption for each of these loads
(shown in Figure 3) and then compute the total power con-
sumption by integrating over the distributionsf0 andf1.
At the instant the step change in applied, the temperatures
of loads at pointsa, b, c andd areθa, θb, θc andθd, respec-
tively.
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δδ
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Figure 5: Different points of interest on the density curves.
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Figure 6: Power waveforms at four different points marked in Figure 5.

The power consumptionga(t, τa) of the load ata start-
ing from the instant when the step change in setpoint is
applied is shown in Figure 6(a). All the loads in the OFF-
state and having a temperature betweenθ− andθ0+ at the
instant when the deadband shift occurs will have power
waveforms similar in nature toga(t, τa). Thus the load at
a typifies the behavior of all the loads lying on the OFF-
state density curve betweenθ− andθ0+. The same argu-
ment applies for loads at pointsb, c andd. Figures 6(a)-
6(d) illustrate the general nature of the power waveforms
of the loads in all four regions, marked bya, b, c andd in
Figure 5.

The Laplace transform ofga(t, τa) is

Ga(s, τa) = e−sτaG(s)

where

G(s) =
P (1− e−sTc)

s(1− e−s(Tc+Th))

andτa = Th − th(θa), with th(θa) given by (6). Aver-
aging over all such loads (represented bya) on the OFF
density curve between temperaturesθ− andθ0+, we obtain
the Laplace transform of the average power demand,

Pa(s) =

∫ θ0
+

θ
−

f0(θa)Ga(s, τa)dθa (13)

wheref0(θa) can be computed from (11).
In Figure 6(b), a load at pointb on the ON density

curve in Figure 5 has power consumptiongb(t, τb), where
τb = Tc − tc(θb), andtc(θb) is given by (5). The Laplace
transform is,

Gb(s, τb) =
(

es(Tc−τb)G(s)−
P

s

(

es(Tc−τb) − 1
)

)

.

We can compute the average power demand of all the
loads represented byb as

Pb(s) =

∫ θ0
+

θ
−

f1(θb)Gb(s, τb)dθb. (14)

In Figure 6(c), the power consumptiongc(t, τc) of a
load at pointc on the OFF density curve in Figure 5 has
the Laplace transform

Gc(s, τc) = e−s(Th+τc)G(s),

whereτc = CR ln
(

θamb−θ
−

θamb−θc

)

. The average power de-

mand of the loads represented by the pointc is then given

by

Pc(s) =

∫ θ
−

θ0
−

f0(θc)Gc(s, τc)dθc (15)

Figure 6(d) depicts the situation of a load at pointd on
the ON density curve, that suddenly switches to the OFF
state as the deadband is shifted (for now we assume the
deadband is shifted to the right, i.e., there is an increase
in the setpoint). The power consumptiongd(t) has the
Laplace transform

Gd(s, τd) = e−s(Th+τd)G(s),

where the dynamics in (1) can be solved forτd =

CR ln
(

θamb−θd
θamb−θ

−

)

. The average power demand of the

loads characterized by pointd in Figure 5 is then given
by

Pd(s) =

∫ θ
−

θ0
−

f1(θd)Gd(s, τd)dθd. (16)

The average power demand of the whole population
becomes,

Pavg(s) = Pa(s) +Pb(s) +Pc(s) +Pd(s). (17)

Using (13), (14), (15) and (16) we obtain an expression
for Pavg(s) that is rather complex. It is hard, and perhaps
even impossible, to obtain the inverse Laplace transform.
However, with the assistance of MATHEMATICAr,
Pavg(s) may be expanded as a series ins. We also make
use of the assumptions,

∆ ≪ (θs − θamb + PR)

∆ ≪ (θamb − θs)

δ ≪ ∆

whereθs is the setpoint temperature. Note that the first
two assumptions require that the deadband width is small,
while the third assumption requires that the shift in the
deadband is small relative to the deadband width. This
latter assumption ensures that the load densities are not
perturbed far from their steady-state forms. Accordingly,
the steady-state power consumption is given by

Pavg,ss ≈
(θamb − θ+)N

ηR
,

whereη is the electrical efficiency of the cooling equip-
ment andN is the population size. The deviation in power
response can be approximated by

Ptot(s) ≈ −
(

d

s
+

ωA∆

s2 + ω2

)

δ (18)

where

A∆ =
5
√
15C(θamb − θ+)(PR− θamb + θ+)

η
(

P 2R2 + 3PR(θamb − θ+)− 3(θamb − θ+)2
)3/2

×
(3PR− θamb + θ+)N

(Tc0 + Th0)
,

ω =
2
√
15(θamb − θ+)(PR − θamb + θ+)

CR∆
√

P 2R2 + 3PR(θamb − θ+)− 3(θamb − θ+)2
,

d =
N

ηR
.



andTc0 andTh0 are the original (prior to the setpoint shift)
steady-state cooling and heating times, respectively, given
by (3) and (4). The transfer function for this linear model
is,

T(s) =
Ptot(s)

δ/s
= −

(

d+
A∆ωs

s2 + ω2

)

.

Due to the assumptions of low-noise and homogeneity,
our analytical model is undamped. The actual system, on
the other hand, experiences both heterogeneity and noise,
and therefore will exhibit a damped response. In order to
capture that effect, we have chosen to add a damping term
σ (to be estimated on-line) into the model, giving

T(s) = −
(

d+
sωA∆

(s+ σ)2 + ω2

)

. (19)

Figure 3 shows a comparison between the response
calculated from the model (19) and the true response to
a step change in the setpoint obtained from simulation. A
damping coefficient of 0.002 min−1 was added, as that
value gave a close match to the decay in the actual system
response.
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Figure 7: Comparison of the approximate model with the actual simula-
tion, for the same setpoint disturbance as in Figure 3.

4 CONTROL LAW

The TCL load controller, described by the transfer
function (19), can also be expressed in state-space form,

ẋ = Ax+Bu

y = Cx+Du

where the inputu(t) is the shift in the deadband of all
TCLs, and the outputy(t) is the change in the total power
demand from the steady-state value. The state-space ma-
trices are given by

A =

[

−2σ −ω
σ2+ω2

ω 0

]

, B =

[

ωA∆

0

]

,

C =
[

−1 0
]

, D = −d.

Our goal is to design a controller using the linear
quadratic regulator (LQR) approach [7] to track an ex-
ogenous referenceyd. We observe that the system has
an open-loop zero very close to the imaginary axis (d ≪
ωA∆) and hence we need to use an integral controller.
Considering the integral of the output errore = (y − yd),

where yd is the reference, as the third statew(t) =
∫ t

0
(y(τ) − yd(τ))dτ of the system, the modified state-

space model becomes

ẋ = Ax+Bu+E yd

y = Cx+Du

wherex = [x w]⊤ and,

A =

[

A 02×1

C 0

]

, B =

[

B

D

]

,

C =
[

C 0
]

, D = D, E =

[

02×1

−1

]

.

Minimizing the cost function

J =

∫

∞

0

(

x(t)⊤Qx(t) + u(t)2R
)

dt

whereQ ≥ 03×3 andR > 0 are design variables, we
obtain the optimal control lawu(t) of the form

u = −(Kx+G yd),

with G a pre-compensator gain chosen to ensure unity DC
gain. Since we can only measure the outputy(t) and the
third statew(t), the other two states are estimated using
a linear quadratic estimator [7] which has the state-space
form,

˙̂x = A x̂+Bu+ L(y − yd)

ŷ = C x̂+Du

u = −K

[

x̂
w

]

+G yd.
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(b) Response to ramp reference and the control input
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(c) Response to sinusoidal reference and the control input

Figure 8: Reference tracking achieved through setpoint shift
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Figure 9: Variation in distribution of loads under the influence of the
controller.

The plots in Figure 8 show that the controller can be
used to force the aggregate power demand of the TCL pop-
ulation to track a range of reference signals. The transient
variations in the ON-state and OFF-state populations are
shown in Figure 9. In comparison with the uncontrolled
response of Figure 4, it can be seen that the controller
suppresses the lengthy oscillations. Figure 9 shows that
in presence of the controller, the distribution of loadsal-
most always remains close to steady state, justifying an
assumption made during the derivation of the model.

5 HETEROGENEITY AND NOISE

The work presented in previous sections assumes a ho-
mogeneous population of loads with deterministic dynam-
ics. The analysis remains valid if we consider the pos-
sibility of grouping a large number loads having closely
matched parameters, and if there is very low noise in the
system. When such assumptions no longer remain valid,
we cannot design a tracking controller based on the devel-
oped model. In such cases, however, we propose a probing
method that can balance over- or under-production of en-



ergy over a certain duration of time.
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(a) Power response to short duration pulses.
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Figure 10: Energy consumption in the probing method.

Figure 10(a) can be used to explain the probing
method. The temperature setpoint is increased and held at
that value for a short duration and then returned to its orig-
inal value. The system is probed by short pulses spaced
reasonably far from each other in time. The energy deliv-
ered during such probing is monitored, with Figure 10(b)
providing an illustration. It can be seen that the energy
consumed, relative to the nominal consumption, is actu-
ally negative suggesting that energy is “delivered” by the
loads when probed with positive pulses. Knowing that
over a certain duration a certain amount of energy can be
delivered by the loads, the pulses can be scheduled to bal-
ance any under-generation. Similarly, over-generation can
be balanced using negative pulses.

6 CONCLUSION

In this paper we have analytically derived a transfer
function relating the change in aggregate power demand
of a population of TCLs to a change in thermostat setpoint
applied to all TCLs in unison. We have designed a linear
quadratic regulator to enable the aggregate power demand

to track reference signals. This suggests the derived aggre-
gate response model could be used to allow load to track
fluctuations in renewable generation. The analysis has
been based on the assumptions that the TCL population
is homogeneous and that the noise level is insignificant.
When such assumptions do not hold, we propose a prob-
ing method that can be used to perform energy balance.
Further studies are required to incorporate the effects of
heterogeneity and noise into the model. Those extensions
are important for determining the damping coefficient.

Similar analysis can be used to establish the aggregate
characteristics of groups of plug-in electric vehicles, an-
other candidate for compensating the variability in renew-
able generation.
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