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Modeling and Control of UAV Bearing-Formations

with Bilateral High-Level Steering
Antonio Franchi, Carlo Masone, Volker Grabe, Markus Ryll, Heinrich H. Bülthoff, and Paolo Robuffo Giordano

Abstract—In this paper we address the problem of controlling
the motion of a group of UAVs bound to keep a formation
defined in terms of only relative angles (i.e., a bearing-formation).
This problem can naturally arise within the context of several
multi-robot applications such as, e.g., exploration, coverage, and
surveillance. First, we introduce and thoroughly analyze the
concept and properties of bearing-formations, and provide a class
of minimally linear sets of bearings sufficient to uniquely define
such formations. We then propose a bearing-only formation con-
troller requiring only bearing measurements, converging almost
globally, and maintaining bounded inter-agent distances despite
the lack of direct metric information.

The controller still leaves the possibility to impose group
motions tangent to the current bearing-formation. These can
be either autonomously chosen by the robots because of any
additional task (e.g., exploration), or exploited by an assisting
human co-operator. For this latter ‘human-in-the-loop’ case,
we propose a multi-master/multi-slave bilateral shared control
system providing the co-operator with some suitable force cues
informative of the UAV performance. The proposed theoretical
framework is extensively validated by means of simulations
and experiments with quadrotor UAVs equipped with onboard
cameras. Practical limitations, e.g., limited field-of-view, are also
considered.

I. INTRODUCTION

Multi-robot systems have been largely studied in mobile

robotics due to their resilience to single-point failures and

adaptability to different scenarios. Some of the most promising

applications are exploration, coverage, and surveillance, see,

e.g., [1], [2], [3], [4]. Among the others, Unmanned Aerial Ve-

hicles (UAVs) are probably the most suitable robotic platform

for remote exploration of large and/or unstructured areas since

they possess large adaptability and potential pervasiveness in

many different scenarios. This is also attested by the growing

number of funded projects focused on UAV applications, see,

e.g., [5], [6], [7].

A primary requirement in multi-robot research is to devise

motion controllers based on only relative measurements [8].

This way, the controller is independent of the knowledge

of the robot absolute positions in space and, thus, does not

require presence of global localization systems such as GPS

or SLAM algorithms (see, e.g., [9]). In the same spirit,
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38, 72076 Tübingen, Germany {antonio.franchi, carlo.masone,

volker.grabe, markus.ryll, prg}@tuebingen.mpg.de.
H. H. Bülthoff is with the Max Planck Institute for Biological Cybernetics,
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substantial research efforts have been devoted to the devel-

opment of solutions based on standard, light-weight, low-

energy, and cheap sensors (like onboard cameras), rather

than active and energetically-expensive sensing devices (like,

e.g., laser/structured-light range-sensors) [3]. When map-

ping/surveillance tasks are based on relative measurements ob-

tained by cameras, a parallel objective for the group of robots

is the maintenance of a 3D formation that optimizes some suit-

able ‘visually-motivated’ performance criterion. For example,

in the context of environmental coverage [3], one can minimize

the overlap of the camera field-of-views (FOVs) or maximize

the focus on some areas of interest. Similarly, in visual-

based cooperative map building, the robot 3D formations can

be carefully designed so as to facilitate the acquisition of

those relative measurements strictly needed for solving the

mutual localization problem [10] — a necessary prerequisite

for accurate merging of the individual maps. Since, regardless

of the particular application, cameras eventually provide as a

direct measurement only a bearing (angular) information, one

then naturally faces the fundamental and underlying problem

of realizing and keeping a desired UAV 3D formation defined

in terms of sole relative (inter-robot) bearings (i.e., a bearing-

formation).

Furthermore, in real-world scenarios like search and rescue

missions or exploration of highly dynamic human-populated

environments, multi-robot systems seldom operate in full

autonomy. In most cases, the cognitive skills of a human co-

operator are still needed, either because of existing regula-

tions requiring human presence/supervision, or because of the

inherent complexity and unpredictability of the surrounding

environment that exceeds the capabilities of nowadays robots.

In fact, it is worth noting that in rescue operations the

human-to-robot ratio is typically larger than 1, thus indicating

the average need of more than one human for operating a

single robot [11]. When the human-robot interaction is made

‘bilateral’, i.e., suitable cues (such as haptic) are provided

to the human co-operator in order to let her/him ‘feel’ the

remote robot(s) and site [12], it has been proven that the human

situational awareness and skill in task execution significantly

increase, see, e.g., [13], [14].

Taking into account these considerations, in this paper

we then pursue a twofold goal: on one side, and as main

contribution, we propose a formation controller based on only

relative bearing measurements for allowing a group of UAVs

to reach and keep a desired 3D bearing-formation. We do

not focus on a particular shape for the desired formation but

assume it being specified by any ‘external’ task, for example

optimal coverage, mapping, or cooperative transportation. Fur-



thermore, and as second contribution, we allow the remaining

degrees of freedom (dofs) of the formation to be externally

controlled while fulfilling the relative bearing constraints. This

possibility can be exploited by any higher-level navigation

algorithm for, e.g., exploration purposes, or, as in the case

considered in this paper, by human co-operators in charge

of steering the whole group by acting on force-feedback

interfaces. A suitable bilateral controller is then designed to

provide force cues informative of how well the UAVs, as a

group, are executing the humans’ intended motion plan, i.e.,

so as to improve their situational awareness and overall quality

of the human-robot cooperation during the robot steering.

The paper is organized as follows: Sec. I-A reviews the

existing literature and better illustrates the main contributions

of our work. Section II introduces the multi-UAV modeling as-

sumptions, and Sec. III formally analyzes the main properties

of 3D bearing-formations. The design of the bearing formation

controller is detailed in Sec. IV, while Sec. V focuses on the

application of the high-level steering to the case of bilateral

interfaces. Finally, Secs. VII and VIII present the testbed and

the obtained experimental results, and future directions are

discussed in Sec. IX.

A. Related Works and Contribution

The previous works related to the topics of this paper can be

roughly grouped in the following two categories:

1) Bearing/Vision-based Formation control: in the liter-

ature, the use of bearing measurements has been mainly

explored for groups of non-holonomic ground (2D) robots with

a special attention to leader-follower configurations.

In [15] a leader-follower control based on input-output

feedback linearization is proposed. Every robot can control

bearing and distance from another robot, or a combination

of them from two other robots, and obstacle points. The

quantities needed for the controller are either retrieved by an

omnidirectional camera or estimated via EKF. [16] present

a visual-servoing approach exploiting motion segmentation

from panoramic images to estimate position and velocity of

the leaders. In [17] distance estimation from the leader using

bearing plus acceleration measurements is achieved using an

EKF and a neural network. In [18] a leader-follower approach

based on feedback linearization is proposed. The relative pose

(bearing, distance and orientation) is estimated directly from

the image using fiducial markers and a high gain non-linear

observer. In [19] parallel and circular flocking formations (i.e.,

with constant non-zero speed) are obtained using the bearing

angle, optical flow and time to collision.

Even though all the aforementioned approaches do not

assume availability of distance measurements, they also aim

at concurrently regulating all the robot inter-distances. This is

typically achieved by fusing bearing-only measurements with

additional metric information such as acceleration, velocity,

or known size of objects. Therefore the fulfillment of suitable

observability conditions must be taken into account as, e.g.,

shown in [20], as well as the maintenance of some sort of

persistency of excitation condition during the motion. This can

be obtained by either requiring the presence of a leader in

charge of constantly “pulling” the formation, or by perturbing

the motion of the robots with sinusoidal-like inputs.

However, such a persistent-excitation behavior is not needed

by our formation controller, which neither uses nor regulates

the inter-distances between the robots (while albeit ensuring

their boundedness). The lack of a metric scale could be over-

come, in some limited situations, by fusing visual information

with onboard accelerometer readings as done in [21], [22].

However, for the sake of generality, in this paper we simply

chose to discard any depth/scale estimation step, and to rather

delegate to the high-level planner (a human co-operator in our

case) the role of regulating the expansion/contraction rate of

the UAV group. Nevertheless, the machinery presented in this

paper can be easily extended to take advantage of a possibly

available metric scale.

2) High-level steering of multiple mobile robots: any ap-

proach involving a group of robots tracking a collective

reference trajectory can be loosely considered as non-bilateral

(unilateral) steering of multiple mobile robots. For instance,

in [23] a group of robots is made able to track given trajecto-

ries in the reduced space of some global quantities (e.g., the

centroid of the formation), and conceptually similar problems

are addressed in [24], [25] and references therein. Compared to

our case, all these approaches: i) propose different solutions to

multi-robot formation control, ii) do not focus on the specific

case of bearing-only measurements, and iii) only consider the

unilateral steering case.

While many papers in the past literature did consider

bilateral teleoperation of a single mobile robot, only a

few addressed the multiple mobile robot case. In [26] a

passivity-based approach to bilaterally teleoperate a group

of holonomic/non-holonomic ground robots is presented, and

in [27] bilateral teleoperation of a group of UAVs is realized

by directly coupling the position of the haptic device to the

position of the formation centroid. This solution does not take

into account the kinematic dissimilarity between the haptic

device and the slave mobile robots (bounded vs. unbounded

workspace), which, on the contrary, is explicitly considered

in [28]. Here the authors present a UAV bilateral teleoperation

scheme where the velocity of the group is controlled by

the position of the haptic device, while still guaranteeing

passivity (I/O stability) of the teleoperation system — a

paradigm also followed by our present work. Along similar

lines, in [29], [30], [31], [32], [33], [34] a different bilateral

teleoperation control strategy is proposed with the emphasis on

the possibility to allow autonomous split and rejoin decisions

within the group in a passive/stable way. Nevertheless, all

the aforementioned approaches are not bearing-only based but

explicitly require knowledge of metric information.

Main contributions: Summarizing, the main contributions

of our paper w.r.t. prior literature are the following:

1) we introduce and rigorously analyze the concept of

3D bearing-formations, and describe the minimal sets

of bearings needed to unequivocally define a bearing-

formation with linear cardinality in the number of robots.

This allows to minimize the number of measurements

needed to actually control the formation, thus improving

the decentralization of the proposed scheme;
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2) we propose a 3D bearing-formation controller for UAVs

based on only relative bearings. The controller is proven

to be almost globally convergent, to stabilize the UAV

inter-distances to a finite value despite the lack of metric

measurements, and to not require any persistency of

excitation condition to accomplish this task;

3) we formally characterize the generalized velocities of

the remaining dofs of a UAV group constrained to

maintain a desired bearing-formation. We allow a high-

level steering module to command these dofs. When

this module is a human co-operator, we propose a

bilateral teleoperation system delivering a direct feeling

of how well the group of UAVs is executing the motion

commands;

4) we validate the theoretical claims and proposed machin-

ery by means of extensive human/hardware-in-the-loop

simulations and real experiments employing a group

of quadrotors with onboard cameras and two force-

feedback devices. We also consider practical issues

such as limited field-of-view of the onboard cameras

by exploiting a simple estimation scheme during the

teleoperation task.

II. PRELIMINARIES

A. UAV Model

The multi-robot system is composed of N UAVs modeled as

rigid bodies in space, with N ≥ 3. The inertial (world) frame

and the body frame attached to the center of mass of the i-th
UAV are denoted with W : {OW , XW , YW , ZW} and Ai :
{OAi

, XAi
, YAi

, ZAi
}, with O∗ and X∗, Y∗, Z∗ denoting the

origins and the orthogonal axes of the frames, respectively. The

configuration of the i-th UAV is represented by the position
WpAi

∈ R
3 of OAi

in W and by the rotation matrix WRAi
∈

SO(3) from W to Ai. Rotations may also be represented in

terms of the roll φAi
, pitch θAi

and yaw ψAi
angles. In the

following we shall use boldfaced symbols to denote vectors

and normal weighted characters for scalars, as done, e.g., for
WpAi

and ψAi
.

We assume that every UAV can locally measure the roll and

pitch angles (φAi
, θAi

), e.g., by exploiting onboard inertial

measurement units (IMUs consisting of accelerometers and

gyros) and standard estimation algorithms such as complemen-

tary filters [35]. However, the (absolute) yaw angle ψAi
cannot

be recovered from standard IMUs, but one needs additional

sensors, such as a compass, with typically a more limited

reliability (e.g., compasses do not work well indoor or close to

strong magnetic fields). Therefore, for the sake of generality,

in this work we aim for an approach not strictly requiring

the absolute yaw angle, but still able to make use of it when

available.

Furthermore, we assume that the i-th UAV is able to

measure the relative bearing pointing towards the center of

mass of a j-th UAV and expressed in the body frame Ai. This

is formally defined as

βAiAj
= AiRW

WpAj
− WpAi

�WpAj
− WpAi

�
∈ S

2, (1)

where, as usual, a subscript/superscript shift denotes the in-

verse/transpose of a rotation matrix. We stress that a direct

measure of βAiAj
can be obtained by means of a calibrated

camera mounted on the i-th UAV, thus freeing from the need

of knowing the absolute positions WpAj
and WpAi

present

in the definition (1).

Instead of assuming that the i-th UAV is able track any

arbitrary trajectory (WpAi
(t),WRAi

(t)) ∈ SE(3), we ask for

the less demanding (but more feasible) requirement of a UAV

able to track any smooth reference trajectory (pi(t), ψi(t)) ∈
R

3 × S
1. A sufficient condition satisfying this assumption is

that the UAV position and yaw angle
�

WpAi
, ψAi

�

are flat

outputs [36], i.e, algebraically defining, with their derivatives,

the state and control inputs of the UAV. Differential flatness

is essentially equivalent to exact dynamic feedback lineariz-

ability with
�

WpAi
, ψAi

�

taken as linearizing outputs [37].

Helicopters and quadrotors are examples of differentially flat

systems [38], [39].

B. Agent Model

In order to generate a feasible motion (pi(t), ψi(t)) to be

tracked by the i-th UAV, we consider a virtual kinematic

system (henceforth called agent) whose inputs are a body-

frame linear velocity ui ∈ R
3 and a yaw-rate wi ∈ R

�

ṗi

ψ̇i

�

=

�

Ri 03

0
T
3 1

��

ui

wi

�

, (2)

where 03 = (0 0 0)T and Ri = Rz(ψi), the canonical rotation

matrix about the Z axis. The rotation matrix between the body

frames of agents i and j is iRj = iRRj , where as usual
iR = RT

i . We also define the i-th agent configuration as qi =
(pi, ψi) ∈ R

3 × S
1 and collect all of them in a configuration

vector q = (q1, . . . , qN ) ∈ (R3 × S
1)N .

Analogously to (1), we define the agent relative bearing

between the i-th and j-th agent (seen from the body frame of

the i-th agent) as

βij(q) = βij(qi,pj) =
iRpij/δij ∈ S

2, (3)

where pij = pj − pi, and

δij(q) = δij(pi,pj) = �pj − pi� (4)

is the inter-distance between agents i and j. We will omit

the dependence from q when not needed or clear from the

context. A configuration q is said degenerate if the associated

agent positions p1, . . . ,pN are all aligned, i.e., β12(q) =
±β13(q) = . . . = ±β1N (q). The reason for this definition

will be clear in the next section.

Evaluation of βij can be obtained from the measured roll,

pitch, and UAV relative bearing (1), as

βij � Ry(θAi
)Rx(φAi

)βAiAj
, (5)

where Rx(·), Ry(·) are the canonical rotation matrixes about

the X and Y axes, respectively. The approximation (5) holds

as long as the discrepancy between the position of the j-th

UAV in the frame of the i-th UAV, i.e., AiRW(WpAj
−WpAi

),

and that of the associated virtual agents, i.e., iR(pj−pi), keeps

small enough. This has been confirmed by the extensive set

of simulations and experimental results reported in Sec. VIII.
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III. MODELING OF BEARING-FORMATIONS

A. Useful properties of relative bearings

The proofs of the following properties are reported in Ap-

pendix B. Denote with [v]∧ ∈ so(3) the skew-symmetric

matrix associated to a vector v ∈ R
3. We have:

Property 1. (Orientation) If βij �= ±(0 0 1)T then

iRj = R
�

βij ,βji

�

= exp (arccos(cij) [vij ]∧) (6)

where vij = −βij × βji and cij = βij · βji. Moreover if

βij = ±(0 0 1)T but βik �= ±(0 0 1)T then

iRj =
iRk

kRj = R (βik,βki)R
�

βkj ,βjk

�

. (7)

For any 3 agents l,m, and n, we define the scalar ratios

among relative inter-distances

γlmn =
δln

δlm
∈ R

+, γmln =
δmn

δml

∈ R
+, (8)

assuming pl and pm are not coincident.

Property 2. (Triangulation) Consider 3 agents l,m, and n,

s.t. pl, pm, and pn are not aligned, i.e., βlm �= ±βln. Then

the following identities hold:

γlmn = Γ(βmn,βml,βln) (9)

γmln = Γ(βln,βlm,βmn), (10)

where the function Γ : (S2)3 → R
+ is defined as

Γ(β1,β2,β3) =
�β1 × β2�

�β3 ×R(β3,β2)β1�
. (11)

If βlm = ±βln but βlm �= ±βlo, we can still obtain γlmn as:

γlmn =
δln

δlo

δlo

δlm
= Γ(βon,βol,βln)Γ(βmo,βml,βlo). (12)

We also extend the definition of γlmn to the singular cases

l = n and m = n as

γlml = 0, γlmm = 1. (13)

Property 3. (Composition) Consider 3 agents l,m, n then, if

βlm �= ±βln, the following identity holds:

βmn = mRl

βlnγlmn − βlm

�βlnγlmn − βlm�
. (14)

B. Definition of bearing-formations

A formation of configurations, or just formation, is a pair

(G, q) consisting of a generic graph G = (V, E) – where

V = {1, . . . N} and E ⊆ T = {(i, j) ∈ V × V | i �= j} – and

a configuration vector q = (q1, . . . , qN ) that assigns to every

node i ∈ V the configuration qi = (pi,ψi) ∈ q. This kind of

‘graph-plus-configuration’ structure is also called framework

or point-formation in the literature, see, e.g. [40], [41].

A formation (G, q) is degenerate if q is degenerate. Two

formations (G, q) and (G, q�) with the same graph G but

different configurations q and q� are said edge-equivalent if

βij(q) = βij(q
�) ∀(i, j) ∈ E , (15)

and similar if

βij(q) = βij(q
�) ∀(i, j) ∈ T . (16)

Finally, a formation (G, q) is rigid if all its edge-equivalent

formations are also similar.

A formation of bearings, or simply a bearing-formation,

is a pair (G,α) made of a generic graph G = (V, E) and a

collection of |E| unit vectors α = (. . . ,αij , . . .) ∈ S
2|E| that

assigns to every edge (i, j) ∈ E the unit vector αij ∈ α.1 A

bearing-formation (G,α) is said feasible if all the unit vectors

contained in α can simultaneously exist as actual relative

bearings βij(q
α) for some configuration qα, i.e., such that

βij(q
α) = αij ∀ (i, j) ∈ E . In this case, (G, qα) is called a

realization of (G,α).
Within the class of feasible bearing-formations, we define

rigid bearing-formations those having only rigid realizations,

and degenerate bearing-formations those having at least a

degenerate realization. This also implicitly defines the cases

of (feasible) non-rigid and non-degenerate bearing-formations.

Two rigid bearing-formations (G,α) and (G�,α�) are said

equivalent if (16) holds for any pair of realizations (G, qα)
and (G�, qα�) of (G,α) and (G�,α�), respectively. Therefore,

two equivalent rigid bearing-formations share the same set of

realizations.

Lemma 1. (Parameterization of a bearing-formation) The

equivalence class of all the realizations of a non-degenerate

and rigid bearing-formation (G,α) is the set {(G, qα) |qα ∈
Q} where Q is a 5-dimensional manifold embedded in

(R3 × S
1)N , and globally parameterized by the configuration

qα
i of one agent (4 parameters) and the distance δij(q

α)
between two agents (1 parameter).

The proof of the Lemma is reported in Appendix B.

To summarize, a bearing-formation is rigid if it is feasible

and implicitly defines all the relative bearings of its realiza-

tions, i.e., if it provides the maximum information obtainable

using only relative bearings. Furthermore, if a rigid bearing-

formation is degenerate then no constraint exists among the

inter-distances of its realizations, while, in case of non-

degeneracy, the inter-distance ratios are strictly constrained,

as shown in the proof of Lemma 1.

In a formation control context, e.g., when performing

surveillance/coverage tasks, one typically aims at regulating

all the relative bearings βij(q), (i, j) ∈ T , to some desired

values βd
ij , i.e., so that β(q) → βd = (. . . ,βd

ij , . . .)(i,j)∈T ,

where β(q) = (. . . ,βij(q), . . .)(i,j)∈T . Owing to the previous

definitions, in particular rigidity, this requirement can be

simplified as follows: if there exists a graph G = (V, E) such

that the (desired) bearing-formation (G,βd
E) (where βd

E =
(. . . ,βd

ij . . .)(i,j)∈E ) is rigid, then imposing βij(q) → βd
ij ,

∀ (i, j) ∈ E , will necessarily imply βij(q) → βd
ij , ∀ (i, j) ∈

T \E . Moreover, the desired bearing-formation (G,βd
E) can

be replaced by any equivalent bearing-formation (G�,βd
E�)

1Notice that here the term ‘bearing’ is used as a synonym of ‘unit vector’.
Moreover, this formal definition of a bearing-formation is conceptually de-
coupled from the relative bearings associated to a specific formation of agents
(G, q) introduced before. Note also the ‘duality’ between the definitions of
(G, q) and (G,α).
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Fig. 1: Construction of the minimally-linear rigid bearing-formation
described in Lemma 2 for the case of 5 agents. Agents 1, 2, and
5 are aligned, therefore I2 = {3, 4}, I3 = {5}, and, as a conse-

quence, Ê = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (3, 1), (4, 1), (5, 1)}
∪ {(3, 2), (4, 2)} ∪ {(5, 3)}. Note that |Ê | = 3·5−4 = 11 instead of
|T | = (5−1) ·5 = 20 (the number of all possible relative bearings).

for realizing the same formation control goal. Therefore,

in order to reduce the number of measured quantities and

the overall computational load of the formation controller, a

minimal number of controlled and measured relative bearings

is desirable. This then raises the issue of minimality for rigid

bearing-formations, i.e., of the minimal cardinality of |E|
needed to define a rigid bearing-formation.

Although E can contain up to |T | = N(N − 1) =
O(N2) pairs, Lemma 1 shows that any rigid non-degenerate

bearing-formation defines a 5-dimensional manifold in a

4N -dimensional space. Therefore, only 4N − 5 indepen-

dent constraints are actually needed to determine a bearing-

formation. This fact motivates us to call a non-degenerate and

rigid bearing-formation (G,α) minimally-linear rigid if any

(G�,α�) with E � � E , α� � α is not rigid, and |E| = O(N).
The following Lemma, whose proof is again in Appendix B,

explicitly constructs an important class of minimally-linear

rigid bearing-formations which will then be used by our

formation controller.

Lemma 2 (A minimally-linear rigid bearing formation). Given

a non-degenerate rigid bearing-formation (G,α), consider

any corresponding realization (G, qα). Then there exists at

least one agent relabeling such that β12(q
α) �= ±β13(q

α) �=
±(0 0 1)T . Consider any one of these relabelings and define

the following sets I2, I3 ⊂ V and Ê � T :

I2 = {3} ∪ {j ∈ {4, . . . , N} | β1j(q
α) �= ±β12(q

α)} (17)

I3 = {4, . . . , N}\I2. (18)

Ê = {(1, j), (j, 1)}Nj=2 ∪ {(j, 2)}j∈I2
∪ {(j, 3)}j∈I3

. (19)

Define also Ĝ = (V, Ê) and βα

Ê
= (. . . ,βij(q

α), . . .)(i,j)∈Ê .

Then the bearing-formation (Ĝ,βα

Ê
) is non-degenerate,

minimally-linear rigid, and equivalent to (G,α).

As an example, Fig. 1 represents the construction of a

minimally-linear rigid set in the case of 5 agents where agents

1, 2 and 5 are aligned.

IV. CONTROL OF BEARING-FORMATIONS

As introduced in the previous section, we will denote

with (G,βd
E) the desired rigid and non-degenerate bearing-

formation specifying the formation-control goal, and with

(G, q) the formation (of configurations) consisting of the same

graph G and of the current agent configuration q. In this

section we propose a formation controller that, starting from a

generic q(t0), brings and maintains (G, q(t)) within the class

of realizations of (G,βd
E) (the control objective) by using only

a minimally linear number of relative-bearing measurements.

In addition, we also complement this control action by deriving

the ‘orthogonal’ set of virtual inputs able to steer (G, q(t))
inside the class of realizations of (G,βd

E).
To this aim, we split the control inputs of the i-th agent (2)

into two terms

(ui, wi) = (uh
i , w

h
i ) + (uf

i , w
f
i ). (20)

The term (uh
i , w

h
i ), described in the following Sec. IV-A, will

be exploited to vary (G, q(t)) while preserving the relative

bearings. Therefore, if (G, q(t0)) is a realization of (G,βd
E),

the control inputs (uh
i , w

h
i ) will make (G, q(t)) to evolve

within the class of realizations of (G,βd
E). Recalling the

Introduction, (uh
i , w

h
i ) represents the action of any ‘external

high-level planner’ in charge of steering the collective motion

of the UAV group. The term (uf
i , w

f
i ), enforcing convergence

to the desired bearing formation (G,βd
E), is illustrated in

Sec. IV-B.

A. High-level Steering Preserving the Relative Bearings

Consider the bearing-formation (K,β(q)) where K = (V, T )
(the complete graph) and, as usual, q is the current configu-

rations of the agents. The class of realizations of (K,β(q)),
denoted with FK(q), is a 5-dimensional manifold, as shown

in Lemma 1.2

Denote with q̇ = (ṗT
1 ψ̇1 . . . ṗT

N ψ̇N )T ∈ R
4N the vector

of generalized velocities of the agents. By plugging (20) into

(2) it is clear that q̇ = q̇f + q̇h, where q̇f and q̇h depend only

on (uf
i , w

f
i ) and (uh

i , w
h
i ), respectively, with i = 1 . . . N . Our

goal is to design (uh
i , w

h
i ) such that q̇h belongs to TqFK(q),

the tangent space at q of FK(q). In this way the the high-

level commands (uh
i , w

h
i ) will not interfere with the formation

control objective, since the current relative bearings β(q) will

be preserved.

In order to provide an analytical expression for TqFK(q),
we let p̂ij =

pij

δij
∈ S

2 ∀i �= j, and consider, by convention,

p̂ii = 03, ∀i = 1, . . . , N . We also define S = [e3]∧, e3 =
(0 0 1)T , denote with R(A) the range (or column) space of a

matrix A, and with I3 ∈ R
3×3 the 3× 3 identity matrix.

The following lemma is a preliminary step in view of the

more general characterization of TqFK(q) given in Proposi-

tion 1.

Lemma 3 (Bearing-invariant motions for 3 agents). If N = 3
and q is non-degenerate, then TqFK(q) = R(T3), being

T3 =

�

I3 03 I3 03 I3 03

0
T
3

0 p̂
T
12

0 γ123p̂
T
13

0

0
T
3

1 −(Sp12)
T 1 −(Sp13)

T 1

�T

∈ R
12×5. (21)

2The class FK(q) is the same class of realizations obtained by any
other rigid bearing formation (G,βE(q)), with G = (V, E) and βE (q) =
(. . . ,βij(q), . . .)(i,j)∈E . Nevertheless, use of K instead of a generic G

automatically guarantees rigidity of (K,β(q)) for any configuration q.
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The formal proof is reported in Appendix B. It is worth

analyzing the geometrical meaning of the columns of T3 to

get an intuition on the actual agent motion they represent. To

this end, let ti ∈ R
12 be the i-th column of T3.

A motion along (t1 t2 t3), i.e.,

q̇ = [t1 t2 t3]ν = [I3 03 I3 03 I3 03]
Tν

for some ν ∈ R
3 represents a synchronized translation of the

formation with velocity ν.

A motion along t4, i.e.,

q̇ = t4s = [0T
3 0 p̂

T
12 0 γ123p̂

T
13 0]T s

for some s ∈ R represents a synchronized expansion of the

formation with expansion rate s. In particular, agent 1 does

not move, agent 2 moves along the connecting line with 1 at

speed s, and agent 3 moves along the connecting line with 1
at speed γ123s, that is, exactly the speed needed to keep the

relative bearings unchanged.

Finally, a motion along t5, i.e.,

q̇ = t5w = [0T
3 1 − (Sp12)

T 1 − (Sp13)
T 1]Tw

for some w ∈ R represents a synchronized rotation around

agent 1 with rate w. Agent 1 rotates in place with an angular

speed ψ̇1 = w, agent 2 rotates with the same angular speed

ψ̇2 = w but is also translating around agent 1 with linear

velocity −(Sp12)w, and likewise for agent 3. We also note that

synchronized translations and expansions can be performed

with the sole knowledge of relative bearings, while execution

of a synchronized rotation necessarily requires an additional

metric information (the magnitudes of p12 and p13).

Proposition 1 (Bearing-invariant motions for N agents).

Given a non-degenerate configuration q, consider the sets

I2(q) and I3(q) obtained by applying Lemma 2 to (K,β(q)).
Then, the set of motions keeping constant the relative

bearings at q can always be expressed, possibly after an

agent relabeling, as TqFK(q) = R(TN ), where TN =
�

TT
3 TT

4 TT
5

�T
∈ R

4N×5, T3 is defined in (21),

T4 =

�

··· I3 03 ···

··· γ12ip̂
T
1i 0 ···

··· −(Sp
1i)

T 1 ···

�T

i∈I2(q)\{3}

∈ R
4(|I2(q)|−1)×5 (22)

T5 =

�

··· I3 03 ···

··· γ13ip̂
T
1i 0 ···

··· −(Sp
1i)

T 1 ···

�T

i∈I3(q)

∈ R
4|I3(q)|×5. (23)

Proof. Applying Lemma 2 to (K,β(q)) yields the equivalent

rigid and non-degenerate bearing-formation (Ĝ,βÊ), where

βÊ = (. . . ,βij(q), . . .)(i,j)∈Ê . Then the sought tangent space

can be defined as the set of those velocities q̇ keeping all the

bearings in βÊ constant. Consider the sets composed by the

relative bearings β̂i(q) = {β1j ,βj1,βi1,β1i,βij ,βji} where

j = 2, if i ∈ I2(q) and j = 3, if i ∈ I3(q). It is clear that

βÊ ⊂ ∪N
i=3β̂i(q). Apply now Lemma 3 replacing agents 2

with j and 3 with a generic agent i ∈ {3 . . . N}, and consider

the corresponding matrix Ti (21) defined as

Ti =

�

I3 03 I3 03 I3 03

0
T
3

0 p̂
T
1j 0 γ1jip̂

T
1i 0

0
T
3

1 −(Sp1j)
T 1 −(Sp1i)

T 1

�T

∈ R
12×5. (24)

This matrix defines the motions of agents 1, j, and i which

keep all the relative bearings in β̂i(q) constant. Note that the

motions of agents 1 and j are independent from the state of

agent i. Therefore, in order to keep the bearings of all the

subsets β̂i(q) constant, one can: i) choose the motion of agent

1 and 2, then ii) select the motion of every agent i ∈ I2(q)
as per the last four rows of (24), with j = 2, and finally iii)

select the motion of every other agent i ∈ I3(q) as per the

last four rows of (24), with j = 3. This procedure directly

yields matrix TN and thus proves the Proposition.

Similarly to the previous case of 3 agents, the bearing-

invariant motions represented by TN are of three kinds: a

synchronized translation with velocity ν ∈ R
3, a synchronized

expansion with rate s ∈ R, and a synchronized rotation with

speed w ∈ R.

The following steps finally show how to design the con-

trol terms (uh
i , w

h
i ) in order to impose the aforementioned

bearing-invariant motions to the UAV group. Without loss

of generality, we will present our derivations assuming an

external planner (as a human operator) controlling the group

form the body-frame of agent 1. From Prop. 1, this can be

obtained by letting, ∀i = 1 . . . N ,

uh
i = iR1ν − sγ12iβi1 + wδ12γ12iSβi1 (25)

wh
i = w. (26)

where γ12i is computed as γ123γ13i for those i ∈ I3(q). It

is possible to prove (the proof is omitted for brevity) that

commands (25–26) will result in ṗ1 = R1ν, ψ̇1 = w, and

δ̇12 = s for agent 1, and in exactly those coordinated motions

preserving all the relative bearings, for all the remaining agents

i = 2 . . . N ,

We note that, again, control (25–26) is a function of only

bearing measurements (using Properties 1 and 2) with the

exception of the unique metric quantity δ12. This is in fact

needed in (25) to correctly implement a synchronized group

rotation. If δ12 is available through direct measurement or

online estimation, then (25) can be exactly implemented. If

the distance δ12 is not available then it can be replaced with

an arbitrary initial guess δ̂12 > 0, e.g., chosen by a high-level

planner or a human co-operator. This choice will result in a

non-perfect execution of the synchronized rotation command,

which will pull the bearing-formation away from the desired

one. On the other hand, the feedback action of the term

(uf
i , w

f
i ) in (20) – see (27–29) – will keep these disturbances

bounded by trying to achieve the desired formation, eventually

keeping a (bounded) non-zero bearing error at steady-state.

These intuitive considerations have been empirically proven by

our simulations and experiments of Sec. VIII, while a formal

characterization will be addressed in future works.

B. Regulation to the Desired Bearing Formation

Applying Lemma 2 with βd
E playing the role of α, the

agents are able to compute a minimally-linear rigid bearing-

formation (Ĝ,βd

Ê
) equivalent to (G,βd

E), thus sharing the same

class of realizations. Agents 1, 2, and 3, as per the definition

of Ê , will be called beacon agents. We note that their role

can be taken by any triplet whose positions in a realization of
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(G,βd
E) (and then also of (Ĝ,βd

Ê
)) are not collinear. Exploiting

the desired bearings in βd

Ê
, the agents are also able to compute

all the desired relative rotations 1Rd
i and desired distance ratios

γd
12i for any i = 2 . . . N by resorting to Properties 1 and 2,

respectively. Then, we propose the following control law for

the term (uf
i , w

f
i ) in (20):

�

u
f
1

wf
1

�

=

�

0

0

�

(27)

�

u
f
2

wf
2

�

=

�

Kp
2R1[β12 × (βd

12 × β12)]
Kω

�

1Rd
2
2R1 −

1R2
2Rd

1

�

∨,3

�

(28)

�

u
f
i

wf
i

�

=

�

Kp
iR1

�

γd
12iβ

d
1i − γ12iβ1i

�

Kω

�

1Rd
i
iR1 −

1Ri
iRd

1

�

∨,3

�

(29)

with i = 3, . . . , N , Kp,Kω > 0 being positive gains,

and [A]∨,3 representing the third component of the vector

associated to a skew-symmetric matrix A. We can then prove

the following statement:

Proposition 2 (Formation Control). Given a desired non-

degenerate rigid bearing-formation (G,βd
E), consider the

relabeling and equivalent minimally-linear rigid formation

(Ĝ,βd

Ê
) obtained by applying Lemma 2. Control (20), together

with (25–26) and (27–29), asymptotically and almost globally

steers (Ĝ, q(t)) towards the particular realization of (Ĝ,βd

Ê
)

such that

q1(t) = q1(t0) +

� t

t0

�

R(ψ1)ν
w

�

dt (30)

δ12(t) = δ12(t0) +

� t

t0

s dt, (31)

provided that
� t

t0
s dt > −δ12(t0) and Kp > s for any t ≥ 0.

Furthermore δ1i → γd
12iδ12, for any i = 3 . . . N .

Proof. The first condition (30) is a trivial consequence of (27)

and (25–26) evaluated for i = 1. In order to show (31),

we differentiate the dynamics of δ12 using (4) together

with (25),(27–28) and i = 1, j = 2, obtaining

δ̇12 = βT
12(

1R2u
f
2 ) + s =

= Kpβ
T
12

1R2
2R1[β12 × (βd

12 × β12)] + s = s.

Since the control action (25-26) is designed to not change

any bearing, the dynamics of βij , obtained differentiating (3),

is

β̇ij = −





0
0

wf
i



× βij +
I − βijβ

T
ij

δij

�

iRju
f
j − u

f
i

�

. (32)

In order to prove that (Ĝ, q(t)) converges to the set of real-

izations of (Ĝ,βd

Ê
), it is sufficient to show that βij(t) → βd

ij ,

∀(i, j) ∈ Ê . We decompose the proof among the following

subcases:

a) Convergence of β1i to βd
1i: we first prove that β12 →

βd
12 by plugging the control inputs (27–28) into (32) (with

i = 1, j = 2) and obtaining

β̇12 = (Kp/δ12(t))(β12 × (βd
12 × β12)) =

= (Kp/δ12(t))[β
d
12(β

T
12β12)− β12(β

T
12β

d
12)].

Consider the dynamics of the error term e12 = βT
12β

d
12 − 1,

that is,

ė12 = β̇
T

12β
d
12 = −(Kp/δ12(t))((β

T
12β

d
12)

2 − 1) =

= −(Kp/δ12(t))(β
T
12β

d
12 − 1)(βT

12β
d
12 + 1) =

= −(Kp/δ12(t))(β
T
12β

d
12 + 1)e12.

Except from the zero-measure case of an initial condition

β12(t0) = −βd
12, it is βT

12β
d
12 + 1 > 0. Since also δ12(t) > 0

by assumption, we obtain that e12 → 0 almost everywhere

and, therefore, that β12 → βd
12.

To prove that β1i → βd
1i, with i = 3 . . . N , we show that

β1iδ1i → βd
1iγ

d
12iδ12, which also implies δ1i → γd

12iδ12,

i.e., γ12i → γd
12i. Consider now the error e1i = β1iδ1i −

βd
1iγ

d
12iδ12. Since β1iδ1i =

1Rp1i, after some straightforward

algebra the error dynamics results in:

ė1i =
1RRiu

f
i − (βd

1iγ
d
12i − β1iγ12i)s =

= (Kp − s) 1Ri
iR1

�

γd
12iβ

d
1i − γ12iβ1i

�

= −
Kp − s

δ12(t)
e1i,

thus proving global exponential convergence of e1i to zero

since δ12(t) > 0 and Kp − s > 0 by assumption.

b) Convergence of βi1 to βd
i1: we start showing that iR1

converges to iRd
1 . Let ψ1i = ψ1 − ψi represent the relative

yaw among agents 1 and i, and note that, because of their

definitions, iR1 = Rz(ψ1i) and iRd
1 = Rz(ψ

d
1i). Therefore

ψ1i → ψd
1i implies iR1 → iRd

1 . Define eψ1i
= ψd

1i − ψ1i as

error term and note that ėψ1i
= −wf

i since wh
1 = wh

i = w
from (26). By applying control (29) we obtain

ėψ1i
= −Kω

�

1Rd
i
iR1 −

1Ri
iRd

1

�

∨,3
= −2Kω sin(eψ1i

),

showing that eψ1i
→ 0 for all initial conditions apart from the

zero-measure case eψ1i
(t0) = ±π.

Since βi1 = −iR1β1i, and we proved that β1i → βd
1i

(previous point) and iR1 → iRd
1 , we obviously have that

βi1 → βd
i1.

c) Convergence of βjk to βd
jk, for any remaining (j, k) ∈

Ê: from the proof of Property 1 and Property 3 with l = 1,

m = k, l = j, we know that

βjk = −jRkβkj = −jR1

β1jγ1kj − β1k

�β1jγ1kj − β1k�
.

Note that from (8) it follows γ1kj = γ12j/γ12k.

Since from the previous points, we have shown that

(β1j , β1k,
jR1, γ12j , γ12k) converge to their desired values,

it obviously follows that βjk → βd
jk.

In order to better understand the action of control (27–29) it

is useful to highlight, with the help of Fig. 2, some properties

depending on the high-level steering inputs ν, s, and w:

1) the translational dynamics of agent 1 is affected only by

the high-level command ν, therefore it will stay fixed

in space when ν = 0;

2) if s = 0 then agent 2 will rotate and travel along

the geodesic path on the sphere centered on agent 1
by keeping the ‘radius’ δ12 constant. Indeed, i) the

control action u
f
2 is always orthogonal to β12(q) which

represents the direction of the line connecting agents 1
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3

2

1
4

Fig. 2: Visual representation of the action of the formation con-
troller (27–29) in the case of 4 agents. Current agent positions are
marked with solid dots, while black arrows and double-white arrows
denote measured and corresponding desired bearings, respectively.
The target positions for every agent are marked with white circles
(note that these are not explicitly computed by the controller). Long
and thick white arrows indicate the paths followed by the agents
under the control action: agent 1 is stationary; agent 2 moves on
the sphere centered around 1 following a geodesic path; agent 3 and
4 move along a straight line. All the motions are executed without
resorting to any distance measurement.

and 2; ii) the external input ν moves the agents 1 and

2 cohesively, and iii) the external input w generates a

motion that is also orthogonal to β12(q);
3) if ν = 0 and s = w = 0 then agents 3 . . . N will rotate

and move along the straight lines connecting their initial

position with the final position satisfying the constraints

βij(q) = βd
ij , ∀(i, j) ∈ Ê , q1 = q1(t0), and δ12 =

δ12(t0).

Note also that the measured quantities needed to implement

controller (27–29) are β21, β1i,
iR1, and γ12i ∀i = 2 . . . N .

Since iR1 and γ12i can always be obtained as a function of

relative bearings (see Properties 1 and 2), the control law (27–

29) uses only relative bearings as expected. Finally we note

that condition Kp > s does not constitute a limit of the

proposed controller, since it can be always guaranteed by

choosing a Kp large enough, given the range of variation of

s in the specific application. Consider also that in practical

applications s cannot grow unbounded, mainly because of the

actuation limits of a real UAV.

For a generic desired bearing-formation (i.e., whose realiza-

tions have no special alignments), any triplet of agents can be

chosen as beacon agents in Lemma 2. It is then interesting to

study the problem of optimizing this choice w.r.t. any suitable

criterion, such as robustness against measurement noise. This

point is anyway left open for future developments.

Finally, we note that control (27–29) becomes singular only

when all the position of the agents happen to be aligned

during a transient phase (this is structurally avoided at steady-

state since (G,βd
E) is assumed to be non-degenerate). Such

situation represents a zero-measure case, and, in practice, is

very unlikely to occur. For instance, we never encountered it

during our simulations or experiments. Nevertheless, since it

is in principle possible to fall in its neighborhood, a practical

workaround is to apply a suitable constant control action

for a short phase in order to quickly exit from this singular

configuration.

C. Computational and Communication complexity

Proposition 3 (Computational Complexity). The computa-

tional complexity of control (27–29) is O(N). In fact, it can

be implemented by only using the 3N − 4 relative-bearing

measurements defined by the pairs included in Ê obtained by

applying Lemma 2 with βd
E playing the role of α.

Proof. Matrix 2R1 can be computed from β12 and β21, and
iR1 and γ12i, i = 3 . . . N , can be obtained as follows: i) if i ∈
I2, iR1 = iR2

2R1 and iR2 can be evaluated by first applying

Property 3 and then Property 1. As for γ12i, it can be obtained

by applying Property 2; ii) if i ∈ I3, iR1 = iR3
3R1 and

iR3 follows by first applying Property 3 and then Property 1.

Furthermore, from its definition, γ12i = γ13i/γ123, and γ13i,

γ123 follow from Property 2.

The applicability of Properties 1–3 is always verified at the

desired bearing-formation and, thus, when the controller (27–

29) has reached a steady-state regime. However, during initial

transients, some of the assumptions needed by the Properties

could temporarily not be met, e.g., when, for i ∈ I2, β12 =
±β1i. These transient situations can always be disambiguated

by (temporarily) exploiting additional measurements in order

to recover the loss of information, see for instance the second

parts of Properties 1–2.

As for the issue of communication complexity of con-

troller (27–29), let NC be the number of exchanged messages

per unit of time. Since not all the needed measurements are

locally available, the agents need to share some information

among themselves. For example, in order to implement (29),

agent 2 needs to receive β12 from agent 1. When consid-

ering inter-agent communication issues, in order to prevent

network congestions it is important to render NC bounded

w.r.t. the number of agents N . Typically, NC = O(N) is

considered as a good tradeoff, see for instance the case of

consensus/agreement algorithms with a bounded number of

neighbors per agent [42].

Proposition 4 (Communicational Complexity). The commu-

nication complexity of controller (27–29) is O(N).

Proof. Agent 1 needs no external information, agent 2 needs

β12, agents i ∈ I2 need β1i and β2i, and agents i ∈ I3 need

β1i and β3i, for a total of NC = 2(N − 1) + 1 exchanged

messages over the network per unit of time.

D. Time-varying desired bearings

We finally consider the case where the desired relative bearings

are not constant but (known) time-varying quantities defined

as β̃
d

ij(t) = R̃i(t)β
d
ij , with R̃i(t) given. This extension will

be exploited in the experiments reported in Sec. VIII-A, and

is important to both overcome limited field-of-view of the

relative-bearing sensor, and to allow for a possible scanning of

the environment during a 3D coverage task, e.g., exploration,

mapping, or surveillance.

The rotation matrices R̃i(t) considered here are only of the

kind Rz(·) since these are the ones affected by the agent inputs

wi. Denote with ω̃i(t) = (0 0 ω̃i,3)
T ∈ R

3 the angular veloc-

ity associated to R̃i(t), i.e., such that ω̃i(t) = [R̃T
i (t)

˙̃Ri(t)]∨,
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where the [·]∨ represents the vector associated to a skew-

symmetric matrix. Presence of a time-varying bearing can

be easily handled by using β̃ij instead of βd
ij and adding

a suitable feedforward term to the yaw-rate part of the con-

troller (27–29), i.e., using:

wf
1 = − ω̃1,3 (33)

wf
2 = − ω̃2,3 +Kω

�

1R̃2
2R1 −

1R2
2R̃1

�

∨,3
(34)

wf
i =− ω̃i,3 +Kω

�

1R̃i
iR1 −

1Ri
iR̃1

�

∨,3
. (35)

Note that presence of a time-varying component in the desired

bearings does not affect the overall formation shape, but only

causes the agents to suitably rotate in space. In this way,

the agents can track any exogenous rotation signal while

still keeping the same shape implicitly defined by the static

component of the desired bearings.

V. CASE OF A HUMAN CO-OPERATOR: HAPTIC STEERING

We consider in this section the particular but relevant case

in which a human co-operator is in charge of collectively

steering the formation by selecting values for the quantities

ν, s and w in the control action (25–26). As explained in

the Introduction, in this case we also consider presence of

suitable haptic cues for the human co-operator in a typical

bilateral force-feedback architecture, since this design has

proven to significantly increase the performances in human-

robot cooperation.

To this aim we propose a bilateral controller connecting the

UAV group with two haptic interfaces: a 3-dof interface for

controlling the group linear velocity ν, and a 2-dof interface

for commanding the group expansion/rotation rates (s, w).
These haptic devices are modeled as generic mechanical

systems

Mt(xt)ẍt + Ct(xt, ẋt)ẋt = τ t + f t (36)

Mr(xr)ẍr + Cr(xr, ẋr)ẋr = τ r + fr (37)

where xt ∈ R
3 and xr =

�

xs xw

�T
∈ R

2 are the

device position vectors, Mt(xt) ∈ R
3×3 and Mr(xr) ∈

R
2×2 their positive-definite and symmetric inertia matrices,

Ct(xt, ẋt) ∈ R
3×3 and Cr(xr, ẋr) ∈ R

2×2 represent Coriolis

and centrifugal terms, and the pairs (f t, τ t) ∈ R
3 × R

3,

(fr, τ r) ∈ R
2 × R

2 are the human/control forces acting on

each device, respectively. As usually done, we also assume

that gravity effects are locally compensated.

The control actions are implemented by setting in (25–26)

ν = λtxt,

�

s
w

�

=

�

λs 0
0 λw

�

xr, (38)

where λt > 0, λs > 0, and λw > 0 are suitable scaling

factors from the device positions (xt, xr) to the generalized

velocity commands. The proposed architecture implements a

position-velocity coupling between the haptic device and the

UAV group. This is the most natural choice in order to handle

the kinematic dissimilarity, i.e., the fact that the haptic device

has a bounded workspace but the UAVs are characterized by

an unbounded workspace, e.g., see also [29].

As for the reverse channel of the human-UAV connection,

we chose to provide haptic cues informative of how well

the real UAVs, as a group, are executing the desired human

commands (38). Recalling Sec. II-A, we let ṗAi
∈ R

3 be the

body-frame velocity vector of the i-th UAV, and ψ̇Ai
∈ R its

yaw rate. We stress, again, that these represent real (measured)

UAV quantities and not the reference (virtual) velocities of the

agent model (2) tracked by the UAVs.

After the initial transient needed for reaching the desired

bearing formation, i.e., when controller (27–29) has reached

its steady-state, the components (uf
i , w

f
i ) in (20) become

negligible and the only motion input for the UAV group is

due to the high-level commands (uh
i , w

h
i ) (25–26). As first

haptic cue, we can then consider the mismatch between the

commanded translational velocity ν and its actual execution

by the UAVs. From (25) and (38) we have that, for each i-th
UAV,

xt =
1

λt

ν =
1

λt

1Ri(u
h
i + sγ12iβi1 − wδ12γ12iSβi1)

=
1

λt

1Ri

�

uh
i + γ12i(λsxsβi1 − λwxwδ12Sβi1)

�

(39)

�
1

λt

1Ri

�

ṗAi
+ γ12i(λsxsβi1 − λwxwδ12Sβi1)

�

=: zti.

The approximation in (39) has two sources: (i) temporary

presence of nonzero formation control inputs (uf
i , w

f
i ) in (20)

because of transient disturbances in the maintenance of the

bearing-formation, and (ii) a generic non-perfect tracking of

the commanded velocities ui by means of the UAVs, that is,

ṗAi
�= uh

i (e.g., presence of wind, actuator saturations, UAV

inertia, etc.). Whatever the reason, the mismatch eti = xt−zti

represents a good measurement of how well the i-th UAV is

executing the human translational motion command ν. By

averaging eti over all UAVs, we get the average translational

mismatch as

et = xt −
1

N

N
�

i=1

zti = xt − zt. (40)

Analogously, we can also consider the mismatch between

commanded expansion/rotation rates (s, w) and their actual

execution by the UAVs. From (25) and (38) it can be seen

that, for each i-th UAV,

xs =
s

λs

=
1

λsγ12i
(iR1ν − uh

i + wδ12Sβi1) · βi1 =

=
1

λsγ12i
(iR1ν − uh

i ) · βi1 �
1

λsγ12i
(iR1ν − ṗAi

) · βi1

=: zsi (41)

where we exploited the fact that Sβi1 ⊥ βi1. By averaging

over all UAVs, we get the overall expansion error

es = xs −
1

N

N
�

i=1

zsi = xs − zs. (42)

As for the rotation rate, eq. (26) simply yields

xw =
w

λw

�
ψ̇Ai

λw

= zwi (43)
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with the corresponding average error

ew = xw −
1

N

N
�

i=1

zwi = xw − zw. (44)

We can then express the mismatch between the commanded

and actual expansion/rotation rates as the vector

er =

�

es
ew

�

= xr −

�

zs
zw

�

= xr − zr. (45)

Note that an evaluation of zt and zr requires each UAV to

send to the haptic device its body-frame velocity and yaw rate

(ṗAi
, ψ̇Ai

), its relative bearing βi1 w.r.t. agent 1, and the

scaling factor γ12i.

The control torques in (36–37), aimed at providing a useful

force-feedback to the human operator, are then computed as

τ t = −Btẋt −Ktxt −Ke
t et (46)

τ r = −Brẋr −Krxr −Ke
rer. (47)

Here, Bt ∈ R
3×3, Br ∈ R

2×2 are positive definite damp-

ing matrixes whose role is to stabilize the haptic devices,

Kt ∈ R
3×3, Kr ∈ R

2×2 are semi-definite diagonal matrixes

(possibly null) for giving the user a perception of the distance

to the zero-commanded velocity, and Ke
t ∈ R

3×3, Ke
r ∈ R

2×2

are positive definite diagonal matrixes meant as scaling factors

for et and er.

Control (46–47) is, however, not robust against the

destabilizing effects of the typical non-idealities in haptic-

device/UAVs communication channels, that is, possible pres-

ence of discrete sampling, delays and packet losses. In

order to guarantee teleoperation stability despite these ef-

fects, let (zt[k], zr[k]) be the discrete (received) versions of

(zt(t), zr(t)). Then, the actual implementation of the force

controller takes the form

τ t = −Btẋt −Ktxt −Ke
t (xt − z̄t[k]) (48)

τ r = −Brẋr −Krxr −Ke
r (xr − z̄r[k]). (49)

where the quantities (z̄t[k], z̄r[k]) are the passive set-position

modulation (PSPM) versions of the received (zt[k], zr[k]).
The PSPM framework [43] is a general tool for guar-

anteeing haptic-device passivity and, therefore, stability of

the closed-loop system when dealing with possible de-

lays/discretization/packet losses of the signals exchanged over

the haptic-device/UAVs communication channel. The action of

the PSPM is to modulate a received signal z[k] into a (pos-

sibly) attenuated version z̄[k] so that implementation of (48–

49) will meet the haptic-device (energetic) passivity constraint

over its external power port. Being the slave considered in this

work a kinematic (first-order) system (agent model (2)), this

is indeed sufficient to ensure stability of the overall closed-

loop teleoperation scheme by further assuming, as usually

done (see, e.g., [44]), passivity of the human side. We omit

further details here and refer the interested reader to [28], [43]

and references therein for a complete treatment and formal

proofs of these statements. Note that, besides the passifying

action against non-idealities of the communication channel,

the PSPM framework also allows to enforce closed-loop

stability despite the nonstandard position-velocity coupling

between haptic-device and the UAVs adopted in our work,

see again [28] for a more thorough treatment.

The resulting haptic cues will not only give a general feeling

of the execution accuracy of the human commands, but are

specifically designed to represent the execution mismatches

along the 5 motion directions in a decoupled way.

VI. OVERALL SYSTEM ARCHITECTURE

For the reader’s convenience, Fig. 3 summarizes the overall

conceptual scheme of our teleoperation system from the per-

spective of the generic i-th UAV in the group. At the beginning

of the task, the high-level planner (lower/left-side, e.g., an

autonomous exploration algorithm or a human co-operator)

selects and communicates the desired bearing-formation to the

i-th UAV. Then, during the task execution, it sends to the i-th
UAV the commands (ν, s, w) in (38). In the case of a human

co-operator, this is done by acting on the haptic devices, and

he/she is provided with the haptic cues (48–49). The generic

UAV computes the desired velocities (u, w) as the sum of

the formation control terms in (27–29) and of the high-level

steering terms (25–26) (center of the scheme). The velocity

tracker then regulates the real (measured) UAV velocities

(ṗA, ψ̇A) to the desired ones. These measured velocities are

also sent back to the haptic interface (if present) in order to

realize the haptic cues. An additional module measures the

UAV relative bearings βAiAj
and roll/pitch angles (φAi

, θAi
)

to obtain the corresponding inter-agent relative bearings (5)

which are then used by the UAV controller and communicated

to the haptic device (if present). Finally, the needed relative

bearings are also communicated to the other UAVs in the group

(upper/left-side).

VII. EXPERIMENTAL TESTBED

In the simulations and experiments we opted for having a

human co-operator as high-level planner instead of an au-

tonomous algorithm. This allows to illustrate and validate all

the parts of our framework, i.e., including the haptic compo-

nent. The two haptic devices used both for the simulations and

real experiments are shown in Fig. 4(a): the device on the right

is the 3-dof device3 modeled by (36) and responsible for the

command ν in (38) and the force feedback term τ t in (48).

The device on the left is also a 3-dof device but constrained

via software to only move on the 2D horizontal plane in order

to behave as (37). This device is responsible for the commands

(s, w) in (38) and the force feedback term τ r in (49). Both

devices are connected to a GNU-Linux machine where a local

control loop implements the forces τ t and τ r at a frequency

of 2.5 kHz. The control program also sends over a wireless

channel the inputs (ν, s, w) to the UAV controllers at 120Hz,

and receives the UAV measurements needed to implement τ t

and τ r.

The UAVs used in these simulations/experiments are

quadrotors, see Figs. 4–5. Indeed, the use of quadrotors makes

it possible to empirically validate our preliminary assumption

of Sec. II, i.e., to exactly track the virtual agent dynamics (2)

3http://www.forcedimension.com
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Fig. 3: Overall system architecture as seen from the point-of-view of a generic UAV.

thanks to the flatness of the quadrotor outputs (pAi
, ψAi

).
The controller of each quadrotor (both simulated/real) runs

two processes: the agent-process and the velocity-tracker. The

velocity-tracker enables the quadrotor to track smooth body-

frame reference velocities (ui, wi) implementing a standard

cascaded controller similar to the one used in [45] but without

position error terms. These reference velocities are in turn

generated by the agent-process, which communicates via a

wireless link with the agent processes of the other UAVs and

with the controller of the haptic devices in order to eventually

compute the (control) velocity terms (ui, wi) in (20).

Our simulation environment is made of a custom soft-

ware [46] based on third party 3D graphics and physics

engines4 (see Fig. 4(b) for two screenshots). This environment

simulates the quadrotor rigid-body dynamics and generates the

measurements needed by the controllers.

As for the experiments, we used 3 real quadrotors5 whose

setup is shown in Fig. 5(a). The velocity-tracker and agent-

process implementation is split between the onboard micro-

controller (Fig. 5(c1)) and a small GNU-Linux PC-board6

mounted underneath the quadrotor (Fig. 5(c3)). Measurements

of the quadrotor current roll and pitch angles (φAi
, θAi

)
are obtained fusing the onboard IMU readings by means of

a standard complementary filter. The absolute yaw ψAi
, on

the other hand, is not measured nor estimated since it is

not needed by our approach. We further used an external

optical tracking system7 in order to only retrieve the quadrotor

body-frame velocity since, again, no additional global position

measurements were needed. This velocity information could

also be obtained exploiting vision/optical flow [47] or range

finders.

The relative bearings needed by our controller were ob-

tained from an onboard monocular camera (Fig. 5(b)) with an

horizontal/vertical FOV of about 88/60 deg. In particular, by

equipping every quadrotor with a colored sphere on its top

(Fig. 5(a1)), measurements of relative bearings are estimated

by segmenting these spheres from the onboard camera images.

This algorithm could run with a rate of about 7Hz and with an

average latency of 500ms. This relatively poor performance

was mainly due to the absence of a dedicated driver for the

4http://www.ogre3d.org, http://www.nvidia.com/object/physx new.html
5http://www.mikrokopter.de
6http://www.seco.it/en/, http://www.qseven-standard.org/
7http://www.vicon.com/
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(c2)

(b1) (b2)

(a)

(b)

(c)

Fig. 4: Experimental setup: (a) 3-dof haptic-feedback devices used to
perform the bilateral high-level steering. (b) Simulation environment
used to physically simulate the quadrotors: side (b1) and top (b2)
views of 12 quadrotors in a dodecahedron formation with agents
1 and 2 being highlighted. (c) Real UAV setup with 3 quadrotors:
(c1) top-view of the formation in the 3D visualizer; (c2) triangular
formation used during the experiments; (c3) onboard camera view
of agent 1 with agent 2 and 3 detected by the image processing
algorithm.

camera. Nevertheless, as it will be clear form the experiments,

our approach was robust enough to deal with these and addi-

tional non-idealities representative of real-world conditions. A

visualization of the ball-tracker output is shown in Fig. 4(c3),

where the detection of the balls is highlighted with red circles.

VIII. SIMULATIONS AND EXPERIMENTS

We first present the results of a Human/Hardware in-the-

loop (HHIL) simulation involving 12 UAVs starting far from
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 b2  

 c1  

 c2  

 c3  

 c4  

(a)

(b)

(c)

 a1   a2  

Fig. 5: Quadrotor setup. (a) Quadrotor in its flight configuration: a1)
colored sphere used for the visual tracking, a2) reflective marker used
for the ground-truth tracking system (b) Camera setup: b1) Consumer-
market camera, b2) 140◦ lens. (c) Computational setup: c1) Mi-
crocontroller and IMU, c2) Battery, c3) GNU-Linux PC Board,
c4) Wireless adapter.

the desired bearing-formation. In this simulation we assumed

an unlimited FOV capability for the UAVs so that relative

bearings could always be retrieved.

The simulation is articulated in two phases: at the beginning,

only the formation control is active while the human operator

holds the two haptic devices fixed at their neutral position.

After the time t = 17 s (vertical dashed black line in Figs. 6(a–

f)), the desired formation is eventually reached, and the human

operator starts commanding the overall group. This second

phase is itself split into two sub-phases: at first (from t = 17 s

to t = 110 s), the human operator intentionally commands the

5 available motion directions once at a time by following this

particular order νy → νx → νz → r → w (see Fig. 6(b)).

This is done so as to isolate the effects of each command.

Then, during the last sub-phase (from t = 110 s to t = 150 s),

the human operator gives a generic command which shuffles

the 5 motion directions all together.

Figures 6(a)–(c) show the average tracking errors between

the actual UAV velocities (ṗAi
, ψ̇Ai

) and the reference veloc-

ities (ui, wi) associated to the agent model (2). As expected,

due to the flatness of the quadrotor, the velocity tracker is able

to keep the tracking error sufficiently small, thus confirming

the assumptions of Sec. II. Figure 6(e), shows the evolution of

the average quadratic error of the bearing-formation βd
ij−βij ,

∀βd
ij ∈ βd

E : this goes exponentially to zero until t = 17 s, and

then does not increase when the human starts commanding

the group during the second phase. The only exception is a

bounded error occurring whenever the human is commanding

a rotation w: this is due to the mismatch between the actual

distance δ12 and the constant guess δ̂12 used to implement (25),

see the remarks in Sec. IV-A. This is in perfect agreement with

our theoretical analysis and expectations.

Figure 6(d) shows the behavior of the error vectors (et, er)
in (40)–(45). The peaks occur when the commanded accelera-

tion is at its maximum as a consequence of the non-negligible
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Fig. 6: Results with a group of 12 simulated quadrotors. (a),(c): Av-
erage velocity and yaw rate tracking errors; (b): Operator commands:
translation velocity, expansion rate and rotation speed; (d): Mismatch
between commands and executions; (f): Force feedback; (e): Mean
square error w.r.t. desired bearing-formation.

inertia of the physically simulated quadrotors. Note also how

the components of (et, er) show a good decoupling during

the first phase of the human operation, roughly from t = 17 s

to t = 110 s: activation of one particular command among

(ν, r, w) only affects its associated component of the error

vectors (et, er), with, again, the only exception of the com-

mand w because of the wrong estimate δ̂12. Finally, Fig. 6(e)

shows the control torques (τ t, τ r) computed from (48–49)

during the motion. These are basically proportional to the

error vectors (et, er) as expected, since matrices Ke
t and Ke

r

have been chosen to be dominant w.r.t to Bt,Kt, and Br,Kr,

respectively, in (46-47).

We report now the results of an experiment run with the

3 real quadrotors and the setup shown in Figs. 4–5. In this

case, the quadrotors start being already close to the desired

bearing-formation and the human operator can control their

motion from the beginning of the experiment. Screenshots of

the experiments at three different times t1 = 36 s, t2 = 62 s

and t3 = 79 s are shown in Fig. 7. Since the cameras onboard

the quadrotors have a limited FOV, we carefully selected

the desired bearing-formation such that every UAV is in the

visibility range of the others.

In Figs. 8(a)–(c) it can be again observed that the average

tracking errors of the quadrotor actual velocities (ṗAi
, ψ̇Ai

)
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Fig. 7: Three snapshots of the experiment with 3 quadrotors . Pictures
on the left show the haptic interfaces used to command the group
motion and receive suitable haptic cues. Pictures on the right report
the corresponding external views of the formation and, superimposed,
the local views from the onboard cameras of each UAV.

w.r.t. the reference velocities (ui, wi) stays approximately

zero despite the noisier measurements and all the unmodeled

dynamics not taken into account in the analysis and simulation

results — see Figs. 6(a)–(c) for a comparison. Similarly,

Fig. 8(e) shows that the average quadratic bearing error also

remains approximately zero during the motion. A bounded

error only appears when the human operator commands a

rotation of the formation for the reasons explained before, thus

confirming again the theoretical analysis and the simulation

results. The behavior of the user commands and error vectors

(et, er) is reported in Figs. 8(b)–(d), respectively. Once again,

note the bounded translational error triggered by the rotation

command to the whole formation. Finally, Fig. 8(f) shows the

control torques (τ t, τ r) presented as force cues to the human

operator.

Onboard cameras provide the position of the tracked object

in their image plane, i.e., an information equivalent to a pair

of horizontal/vertical angles (azimuth and elevation). Relative

bearings βij can then be computed in terms of relative azimuth

ζij and elevation ηij as

βij = (cos ηij cos ζij cos ηij sin ζij sin ηij)
T
. (50)

Figure 9(a) shows the mean square error between the az-

imuth/elevation measurements obtained from the onboard

cameras and those obtained from the ground-truth. One can

verify that the mismatch always stays below 3 deg. We also

note a constant temporal lag of 0.5, w.r.t. the ground-truth,

as can be seen from Fig. 9(b). Nevertheless, our control

framework proved to be robust enough to this unmodeled

delay.
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Fig. 8: Results with a group of 3 real quadrotors. (a),(c): Average
velocity and yaw rate tracking errors; (b): Operator commands:
translation velocity, expansion rate and rotation speed; (d): Mismatch
between commands and executions; (f): Force feedback; (e): Mean
square error w.r.t. desired bearing-formation.
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Fig. 9: Experiments: mean square measurement error (a) and mea-
surement lag (b) when comparing the measures obtained from the
on-board cameras with the one computed from the ground-truth.

A. Environmental Scanning in case of Limited Field-of-View

To overcome the restrictions due to the limited FOV in

the horizontal plane, we forced every UAV to rotate with

some desired rotation speed ω̃i,3(t) in order to ‘scan’ the

environment and periodically detect all the other UAVs. This

is recast into the problem of letting the UAVs tracking a

time-varying desired bearing trajectory without affecting the

geometrical shape of the formation, as explained in Sec. IV-D.

Every agent i ∈ (1, . . . , N) maintains a local estimation of
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the azimuth ζij relative to another agent j by means of the

following dynamical system

ξ̇ij = Kξ(ζij − ξij)− ψ̇Ai
(51)

where ψ̇Ai
is the measured yaw-rate of the UAV, the estimation

gain Kξ > 0 if a measurements ζij is available, and Kξ = 0
otherwise. This simple estimation scheme will converge if the

bearing-formation is kept close enough to the desired one,

so that no additional dynamics influence the evolution of ζij .

For instance, this estimation will not exactly track the real

ζij whenever a rotation command w is applied with a wrong

guess for δ̂12.

Then we can freely design the scan rotation speed ω̃i,3(t)
in (33–35) as long as we can guarantee that the relative

bearing measurements are acquired often enough to refresh the

estimation (51). We chose the following refreshing strategy:

at the beginning of the task, every UAV performs a complete

360 deg scan to initialize the estimations of all the needed

relative azimuths. During normal motion, on the other hand,

the i-th UAV will rotate towards the UAV that was not seen

for the longest time, say j. The sign of ω̃i,3(t) is chosen

in order to travel the smallest angle. When j will be in the

FOV of i, the measurement ζij is plugged into (51), and the

procedure is repeated for another agent k. Depending on the

configuration of the formation, this strategy will make some

agent to periodically invert the rotation direction, and others

to persistently rotate in the same direction. Finally, if a UAV

can measure the bearings relative to all the other UAVs, it will

simply rotate to keep them in the most centered way.

We first tested this strategy in simulation assuming a hori-

zontal FOV of [−44, +44] deg. Figure 10 shows the results of

7 simulated quadrotors which, starting from the desired bear-

ing formation, are commanded with translations and expansion

rates while implementing the estimation law (51) with the

proposed scanning strategy. Figure 10(a) reports the average

quadratic error of the bearing formation computed from the

ground-truth position measurements available in simulation.

Note how this error is almost zero during the whole simula-

tion, showing that the desired bearing-formation was indeed

correctly realized. Figure 10(b) depicts the time behavior of

an estimated azimuth (red line) and of the corresponding real

value (blue line). One can appreciate how the estimation is

able to track the true azimuth value also when the other UAV

is out of the FOV (above the horizontal black line in the plot).

In this case, the maximum estimation error was about 2 deg

and occurred when the other UAV was not in visibility.

We then repeated the same scenario in an experiment with 3
real quadrotors as before. All the bearing measurements were

obtained from the cameras shown in Fig. 5(b), which have an

horizontal FOV of about [−44, +44] deg. Figure 11(a) shows

again the mean square error of the bearing-formation from the

ground-truth data. The error remains very small although the

quadrotors are often using the estimated bearings from (51).

Similarly to before, Fig. 11(b) reports the evolution of an

estimated azimuth and the corresponding ground-truth value

obtained from the external tracking system. In this case, the

estimation degrades when the tracked UAV is outside of the

camera FOV (above the horizontal black line in the plot), with
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Fig. 10: Simulation with 7 quadrotors waving to overcome the limited
FOV. (a): bearing formation error. (b): Estimated azimuth vs. ground-
truth measure
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Fig. 11: Experiment with 3 quadrotors waving to overcome the
limited FOV. (a): bearing formation error. (b) Estimated azimuth vs.
ground-truth measure.

a maximum error of about 10 deg. This poorer performance

w.r.t. the simulation case is due to all the unmodeled effects

and real-world conditions and also to the wrong estimate

δ̂12 when commanding a rotation. However, we found the

proposed controller was still able to keep the desired formation

despite of these degrading effects.

Finally, we encourage the reader to watch the 4 videos

(Extensions 1–4) associated with the paper where all the

simulations and experiments discussed in this Section can be

fully appreciated.

IX. CONCLUSION AND FUTURE WORK

We presented a control framework for a group of UAVs bound

to keep a bearing-formation and allowing for high-level group

steering. We formally defined the concept of 3D bearing-

formations, and thoroughly studied the associated geometrical

properties. We then devised a suitable formation controller

based on only relative bearing measurements, and left the

possibility for any high-level planner to control the remaining

dofs of the UAV group. In the particular case of a human co-

operator in charge of steering the formation, this was achieved

by employing two force-feedback devices in order to pro-

vide haptic cues informative of group performances w.r.t. the

human commands. The theoretical claims of the paper were

finally validated by means of several HHIL simulations and

experiments with 3 quadrotor UAVs where the needed bearing

measurements were obtained from onboard cameras.

We are currently evaluating the possibility to estimate

the actual inter-agent distances by exploiting the steady-

state error present during synchronized rotations and due to
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Fig. 12: The plane spanned by pl,pn,pm and Property 2.

wrong initial guesses in the quantity δ12. Estimating inter-

distances, or in general metric quantities, could also facilitate

avoidance of obstacle collisions, an extension we are currently

considering. Finally, in order to become fully independent

from external tracking devices, we plan to perform some

additional experiments incorporating the already developed

visual-based techniques using onboard optical flow extraction

and decomposition.
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APPENDIX A: INDEX TO MULTIMEDIA EXTENSIONS

The multimedia extensions are at: http://www.ijrr.org.

Extension Type Description

1 Video HHIL first simulation

2 Video HHIL first experiment

3 Video HHIL simulation with limited FOV

4 Video HHIL experiment with limited FOV

APPENDIX B: PROOFS

Proof of Property 1. Multiplying both sides of (3) with Ri,

we obtain Riβij = pij/δij , and symmetrically Rjβji =
pji/δji. Noting that pij = −pji and δij = δji, we can

equate the left sides of the previous equations obtaining

Riβij = −Rjβji. This can be rewritten as jRiβij = −βji

showing that jRi is the rotation matrix among the directions

βij and −βji. This consists of a rotation about the axis vij

of an angle arccos(cij), and takes the exponential form (6).

To conclude the proof, note that, in our case, iRj is always a

rotation matrix of the form Rz(·) by construction. Therefore,

for any a = b = ±(0 0 1)T , the equation iRj a = b does not

admit a unique solution (any rotation matrix Rz(·) would be

a solution), implying that iRj cannot be evaluated whenever

βij = ±(0 0 1)T .

Finally, the last part is obtained by applying the first part

of Property 1 twice.

Proof of Property 2. Figure 12 represents the plane spanned

by the points pl, pm, pn. From the law of sines, it follows
δln

δlm
=

sin(∆ln)

sin(∆lm)
, where sin(∆ln) = �βmn × βml� and

sin(∆lm) = �βnl × βnm� = �lRnβnl ×
lRnβnm� =

= � − βln × lRm
mRnβnm�,

thus proving (9). Finally, (10) follows from (8) via suitable

relabeling.

Proof of Property 3. Identity (14) follows from

βmn =
mR(pn − pm)

�pn − pm�
=

=
mR(pl +Rlβlnγlmnδlm − pl −Rlβlmδlm)

�pn − pm�
=

=
mRRl(βlnγlmn − βlm)

(�pn − pm�δ−1
lm )

,

where the denominator �pn − pm�δ−1
lm = �βlnγlmn − βlm�

since βmn is a unit vector.

Proof of Lemma 1. Consider any realization (G, qα). In order

to prove the Lemma, we will show that, w.l.o.g., if qα
1 , δ12(q

α)
and all the relative bearings β(qα) are known, then all the

rotation matrices Rj(q
α) and positions pα

j , j �= 1, can be

explicitly obtained. In the following we omit the dependency

from qα for conciseness.

First of all we note that Rj = R1
1Rj and pα

j = pα
1 +

R1β1jδ1j , so that we can reduce the problem to the computa-

tion of 1Rj ∀j > 1 and δ1j ∀j > 2. If β1j �= ±(0 0 1)T then
1Rj follows from (6) using the bearings β1j and βj1.

If β1j = ±(0 0 1)T (i.e., agents 1 and j are on on top of each

other), let h be any agent such that β1h �= ±(0 0 1)T (non-

degeneracy guarantees existence of at least one such agent).

Then, one can compute 1Rh and hRj from β1h,βh1,βhj ,βjh

using (6) twice, to finally obtain 1Rj =
1Rh

hRj .

As for the inter-distances, since qα is non-degenerate,

there exists at least an agent h such that β12 �= ±β1h.

Then, applying (8) with (l,m, n) = (1, 2, h), one can obtain

δ1h = γ12hδ12 and δ2h = γ21hδ12 as a function of δ12 and the

needed relative bearings. Finally, consider the case j �= 1, 2, h:

if β1j �= ±β12 then δ1j = γ12jδ12, otherwise δ1j = γ1hjδ1h,

thus concluding the proof.

Proof of Lemma 2. It is easy to check that non-degeneracy

implies the existence of at least one relabeling meeting the

requirement β12(q
α) �= ±β13(q

α) �= ±(0 0 1)T . Furthermore,

the equivalence follows from the fact that (Ĝ,βα

Ê
) has been

generated from a realization of (G,α). The linearity can be

checked computing the cardinality of Ê that is |Ê | = 2(N −
1) + |I2| + |I3| = 3N − 4, which is linear in the number of

agents N .

In order to prove rigidity we show that all the bearings

βij(q
α) with (i, j) �∈ Ê can be uniquely computed from the

bearings in βα

Ê
. We omit the dependency from qα for brevity.

All the bearings β2j , ∀j ∈ I2, can be computed by evaluating

γ1j2 from (8) with (l,m, n) = (1, j, 2), and then applying (14)

with (l,m, n) = (1, 2, j) and noting that γ12j = γ−1
1j2.

Similarly we can determine β3j ∀j ∈ I3.

The rotation matrixes of the form jR1, ∀j > 1, can be com-

puted as follows: if β1j �= ±(0 0 1) then jR1 is determined

using (6) with (i, j) = (1, j). Otherwise, if j ∈ I2, then
jR1 can be evaluated as jR2

2R1 using (6) twice, first with

(i, j) = (j, 2) and then with (i, j) = (2, 1).
Finally, if j ∈ I3, we can determine jR1 = jR3

3R1 in a

similar fashion. This further allows to obtain any jRi, ∀j �= i,
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since jRi = jR1
iRT

1 . Consequently, for any known relative

bearing βij , we also get βji = −jRiβij .

To conclude this part of the proof, we show how to compute

βij for any i > 3, j > i. To this end it is sufficient to

apply (14) using (l,m, n) = (1, i, j), where γ1ji can be

obtained as γ12i/γ12j if j ∈ I2, or as γ13i/γ13j if j ∈ I3.

Finally, in order to prove minimality, we show that rigidity

is lost if any relative bearing is removed from Ê . First, if any

bearing of the form β1i or βi1, i > 1, is removed, then iR1 can

be any rotation matrix of the form Rz(·), thus contradicting

Lemma 1. Second, if any bearing of the form βji, with i =
2, 3, j ∈ Ii, is removed, then the ratio γ1ij can take any value,

i.e., δ1i and δ1j can be chosen freely, thus leading again to

a contradiction with Lemma 1. Therefore no relative bearing

can be removed from Ê without losing rigidity, hence proving

the last part of the statement.

Proof of Lemma 3. The time derivative of a bearing β̇ij is

obtained by differentiating (3) as

β̇ij =
1

δij

iR
�

ψ̇iSp̂ij + P (p̂ij)ṗij

�

, (52)

where P (p̂ij) = (I − p̂ij p̂
T
ij) ∈ R

3×3 is the projection matrix

onto the plane perpendicular to p̂ij . Imposing β̇ij = 0 in (52)

results in the following condition

0 = ψ̇iSpij + P (p̂ij)ṗij , (53)

which, combined with the symmetric condition β̇ji = 0, yields
�

ψ̇j − ψ̇i

�

Spij = ψ̇ijSpij = 0, (54)

where we exploited the fact that pij = −pji, ṗij = −ṗji,

p̂ij = −p̂ji, and P (p̂ji) = P (p̂ij).
In the particular case of N = 3 agents considered here, the

constraints (54) for all possible agent pairs are simply

ψ̇12Sp12 = 0, ψ̇13Sp13 = 0, ψ̇23Sp23 = 0. (55)

Being kerS = span{(0 0 1)T }, these can be satisfied when

either pij ∝ (0 0 1)T or ψ̇ij = 0. However, since the

positions p1,p2, and p3 are not aligned, there exist at least two

vectors among (p12, p13, p23) not in kerS. Therefore, we can

conclude that at least two entries among (ψ̇13, ψ̇12, ψ̇23) must

be zero. Being ψ̇13 = ψ̇12+ψ̇23 by construction, it necessarily

follows that ψ̇13 = ψ̇12 = ψ̇23 = 0.

Consider now the (globally invertible) change of coordinates

Πq = q� = (p1 p12 p13 ψ1 ψ12 ψ13)
T

and the associated new generalized velocities

Πq̇ = q̇� = (ṗ1 ṗ12 ṗ13 ψ̇1 ψ̇12 ψ̇13)
T ,

with Π ∈ R
12×12, the determinant detΠ �= 0, being the

nonsingular transformation matrix associated to this change
of coordinates. Constraints (53) can be rewritten in a matrix
form in terms of q� and q̇� as:







03×3 P (p̂12) 03×3 Sp12 03 03

03×3 03×3 P (p̂13) Sp13 03 03

03×3 −P (p̂23) P (p̂23) Sp23 03 03

0
T
3 0

T
3 0

T
3 0

T
3 1 0

0
T
3 0

T
3 0

T
3 0

T
3 0 1








� �� �

A(q�)∈R11×12

q̇
� = A(q�)q̇� = 0,

where 03×3 is the 3× 3 null matrix, and the facts that ṗ23 =
ṗ13 − ṗ12 and ψ̇12 = ψ̇2 − ψ̇1 = 0 were exploited.

We can then identify Tq�FK(q) with kerA(q�).
Note that, although max(rank(A(q�))) = 11, implying

that min(dimkerA(q�)) = 1, we already know that

dimkerA(q�) = 5 (resp. rank(A(q�)) = 7) by construction.

In fact, being FK(q) a regular manifold of dimension

5 (Lemma 1), the dimension of its tangent space at any

point, i.e., of ker(A(q�)), must be necessarily 5. An explicit

expression for Tq�FK(q) can then be found by inspection as

Tq�FK(q) = kerA(q�) = R(T �

3) where

T �

3 =

�

I3 03×3 03×3 03 03 03

0
T
3 p̂

T
12 γ123p̂

T
13 0 0 0

0
T
3 −(Sp12)

T
−(Sp13)

T 1 0 0

�T

∈ R
12×5.

In fact, letting t�i ∈ R
12 be the i-th column of T �

3, on can easily

check that (t�T1 , t�T2 , t�T3 )T are in kerA(q�). Furthermore,

t�4 ∈ kerA(q�) since P (p̂12)p̂12 = 03 and P (p̂13)p̂13 = 03

by construction, and −P (p̂23)p̂12 + γ123P (p̂23)p̂13 can be

rewritten as

1

δ12
(−P (p̂23)p12 + P (p̂23)p13) =

1

δ12
(−P (p̂23)(p13 − p23) + P (p̂23)p13) =

1

δ12
(−P (p̂23)p13 + P (p̂23)p13) = 03.

Finally, t�5 ∈ kerA(q�) since −P (p̂12)Sp12 + Sp12 =
−Sp12 + Sp12 = 03 and, similarly, −P (p̂13)Sp13 +
Sp13 = −Sp13 + Sp13 = 03, implying that P (p̂23)Sp12 −
P (p̂23)Sp13 + Sp23 = P (p̂23)Sp13 − P (p̂23)Sp23 −
P (p̂23)Sp13 + Sp23 = −Sp23 + Sp23 = 03.

Note that rank(T �

3) = 5 as expected. This can be easily

verified by noting the ‘upper triangular’ form of T �

3. As a last

step, we can recover the sought T3 in (21) by going back to

the original coordinates q, i.e., by taking T3 = Π
−1T �

3. The

resulting matrix is explicitly shown in (21).
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