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Abstruct- This paper presents an equivalent circuit for 
high-frequency leakage currents in pulsewidth modulation 
(PWM) inverter-fed ac motors, which forms a series resonant 
circuit. The analysis based on the equivalent circuit leads to such 
a conclusion that the connection of a conventional common-mode 
choke or reactor in series between the ac terminals of a PWM 
inverter and those of an ac motor is not effective to reduce the 
rms and average values of the leakage current, but effective 
to reduce the peak value. 

Furthermore, this paper proposes a common-mode 
transformer which is different in damping principle from 
the conventional common-mode choke. It is shown theoretically 
and experimentally that the common-mode transformer is able 
to reduce the rms value of the leakage current to 25%, where 
the core used in the common-mode transformer is smaller than 
that of the conventional common-mode choke. 

I. INTRODUCTION 

N INCREASE in the carrier frequency of pulsewidth A modulation (PWM) inverters results in a nonnegligible 

amount of high-frequency leakage current which may cause 

a serious problem. It would flow through stray capacitors 

between stator windings and a motor frame due to a large 

step change of the common-mode voltage produced by a 

PWM inverter. The peak value may reach the rated current 

in the worst case. It may have an undesirable influence on the 

motor current control and may result in incorrect operation 

of residual current-operated circuit breakers. Furthermore, the 

leakage current may cause electromagnetic interference (EMI) 

to electronic equipment, e.g., AM radio receivers, because its 

oscillation has a frequency in a range from 100 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkHz to several 

MHz [l], [ 2 ] .  However, few papers on the leakage current 

have been reported. 
This paper proposes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan equivalent circuit for the leakage 

current, which forms a series resonant circuit. The validity 
of the equivalent circuit and the physical property of each 
component in the equivalent circuit are confirmed experimen- 
tally in detail. As a result, a motor model, including the stray 

capacitors, is also proposed, which is applicable to the analysis 
of both normal-mode and common-mode currents. 
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A common-mode choke has been used to reduce the unde- 

sirable leakage current, which is connected in series between 

the terminals of an inverter and those of a motor [3 ] - [5 ] .  
Analysis on the basis of the proposed equivalent circuit 

results in the following conclusion: The connection of the 

conventional common-mode choke is not effective to reduce 

the rms and average values of the leakage current, but effective 
to reduce the peak value. The analytical result is also verified 
by experiment. 

Furthermore, this paper proposes a common-mode trans- 

former capable of reducing the leakage current. The common- 

mode transformer is characterized by such a simple configura- 

tion that another isolated winding, the terminals of which are 

shorted by a damping resistor, is added to the common-mode 

choke. Thus, the authors named it the “common-mode trans- 

former” which corresponds to the term of the conventional 
“common-mode choke.” The common-mode transformer does 

not play any role for the normal-mode voltage and current, 
while it acts as the damping resistor for the common-mode 

voltage and current. Therefore, it can damp the oscillation 

of the leakage current, dissipating a negligible amount of 

loss in the resistor. This damping principle is different from 

the conventional common-mode choke, and already proposed 

suppression circuits zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5 ] ,  [6] .  The suppression circuits consist 
of four tightly coupled coils equipped with RC circuits. It 

is shown that a common-mode transformer, the core size of 
which is smaller than that of a conventional common-mode 

choke, is able to reduce the rms value of the leakage current 

to 25%. A design procedure of the common-mode transformer 

is also discussed in detail. 

11. HIGH-FREQUENCY LEAKAGE CURRENTS 

A. Common-Mode Voltage 

Fig. 1 shows a voltage-source inverter connected to a motor 
which is represented by three inductors and resistors. A set of 
voltage-current equations is given by 

0093-9994/96$05.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1996 IEEE 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Three-phase voltage-source inverter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
kW 

TABLE I 
RATINGS OF TESTED INVERTER AND INDUCTION MOTOR 

input voltage 34 200 v 
rated current 21.0 A 
maximum current 52.0 A 
modulation scheme sinusoidal PWM 

carrier frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.4 kHz 

rated output 3.7 kW 
rated torque 23.5 Nm 

maximum torque 70.6 Nm 
motor speed 1500/2000 r/min zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E=280V 
leakage current zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi I 

grounding conductor 

Fig. 2. Experimental system. 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U,, vb, w, inverter phase voltages; 
i,, z b ,  i, motor line currents; 
Vn neutral voltage. 

The neutral voltage of the motor corresponds to the 

common-mode voltage in Fig. 1. Adding the set of equations 

derives the following equation: 

( % a  f z b  + ic). (2) 

Since i, + i b  + i, = 0, the common-mode voltage in the 
motor is calculated by 

It is shown that only the switching state decides the 

common-mode voltage regardless of the motor impedance. 

The common-mode voltage changes by Ed,/3 every switching 
of the inverter. The common-mode voltage produced by the 

inverter forces the leakage current, which is discussed in this 

paper, to flow through stray capacitors between the motor 
windings and the motor frame. 

B. Modeling for  High-Frequency Leakage Currents 

Fig. 2 shows an experimental system to measure the leakage 
current. An induction motor is driven by a voltage-source 
PWM inverter, and the motor frame is grounded for safety. 

The leakage current flows from the motor frame through the 

grounding conductor. Table I shows the ratings of the tested 

inverter and induction motor. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

""*I OA 

Fig. 3. Leakage current waveform. 

Fig. 3 shows a leakage current waveform when a phase 

in the PWM inverter is switched. In this case, the switching 

gives a step-wise change to the common-mode voltage in the 

induction motor by 113 of the dc link voltage, that is, 28013 V. 
It is shown that a nonnegligible amount of oscillatory leakage 

current flows through the stray capacitors between the stator 

windings and the motor frame. 

A virtual grounding point' is introduced to avoid the in- 

fluence of an internal impedance between the earth terminal 

on the switch board and the actual grounding point. Three 

capacitors, the capacitance of which is much larger than the 
stray capacitance of the motor, are connected to the three- 
phase input terminals of the rectifier. The grounding conductor 
is connected to the neutral point of the capacitors, which 

is considered a virtual grounding point. In the experimental 

system, the three capacitors of 3 pF are used for providing 
the virtual grounding point. Comparing the leakage current 

waveform with that in case of connecting the grounding 

conductor to the earth terminal, has confirmed that the two 

waveforms are almost the same. The internal inductance 
upstream of the earth terminal has been estimated as 10 pH 

by the experiment. 
The authors propose an equivalent circuit for the leakage 

current, which forms an LCR series resonant circuit shown 
in Fig. 4, because Fig. 3 is similar to the waveform of current 

after a step voltage is applied to the resonant circuit. If a step- 

wise voltage is applied to the LCR series resonant circuit, the 

'The configuration is shown in Fig. 12 
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Fig. 4. Equivalent series resonant circuit. 
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damped and oscillatory current is given as follows: 

where 

(4) 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw,, (, and 20 mean the natural frequency, i.e., the 

resonant frequency, the damping factor, and the characteristic 

impedance, respectively. In the case of 1 >> C2, the current 
flowing in the resonant circuit is approximated to the following 

equation: 

(5) 

Therefore, the characteristic impedance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 determines the 

peak value of the oscillatory current. The circuit constants de- 

scribed in the equivalent circuit in Fig. 4 have been estimated 

from the experimental waveform. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. Discussion on Equivalent Circuit Constants 

The validity of the equivalent circuit and the physical 
property of each component in the equivalent circuit will be 
discussed. 

In order to take stray capacitors existing in the motor 

into consideration, two motor models shown in Fig. 5 are 

compared. In case of Fig. 5(a), the leakage current flowing 

through the stray capacitor corresponds to the zero-sequence 
current of the motor. Therefore, the leakage current depends on 

the zero-sequence impedance, i.e., the leakage inductance and 
the winding resistance. On the other hand, the zero-sequence 
impedance has no influence on the leakage current in the case 
of Fig. 5(b), because the high-frequency leakage current does 
not flow in the motor windings. The following experiment has 
been performed to investigate which motor model is adequate. 

Fig. 6 shows a circuit diagram to measure the cable in- 

ductance between the voltage-source PWM inverter and the 

induction motor. The three-phase lines are shorted on both 

the inverter and motor sides, and the grounding conducto1 
is moreover shorted on the motor side. An LCR meter 
(HP4263A) is connected to the shorted three-phase lines and 

motor motor 
windings windings 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
o--* 
0 

stray 

(a) 

Fig. 5.  Motor models. 

the grounding conductor on the inverter side. As a result, 

the line inductance has been measured as 68 pH. This value 

approximates to the inductance which has been estimated from 

the experimental waveform, as shown in the equivalent circuit 
of Fig. 4. Therefore, it can be understood that the inductance 
of the equivalent circuit means the line inductance between 
the inverter and the motor, and that the zero-sequence motor 

impedance has no influence on the leakage current. For this 

reason, Fig. 5(b) is a motor model suitable for analysis of 

the leakage current rather than Fig. 5(a). The proposed motor 

model is applicable to the analysis of both normal-mode and 

common-mode currents. 

Generally, an equivalent circuit for a motor winding taking 

stray capacitors into consideration is expressed by a distribu- 

tive circuit as shown in Fig. 7 [6] ,  [7]. The equivalent circuit 

indicates that the high-frequency current such as the leakage 
current is not a conduction current flowing in the winding, 

but a displacement current caused by the stray capacitors. 

Moreover, since stator windings of a motor are embedded into 

slots of a stator core, there is relatively large stray capacitance 

between a stator winding and the motor frame rather than 

between two stator windings. The motor model for the high- 
frequency leakage current, therefore, can be simplified as 

a lumped circuit model shown in Fig. 5(b). On the other 
hand, Fig. 5(a) is a motor model suitable for analysis of the 
energy oscillation between the winding inductance and stray 
capacitors. The oscillation causes a potential variation of the 

neutral point [ 81. 
In addition, measurement of the impedance between the 

shorted stator windings and the motor frame has been per- 

formed. As a result, the capacitance and the series resistance 

almost coincide with their values calculated from the exper- 
imental waveform. The measurement mentioned above leads 
to the following conclusions. 
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resistance R 

natural frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWn 

damping factor c 

motor winding 

terminal point 
input neutral 

stray 

capacitors Y motor frame 

Fig. 7. 
consideration. 

Equivalent circuit for a motor winding taking stray capacitors into 

m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v f i  
ml& 

experimental 

inverter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA112 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 
period 

0.2 

0.1 I 
I 

I 
I 

decay time l/run 
peak value 

rms value 

I 

I 

nlm 
I/ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 
1IJm 

I I I I 

O!I 0.2 0.5 1 2 5 do 
rise t ime [ps] 

Fig. 8. Relationship between rise time and peak value. 

* The equivalent circuit for the leakage current forms an 

LCR series resonant circuit. 

0 In the equivalent circuit, C is the stray capacitance 

between the stator windings and the motor frame. 

., Almost all resistive components are in the motor rather 

than in the cables. 

The zero-sequence motor impedance has no influence on 
the leakage current. 

The high-frequency leakage current is affected by the rise 

time of the inverter common-mode voltage. Fig. 8 shows a 

relationship between the rise time of voltage and the peak 

value, which is obtained by simulation based on the equivalent 

circuit shown in Fig. 4. If the rise time of the common-mode 

voltage is longer than 112 of the oscillation period, the leakage 
current decreases considerably. Limiting the d w l d t  on the 

inverter output terminals is expected to have a desirable effect 
on conducted and radiated EM1 as well as machine insulation 
life [SI-[lo]. 

111. EFFECT OF COMMON-MODE CHOKE 

ON LEAKAGE CURRENTS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Theoretical Analysis 

A common-mode choke is connected between the inverter 
and the motor in order to suppress the leakage current. The 
insertion of the common-mode choke means an increase of 
inductance L in the equivalent circuit. Furthermore, resistance 
R also increases because of the additional loss in the common- 
mode choke. It is assumed that inductance L and resistance 

R including the common-mode choke are n times and m 
times as large as those excluding it, respectively. In this case, 
the natural frequency w;, the damping factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC’, and the 

TABLE I1 
EFFECT OF COMMON-MODE CHOKE 

inductance L I  n 

characteristic impedance 20 I ,/E 

mean value I &/m 
Note: The right column shows the ratio of a pa- 

rameter with a common-mode choke to 
the corresponding one without it, respec- 
tively. 

characteristic impedance 2; are 

= hzo. 

Therefore, the leakage current is given by 

E . e - ( m 5 w n t / n )  

z’(t) = &F@ipzo 
. sin J- 5 t. (9) n 

If the damping factor is small enough, i.e., n >> (mC)2, the 
leakage current is approximated by 

It indicates that the amplitude, the decay time, and the resonant 
frequency are equal to l/fi,  n/m, and 1 1 6  times due to 

the addition of the common-mode choke, respectively. Table I1 
summarizes the effect of the common-mode choke on the 

leakage current. Since the amplitude and the decay time are 

equal to l / f i  and n/m times, magnification of the rms value 

is calculated by 

Similarly, magnification of the mean value is given by 

1 n f i  
f i m m  
- x - = - - - .  
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Fig. 9. Leakage current when no common-mode choke is connected. 

H zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
511s 

Fig. 10. Leakage current when the common-mode choke is connected. 

TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111 
PEAK AND RMS VALUES OF LEAKAGE CURRENT 

choke 

not used 181.0 
connected 

If a common-mode choke has no loss, i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm = 1, no change 
occurs in the rms value, but the mean value increases, while 
the peak value decreases. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Experimental Investigation 

Figs. 9 and 10 show waveforms of the leakage current, 

when a step-wise common-mode voltage of 280 V occurs at 

the output terminals of the PWM inverter. The experimental 

results are summarized in Table 111. It is shown that a common- 
mode choke connected between the inverter and the motor 
reduces the peak value of the leakage current from 1900 mA to 
18 1 mA. Fig. 1 1 represents the equivalent circuit in the case of 

connecting the common-mode choke. Here, the common-mode 
choke makes the inductance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL and the resistance R increase 
by 380 times and 9.2 times as large as those excluding it, 

respectively. The peak value and the rms value in the case 

of connecting the common-mode choke approximate to the 
theoretical values, i.e., 1900 m A l m  = 97.5 mA and 181 

m A I m  = 59.6 mA, respectively. 

common-mode 
....___....__...._. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L, i L R 

..__..._......._ ~ 

6nF 
280V 

L 

Fig. 1 1 .  Equivalent circuit for leakage current in case of connecting com- 
mon-mode choke. 

grounding 
point I grounding conductor 

Fig. 12. 
transformer proposed in this paper. 

Configuration of experimental system connecting common-mode 

Rt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyl secondary 
damping resistor winding 

Fig. 13. Common-mode transformer proposed in this paper. 

I v .  EFFECT OF COMMON-MODE TRANSFORMER 

Fig. 12 shows an experimental system connecting a 
common-mode transformer between the inverter and the 
motor. The common-mode transformer proposed in this paper 

is the same as the common-mode choke except for connecting 

an additional tightly coupled secondary winding, the terminals 

of which are shorted by a resistor Rt, as shown in Fig. 13. The 

common-mode current flowing in three-phase lines produces 

a flux in the core, but no flux is caused by the normal-mode 

or differential-mode current. Therefore, the common-mode 
transformer acts as the damping resistor only for the common- 
mode current, i.e., the leakage current. On the other hand, 
since the secondary current prevents the flux in thecore from 
changing, the short-circuit of the secondary winding by the 
damping resistor makes the core compact. 

A. Root Locus and Time Response of Leakage Current 

Fig. 14 shows the equivalent circuit for the leakage current. 
The common-mode transformer is represented by a T-type 
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common-mode 
transformer 

4 - 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2PH .......... ~ .~ ............................................... - E 

Fig. 14. 
mon-mode transformer. 

Equivalent circuit for leakage current in case of connecting com- 

Rt=O, Im x106 

\ 1 - 0 . 5  

Y -1.5 

Lt = 17.lmH 

Fig. 15. Root locus. 

equivalent circuit. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL, and & mean exciting inductance and 

leakage inductance of the common-mode transformer, respec- 

tively. Equation 13 shows the Laplace transform of the leakage 

current after a step-wise common-mode voltage of E is applied 
to the inverter output terminals 

Here, it is assumed that et and R are negligible in (13), because 

these are much smaller than Lt and Rt, respectively. Fig. 15 
shows a root locus of the leakage current as a parameter of Rt . 

If Rt = 0-211 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. there are one real root and two conjugate 
complex roots. The conjugate complex roots determine the 

waveform of the leakage current, because the real root near the 
origin is canceled by the zero of I (  s) . Therefore, the leakage 

current becomes an oscillatory waveform. Fig. 16 shows the 
leakage current waveform in the case of Rt = 0. It is the same 
waveform as Fig. 3, because the common-mode transformer 
has no impedance for the leakage current. 

If Rt = 211-846 R, three real roots exist. The second 

nearest real root to the origin mainly decides the wave- 

form, because the nearest real root is canceled by the zero. 

t--l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApeak value: 69OmA 
rms value: 117mA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5w 

Fig. 16. Leakage current waveform (Lt = 17 mH, Rt = 0 0). 

0.2A 

OA 

1-i 
5@ 

peak value: 210mA 
rms value: 28mA 

Fig. 17. Leakage current waveform (L,  = 17 mH, Rt = 510 a). 

Consequently, the leakage current has an aperiodic decayed 
waveform like a current in an RC series circuit to which a 
step-wise voltage is applied. Fig. 17 shows the leakage current 
waveform in case of Rt = 510 R. The peak and rms values of 

the leakage current are reduced to 113 and 114, respectively. 

If Rt = 846-00 0,  I ( s )  has one real root and two conjugate 

complex roots again. Since the real root exists far away 

from the origin, the conjugate complex roots determine the 

waveform. However, the oscillation frequency is much lower 

than that in the former case, because Lt is much larger than 

L. Fig. 18 shows the leakage current in the case of R, = 20 
kR. Although the peak value is reduced to 119, the period and 
decay time of the oscillation are much longer than those in 

the case of Fig. 16. As a result, the rms value becomes larger 

than that of Fig. 17. 
The analysis mentioned above results in the conclusion that 

the value of Rt should be selected so that I ( s )  has three real 

roots, in order to reduce both peak and rms values of the 

leakage current. 

B. Breakaway Points 

In the following, resistance Rt is chosen so that the roots 
come onto a breakaway point. The characteristic equation 
corresponding to the denominator of (13) is shown by a 

3rd-order equation: 
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rms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvalue: 51mA 
2ow 

Fig. 18. Leakage current waveform zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Lt = 17 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmH, Rt = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 k0 ) .  

From the discriminant D in Cardan's formulas [ l l ] ,  the 
following equation should be satisfied: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3 
(Lt + L)Rt - D = -  _ -  

9"3 [:. { LtL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,'I 

Assuming that Lt >> L, the above equation is simplified: 

4 1 4 
~ R: - _ R: + - = 0. 
LtL CL c4 

The solution of the above equation is given by 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 8C { 1 * /-} 
&{l* 8C ( 1 - 3 2 3 j  

L 
or 4 . -  

1 Lt 
"Z 'C C '  

Therefore, Rt at the breakaway points are solved as follows: 
_. 

(17) 
1 

2 
Rt = - 20, or 2ZO0. 

where 

2o03 and 2 0 0  mean the characteristic impedances in the cases 

of Rt = 00 and Rt = 0, respectively. If (17) is satisfied, the 

Fig. 19. Equivalent circuit approximated to RC series circuit. 

roots of (13) are on the corresponding Oreakaway point. If Rt 
satisfies the following condition, I ( s )  has three real roots, so 

that both peak and rms values of the leakage current can be 

reduced 

v. DESIGN OF COMMON-MODE TRANSFORMER 

A design procedure of common-mode transformers is dis- 

cussed, assuming that stray capacitances are known. The 
equivalent circuit, having three real roots, can be approximated 

to an RC series circuit shown in Fig. 19, because the leakage 

current flows mainly through Rt rather than through Lt. In 

this case, the leakage current is approximated as follows: 

i ( t )  = - E e- t /CRt 

Rt 

where E means 1/3 of the dc link voltage. Assuming that the 
time constant is much smaller than the switching period, the 
rms value of the leakage current is given by 

Note that the switching is 6 times the PWM frequency while 
operating in the linear range. 

The rms value of the leakage current should be specified in 
advance of the design. For example, sensitivity of a residual 

current-operated circuit breaker (343 W, 200 V, 30 A) is rated 

as 30 mA. If I,,, is specified, the required resistance Rt can 

be calculated backward: 

' r m s  

On the other hand, the power loss dissipated in resistor Rt is 
easily given by the equivalent RC circuit: 

PRt = 6 . ;CE2f,,. (24) 

As shown in (20), Rt must satisfy the condition of Rt 5 
$ 20,  , so that I (  s )  has three real roots and both 
peak and rms values can be reduced. To minimize Lt, which is 

related to the size of the common-mode transformer, Rt should 

be equal to half of ZO,. Therefore, the exciting inductance 

= 
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Fig. 20. Shape of toroidal ferrite core. 

TABLE IV 
SPECIFICATION OF TOROIDAL FERRITE CORE 

TYPE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI HlDT60x20x36 (TDK) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A, I 235 mmL 

260(at 100°C) m T  
Fig. 21. Photograph of prototype common-mode transformer. 

L, can be determined as follows: 

Lt =4R:C 

l r m s  

Furthermore, the following equation gives the maximum link- 

age flux @,,, in the secondary winding, because the same 

voltage as that across the resistor is applied to the exciting 

inductance: 

As mentioned above, Lt and @,, are important parameters 
to design the core of the common-mode transformer. 

VI. PROTOTYPE COMMON-MODE TRANSFORMER 

A prototype common-mode transformer is constructed and 

tested in order to verify the effect on the leakage current. 

Fig. 20 shows the shape of a ferrite core used in the prototype, 

and Table IV shows the specification of the ferrite core. 
If the rms value of the leakage current, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI,,, is specified as 

27 mA, R, , P R ~ ,  Lt , and Qmax calculated by (23)-(26) are 5 16 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R, 0.38 W, 6.4 mH, and 866 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApWb, respectively. The number 
of turns N is given by the AL-value of the ferrite core: 

= 22. 

Therefore, the effective sectional area A, gives the maxi- 

mum flux density 

a m a x  

A, 

~ 

Bmax = 

= 188 mT (28) 

and it is much smaller than saturation flux density B, of the 

core material (HID). This result indicates that an optimal 
design of the core shape would make the common-mode 

transformer more compact. Fig. 21 shows the photograph of 
the common-mode transformer. A damping resistor of 510 R, 
0.5 W is connected to the terminals of the secondary winding, 
because the power loss dissipating in the damping resistor is 

calculated as 0.38 W. 
Fig. 22 shows the characteristics of the rms leakage current 

I,,, , the maximum linkage flux zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,,, and the power loss PRt 
with respect to Rt at Lt = 6.4 mH, respectively. Simulation 
for the equivalent circuit shown in Fig. 14 is performed, using 
the PSpice circuit simulator. The simulation results are shown 
as the solid lines, while the experimental results are plotted. 
It shows the validity of the modeling for the leakage current 
as well as the effectiveness of the common-mode transformer. 

The measured values agree well with the simulated ones, and 

I,,, is reduced to 25% at the designed point of Rt = 510 0. 
a,,, at Rt = 510R is smaller than the designed value 

calculated by (26), because Rt attenuates the exciting current. 

Connecting the damping resistor Rt = 1 kR corresponds to the 

case that the actual stray capacitance is 2 times as large as the 
designed value. Comparing this point with the designed point, 

amax increases to 1.5 times though I,,, decreases slightly. 
It means that the common-mode transformer can reduce the 

high-frequency leakage current even if the normal variance 
in the values of the stray capacitance exists, although some 
margin in the flux density is required to prevent the core from 
magnetic saturation. Finally, the leakage current waveform in 

case of connecting the prototype common-mode transformer 

is shown in Fig. 23, which is the same waveform as Fig. 17. 
A common-mode transformer, the secondary winding of 

which is open, is equivalent to a conventional common-mode 
choke having the. same inductance as the exciting inductance 
of the common-mode transformer. amax at Rt = 500 R is 1/3 

of that at Rt = 00. This makes a great contribution to reducing 

the core size of the common-mode transformer compared with 

that of:the conventional common-mode choke. 
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Leakage current in case of connecting prototype common-mode 

VII. CONCLUSIONS 

In this paper, the high-frequency leakage current in PWM 
inverter-fed ac motor drives has been discussed in detail. The 
analyses and the experiments described in this paper lead to 

the following consequences. 

The equivalent circuit for the leakage current is repre- 

sented as an LCR series resonant circuit. 

The zero-sequence impedance of ac motors has no influ- 

ence on the leakage current. 
Conventional common-mode chokes are not effective to 

reduce the rms and average values of the leakage current, 
but effective to reduce the peak value. 

‘ Furthermore, a common-mode transformer has been pro- 
posed, which is able to reduce both the peak and rms val- 

ues of the leakage current. The design procedure of the 

common-mode transformer has also been presented. A pro- 

totype common-mode transformer, dissipating a negligible 
amount of loss, has been constructed and tested in a vector 

controlled induction motor of 3.7 kW. It has been confirmed 
that the peak and rms values of the Teakage current are 
reduced to 113 and 114, respectively, while the core size of 
the common-mode transformer is also reduced to 113 of that 
of a conventional common-mode choke. The authors believe 

that the common-mode transformer proposed in this paper is an 

effective alternative to the conventional common-mode choke. 
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