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This paper presents a technique for the modeling and design of a nano scale CMOS inverter circuit using artificial neural network
and particle swarm optimization algorithm such that the switching characteristics of the circuit is symmetric, that is, has nearly
equal rise and fall time and equal output high-to-low and low-to-high propagation delay. The channel width of the transistors
and the load capacitor value are taken as design parameters. The designed circuit has been implemented at the transistor-level
and simulated using TSPICE for 45 nm process technology. The PSO-generated results have been compared with SPICE results. A
very good accuracy has been achieved. In addition, the advantage of the present approach over an existing approach for the same
purpose has been demonstrated through simulation results.

1. Introduction

For digital integrated circuit design, CMOS inverter design
is considered to be a fundamental procedure [1]. This is
because of the fact that the procedure for designing other
complex digital integrated circuits is primarily based on
the design procedure of CMOS inverter [1]. In the nano
scale regime, the task of manual design of an optimal
integrated circuit is very difficult. The fundamental reason
for this is that in the sub-90 nm domain, the short channel
effects of MOS transistors play critical roles. The perfor-
mance behaviours of a circuit in this regime depend on
the transistor channel length and width through complex
high orders of equations. Therefore, for correct design and
simulation of nano scale digital integrated circuits, accurate
models need to be constructed [2]. The construction of
accurate performance model for CMOS inverter valid in
the sub-90 nm domain is, therefore, an important problem
to be solved. In addition, the design of an inverter circuit
for optimized performance is considered as a nonlinear
optimization problem.

A number of approaches are available in the literature for
modeling the switching characteristics of a CMOS inverter.

Sakurai and Newton derived a simple closed-form delay
expression for series-connected MOSFET circuits in [3],
based on the α-power law MOSFET current model. In [4],
an improved analytical propagation delay model has been
presented. But it neglects the channel length modulation
effect, which is important for modern deep submicron tech-
nologies. An analytical charge-based compact delay model
for submicrometer CMOS inverters has been derived in [5].
An accurate analytical propagation delay model of nano-
CMOS circuits has been derived in [6] based on modified
α-power law current model. A look-up table approach for
efficient delay characterization of nano scale VLSI logic
circuits is presented in [7]. An approach for optimization
of digital integrated circuits using geometric programming
technique is described in [8]. A particle swarm optimization-
based approach for inverter design considering transient
performance is described in [9, 10]. Artificial neural network
(ANN) has been used in [11] for deciding the MOSFET
channel length and width for analog integrated circuits.
A technique for technology independent neural network
modeling for fundamental blocks of analog circuits has been
discussed in [12]. ANN has been used in [13] for modeling
and design of CMOS operational amplifier circuit.
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This paper presents an approach for the design of a

nano scale CMOS inverter circuit with symmetric switching

characteristics. The switching characteristics of the inverter

circuit has been modeled using artificial neural network
(ANN). The input design parameters of the ANN model

are the widths of the PMOS and NMOS transistor, the load

capacitor and the rise time of the input signal. The output

performance parameters are the inverter switching point, the

output rise time and fall time, the low-to-high and high-to-

low output propagation delay times. The constructed ANN

model is embedded within a particle swarm optimization

(PSO) algorithm. This determines the channel widths of

the transistors and the output load capacitor value such

that the difference between the output rise time and fall
time is minimized and the difference between the output

high-to-low propagation delay and low-to-high propagation

delay is also minimized. The PSO synthesized designs have

been validated by implementing the designs at transistor-

level using 45 nm CMOS technology and comparing the PSO

predicted results with actual TSPICE simulated results. The

advantage of our approach of designing the inverter circuit

over an existing approach is also demonstrated through

simulation results. This is for the first time to the best of the

author’s knowledge that ANN-PSO combined approach has

been used for modeling and optimal design of a nano scale

CMOS digital circuit.

The rest of the paper is organized as follows. The problem
is formulated in Section 2. The methodology is presented in
details Section 3. Numerical results and the corresponding
discussion are provided in Section 4, and finally conclusion
is drawn in Section 5.

2. Problem Formulation

The basic circuit diagram of a CMOS inverter is shown
in Figure 1. Let Xd be the vector containing the design
parameters, that is, the channel width Wn of the NMOS
transistor, the channel width Wp of the PMOS transistor,

output load capacitor CL and X i be the vector containing
the input signal parameters, that is, the rise/fall time of the
input pulse signal, τin. A circuit design optimization problem
consists of determining the values of the design parameters
for given input signal parameter values, such that one or
more performance parameters are optimized and certain
imposed constraints are satisfied. The complete problem
can be considered to be divided into two sub-problems.
In the first part, the relationships between the design
parameters and the performance parameters are constructed.
In the second part, the constructed relationships are used
to compute cost functions for the subsequent optimization
problem.

Let ρ be the vector containing the following performance
parameters of the design, (i) output rise time (τR), (ii) fall
time (τF), (iii) inverter switching point (VSP), (iv) output
low-to-high propagation delay time (τPLH), and (v) output

M2

M1

CL

V in
Vout

VDD

Figure 1: CMOS inverter.

high-to-low propagation delay time (τPHL). Thus the inputs
and outputs of the performance model are as follows:

Xd =
[
Wn,Wp,CL

]
,

Xi = τin,

ρ = [τR, τF ,VSP, τPLH, τPHL].

(1)

The performance model of the inverter circuit is defined as

ρ = f
(
Xd,Xi

)
. (2)

This relationship between the circuit design parameters and
the performance parameter is generally strongly nonlinear
and multidimensional. In the present work this is approxi-
mated through an ANN model as follows:

ρ̂ = fANN

(
Xd,Xi,w

)
, (3)

where fANN is a neural network, ρ̂ is a q dimensional
output vector of neural model responses, X is the ANN
input vector, and w contains all the weight parameters
required to construct the ANN structure. The first part of
the work attempts to construct fANN such that it is a faithful
approximation of the original function f .

The second part is an optimization problem which is
stated as follows:

Minimize Φ

(
ρ̂
)

,

subject to g
(
ρ̂
)
≤ 0,

such that
(
Xd

)
min

≤ Xd ≤
(
Xd

)
max

.

(4)

In (4), Φ(ρ̂) is referred to as the cost function, computed

on the ANN predicted performance parameters, g(ρ̂) refers
to the constraints. It may be noted that circuit optimization
problems involve more than one objective.
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Figure 2: Overview of the design methodology.

3. Description of the Design Methodology

3.1. An Outline. An outline of the design methodology is
illustrated in Figure 2. The design procedure starts with a
set of optimization objectives. The design parameters are
initialized randomly by the PSO algorithm. For these design
parameters, the performance parameters τR, τF ,VSP, τPLH,
and τPHL are calculated using the ANN model for a given
value of τin. Cost functions are computed based on these
performance parameter values and the input optimization
objectives. The design parameter values are then updated
through the PSO algorithm according to the minimum
cost. This process continues until a desired cost function
objective is achieved or the maximum number of iterations
is executed. The final output is a set of synthesized values of
the design parameters.

3.2. Construction of ANN Model. In this subsection, we will
first provide the basic concept of multilayer perceptron
ANN followed by a detailed description of the ANN model
development procedure.

3.2.1. MLP Structure. Multilayer perceptron (MLP) is a
widely used ANN structure [14]. In this network, the
neurons are grouped into layers. The first and the last layers
are called the input and the output layers, respectively,
and the remaining layers are called the hidden layers. The
structure of a typical MLP network is shown in Figure 3.
The layers in this network are interconnected by network
links that are associated with weights that determine the
effect on the information passing through them. In an MLP,

each neuron processes the input received from other neurons
through an activation function in the neuron and the
processed information becomes the output of the neuron.
The hidden neuron activation function that is used in the
present work is tangent-sigmoid function. On the other
hand, linear activation is used for the output neurons.

Multilayered feed-forward neural network is trained
by supervised learning using iterative back propagation
algorithm. The basic flow chart illustrating the ANN-MLP
training procedure is shown in Figure 4. The procedure starts
with generating a set of sample data. This is divided into
two sets: training set and test set. The training set is used
for training purpose and the test set for testing purpose. The
MLP parameters are initialized randomly. Then the weight
parameters are adjusted utilizing the training data set until
the training goal is met.

3.2.2. Data Generation. In order to generate training and test
data, CMOS inverters are constructed corresponding to the
circuit design parameters and input signal parameter listed
in Table 1. The channel length of both the transistors is fixed
at minimum of the process technology, that is, 45 nm. The
other process technology parameters are taken from Berkeley
Predictive Technology model file [15]. Based on Halton
sequence generator [16], uniformly distributed samples are
generated within the specified range. The training and test
data corresponding to those sample points are generated
through T-SPICE simulation using BSIM4 model. Transient
analysis and DC transfer sweep analysis are performed in
order to extract the performance parameters.
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Table 1: Range of circuit design parameters.

Parameters Min Max

Wn (nm) 45 1000

Wp (nm) 45 1000

CL (pF) 0.2 5

τin 500 ps 10 ns

3.2.3. Data Scaling. It is observed from Table 1 that the
input parameters vary over a wide range. Consequently
the output performance parameters will also vary over a
wide range. Therefore, a systematic preprocessing of training
data, referred to as data scaling is required for efficient
construction of the ANN model. In this work, we have used
linear scaling of the data between 0 and 1, described by the
following formula:

x̃ = x̃min +
x − xmin

xmax − xmin
(x̃max − x̃min), (5)

and the corresponding de-scaling formula is given by

x = xmin +
x̃ − x̃min

x̃max − x̃min
(xmax − xmin), (6)

where x, xmin, xmax represent the original data and x̃, x̃min,
x̃max represent the scaled data.

3.2.4. Data Organization. The generated data is divided into
two sets, namely, training data set and test data set. The
training data is used to guide the training procedure. A
portion of the training data set is used for validating the
training procedure. The test data is used to independently
examine the final quality of the trained neural model in terms
of accuracy and generalization capability.

3.2.5. Neural Network Training. A standard 4-layer feedfor-
ward MLP architecture has been considered in order to
construct the ANN model of the inverter. During the training
procedure, the weight parameters and the bias values are
adjusted in order to minimize the training error. For this
purpose, we have used Levenberg-Marquardt (LM) back
propagation method as the training algorithm. The training
goal is set to 10−7. The training algorithm of Matlab toolbox
has been used.

3.2.6. ANN Model Accuracy. In order to verify the accuracy
of the constructed ANN model, statistical measures such
as average relative error and correlation coefficient between
the neural outputs and actual-SPICE generated values are
calculated for each output parameter. These are defined as
follows:

E =
1

nρ

n∑
1

(
ρ− ρ̂

)
,

R =
n
∑
ρρ̂−

∑
ρ
∑
ρ̂√[

n
∑
ρ2 −

(∑
ρ
)2
]
−
[
n
∑
ρ̂2 −

(∑
ρ̂
)2
] .

(7)

Here, n, ρ̂, and ρ are the number of samples in the data
set, ANN model output and corresponding SPICE-simulated
value, respectively. The correlation coefficient is a measure of
how closely the ANN outputs fit with the target values. It is
a number between 0 and 1. If there is no linear relationship
between the estimated values and the actual targets, then the
correlation coefficient is 0. If the number is equal to 1.0, then
there is a perfect fit between the targets and the outputs.
Thus, higher the correlation coefficient, the better it is.

3.3. Optimization Using PSO Algorithm. In this subsection,
we will first provide the basic concept of PSO algorithm,
followed by the PSO-based design procedure.

3.3.1. PSO Algorithm. Particle swarm optimization algo-
rithm is a robust stochastic evolutionary computation tech-
nique inspired by social behavior, movement, and intelli-
gence of swarms [17]. PSO works on a population of solution
candidates referred to as particles. The size of the swarm
is the total number of particles. At any particular instance,
each particle has a position and a velocity. The movement
of the particles are controlled by updating the position and
velocity vectors in an effort to find an optimum solution.
In a complete swarm, containing N number of particles,
each particle is initialized with a random position value. The
position vector of the ith particle with feature number D, is
denoted as

Xi = [xi1, xi2, . . . , xiD], (8)

and the velocity vector is defined as

Vi = [vi1, vi2, . . . , viD]. (9)

For each iteration, the velocity and position vector of the ith
particle in the search space are updated as follows

vk+1
id = wvkid + c1 × randk

1

(
pbestkid − xkid

)

+ c2 × randk
1

(
gbestkid − xkid

)
,

(10)

xk+1
id = xkid + vk+1

id , (11)

where d = 1, 2, . . . ,D and i = 1, 2, . . . ,N . D is the number of
design parameters and k is the iteration count. The factors
c1 and c2, referred to as the acceleration factors, indicate
the relative attraction towards pbest and gbest, respectively.
The particles keep track of two best values. The first one
is the best fitness value obtained so far by the particle,
the corresponding position being termed as personal best
pbest. The global best value gbest is the location of the best
fitness value achieved so far considering all the particles in
the swarm. In (10), rand1 and rand2 are random numbers
uniformly distributed between zero and unity. The inertia
weight factorw controls the tradeoff between global and local
search capabilities of the swarm. The value of the velocity v
of a particle is clamped to the range [−vmax, vmax] to reduce
the likelihood that a particle might leave the search space.
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Table 2: Architecture of the 1st ANN.

Parameters Optimized Values

Architecture Feed forward MLP

Training Algorithm Back propagation

Hidden layer 2

No. of neurons in the first hidden layer 16

No. of neurons in the second hidden layer 20

Hidden layer transfer function Tan-sigmoid

Output layer transfer function Linear

Maximum epoch 1000

Table 3: Accuracy of the 1st ANN model.

Error Output Training Test

τR 1.21 1.36

E τF 1.82 1.95

τPHL 1.03 0.86

τPLH 0.65 0.61

τR 0.9993 0.9995

R τF 0.9993 0.9995

τPHL 0.9993 0.9995

τPLH 0.9993 0.9995

The search space is defined by the bounds [xmin, xmax]. In
this work, the value of vmax is set to vmax = k × xmax where
0.1 ≤ k ≤ 1. The flow chart of the PSO algorithm as used in
this work is shown in Figure 5.

3.3.2. PSO-Based Design. In the present work our aim
is to design an inverter such that the output switching
characteristics of the circuit is symmetric. This means that (i)
the difference between the output rise time (τR) and fall time
(τF) and (ii) the difference between the output propagation
delay times τPHL and τPLH should be minimum.

The transistor channel widths Wn, Wp, and the load
capacitor CL are the design parameters. The load capacitor
as used here represents lumped capacitance consisting of
two broad types of capacitances: (i) intrinsic and (ii)
extrinsic. The intrinsic capacitance is composed of diffusion
and overlap capacitances. On the other hand, the extrinsic
capacitance is contributed by interconnect and fan-out
gate. The intrinsic components depend upon the transistor
dimensions. However, the extrinsic components are usually
independent of transistor dimensions of the inverter under
consideration. Using efficient layout techniques, it is possible
to make the drain diffusion areas as small as possible. Thus
the standard design practice is to assume that the external
load capacitor mainly consists of extrinsic components such
that the problem of inverter design can be done conveniently
using inverter delay models constructed earlier.

The values of these design parameters should be obtained
such that symmetry of the output switching characteristics

can be achieved. The design problem can thus be summa-
rized as follows. The value of the rise/fall time of the input
signal will be taken from the user:

Minimize
|τF − τR|

τF
+
|τPHL − τPLH|

τPHL
,

subject to (τF)min ≤ τF ≤ (τF)max

(τR)min ≤ τR ≤ (τR)max

(τPHL)min ≤ τPHL ≤ (τPHL)max

(τPLH)min ≤ τPLH ≤ (τPLH)max

0.45×VDD ≤ VSP ≤ 0.55×VDD,

where (Wn)min ≤Wn ≤ (Wn)max

(
Wp

)
min

≤Wp ≤
(
Wp

)
max

(CL)min ≤ CL ≤ (CL)max.

(12)

Thus the PSO algorithm would result in exact values of the
design parameters which minimize the cost function value
and satisfy the specified constraints. The supply voltage VDD

is taken to be 1.0 V. The swarm size is taken to be 30. It has
been reported in the literature [10] that the choice of PSO
parameters c1 = c2 = 1.49618 and w = 0.7298 ensure good
convergence of the PSO algorithm. The maximum number
of iterations that has been considered in this work is 1000.

It may be noted that symmetric static and switch-
ing characteristics of a CMOS inverter is an important
requirement. In traditional manual design procedure this is
achieved by adjusting the ratio of the PMOS and NMOS
transistor width assuming equal channel length. The same
is also done for symmetric switching characteristics so as
to make the drain-source ON resistance of the transistors
same. Symmetric characteristics make the noise margin
wide. However, this often comes at the cost of speed. In
addition, the short channel effects of MOS transistors, which
play significant role in nano scale domain make the design
problem more difficult. Therefore, an optimization strategy
is required such that symmetry is achieved without failing
to attain the speed constraint. Thus the justification of the
optimization problem lies not only in optimizing the single
design objective but also in attaining design solution within
a desired design specification space.

4. Results and Discussion

4.1. ANN Construction. In the present paper, two ANN
models have been constructed. In the first ANN model, the
four inputs are Wn,Wp,CL, and τin and the four outputs are
τR, τF , τPHL, and τPLH. For the second ANN, the two inputs
are Wn and Wp and the single output is VSP. For constructing
the first ANN, 3000 samples have been considered. Out of
these, 80% are considered as the training sample and the
rest as the test sample. For constructing the second ANN, a
set of 1000 samples have been considered. The structure of
the first ANN is described in Table 2. The neural network
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Figure 5: Flow chart of the PSO Algorithm.

Table 4: Delay constraints and design parameter bounds.

Case Study CL (pF) Wn (nm) Wp (nm) τF (ns) τR (ns) τPHL (ns) τPLH (ns)

1 0.5–2.5 45–135 90–940 0.1–15 0.1–15 0.05–8.0 0.05–8.0

2 0.5–2.5 45–110 90–620 0.1–15 0.1–15 0.05–8.0 0.05–8.0

3 0.5–1.5 45–135 90–940 0.1–15 0.1–15 0.05–8.0 0.05–8.0

4 1.0–3.0 60–160 160–945 0.1–15 0.1–15 0.05–8.0 0.05–8.0

5 1.5–3.5 60–135 135–840 0.1–15 0.1–15 0.05–8.0 0.05–8.0

6 0.3–2.0 45–90 90–540 0.1–8.0 0.1–8.0 0.05–6.0 0.05–6.0

7 0.6–1.9 60–160 135–910 0.1–7.5 0.1–7.5 0.05–5.5 0.05–5.5
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Figure 7: Comparison between ANN results and SPICE results for the rise time and fall time.

Table 5: Synthesis results—τin = 1 ns.

Case study CL (pF) Wn (nm) Wp (nm) τF (ns) τR (ns) τPHL (ns) τPLH (ns) VSP (V)

1 0.83 128.37 221.93 5.1546 5.1363 2.5277 2.4648 0.4890

2 0.76 69.44 100.08 10.5131 10.5820 4.8127 4.8025 0.4861

3 0.81 125.82 217.53 5.0244 5.1146 2.6854 2.6731 0.4879

4 1.02 157.91 273.01 5.2138 5.2015 2.5812 2.5637 0.4851

5 1.66 134.70 232.88 8.8279 8.8588 4.6977 4.6785 0.4800

6 0.42 65.42 113.10 5.4471 5.4233 2.5805 2.5332 0.4887

7 0.61 95.52 165.14 5.3867 5.3678 2.7219 2.7581 0.4876
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Table 6: Performances of the PSO Algorithm.

Case Study
No. of

iterations

No. of
function

evaluations

CPU time
(≈min)

1 2561 76808 46.52

2 2257 67682 41.37

3 3043 91275 55.28

4 2771 83103 50.80

5 3139 94165 53.07

6 2346 70355 42.62

7 2189 65653 39.76

optimization technique is conducted for maximum 1000
iterations. However, after 725 epochs on an average the
neural network model has reached the desired training goal.
The neuron numbers in the first and second hidden layer is
selected through trial and error method. The architecture is
shown in Figure 6. For the second ANN architecture, a single
hidden layer with 8 neurons has been considered.

4.2. ANN Modeling Accuracy. The accuracy is measured by
comparing the results predicted from ANN and the actual
SPICE simulation results. Figures 7(a) and 7(b) show the
comparison between ANN predicted results and SPICE
simulation results for the variations of the rise time and
the fall time with Wp and Wn, respectively for various
values of the load capacitors. Similarly Figures 8(b) and 8(a)

shows the corresponding results for the low-to-high, and
high-to-low propagation delay times. We observe that the
two results closely match. The average relative error E and
the correlation coefficient R are summarized in Table 3. We
achieve very good accuracy in terms of both E and R.

The scatter plots between the ANN predicted results
and SPICE simulations are shown in Figures 9(a)–9(d). We
observe nearly perfect diagram with very close to unity
correlation coefficient. These demonstrate the accuracy of
the constructed ANN model. Similar levels of accuracy have
been obtained for the second ANN also.

4.3. PSO-Based Design. In the present work, we have chosen
seven case studies. For each case, the desired rise time,
fall time, low-to-high, and high-to-low output propagation
delay times are kept within a certain constraint, defined
by an upper limit and a lower limit. Similarly the design
parameters are also kept within a specified bound. These
are tabulated in Table 4. The value of τis is assumed to
be 1 ns. The synthesized values of the design parameters
corresponding to which the cost function is minimized and
the constraints are satified for all the case studies are shown
in Table 5. It also contains the corresponding values of the
performance parameters. We observe from Tables 4 and 5
that the synthesized parameters satisfy the design constraints.

The PSO algorithm has been implemented under Matlab
6.5 platform. The reduction in cost function value with
number of iterations for two case studies are shown in
Figures 10(a), and 10(b). We observe from these two figures,
that the cost function value reduces drastically within first
few iterations. Then the reduction is not significant. It takes
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Figure 9: Correlation diagram for the various outputs of the 1st ANN.

several numbers of iterations to reach the ultimate goal. This
is a characteristic of any global search algorithm. A possible
way to avoid some unnecessary iterations is to judiciously
combine some local optimization algorithms with the PSO.

The performance of the algorithm is measured by
three factors: number of iterations, number of function
evaluation, and time complexity (CPU time consumed).
These are summarized in Table 6. The number of iterations is
moderate. Consequently, the algorithm produces acceptable
results in moderate CPU time. The measured time is w.r.t
CPU of PIV processor and 1 GB RAM. The reported time
includes the time taken to evaluate the ANN model during
each function evaluation.

In order to validate the results obtained through PSO
optimization, we select some case studies and implement
them at the transistor level. The PSO-synthesized transistor
widths and output load capacitor values have been consid-
ered. The channel length is taken as 45 nm with 1.0 V supply.

We then perform transient simulation using T-SPICE. A
comparison between the PSO-generated results and SPICE
results is provided in Tables 7 and 8. We observe that the
PSO generated designs yield very good results even when
simulated at the SPICE level as far the symmetry of the
switching characteristics is considered.

We now compare the present approach of designing an
inverter for optimizing the switching characteristics with
the existing approach of [10] for the same purpose. The
same analytical equations as used in [10] have been used in
the present work for comparison purpose. The synthesized
results are provided in Table 9. With these synthesized values
of the design parameters, the circuits are implemented and
simulated using TSPICE. Tables 10 and 11 present the
comparison results w.r.t the accuracy of the two approaches.
It can clearly be observed that our approach outperforms the
analytical approach of [10]. This is because the analytical
models used in [10] are simplified and approximate. These
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Figure 10: Reduction of cost function value with iterations.

Table 7: Comparison between PSO results and SPICE results— τR and τF .

Case study PSO results SPICE results

τR (ns) τF (ns) Difference (ns) τR (ns) τF (ns) Difference (ns)

1 5.1363 5.1546 0.0183 5.0674 5.2532 0.1858

2 10.5820 10.5131 0.0689 10.6200 9.8351 0.7849

3 5.1146 5.0244 0.09012 5.0535 5.3356 0.2821

4 5.2015 5.2138 0.0123 5.0398 5.4025 0.3627

5 8.8588 8.8279 0.0309 8.6485 8.5699 0.0786

6 5.4233 5.4471 0.0238 5.2171 5.6551 0.438

7 5.3678 5.3867 0.0189 5.2649 5.6741 0.4092

Table 8: Comparison between PSO results and SPICE results—τPHL and τPLH.

Case study PSO results SPICE results

τPHL (ns) τPLH (ns) Difference (ns) τR (PHL) τF (LH) Difference (ns)

1 2.5227 2.4648 0.0579 2.6455 2.4367 0.2088

2 4.8217 4.8025 0.0192 4.9417 4.9256 0.0161

3 2.6854 2.6731 0.0123 2.8366 2.4292 0.4074

4 2.5812 2.5637 0.0175 2.5157 2.4210 0.0947

5 4.6977 4.6785 0.0192 4.7861 4.5264 0.2597

6 2.5805 2.5332 0.0473 2.5771 2.4957 0.0814

7 2.7219 2.7581 0.0362 2.8629 2.6367 0.2262

Table 9: Synthesis results using approach of [10].

Case study CL (pF) Wn (nm) Wp (nm) τF (ns) τR (ns) τPHL (ns) τPLH (ns) VSP (V)

1 1.190 121.45 589.80 6.9369 6.9168 3.2797 3.2796 0.4861

2 0.866 76.33 370.70 7.9424 7.9193 3.7549 3.8483 0.4861

3 0.983 102.52 497.90 6.7833 6.7637 3.2070 3.2866 0.4861

4 1.87 151.78 737.10 8.5364 8.5116 4.0358 4.1361 0.4861

5 1.528 125.26 608.33 8.9247 8.8988 4.2193 4.3242 0.4861

6 0.379 77.80 377.85 3.3873 3.3775 1.6014 1.6412 0.4861

7 0.873 151.12 733.91 3.9767 3.9653 1.8802 1.9269 0.4861
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Table 10: Comparison between our approach and approach of [10]—τR and τF .

Case study Our approach Approach of [10]

τR (ns) τF (ns) Difference (ns) τR (ns) τF (ns) Difference (ns)

1 5.0674 5.2532 0.1858 2.7083 8.9890 6.2807

2 10.620 9.8351 0.7849 3.1583 10.749 7.5907

3 5.0535 5.3356 0.2821 2.6573 8.8727 6.2154

4 5.0398 5.4025 0.3627 3.3978 11.1474 7.7496

5 8.6485 8.5699 0.0786 3.4920 11.863 8.371

6 5.2171 5.6551 0.438 1.4841 4.7308 3.2467

7 5.2649 5.6741 0.4092 1.7170 5.0863 3.3693

Table 11: Comparison between our approach and approach of [10]—τPHL and τPLH.

Case study Our approach Approach of [10]

τPHL (ns) τPLH (ns) Difference (ns) τPHL (ns) τPLH (ns) Difference (ns)

1 2.6455 2.4367 0.2088 4.6379 1.3758 3.2621

2 4.9417 4.9256 0.0161 5.5482 1.5727 3.9755

3 2.8366 2.4292 0.4074 4.5841 1.3535 3.2306

4 2.5157 2.4210 0.0947 5.7678 1.6712 4.0966

5 4.7861 4.5264 0.2597 5.9667 1.7114 4.2553

6 2.5771 2.4957 0.0814 2.2657 0.7583 1.5074

7 2.8629 2.6367 0.2262 2.6839 0.8558 1.8281

are not valid for nano scale CMOS circuit designs. For nano
scale circuits more advanced compact models need to be
used [2]. However, these models are often very difficult to
handle in an optimization-based design approach. Thus,
the present approach of using ANN for modeling purpose
and embedding the constructed ANN within a global search
algorithm is the most useful technique for designing any
nano scale logic circuits.

5. Conclusion

This paper presents an approach for the design of a nano
scale CMOS inverter using artificial neural network and
particle swarm optimization techniques. The compact mod-
els used to describe MOS transistors in the nano scale
domain are often very complicated and difficult to handle
within an optimization-based design approach. In addition,
the accuracies of such models are questionable. In this
approach, ANN has been used for modeling purpose. The
input design parameters of the ANN model are the widths
of the PMOS and NMOS transistor, the load capacitor and
the rise/fall time of the input signal. The output performance
parameters are the inverter switching point, the output rise
time and fall time, the output low-to-high, and high-to-
low propagation delay times. It has been found that the
ANN results are quite good compared to actual SPICE-level
simulation results. The ANN results are used for constructing
the cost functions of the PSO-based optimization procedure.
The PSO-synthesized designs are actually implemented using
45 nm CMOS technology and are simulated using TSPICE. It
has been observed that the ANN predicted results and actual

SPICE results match very closely. The present approach of
designing an inverter has been compared to an existing
approach [10] and the advantage of our approach has been
demonstrated through simulation results.

In addition, to achieving symmetry in switching re-
sponse, optimizing delay and power consumption are impor-
tant in digital CMOS circuit design. In addition, the effects of
gate-level parameter variations on these performances and
optimization of the same are some other challenging issues.
In the next phase of our research these will be taken up. How-
ever, the general framework for modeling the performances
through ANN and optimization of the design parameters
through PSO will remain same.

Acknowledgment

Soumya Pandit likes to thank the Department of Science and
Technology, Government of India for financial support of the
present paper through Fast Track Young Scientist Scheme,
Ref. no. SR/FTP/ETA-063/2009.

References

[1] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Inte-
grated Circuits, Pearson Education, 2004.

[2] R. A. Rutenbar, G. G. E. Gielen, and J. Roychowdhury, “Hierar-
chical modeling, optimization, and synthesis for system-level
analog and RF designs,” Proceedings of the IEEE, vol. 95, no. 3,
Article ID 4167778, pp. 640–669, 2007.

[3] T. Sakurai and A. R. Newton, “Delay analysis of series-con-
nected MOSFET circuits,” IEEE Journal of Solid-State Circuits,
vol. 26, no. 2, pp. 122–131, 1991.



VLSI Design 13

[4] L. Bisdounis, S. Nikolaidis, and O. Koufopavlou, “Analytical
transient response and propagation delay evaluation of the
CMOS inverter for short-channel devices,” IEEE Journal of
Solid-State Circuits, vol. 33, no. 2, pp. 302–306, 1998.
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