
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2006 329

Modeling and Controlling Parallel Tasks in
Droplet-Based Microfluidic Systems

Karl F. Böhringer, Senior Member, IEEE

Abstract—This paper presents general hardware-independent
models and algorithms to automate the operation of droplet-based
microfluidic systems. In these systems, discrete liquid volumes
of typically less than 1 µl are transported across a planar
array by dielectrophoretic or electrowetting effects for biochem-
ical analysis. Unlike in systems based on continuous flow through
channels, valves, and pumps, the droplet paths can be reconfigured
on demand and even in real time. Algorithms that generate effi-
cient sequences of control signals for moving one or many droplets
from start to goal positions, subject to constraints such as specific
features and obstacles on the array surface or limitations in the
control circuitry, are developed. In addition, an approach toward
automatic mapping of a biochemical analysis task onto a DMFS
is investigated. Achieving optimality in these algorithms can be
prohibitive for large-scale configurations because of the high as-
ymptotic complexity of coordinating multiple moving droplets.
Instead, these algorithms achieve a compromise between high
runtime efficiency and a more limited nonglobal optimality in the
generated control sequences.

Index Terms—Digital microfluidic system, droplet-based micro-
fluidic system, lab on a chip (LOC), parallel manipulation.

I. INTRODUCTION

ADVANCES in microfabrication and microelectromechan-
ical systems (MEMS) over the past decades have led to

a rapidly expanding collection of techniques to build systems
for the handling and analyzing of very small quantities of
liquids (see, e.g., [1] and [2]). These microfluidic systems
typically consist of submillimeter scale components such as
channels, valves, pumps, and reservoirs, as well as application-
specific sensors and actuators. Microfluidic devices hold great
promise, for example, for novel fast, low-cost, portable, and
disposable diagnostic tools. Applications include the massively
parallel testing of new drugs, the on-site real-time detection
of toxins and pathogens, and polymerase chain reaction (PCR)
for deoxyribonucleic acid (DNA) sequence analysis. They usu-
ally operate with continuous flows of liquids, in analogy to
traditional macroscale laboratory setups, and can integrate all

Manuscript received March 23, 2005; revised June 5, 2005. This work
was supported in part by the U.S. National Science Foundation (NSF) under
Grant CCR-0342632, the U.S. National Institutes of Health under Grant 1 P50
HG002360-01, and an Invitational Fellowship for Research in Japan by the
Japanese Society for the Promotion of Science (JSPS). This paper extends
on previous conference publications at the Seventh International Conference
on Miniaturized Chemical and Biochemical Analysis Systems (Squaw Valley,
CA, USA, 2003) and at the IEEE International Conference on Robotics and
Automation (New Orleans, LA, USA, 2004). This paper was recommended by
Associate Editor K. Chakrabarty.

The author is with the Department of Electrical Engineering, University of
Washington, Seattle, WA 98195 USA (e-mail: karl@ee.washington.edu).

Digital Object Identifier 10.1109/TCAD.2005.855958

Fig. 1. Two droplets moving in parallel on a DMFS consisting of a
20 × 20 array with obstacle cells (marked black). The droplets start from cells
(1,1) and (20,1) and move to cells (20,20) and (1,20), respectively. Change in
droplet shading indicates the elapsed time. The droplets share cells (5,13) and
(5,14) on their path but their coordinated schedule prevents any conflicts.

functionality into a complete lab on a chip (LOC) or biosystem
on a chip (bioSOC).

More recently, an alternative LOC approach has gained
momentum using individual droplets, with volumes usually
in the submicroliter range. In these droplet-based microfluidic
systems, droplets are generated, transported, merged, analyzed,
and disposed on planar arrays of addressable cells; therefore,
they are also sometimes called discrete or digital microflu-
idic systems, and conveniently abbreviated as DMFS. This
architecture for microfluidic systems is attractive because of
the following reasons: 1) greater flexibility—analyte handling
may be reconfigured simply by reprogramming rather than
by changing the physical layout of the microfluidic com-
ponents; 2) high droplet speeds—reportedly up to 25 cm/s
[3], [4]; 3) no dilution and cross-contamination due to diffusion
and shear flow; and 4) the possibility for massively parallel
operation.

The DMFS approach assumes that it is advantageous to shift
complexity from microfluidic hardware to control software.
Therefore, for a DMFS to live up to its promise, it must be
accompanied by a complementary set of software tools such
that its usage can be largely automated. This includes software
that helps the user to map a biochemical analysis protocol
onto a given DMFS; as a specific subproblem, algorithms that
automatically plan and schedule routes for simultaneous droplet
motion are required. Fig. 1 shows a schematic example where
two droplets move in parallel across a DMFS while circum-
navigating numerous obstacles. Developing the formalisms,
models, and control strategies for such automated droplet ma-
nipulation tasks is the goal of this paper.

Processing large numbers of discrete droplets simultaneously
on an integrated microchip indicates a similarity to electronic
digital circuits, giving rise to microfluidic circuits [5], [6]. This

0278-0070/$20.00 © 2006 IEEE

330 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2006

analogy also suggests that algorithms for layout, routing, and
scheduling of droplet paths in a DMFS are computationally
expensive, i.e., NP-hard.

Thus, this paper is organized as follows. Section II reviews
background material on DMFS hardware, and discusses related
work in control algorithms. Section III introduces a formal
DMFS model and problem specification. Section IV presents
algorithms for coordinating parallel droplet motion on a DMFS
and investigates tradeoffs between runtime efficiency and opti-
mality. Section V extends these algorithms to allow for changes
of the droplet type during DMFS operation and develops an
approach to automatically transform a laboratory protocol into
a sequence of DMFS tasks. Section VI concludes the paper with
a summary and an outlook on future work.

II. RELATED WORK

Transferring a laboratory task such as DNA analysis, clinical
diagnostics, or detection and manipulation of biomolecules into
an LOC system is a complex endeavor that can involve multiple
challenges: the design of microfluidic hardware including sens-
ing and actuation mechanisms for liquid analytes; the use of
specialized techniques and materials such as modification and
functionalization of surfaces with monolayers or antibodies;
and the development of algorithms for layout and control of
massively parallel microfluidic circuits.

LOC design and manufacture has become an extensive re-
search area with dedicated conferences (e.g., [7]) and journals
(e.g., [8] and [9]). This paper, however, focuses on the software
aspects, and assumes a device model that abstracts away from
details of the physical implementation. Here, we discuss very
briefly important aspects of droplet-based microfluidics that are
relevant to motivate and justify our modeling assumptions.

A. Droplet Transport Techniques

The most successful conventional droplet-based system in
the life sciences is arguably the fluorescence-activated cell
sorter (FACS) [10]–[12], a machine that can sort droplets con-
taining single cells at rates well above 100 kHz. It generates
charged droplets, analyzes them in free flight via a laser fluores-
cence detection system, and sorts them accordingly via a mod-
ulated electrostatic field. LOC FACS systems exist but so far
work at much lower processing rates [13]–[15].

In microscale LOC systems, droplets can be moved across
a planar surface effectively with a variety of techniques, in-
cluding electric fields (e.g., [3] and [16]–[19]), surface acoustic
waves (e.g., [20]–[22]), thermocapillary and Marangoni ef-
fects (e.g., [23] and [24]), electrochemical surface modulation
(e.g., [25]), conformational changes in molecular surface layers
(e.g., [26]), or gradients in surface chemistry (e.g., [27] and
[28]), and texture (e.g., [29] and [30]). For this paper, droplet
transport with high speed, accuracy, and full software control
is essential, making electric fields the most suitable approach;
hence, we briefly discuss the two main techniques in this realm,
i.e., dielectrophoresis (DEP) and electrowetting [31], [32].
1) Dielectrophoresis: In DEP, neutrally charged objects are

first polarized by an electric field and then experience a net

force due to the field. This force can only be nonzero if a
field gradient exists, i.e., the positively and negatively polarized
regions of the object occupy areas of different field strengths.
If the object has stronger polarization than the surrounding
medium, then it is pulled toward the areas of higher field
strength (this is called positive DEP), but if the surrounding
medium has higher polarization, then the object is pushed
toward areas of lower field strength (negative DEP). DEP can
be considered the electrostatic analogy of induced magnetism.
Common examples for DEP are charged clothes that attract
(neutral) lint particles. More information on DEP can be found,
e.g., in [33]. A DMFS system employing DEP with more than
10 000 array elements was demonstrated in [34].
2) Electrowetting: Electrowetting on dielectric (EWOD)

exploits the decrease of contact angle that an aqueous droplet
on a dielectric surface experiences when exposed to an electric
field. If the field is localized at only one side of the droplet, then
the difference in contact angle causes a pressure differential in
the droplet, which drives it toward the region of higher field
strength. Electrowetting and its applications in microfluidics
have been investigated by several groups, including [3], [16],
[17], [35], and [36].

B. Droplet Transport Planning and Scheduling

Finding the optimal plan to generate, store, move, merge,
split, and dispose multiple droplets on a DMFS combines gen-
eral path planning and scheduling with the more application-
specific task of analyte droplet handling. Various researchers
have studied parts of the overall problem and have shown im-
portant results on algorithmic solutions and their computational
complexity.

One possible approach to this problem can be taken when
the paths of the droplets are considered given a priori. This
assumption leads to a scheduling problem, where the array cells
en route are the limited resource that must be shared among
different droplets. Griffith and Akella [37] show a solution
with standard optimization tools guided by some user input,
building on related work in coordinating multiple articulate
robots [38], [39]. Many more references to related work in the
areas of robot motion planning, flexible manufacturing systems,
queuing theory and networking are also given in [37].

A related technique was used by Zhang et al. [5], [6] and
Ding et al. [40], who attack the problem from the very large
scale integration (VLSI) design perspective. As in [38] and
[39], this approach leads to an integer programming formula-
tion. Both groups show NP-hardness of the scheduling problem
even for fixed droplet routes.

VLSI circuit routing techniques could also be employed,
which address the path planning problem but do not apply
directly to the inherently two-dimensional layout of the droplet-
based microfluidic platform.

This paper takes a different approach, by permitting the
droplet paths to be chosen freely (except for constraints defined
by the microfluidics hardware). Each droplet is interpreted as a
point robot moving in a discrete two-dimensional configuration
space. Under this assumption, path planning of the droplets
becomes a motion planning problem with multiple moving

BÖHRINGER: MODELING AND CONTROLLING PARALLEL TASKS IN DROPLET-BASED MICROFLUIDIC SYSTEMS 331

robots. Erdmann and Lozano-Pérez showed in 1987 that this
problem is NP-hard, but presented an algorithm that may
find a good solution in polynomial time [41]. Their approach
assigns priorities to each robot (droplet) and generates paths
successively, starting with the highest priority robot. Lower
priority robots consider higher priority robots as time-varying
obstacles that must be avoided. The algorithm is not complete,
and generated solutions depend on the priority ranking of the
robots and may not be optimal.

In [42], the problem was described as a graph search, and
search techniques such as A∗ were suggested. Even though this
brute-force approach, unlike the other work mentioned above,
guarantees optimality and completeness, it is not practical for
larger scale problems because of its computational complex-
ity, which is exponential in the number of moving droplets.
Böhringer [43] introduced a formal problem definition and
showed initial results with a more efficient approach based on
Erdmann’s algorithm [41].

III. DMFS FORMAL HARDWARE SPECIFICATION

Let us briefly review the most important physical properties
and design parameters of a DMFS. Motivated by these char-
acteristics, we can then develop an abstract DMFS model that
captures the essential operational features without depending
on specific implementation details.

A. DMFS Design Specifications

1) Layout: Typically, a DMFS consists of a planar rectangu-
lar array A with m× n cells (but, e.g., an arrangement
of hexagonal cells would also be possible).

2) Control circuitry: Various addressing schemes are possi-
ble to activate individual cells in a DMFS. In different
physical implementations of DMFS, we can distinguish,
for instance, individually addressable electrodes for
each cell (e.g., [36]), or simpler row/column addressing
(e.g., [44] and [45]). For the latter, entire rows and
columns are activated, and the droplet is attracted to a
neighboring cell A(x, y) only if it lies at the intersection
of active column x and row y.

3) Parallelism: The DMFS controller may be capable of
simultaneous activation of more than one cell, which will
allow simultaneous motion of multiple droplets. The total
number of addressable cells may be limited by a number
significantly smaller than m× n.

4) Location of cells with special functions: Droplet genera-
tors, reservoirs, cells for merging and splitting of droplets,
sensors, waste, etc. may require dedicated cells with spe-
cial embedded hardware. These cells may not be available
when planning a droplet path across the array.

These specifications provide a physical framework within
which a DMFS can operate. Based on this framework, we can
establish a formal description of the problem of controlling
droplets in a DMFS. Once a sufficiently general DMFS model
exists, we can investigate algorithmic solutions at an abstract
level without worrying about the varying details of specific
hardware implementations.

B. Abstract DMFS Specification

A DMFS is specified by the droplets on the DMFS array, the
DMFS hardware itself, and the task to be performed.
1) Droplets: Droplets are described by their type T and

their volume V . We are assuming here that all droplets in the
DMFS have the same volume, except when two droplets have
been merged. Therefore, we require that a merge operation is al-
ways immediately followed by a split operation that restores the
original droplet volumes.

The droplet type T is a subset of all elementary droplet types,
which we describe in general as a set T = {T1, T2, T3, . . .};
thus, T is an element of the power set of T , T ∈ P(T).
For example, if T1 represents “deionized (DI) water,” T2

“methanol,” and T3 “isopropanol (IPA),” then a droplet of type
T = {T1, T3} describes a mixture of DI water and IPA. Note
that this convention provides a simple representation of mixed
droplets but does not keep track of sample concentrations.
If needed, different concentrations could be represented as
different elementary types.
2) DMFS Arrays and Tasks: The DMFS consists of an

array A of m× n cells. Each cell in the array is either empty
or occupied, which we represent by specifying its droplet
type T . Thus, the DMFS can be described by A(x, y) = T x,y

for (x, y) ∈ {1 . . . m} × {1 . . . n} and T x,y ⊆ T . As a special
case, T x,y = ∅ indicates an empty cell. We call A ∈ P(T)m×n

the state of the DMFS.
The location of a droplet can be specified by the pair (x, y) ∈
{1 . . . m} × {1 . . . n} = C; thus, C is the configuration
space [46] of a single droplet, and Cd is the configuration
space of d droplets, which we also call the droplet placement
of the DMFS.

Time is assumed to be a discrete counter t ∈ {0, 1, 2, . . .},
i.e., transitions in the array occur in integer time steps from t to
t + ∆t, where ∆t = 1 unless noted otherwise. We write At to
refer to the state of the array at a specific time t.

At this point, we can already outline the definition of a
DMFS task: Given a start state As ∈ P(T)m×n and a goal state
Ag ∈ P(T)m×n, we need to find a timed sequence of valid
transitions that results in the desired droplet motions from As

to Ag . Various kinds of transitions exist; they include simple
droplet transport from cell to cell, but also droplet generation,
disposal, merging, and splitting. In addition to motion, droplets
may also be modified by operations on cells that change their
type. All these operations are chosen from the following list
of valid droplet transitions, which are usually associated to
specific cells or groups of cells on the array:

1) Droplet generation: For (x, y) ∈ C and some T ∈ P(T),
a droplet is generated at coordinate (x, y) if A(x, y) = ∅

at time t and A(x, y) = T at time t + ∆t.
2) Disposing: Definition analogous to droplet generation.
3) Moving: Let (x, y) and (x′, y′) ∈ C and |x− x′|+ |y −

y′| = 1 (i.e., A(x, y) and A(x′, y′) are directly adjacent).
At time t, A(x, y) = T and A(x′, y′) = ∅ and at time
t + ∆t, A(x, y) = ∅ and A(x′, y′) = T .

4) Merging: Let (x, y), (x′, y′), and (x′′, y′′) ∈ C such
that (x′, y′) and (x′′, y′′) are directly adjacent to (x, y)
but not adjacent to each other. At time t, A(x, y) = ∅,

332 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2006

A(x′, y′) = T 1, and A(x′′, y′′) = T 2, and at time t + ∆t,
A(x, y) = T 1 ∪ T 2 and A(x′, y′) = A(x′′, y′′) = ∅,
where T 1 ∪ T 2 is the droplet type that results in merging
droplet types T 1 and T 2.

5) Splitting: Definition analogous to merging.
6) Checking: For (x, y) ∈ C, we require that a droplet re-

mains at A(x, y) from time t to time t + ∆t. This allows,
for example, sensing operations to be performed that
neither change the location nor the type of the droplet
(e.g., fluorescence detection).

7) Changing: For (x, y) ∈ C, we define a function f :
P(T)→ P(T) such that A(x, y) = T 1 at time t and
A(x, y) = T 2 at time t + ∆t, and f(T 1) = T 2. This
allows transition operations that modify the droplet type
but not its location (e.g., heating/cooling for PCR).

8) Blocking: For (x, y) ∈ C, we define a set of forbidden
droplet types Fx,y ⊆ T that are not allowed on A(x, y).
In particular, if Fx,y ≡ T , then A(x, y) is blocked for
all droplets.

Finally, valid placement and motion of droplets on the array
is subject to the following constraints:

1) Placement: To avoid accidental merging of droplets, at
least one empty cell is required between two occupied
cells at all times, i.e., for any (x, y) and (x′, y′) ∈ C
with A(x, y) �= ∅ and A(x′, y′) �= ∅, |x− x′| > 1 or
|y − y′| > 1.

2) Parallel transitions: The previous constraint on place-
ments must in particular also hold during transitions, i.e.,
for all pairs of droplet placements across the transition
interval [t, t + ∆t] (see Fig. 2), except when merging or
splitting is intended.

IV. DROPLET PATH PLANNING

This section focuses on a central task in the control of DMFS:
generating efficient paths for multiple droplets that move from
a given start configuration As to a desired goal configuration
Ag . For now, we require that the types of the droplets remain
unchanged during the transition from As to Ag (this con-
straint will be removed in Section V). We will first give a
simple complete algorithm based on A∗ search, but find that its
computational complexity is very high (exponential in the
number of droplets). We then present a more efficient algorithm
for the DMFS motion planning problem that trades off com-
pleteness for faster execution times, while maintaining some
“local” optimality guarantees.

A. Basic A∗ Search

This approach maintains a graph data structure to keep track
of the droplet locations in the DMFS array. At any given
time t, the state of the DMFS is described by At and identified
with a node in this graph. A transition between two states At

and At+∆t defines a directed edge; this transition must conform
with the conditions set forth in Section III-B above. Finding an
optimal control strategy to transform start state As into goal
state Ag then becomes a standard graph search problem: The
shortest path between nodes As and Ag can be determined,

Fig. 2. Parallel droplet transitions: Droplets and their activated neighbor cells
(squares) are shown at the instant when motion is commencing. The transitions
in rows (a) and (c) are valid, but invalid in row (b), because during these
transitions, two of the droplets have more than one activated neighbor cell,
which could lead to unintentional splitting or merging.

e.g., using the A∗ algorithm known from artificial intelligence
programming [47].

The A∗ algorithm outlined below maintains two lists of
states, namely Open and Closed, which keep track of nodes
that still need to be explored, and nodes that have already been
processed, respectively. For each node, we maintain its prede-
cessor p, the cost incurred g (i.e., number of transitions from
As), the cost remaining h (i.e., number of transitions to Ag), and
the total cost f = g + h. As has been widely discussed in the
literature, h, which is not known in advance, can be estimated
with an “admissible” heuristic function. The Manhattan metric
provides such an admissible cost estimate, i.e., if droplet i at
time t is at (xt,i, yt,i) and its goal is (xg,i, yg,i), then h(t) can
be estimated as Σi|xg,i − xt,i|+ |yg,i − yt,i|.

Algorithm 1: A∗ for droplet path planning
Input: start state As, goal state Ag

Output: shortest path from As to Ag

Open← {As};
Closed← ∅;
WHILE Open �= ∅ BEGIN

o← pop state with smallest f from Open;
Q← list of all valid motion transitions from o; // Line 5
FOR each q in Q BEGIN

q.g ← o.g + 1; // q is one step beyond o
q.h← distance estimate from q to Ag;
q.f ← q.g + q.h;
q.p← o; // keep track of path from As via o to q
IF q = Ag , RETURN q; // goal found, success
IF NOT (∃ q′ ∈ Open such that q′ = q AND q′.f < q.f)

BÖHRINGER: MODELING AND CONTROLLING PARALLEL TASKS IN DROPLET-BASED MICROFLUIDIC SYSTEMS 333

Fig. 3. Two droplets moving simultaneously on a 6 × 6 DMFS array while
avoiding an obstacle (black cells). The two droplets start at cells (5,2) and (4,5)
and trade their places in eight parallel transitions. The activated neighbor cells
for their next transitions are also shown.

AND NOT (∃ q′ ∈ Closed such that q′ = q AND

q′.f < q.f)
THEN add q to Open; // found new state q to be

explored
END

add o to Closed; // finished exploring node o
END

RETURN ∅; // search exhausted, failure

Fig. 3 shows a simple example where two droplets swap
their position while avoiding an obstacle. The A∗ algorithm is
guaranteed to always find an optimal solution if one exists, and
indicate failure otherwise. However, the downside of this ap-
proach is its high asymptotic complexity. Suppose the number
of droplets is d. In the simplest case, all are of the same type
T 0. Then the number of different placements of droplets on
the array is

(
mn
d

)
, which for modest numbers m = n = 10 and

d = 10 yields more than 1.7× 1013 possibilities. If all droplets
are of distinct type T 1, . . . ,T d, this number increases by d! (to
≈ 6.3× 1019). One might hope that, in practice, most of these
choices need not be explored. However, at each step, d droplets
offer up to 4d choices to be moved, assuming four neighbor
cells per droplet. Thus, finding a strategy with s steps could
mean checking up to (4d)s choices or risk missing the solution,
resulting again in astronomical numbers even for s < 10.

We conclude that the search graph explored with the A∗

algorithm has O((mn)!) nodes and a branching factor of
O(4d), leading to a runtime complexity exponential in d,
which is prohibitive for any nontrivial array size with more
than a few droplets.

B. Prioritized A∗ Search

The discussion above has shown that droplet path planning
for DMFS has two main aspects, namely: 1) generating efficient
droplet path plans; and 2) finding efficient algorithms to gener-
ate these plans. Erdmann and Lozano-Pérez’s [41] NP-hardness
results for coordinating multiple moving objects indicate that
compromises need to be made to obtain practical solutions,
and completeness or optimality in motion plans has to be
traded off with efficiency in plan generation. They propose to
impose a priority order on the moving objects, and sequentially
find “locally” optimal solutions. In our case, the order can be
assigned at random, or based on application-specific guidelines
(e.g., water may have lower priority than droplets containing
expensive or volatile compounds):

Algorithm 2: Prioritized A∗ for droplet path planning
Input: start state As, goal state Ag , priority order for droplets
Output: path from As to Ag

S ← ∅; // partial prioritized solution
FOR all droplets i in decreasing priority order BEGIN

call Algorithm 1 to determine an optimal path for droplet
i while considering all droplets with higher priority as
moving obstacles and ignoring all droplets with lower
priority;
IF solution for droplet i exists
THEN add solution to S;
ELSE RETURN ∅; // failure

END

RETURN S; // success

Fig. 1 was generated using this algorithm. It eliminates the
exponential complexity in d, where d is the number of droplets
in the DMFS. Instead, the prioritized algorithm is linear in d. As
a tradeoff: 1) it is no longer complete—existing solutions may
be missed; and 2) the solution may not be “globally” optimal—
while each droplet i finds a “locally” optimal path among the
moving droplets of higher priority, the complete solution will
in general depend on the priority order and not be “globally”
optimal. Thus, as was pointed out in [41], selecting the priority
order can greatly influence the final solution. For instance, if a
short path is important for a specific droplet type, then it should
receive high priority. However, total runtime is dominated likely
by low priority droplets, since they may take convoluted paths
to circumnavigate all higher priority droplets. A good heuristic
for assigning priorities will take these points into account, as
well as other application-specific factors. For example, droplets
whose type appears frequently on the DMFS could be assigned
lower priorities than rare droplet types, because it is likely
that one of the abundant droplets is already close to a desired
destination.

C. Parallel Droplet Motion

The algorithms given so far are able to generate plans with
simultaneous motion of multiple droplets. Beside the physical
limitations to parallelism discussed with Fig. 2, the DMFS
control hardware may impose additional constraints. For exam-
ple, [44] and [45] describe a DMFS with simpler row/column

334 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2006

Fig. 4. Two droplets trading places as in Fig. 3, but here droplets move only to
neighbor cells whose row and column have been activated (indicated by a line).
An optimal strategy now requires nine steps. Note that even though parallel
droplet motion occurs in several steps, transitions 1 and 4 in Fig. 3 would not
be possible with this addressing scheme.

addressing, where a droplet moves to a neighboring cell A(x, y)
only if it lies at the intersection of activated column x and row y.
Such conditions are encoded in line 5 of Algorithm 1:

“Q← list of all valid motion transitions from o;”
Generation of this list of transitions must be implemented

depending on the hardware specifications. Fig. 4 shows an
optimal solution for the same start and goal states as in Fig. 3
but with this more limited row/column addressing scheme.

D. Duplicate Droplet Types

An important special case occurs when multiple droplets in
the DMFS have the same droplet type. This is a likely scenario
in practice, especially in DMFS with large numbers of droplets.
In this case, there is no unique mapping between droplets in As

and Ag (or with any intermediate state At). This complicates
the calculation of the cost estimate h, but can also provide for
more efficient plans by choosing opportune droplets that are
closest to their respective goals.

Suppose we are given two sets of d droplet placements, S1

and S2 ∈ Cd, and all droplets have the same type T . We can
find the minimum cost match between S1 and S2 efficiently (in
analogy to bipartite graph matching [48]) by a greedy algorithm
that sequentially matches up coordinate pairs with minimal
Manhattan distance until all coordinates are paired up. This
pairing leads to a monotone underestimate of the actual cost,
and can, thus, be used as an admissible estimate for h. With
this addition, both the basic and the prioritized A∗ algorithm
for droplet path planning can efficiently handle inputs with
duplicate droplet types.

V. DMFS TASK PLANNING

The previous section addressed the DMFS motion planning
problem. However, transitions of the droplet types (due to mix-
ing or other processing as discussed in Section III) are essential
parts of DMFS operation. Thus, this section extends the pre-
viously introduced algorithms to the general DMFS planning
problem, which allows all remaining droplet transitions listed
in Section III-B, including merging, splitting, and changing of
droplet type. This ultimately leads to the much broader question
of how to transform a general laboratory protocol into a specific
sequence of commands that can be executed on a DMFS.

A. Basic Graph Search

A straightforward algorithm to solve the general DMFS
planning problem can be derived from Algorithm 1, where we
can again modify line 5 to allow the complete set of transitions
listed in Section III-B, also including in particular changes of
droplet type. However, this causes some immediate problems:
1) the number of possible transitions from each state (i.e.,
the branching factor in the search graph) becomes very large;
and 2) it is difficult to find an admissible heuristic for the A∗

algorithm, causing it to degenerate into breadth-first-search;
in combination, this would result in very inefficient searches.
These problems would apply equally to a modified Algorithm 2.

B. DMFS Task Protocols

To develop a more useful algorithm, it is important to keep in
mind that the tasks to be executed here typically are laboratory
protocols. Thus, it is reasonable to assume that the user (e.g.,
a chemical engineer or a researcher in molecular biology) has
carefully worked out the individual steps in this protocol and
identified the intermediate products that are being generated
during its execution. With this additional input, we can find
efficient algorithms to perform these tasks on a DMFS, while
leaving the task design to a knowledgeable human operator.

We now introduce a very simple DMFS task language; the
user of a DMFS specifies the tasks to be executed in this lan-
guage, based on the laboratory protocol for the process of inter-
est. Our Algorithms 3 and 4 then interpret this task description
and translate it into actual DMFS commands.

DMFS Task Language
// Textual description of DMFS protocol
// x ∈ {1 . . . m}; y ∈ {1 . . . n}; ∆x, ∆y ∈ {0, 1, . . .};

t ∈ {1, 2, . . .}
// T ∈ P(T); f : P(T)→ P(T)
// id is an arbitrary textual identifier for a cell
in x y T id [time t]
out x y T id [time t]
waste x y id
mergesplit x y ∆x ∆y T id [time t]
check x y T id [time t]
change x y f id [time t]
block x y T id
connect from-id to-id

BÖHRINGER: MODELING AND CONTROLLING PARALLEL TASKS IN DROPLET-BASED MICROFLUIDIC SYSTEMS 335

The statements in this language correspond to the DMFS
array transitions listed in Section III-B with the following
additional explanations:

1) x and y are the cell coordinates in the array. In general,
we assume that transitions happen on a single array cell,
except merge/split operations, which may require larger
cells (specified by ∆x and ∆y such that x + ∆x ≤ m
and y + ∆y ≤ n).

2) A droplet of type T d is allowed on a cell with specified
type T only if T d ⊆ T .

3) in, out, mergesplit, check, and change have an optional
argument time t with default value t = 1 that specifies the
time required for the transition.

4) “waste x y id” is a short form for “out x y T id” which
implies that the droplet type does not matter because the
droplet will be discarded.

5) “block x y T id” prohibits any droplet of type T d ⊆ T .
6) “connect from-id to-id” implies a single droplet moving

between the two specified cells.
Note that identifiers need not be unique. However, if multiple

transitions have the same identifier, then they belong to the
same cell group and must describe the same transition. For
example, we can write “in 1 1 H2O DI input” and “in 3 1 H2O
DI input” to specify two cells (1, 1) and (3, 1) that provide a
supply of DI water. Thus, if we write “connect DI input mix”
then our algorithm will choose one of the DI water inputs to
route a droplet to the cell with identifier “mix.”

Fig. 5 gives a sample DMFS task input. Four input droplets
of three different initial droplet types go through a sequence
of merges, splits, type transitions, and checks, before finally
reaching an output or waste cell. The user specifies these steps
and their locations on the DMFS array. Our algorithms auto-
matically generate the order of these operations, the selection
of specific cells from cell groups, and the exact droplet paths
and schedule.

In large DMFS with many moving droplets and many in,
out, mergesplit, check, and change cells, choosing the locations
where droplets are processed should also be automated. A
greedy algorithm and simulated annealing are discussed in [49]
to attack this NP-hard layout problem.

While this list of statements may look tedious, it is simply a
textual description of a graph in which every node represents
a transition (in, out, waste, mergesplit, check, change) at a
specific location on the DMFS, and every edge corresponds to
a droplet motion (connect). We call this directed graph, which
specifies the flow of the droplets through the DMFS, the task
graph. It gives a more intuitive representation of the DMFS task
to be executed and will be discussed in the following section.

C. DMFS Planning Algorithm

The final part of this paper is dedicated toward translating
a DMFS task description, given in the language from the
previous subsection, into a sequence of commands that can be
executed on the array. This algorithm will do the following:
1) Generate the task graph from the textual input. 2) Identify
initial transitions (typically, in nodes) that do not have any
incoming edges. 3) Assign levels to all nodes in the task graph

Fig. 5. Sample DMFS tasks. There are three cell groups, namely blue, sensor,
and out, consisting of multiple cells with the same identifier and the same
transitions (in, check, and out, respectively). The keyword all indicates the
entire set of droplet types T . Note that only two out of the three out cells will
be used.

according to their precedence relationships such that transitions
on the same level can be executed in parallel.

Algorithm 3: Task graph generation
Input: DMFS task description tasks
Output: task graph G with level assignments
parse tasks and generate the corresponding task graph G;
old← ∅;
new ← all nodes in G;
current← all nodes in G that do not have predecessors;
i← 0;

WHILE current �= ∅ BEGIN

mark all nodes in current with level i;
add all nodes in current to old;
current← all nodes in new that have only predecessors
in old;
remove all nodes in current from new;
i← i + 1;

END

IF new = ∅

THEN RETURN G (with level numbers); // success
ELSE RETURN ∅; // failure

If the directed graph is acyclic, then this algorithm finds a
level assignment with a minimum number of levels (which we
call l), thus, maximizing the potential for parallel execution of
the transitions represented by its nodes and edges. Note that

336 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2006

Fig. 6. Task graph with level assignments generated from the task description
in Fig. 5. Transitions on the same level can be executed in parallel. (a) There are
two droplets moving from the sensor cell group to trash, indicated by a double
thickness arrow. (b) Only two of the three output cells will be used.

these level assignments merely reflect precedence relationships,
not actual execution times: Droplet transitions on a specific
level and droplet motions between levels may have varying
transition times (and the latter are not yet known). Thus, faster
droplets may have to wait until slower droplets are finished on
each level.

Algorithm 3 assumes that there are no resource conflicts
between droplets on any given level, i.e., no two transitions
require the same cell on the DMFS array. If this cannot be
guaranteed during the specification of the DMFS task, then the
algorithm must be modified to assign conflicting transitions to
different levels. See, e.g., [50] for a comprehensive approach to
dealing with such resource constraints.

Fig. 6 shows the task graph generated by Algorithm 3 from
the DMFS command input given in Fig. 5. From its level
assignment, we can immediately generate array states Ai− and
Ai+ that correspond to each level i ∈ {0, . . . , l}, such that Ai−
and Ai+are the state of A immediately before and after the tran-
sitions of level i, respectively. Then, we can use Algorithm 2
to determine the droplet motions between arrays Ai−1+ and
Ai− for all 0 < i ≤ l:

Algorithm 4: DMFS planning
Input: DMFS task description tasks
Output: task graph G and corresponding droplet motions S

TABLE I
DMFS TASK STATE AND TRANSITIONS

G← call Algorithm 3 with input tasks
IF G = ∅ THEN RETURN ∅; // no task graph exists, failure
S ← ∅;
FOR i← {1 . . . l} BEGIN // l is the maximum level number
of G

determine Ai−1+ and Ai− , using G and S;
Si ← call Algorithm 2 with start Ai−1+ and goal Ai−;
IF Si = ∅

THEN RETURN ∅; // no droplet path i exists, failure
ELSE add Si to S; // droplet path i found

END

RETURN G and S; // success

Table I lists all the states and transitions generated by
Algorithm 4 from the task graph in Fig. 6. Fig. 7 attempts to
visualize parallel motion of multiple droplets on the DMFS for
the transition from A3+ to A4−.

Algorithm 3 is linear in the number of nodes and edges in
the task graph. The complexity of Algorithm 4 is dominated by
the calls to Algorithm 2, which occur l − 1 times total. These
algorithms were implemented in Java. The total runtimes for the
examples in this paper are in the millisecond range. The code is
available upon request from the author.

VI. CONCLUSION

This paper makes the following contributions: 1) a formal
hardware-independent model of DMFS; 2) novel algorithms
for motion and task planning with DMFS, leading to effi-
cient (albeit not necessarily optimal or complete) solutions for

BÖHRINGER: MODELING AND CONTROLLING PARALLEL TASKS IN DROPLET-BASED MICROFLUIDIC SYSTEMS 337

Fig. 7. Simultaneous droplet motion during transition between states A3+ and A4−. (a) All droplets, with change in shading indicating progressing time. Cells
with special functions are marked as black squares. (b)–(e) Individual droplet paths for the droplets of type {M}, {C}, {P}, and {R,G,B}, respectively. In (b) and
(c), droplet {C} follows the path of droplet {M} at a distance of three cells; in (e), the droplet circumnavigates the mergesplit cells at (4,2) and (4,5) but is allowed
to pass over the sensor cell at (10,2).

coordinating large numbers of simultaneously moving droplets
on a two-dimensional array; 3) an approach to automate the
transition from general laboratory protocols to DMFS control
command sequences; and 4) results using an implementation of
these algorithms in Java.

The developed models and algorithms are “modular,” such
that results from the different sections are largely independent;
e.g., DMFS task planning in Section V does not rely on a par-
ticular droplet path planning algorithm so some other algorithm
could be readily substituted for prioritized A∗. Similarly, the
path planning algorithms from Section IV could be applied to a
different task planning algorithm.

Droplet manipulation based on electrowetting on arrays with
up to hundred cells has been demonstrated by several groups
(e.g., [3], [44], and [51]), and an electrophoresis-based system
with integrated CMOS addressing of tens of thousands of cells
by [34]. The computational complexity for generating optimal
droplet motion plans has been shown to be prohibitive even for
much smaller systems. Thus, we have focused on finding an
acceptable tradeoff between efficiency and optimality.

A very different approach to this problem could be to limit
droplet manipulation to a few standard “prepackaged” strate-
gies. For example, on a 100 × 100 array, about 50 droplets
could move in parallel across the array, followed by another
wave of 50 droplets, etc., resembling a repetitive “peristaltic”
motion [43]. However, in this case, the fundamental advan-

tage of flexibility and reprogrammability in DMFS versus
conventional (channel, valve, and pump based) microfluidic
architectures is lost. In addition, the question still remains how
to initially generate the “prepackaged” strategies if they in-
volve more complicated motion paths by many simultaneously
moving droplets.

Other future work should explore the following directions.

1) Polynomial approximation algorithms exist for NP-hard
problems (e.g., traveling salesman [52], [53]), which
guarantee a tight limit on nonoptimality. If, e.g., a con-
trol strategy for a complex DMFS can be generated in
polynomial time that is guaranteed to be at most twice as
long as an optimal solution then this might be sufficient
for most practical purposes.

2) While the (prioritized) A∗ algorithm has been effective
in solving graph search problems, it is incomplete and
worst case exponential in the branching factor. More
detailed benchmark tests could provide insights about
scenarios where the algorithm fails to find solutions
efficiently.

3) The optimal level number l produced by Algorithm 3 does
not automatically imply maximal parallelism in droplet
motion. Some nodes in the task graph can be assigned
to a range of levels without affecting l, but varying
level assignments may produce droplet motion plans with
varying efficiency. For example, the droplet motion from

338 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2006

(4,8) to (20,2) in Table I and Fig. 7(e) can be executed
during transition A2+ → A3− or during A3+ → A4−.

4) A related question is whether it is essential to allow
parallel droplet motion in line 5 of Algorithm 1. An
alternative approach would first generate plans without
parallelism, and then postprocess the generated plan to
identify all droplet motions that could be executed in
parallel.

5) More generally, it may be possible to improve the output
of Algorithm 2 with some postprocessing that locally
improves the droplet motions.

6) The previous three points hint that our DMFS formalism
could be developed much further. A general approach in
this direction based on state complexes was given recently
in [54], which presents efficient algorithms to detect and
optimize parallelism.

7) As mentioned in Section III-A, parallelism may be lim-
ited by the hardware controller to a number smaller than
the total droplet count. This was not explicitly addressed
in this paper, but could again appear as an additional
constraint in line 5 of Algorithm 1.

ACKNOWLEDGMENT

The author thanks S. Akella, S. Basu, B. R. Donald,
M. Erdmann, R. Khosla, E. Klavins, X. Xiong, and the anony-
mous reviewers for helpful insights and comments, R. Malhotra
for programming of an earlier software version, and M. Esashi
and H. Fujita for their hospitality during a sabbatical visit at
their laboratories.

REFERENCES

[1] G. T. A. Kovacs, Micromachined Transducers Sourcebook. New York:
McGraw-Hill, 1998.

[2] H. A. Stone, A. D. Stroock, and A. Ajdari, “Engineering flows in small
devices: Microfluidics toward a lab-on-a-chip,” Annu. Rev. Fluid Mech.,
vol. 36, pp. 381–411, Jan. 2004.

[3] H. Moon, S. K. Cho, R. L. Garrell, and C.-J. Kim, “Low voltage
electrowetting-on-dielectric,” J. Appl. Phys., vol. 92, no. 7, pp. 4080–
4087, Oct. 2002.

[4] R. B. Fair, V. Srinivasan, H. Ren, P. Paik, V. K. Pamula, and
M. G. Pollack, “Electrowetting-based on-chip sample processing for
integrated microfluidics,” in Proc. IEEE Int. Electron Devices Meeting
(IEDM), Washington, DC, 2003, pp. 32.5.1–32.5.4.

[5] T. Zhang, K. Chakrabarty, and R. B. Fair, “Integrated hierarchical design
of microelectrofluidic systems using SystemC,”Microelectron. J., vol. 33,
no. 5, pp. 459–470, May 2002.

[6] ——, “Design of reconfigurable composite microsystems based on
hardware/software codesign principles,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 21, no. 8, pp. 987–995, Aug. 2002.

[7] International Conference on Miniaturized Chemical and Biochemical
Analysis Systems (microTAS). Annual.

[8] Sensors and Actuators B Chemical. Monthly, Elsevier.
[9] Lab on a Chip. Monthly, Royal Society of Chemistry.

[10] H. M. Shapiro, Practical Flow Cytometry. New York: Wiley, 1995.
[11] M. R. Melamed, T. Lindmo, and M. L. Mendelsohn, Flow Cytometry and

Sorting. New York: Wiley, 1990.
[12] P. J. Crosland-Taylor, “A device for counting small particles suspended in

a fluid through a tube,” Nature, vol. 171, no. 4340, pp. 37–38, Jan. 1953.
[13] A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A mi-

crofabricated fluorescence-activated cell sorter,” Nat. Biotechnol., vol. 17,
no. 11, pp. 1109–1111, Nov. 1999.

[14] J. Krueger, K. Singh, A. O’Neill, C. Jackson, A. Morrison, and
P. O’Brien, “Development of a microfluidic device for fluorescence acti-
vated cell sorting,” J. Micromech. Microeng., vol. 12, no. 4, pp. 486–494,
Jul. 2002.

[15] M. Tartagni, L. Altomare, R. Guerrieri, A. Fuchs, N. Manaresi,
G. Medoro, and R. Thewes, “Microelectronic chips for molecular and
cell biology,” in Sensors Update, H. Baltes, G. K. Fedder, and J. G.
Korvink, Eds. Weinheim, Germany: Wiley-VCH, 2004, pp. 156–200.

[16] G. Beni and M. A. Tenan, “Dynamics of electrowetting displays,” Appl.
Phys., vol. 52, no. 10, pp. 6011–6015, Oct. 1981.

[17] M. G. Pollack, R. B. Fair, and A. D. Shenderov, “Electrowetting-based
actuation of liquid droplets for microfluidic applications,” Appl. Phys.
Lett., vol. 77, no. 11, pp. 1725–1726, Sep. 2000.

[18] T. B. Jones, M. Gunji, M. Washizu, and M. J. Feldman, “Dielectrophoretic
liquid actuation and nanodroplet formation,” J. Appl. Phys., vol. 89, no. 2,
pp. 1441–1448, Jan. 2001.

[19] Nanolytics. [Online]. Available: www.nanolytics.com
[20] A. Wixforth, “Verfahren und Vorrichtung zur Manipulation kleiner Flüs-

sigkeitsmengen auf Oberflächen,” 2002. German Trademark and Patent
Office, Brunnthal, Germany: Advalytix AG.

[21] A. Wixforth and C. Gauer, “Mischvorrichtung und Mischverfahren für die
durchmischung kleiner Flüssigkeitsmengen,” 2004. Munich, Germany: in
European Patent Office, European Union.

[22] A. Wixforth, A. Rathgeber, C. Gauer, and J. Scriba, “Vorrichtung und
Verfahren zur Vermessung kleiner Flüssigkeitsmengen und/oder deren
Bewegung,” 2002. German Trademark and Patent Office, München,
Germany: Advalytix AG.

[23] D. E. Kataoka and S. M. Troian, “Patterning liquid flow at the microscopic
scale,” Nature, vol. 402, no. 6763, pp. 794–797, 1999.

[24] A. A. Darhuber, J. P. Valentino, J. M. Davis, S. M. Troian, and S. Wagner,
“Microfluidic actuation by modulation of surface stresses,” Appl. Phys.
Lett., vol. 82, no. 4, pp. 657–659, Jan. 2003.

[25] B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig,
R. R. Shah, and N. L. Abbott, “Electrochemical principles for active
control of liquids on submillimeter scales,” Science, vol. 283, no. 5398,
pp. 57–60, Jan. 1999.

[26] J. Lahann, S. Mitragotri, T.-N. Tran, H. Kaido, J. Sundaram, I. S. Choi,
S. Hoffer, G. A. So-morjai, and R. Langer, “A reversibly switching
surface,” Science, vol. 299, no. 5605, pp. 371–374, Jan. 2003.

[27] M. K. Chaudhury and G. M. Whitesides, “How to make water run
uphill?” Science, vol. 256, no. 5063, pp. 1539–1541, Jun. 1992.

[28] S. Daniel, S. Sircar, J. Gliem, and M. K. Chaudhury, “Ratcheting
motion of liquid drops on gradient surfaces,” Langmuir, vol. 20, no. 10,
pp. 4085–4092, 2004.

[29] O. Sandre, L. Gorre-Talini, A. Adjari, J. Prost, and P. Silberzan, “Moving
droplets on asymmetrically structured surfaces,” Phys. Rev. E, Statist.
Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 60, no. 3, pp. 2964–
2972, Sep. 1999.

[30] A. Shastry, M. Case, and K. F. Böhringer, “Engineering surface texture
to manipulate droplets in microfluidic systems,” in Proc. IEEE Conf.
Micro Electro Mechanical Systems (MEMS), Miami Beach, FL, 2005,
pp. 694–697.

[31] T. B. Jones, J. D. Fowler, Y. S. Chang, and C.-J. Kim, “Frequency-based
relationship of electrowetting and dielectrophoretic liquid microactua-
tion,” Langmuir, vol. 19, no. 18, pp. 7646–7651, 2003.

[32] J. Zheng and T. Korsmeyer, “Principles of droplet electrohydrodynamics
for lab-on-a-chip,” Lab Chip, vol. 4, no. 4, pp. 265–277, 2004.

[33] P. R. C. Gascoyne. [Online]. Available: www.dielectrophoresis.org
[34] A. Fuchs, N. Manaresi, D. Freida, L. Altomare, C. L. Villiers,

G. Medoro, A. Romani, I. Chartier, C. Bory, M. Tartagni, P. N. Marche,
F. Chatelain, and R. Guerrie, “A microelectronic chip opens new fields
in rare cell population analysis and individual cell biology,” in Proc.
Micro Total Analysis Systems (MicroTAS), Squaw Valley, CA, 2003,
pp. 911–914.

[35] P. Paik, V. K. Pamula, and R. B. Fair, “Rapid droplet mixers for digital
microfluidic systems,” Lab Chip, vol. 3, no. 4, pp. 253–259, 2003.

[36] S. K. Cho, H. Moon, and C.-J. Kim, “Creating, transporting, cut-
ting, and merging liquid droplets by electrowetting-based actuation for
digital microfluidic circuits,” J. Microelectromech. Syst., vol. 12, no. 1,
pp. 70–80, Feb. 2003.

[37] E. J. Griffith and S. Akella, “Coordinating multiple droplets in planar
array digital microfluidics systems,” Int. J. Rob. Res., vol. 24, no. 11,
pp. 933–949, Nov. 2005.

[38] J. Peng and S. Akella, “Coordinating multiple robots with kinody-
namic constraints along specified paths,” in Proc. Workshop Algorithmic
Foundations Robotics (WAFR), Nice, France, 2002, pp. 221–237.

[39] S. Akella and S. Hutchinson, “Coordinating the motions of multiple ro-
bots with specified trajectories,” in Proc. IEEE Int. Conf. Robotics and
Automation, Washington, DC, 2002, pp. 624–631.

[40] J. Ding, K. Chakrabarty, and R. B. Fair, “Scheduling of microfluidic
operations for reconfigurable two-dimensional electrowetting arrays,”

BÖHRINGER: MODELING AND CONTROLLING PARALLEL TASKS IN DROPLET-BASED MICROFLUIDIC SYSTEMS 339

IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 20, no. 12,
pp. 1463–1468, Dec. 2001.

[41] M. Erdmann and T. Lozano-Pérez, “On multiple moving objects,” Algo-
rithmica, vol. 2, no. 4, pp. 477–521, 1987.

[42] K. F. Böhringer, “Optimal strategies for moving droplets in digital mi-
crofluidic systems,” presented at the 7th Int. Conf. Miniaturized Chemical
and Biochemical Analysis Systems (MicroTAS), Squaw Valley, CA, 2003.

[43] ——, “Towards optimal strategies for moving droplets in digital microflu-
idic systems,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA),
New Orleans, LA, 2004, pp. 1468–1474.

[44] S.-K. Fan, P. P. de Guzman, and C.-J. Kim, “EWOD driving of droplet on
N × M grid using single layer electrode patterns,” in Proc. Solid-State
Sensor, Actuator, and Microsystems Workshop, Hilton Head Island, SC,
2002, pp. 134–137.

[45] S. K. Fan, C. Hashi, and C.-J. Kim, “Manipulation of multiple droplets
on N × M grid by cross-reference EWOD driving scheme and pressure
contact packaging,” in Proc. IEEE Int. Conf. Microelectromechanical
Systems, Kyoto, Japan, 2003, pp. 694–697.

[46] T. Lozano-Pérez, “Spatial planning: A configuration space approach,”
IEEE Trans. Comput., vol. C-32, no. 2, pp. 108–120, Feb. 1983.

[47] N. J. Nilsson, Principles of Artificial Intelligence. New York: Springer-
Verlag, 1982.

[48] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data Structures and
Algorithms, 2nd ed. Reading, WA: Addison-Wesley, 1987.

[49] F. Su and K. Chakrabarty, “Design of fault-tolerant and dynamically-
reconfigurable microfluidic biochips,” in Proc. Design, Automation and
Test Europe (DATE), Munich, Germany, 2005, pp. 1202–1207.

[50] ——, “Architectural-level synthesis of digital microfluidics-based
biochips,” in Proc. IEEE Int. Conf. Computer Aided Design, San Jose,
CA, 2004, pp. 223–228.

[51] V. Srinivasan, V. K. Pamula, M. G. Pollack, and R. B. Fair, “Clinical
diagnostics on human whole blood, plasma, serum, urine, saliva, sweat,
and tears on a digital microfluidic platform,” presented at the Micro Total
Analysis Systems (MicroTAS), Squaw Valley, CA, 2003.

[52] N. Christofides, “Worst-case analysis of a new heuristic for the traveling
salesman problem,” presented at the Symp. New Directions and Recent
Results in Algorithms and Complexity, Orlando, FL, 1976.

[53] S. Arora, “Polynomial time approximation schemes for Euclidean trav-
eling salesman and other geometric problems,” J. ACM, vol. 45, no. 5,
pp. 753–782, Sep. 1998.

[54] A. Abrams and R. Ghrist, “State complexes for metamorphic robots,” Int.
J. Robot. Res., vol. 23, no. 7–8, pp. 811–826, Jul./Aug. 2004.

Karl F. Böhringer (S’94–S’96–M’97–SM’03) re-
ceived the Dipl.-Inform. degree from the University
of Karlsruhe, Karlsruhe, Germany, and the M.S. and
Ph.D. degrees in computer science from Cornell
University, Ithaca, NY, in 1990, 1993, and 1997,
respectively.

He was a Visiting Scholar at Stanford University
in 1994–1995 and a Postdoctoral Researcher at the
University of California, Berkeley, from 1996 to
1998. He joined the Electrical Engineering Depart-
ment, University of Washington, Seattle in 1998,

where he is currently an Associate Professor. He also held visiting faculty
appointments at the University of Tokyo, Tokyo, Japan, Tohoku University,
Sendai, Miyaki, Japan, and the University of São Paulo, São Paulo, Brazil. His
research interests include microelectromechanical systems (MEMS), manipu-
lation and assembly from macro- to nanoscales, microfluidic systems for the
life sciences, and microrobotics. He has created, among others, multibatch self-
assembling systems, massively parallel microactuator arrays, and a walking
microrobot.

Dr. Böhringer is member of the Society for Nanoscale Science, Computing
and Engineering (ISNSCE), the American Society for Engineering Education
(ASEE), and the German Society for Information Sciences (GI). He was
awarded a Long-term Invitational Fellowship for Research in Japan by the
Japan Society for the Promotion of Science (JSPS) in 2004, an IEEE Robotics
and Automation Society Academic Early Career Award in 2004, an NSF
CAREER Award in 1999, and an NSF Postdoctoral Associateship in 1997. His
work was listed among the “Top 100 Science Stories of 2002” inDiscovermag-
azine. He is an Associate Editor of IEEE TRANSACTIONS ON AUTOMATION

SCIENCE AND ENGINEERING and has served, among others, on technical
program committees for the IEEE MEMS and Transducers conferences.

