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Abstract: High-power bidirectional dc–dc converters are being widely employed in renewable energy
interfacing, energy storage, electric vehicle charging, military, aerospace, and marine applications.
Among various bidirectional topologies documented in the literature for dc–dc power conversion,
the split-pi converter invites special attention with regard to applications involving multi-phase
systems requiring high-power density. This paper endeavors to present the small-signal modeling
of the split-pi converter in its various operating modes. Subsequently, the dynamic characteristics
of the converter are studied, and appropriate control design is presented for stable operation of the
converter. Frequency response plots are illustrated, and a hardware prototype model of the converter
is designed and implemented.

Keywords: small-signal modeling; split-pi converter; electric vehicles; power train; dual way
converter; compensator

1. Introduction

Multiple applications involving aerospace, military, marine, and transport electrifica-
tion and renewable energy integration necessitate high-efficiency dc power converters with
stable bidirectional operation and high-power density. Quite a lot of topologies have been
proposed by researchers for bidirectional dc–dc conversion in the past few years to suit
various applications [1–12]. These topologies are either isolated or nonisolated allowing a
bidirectional power flow. Further, these topologies operating in boost, buck, or buck–boost
mode depending on the placement of passive elements. Amid various topologies proposed
in the literature, the split-pi converter (SPC) is the one that draws exclusive interest owing
to its remarkable features viz., high conversion efficiency, capability to operate in various
switching modes, and bidirectional power flow. Additionally, its nonisolated structure and
high-frequency operation along with the lower ratings of passive elements make it an apt
choice for applications demanding high-power density [13,14]. Unlike the classic buck–
boost topology, this topology overcomes the voltage gain limitations of the converter and
is prone to minimal voltage and current fluctuations. Parallel connection is also possible
with this converter topology and hence can be used in multiphase systems. A reduction
in switching noise is achieved as the LC filters at either port of the converter favor small
reactive components. Moreover, the control circuit of SPC topology involves simple duty
cycle control of the PWM signal and is hence less laborious [15–17].

The aforementioned advantages of the SPC makes it ideally suited for electric vehicles
and energy storage applications, among others. With the direction of current flow changing
from instant to instant in these applications, a dynamic analysis of the converter is essential.
In addition, an appropriate control design is essential in enhancing the overall performance
of the system. Hence, this paper intends to present in detail the small-signal modeling of the
SPC along with the control design for all the switching modes. Though the SPC topology
was introduced in 2014 [18], very little literature is available related to the modeling and
control design of the converter. A state–space averaging model of the SPC followed by
a type-II compensator design is described in [19]. However, the state–space model is
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derived only for boost mode of operation of the converter, and the prototype design and
experimental results are not presented. In [20], the authors have proposed a multilevel
and symmetrical structure for the SPC and compared it with the interleaved topology.
Few details pertaining to the control design with controlled current or voltage feedback
and dc link voltage have been presented. Elaborate state–space models of the SPC with
respect to energy storage interface of stiff and nonstiff dc microgrids have been discussed
in [21]. A unique control strategy for controlling the flywheel system using the SPC in
rural applications has been described in [22]. Thus, a generalized modeling and control
design for different operation modes of the conventional SPC topology is not available in
the literature according to the authors.

This paper attempts to explain in detail the small-signal modeling of the SPC topology
followed by the control design for various operating modes. In addition, a stability analysis
was carried out through frequency response plots, and a stable control design is presented
for both the buck and boost modes of operation of the converter. An experimental prototype
of the SPC was developed with the designed closed loop control, and the results are
demonstrated to validate the design.

2. Small-Signal Modeling: Split-Pi Converter

The schematic of SPC topology is illustrated in Figure 1. The circuit comprises a boost
topology followed by a buck topology. Thus, this converter is capable of operating in three
different modes, namely, the boost, buck, and pass-through modes. Of the four switches
available, only two conducts at any point of time in all the three switching modes provide
the required output. While the buck and boost modes of operation are already familiar, the
pass-through mode simply passes the input to the output. The mathematical analysis of
the different modes of operation is presented below followed by the small-signal modeling.
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2.1. Boost Mode

In the boost mode of operation, switch S4 is always ON, and S3 is always OFF. S1
and S2 are switched alternatively so that boost voltage is available at the output. The two
modes of operation are described below

Mode 1:
The circuit schematic during mode 1 is depicted in Figure 2. Switches S1 and S3

are OFF, and S2 and S4 are turned ON. The differential equations governing the circuit
operation are listed as follows:
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Figure 2. Circuit schematic of SPC during mode 1 under boost operation.

Applying KVL and KCL to the circuit in Figure 2, we have the following set of
equations for the voltage across the inductors and current through the capacitors:

L1
di1
dt

= Vin −Vc2 = Vc1 −Vc2 (1)

L2
di2
dt

= Vc2 −Vc3 (2)

C1
dvc1

dt
= Iin − I1 (3)

Iin − C1
dvc1

dt
= I1 (4)

C2
dvc2

dt
= I1 − I2 (5)

C3
dvc3

dt
= I2 −

Vo

R
(6)

The state Equations (1)–(5) can be expressed as

.
X = A1X + B1U (7)

.
I1.
I2.

Vc1.
Vc2.
Vc3

 =


0 0 1/L1 −1/L1 0
0 0 0 1/L2 −1/L2

−1/C1 0 0 0 0
1/C2 − 1/C2 0 0 0

0 1/C3 0 0 −1/RC3




I1
I2

Vc1
Vc2
Vc3

+


0
0

1/C1

0
0

[Iin]

where A1 =


0 0 1/L1 −1/L1 0
0 0 0 1/L2 −1/L2

−1/C1 0 0 0 0
1/C2 − 1/C2 0 0 0

0 1/C3 0 0 −1/RC3

and B1 =


0
0

1/C1

0
0


The output equation for this mode is

Vo = Vc3 (8)

Equation (8) can be expressed as

Y = {1X + D1 (9)



Energies 2022, 15, 5690 4 of 23

Therefore, Vo =
[
0 0 0 0 1

]


I1
I2

Vc1
Vc2
Vc3

 where {1 =
[
0 0 0 0 1

]

Mode 2:
The circuit schematic during mode 2 is depicted in Figure 3. Switches S2 and S3

are OFF, and S1 and S4 are turned ON. The differential equations governing the circuit
operation are listed as follows:
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Applying KVL and KCL to the circuit above, we have the following set of equations
for voltage across the inductors and current through the capacitors:

L1
di1
dt

= Vc1 (10)

L2
di2
dt

= Vc2 −Vc3 (11)

C1
dvc1

dt
= Iin − I1 (12)

C2
dvc2

dt
= −I2 (13)

C3
dvc3

dt
= I2 −

Vo

R
(14)

Combining Equations (10)–(14) in matrix form,

.
X = A2X + B2U (15)

.
I1.
I2.

Vc1.
Vc2.
Vc3

 =


0 0 1/L1 0 0
0 0 0 1/L2 −1/L2

−1/C1 0 0 0 0
0 − 1/C2 0 0 0
0 1/C3 0 0 −1/RC3




I1
I2

Vc1
Vc2
Vc3

+


0
0

1/C1

0
0

[Iin]

where A2 =


0 0 1/L1 0 0
0 0 0 1/L2 −1/L2

−1/C1 0 0 0 0
0 − 1/C2 0 0 0
0 1/C3 0 0 −1/RC3

 and B2 =


0
0

1/C1

0
0
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The output equation is the same as Equation (8).
Applying state–space averaging, the state coefficient matrix A can be expressed as

A = A1d + A2(1− d)

=


0 0 1/L1 −1/L1 0
0 0 0 1/L2 −1/L2

−1/C1 0 0 0 0
1/C2 − 1/C2 0 0 0

0 1/C3 0 0 −1/RC3

× d

+


0 0 1/L1 0 0
0 0 0 1/L2 −1/L2

−1/C1 0 0 0 0
0 − 1/C2 0 0 0
0 1/C3 0 0 −1/RC3

× (1− d)

Therefore, A =


0 0 1/L1 −d/L1 0
0 0 0 1/L2 −1/L2

−1/C1 0 0 0 0
d/C2 − 1/C2 0 0 0

0 1/C3 0 0 −1/RC3

 (16)

where d is the duty cycle of switch S1.
The averaged source coefficient matrix is given by

B = B1d + B2(1− d) =


0
0

1/C1

0
0

× d +


0
0

1/C1

0
0

× (1− d) =


0
0

1/C1

0
0

 (17)

Similarly,
{ = {1d + {2(1− d) =

[
0 0 0 0 1

]
(18)

Thus, the state–space averaged equations in matrix form are given by

.
X = AX + B U =


0 0 1/L1 −d/L1 0
0 0 0 1/L2 −1/L2

−1/C1 0 0 0 0
d/C2 − 1/C2 0 0 0

0 1/C3 0 0 −1/RC3




I1
I2

Vc1
Vc2
Vc3

+


0
0

1/C1

0
0

[Iin] (19)

The above matrix can be expanded to give the averaged state–space equations:

di1
dt

=
Vc1

L1
− d×Vc2

L1
(20)

di2
dt

=
Vc2

L2
− Vc3

L2
(21)

dVc1

dt
=
−I1

C1
+

Iin
C1

(22)

dVc2

dt
=

d× I1

C2
− I2

C2
(23)

dVc3

dt
=

I2

C3
− Vc3

R× C3
(24)
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The small-signal model is used for deriving the compensators that can realize the
control objective of keeping the output voltage constant while drawing constant power
from the sources. In order to derive small-signal models, the averaged equations must
contain small signal variables. This is done by replacing each variable with both a DC
and an AC value. Assuming a stiff voltage across the capacitor C2 and applying small-
signal perturbations to other electrical quantities, the Equations (20)–(22) and (24) are
represented as

d
(
i1 + î1

)
dt

=
(Vc1 + V̂c1)

L1
− (d + d̂)×Vc2

L1
=

(Vc1 − d×Vc2)

L1
+

V̂c1 − d̂×Vc2

L1
(25)

d
(
i2 + î2

)
dt

=
Vc2

L2
−
(
Vc3 + V̂c3

)
L2

=
Vc2 −Vc3

L2
− V̂c3

L2
(26)

d(Vc1 + V̂c1)

dt
=
−(I1 + Î1)

C1
+

(Iin + Îin)

C1
=

Iin − I1

C1
+

Îin − Î1

C1
(27)

d(Vc3 + V̂c3)

dt
=

(I2 + Î2)

C3
− (Vc3 + V̂c3)

R× C3
=

I2 −Vc3/R
C3

+
Î2 − V̂c3/R

C3
(28)

The dc or steady-state solutions of the above set of equations are:

Vc1 − d×Vc2 = 0→ Vc1 = d×Vc2 (29)

Vc2 −Vc3 = 0→ Vc2 = Vc3 (30)

Iin − I1 = 0→ I1 = Iin (31)

I2 −
Vc3

R
= 0→ I2 =

Vc3

R
(32)

The dynamic or ac solutions are:

L1
dî1
dt

= V̂c1 − d̂×Vc2 (33)

L2
dî2
dt

= −V̂c3 (34)

C1
dV̂c1

dt
= Îin − Î1 (35)

C3
dV̂c3

dt
= Î2 −

V̂c3

R
(36)

Representing Equations (33)–(36) in matrix form,
dî1
dt
dî2
dt

dV̂c1
dt

dV̂c3
dt

 =


0 0 1/L1 0
0 0 0 −1/L2

−1/C1 0 0 0
0 1/C3 0 −1/RC3




Î1
Î2

V̂c1
V̂c3

+


0
0

1/C1
0

[ Îin
]
+


−Vc2/L1

0
0
0

[d̂]
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The above matrix equation is of the form

.
X̂ = ÃX̂ + B̃Ũ + Ed̂, whereÃ =


0 0 1/L1 0
0 0 0 −1/L2

−1/C1 0 0 0
0 1/C3 0 −1/RC3

, B̃ =


0
0

1/C1
0

 and

E =


−Vc2/L1

0
0
0


Laplace transform of the above equation yields

sX̂(s) = ÃX̂(s) + B̃Ũ(s) + Ed̂(s) (37)

X̂(s) =
(

sI − Ã
)−1

B̃Ũ(s) +
(

sI − Ã
)−1

Ed̂(s) (38)

where I is the identity matrix. In Equation (38), d̂ is a function of x and u and termed as the
control law. The control law is usually nonlinear, and its linearized model can be written as

d̂(s) = FT(s)X(s) + QT(s)U(s) (39)

where FT(s) =
[
0 0 − H(s)/Vp − H(s)/Vp

]
and QT(s) =

[
0 0 0 0

]
are the coefficient

matrices for voltage mode PWM control, and H(s) denotes the transfer function of the error
amplifier and its compensation network, and Vp is the peak amplitude of the sawtooth
signal [23].

Substituting Equation (39) into Equation (38), we have

X̂(s) =
[
sI − Ã− EFT(s)

]−1[
B̃ + EQT(s)

]
Ũ(s) (40)

The source-to-state transfer functions for the SPC can be obtained by substituting for
FT(s) and QT(s) into Equation (40). Thus, the state variable matrix is


Î1
Î2

V̂c1
V̂c3

 =


s 0 1

L1
− H(s)

Vp
× Vc2

L1
−H(s)

Vp
× Vc2

L1

0 s 0 − 1
L2−1

C1
0 s 0

0 1
C3

0 s− 1
RC3


−1

0
0

1/C1
0

[ Îin
]

(41)

From Equation (41), the small-signal transfer functions can be obtained,

Î1

Îin
=

−
(
Vp − H(s)Vc2

)
C1L1Vps2 + Vp − (H(s)Vc2)

V̂c1

Îin
=

L1Vps
C1L1Vps2 + Vp − (H(s)Vc2)

The small-signal control transfer function can be obtained by substituting Ũ(s) = 0 in
Equation (38).

Therefore, 
Î1
Î2

V̂c1
V̂c3

 =


s 0 1/L1 0
0 s 0 −1/L2

−1/C1 0 s 0
0 1/C3 0 s− 1/RC3


−1

−Vc2/L1

0
0
0

[d̂] (42)
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The open-loop transfer function of inductor current L1 is thus given by

Î1

d̂
= − sC1Vc2

1 + s2C1L1
(43)

and the open-loop transfer function of input capacitor voltage C1 is given by

V̂c1

d̂
= − Vc2

1 + s2C1L1
(44)

2.2. Buck Mode

In the buck mode of operation, switch S2 is always ON, and S1 is always OFF. S3 and
S4 are switched alternatively so that the buck voltage is available at the output. The two
operation modes are described below [24].

Mode 1:
The circuit schematic during mode 1 is depicted in Figure 4. Switches S1 and S4

are OFF, and S2 and S3 are turned ON. The differential equations governing the circuit
operation are listed as follows:

L1
di1
dt

= Vin −Vc2 = Vc1 −Vc2 (45)

L2
di2
dt

= −Vc3 (46)

C1
dvc1

dt
= Iin − I1 (47)

C2
dvc2

dt
= I1 (48)

C3
dvc3

dt
= I2 −

Vo

R
(49)
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Figure 4. Circuit schematic of SPC during mode 1 under buck operation.

The state Equations (45)–(49) can be expressed as

.
X = A3X + B3U

.
I1.
I2.

Vc1.
Vc2.
Vc3

=


0 0 1/L1 −1/L1 0
0 0 0 0 −1/L2

−1/C1 0 0 0 0
1/C2 0 0 0 0

0 1/C3 0 0 −1/RC3




I1
I2

Vc1
Vc2
Vc3

+


0
0

1/C1

0
0

[Iin]
(50)
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where A3 =


0 0 1/L1 −1/L1 0
0 0 0 0 −1/L2

−1/C1 0 0 0 0
1/C2 0 0 0 0

0 1/C3 0 0 −1/RC3

 and B3 =


0
0

1/C1

0
0


The output equation for this mode is

Vo = Vc3 (51)

Equation (51) can be written in matrix form as

Y = {3X + D3U

Vo =
[
0 0 0 0 1

]


I1
I2

Vc1
Vc2
Vc3

 where {3 =
[
0 0 0 0 1

]

Mode 2:
Figure 5 represents the circuit schematic during mode 2. Switches S1 and S3 are OFF,

and S2 and S4 are turned ON. The differential equations describing the circuit operation
are given below [25]:
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Figure 5. Circuit schematic of SPC during mode 2 under buck operation.

Applying KVL and KCL to the circuit above, we have the following set of equations
for the voltage across the inductors and current through the capacitors:

L1
di1
dt

= Vin −Vc2 = Vc1 −Vc2 (52)

L2
di2
dt

= Vc2 −Vc3 (53)

C1
dvc1

dt
= Iin − I1 (54)

C2
dvc2

dt
= I1 − I2 (55)

C3
dvc3

dt
= I2 −

Vo

R
(56)

The state Equations (52)–(56) can be written in matrix form as

.
X = A4X + B4U (57)
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.
I1.
I2.

Vc1.
Vc2.
Vc3

 =


0 0 1/L1 −1/L1 0
0 0 0 1/L2 −1/L2

−1/C1 0 0 0 0
1/C2 − 1/C2 0 0 0

0 1/C3 0 0 −1/RC3




I1
I2

Vc1
Vc2
Vc3

+


0
0

1/C1

0
0

[Iin]

where A4 =


0 0 1/L1 −1/L1 0
0 0 0 1/L2 −1/L2

−1/C1 0 0 0 0
1/C2 − 1/C2 0 0 0

0 1/C3 0 0 −1/RC3

 and B4 =


0
0

1/C1

0
0


The output equation for this mode is

Vo = Vc3 (58)

Equation (58) can be expressed as

Y = {4X + D4U (59)

Vo =
[
0 0 0 0 1

]


I1
I2

Vc1
Vc2
Vc3

 where {4 =
[
0 0 0 0 1

]

Applying state–space averaging, the state coefficient matrix A can be written as

A = A3d + A4(1− d)

=


0 0 1/L1 −1/L1 0
0 0 0 0 −1/L2

−1/C1 0 0 0 0
1/C2 0 0 0 0

0 1/C3 0 0 −1/RC3

× d

+


0 0 1/L1 −1/L1 0
0 0 0 1/L2 −1/L2

−1/C1 0 0 0 0
1/C2 − 1/C2 0 0 0

0 1/C3 0 0 −1/RC3

× (1− d)

Therefore, A =


0 0 1/L1 −1/L1 0
0 0 0 (1− d)/L2 −1/L2

−1/C1 0 0 0 0
1/C2 − (1− d)/C2 0 0 0

0 1/C3 0 0 −1/RC3

 (60)

where d is the duty cycle of the converter.
The averaged source coefficient matrix is given by

B = B3d + B4(1− d) =


0
0

1/C1

0
0

× d +


0
0

1/C1

0
0

× (1− d) =


0
0

1/C1

0
0

 (61)



Energies 2022, 15, 5690 11 of 23

Similarly,
{ = {3d + {4(1− d) =

[
0 0 0 0 1

]
(62)

Thus, the state–space averaged equations in matrix form are given by

.
X = AX + B U =


0 0 1/L1 −1/L1 0
0 0 0 (1− d)/L2 −1/L2

−1/C1 0 0 0 0
1/C2 − (1− d)/C2 0 0 0

0 1/C3 0 0 −1/RC3




I1
I2

Vc1
Vc2
Vc3

+


0
0

1/C1

0
0

[Iin]

The above matrix can be expanded to give the averaged state–space equations:

di1
dt

=
Vc1

L1
− Vc2

L1
(63)

di2
dt

=
(1− d)Vc2

L2
− Vc3

L2
(64)

dVc1

dt
=
−I1

C1
+

Iin
C1

(65)

dVc2

dt
=

d× I1

C2
− (1− d)I2

C2
(66)

dVc3

dt
=

I2

C3
− Vc3

R× C3
(67)

Assuming a stiff voltage across the capacitor C2 and applying small-signal perturba-
tions to other electrical quantities, the Equations (63)–(65) and (67) are represented as

d
(
i1 + î1

)
dt

=
(Vc1 + V̂c1)

L1
− Vc2

L1
=

(Vc1 −Vc2)

L1
+

V̂c1

L1
(68)

d(i2+î2)
dt =

(1−(d+d̂))Vc2
L2

− (Vc3+V̂c3)
L2

= 1−d×Vc2−Vc3
L2

− d̂×Vc2+V̂c3
L2

(69)

d(Vc1 + V̂c1)

dt
=
−(I1 + Î1)

C1
+

(Iin + Îin)

C1
=

Iin − I1

C1
+

Îin − Î1

C1
(70)

d(Vc3 + V̂c3)

dt
=

(I2 + Î2)

C3
− (Vc3 + V̂c3)

R× C3
=

I2 −Vc3/R
C3

+
Î2 − V̂c3/R

C3
(71)

The dc or steady-state solutions of the above set of equations are

Vc1 −Vc2 = 0→ Vc1 = Vc2 (72)

1− d×Vc2 −Vc3 = 0→ 1− d×Vc2 = Vc3 (73)

Iin − I1 = 0→ I1 = Iin (74)

I2 −
Vc3

R
= 0→ I2 =

Vc3

R
(75)

The dynamic or ac solutions are:

L1
dî1
dt

= V̂c1 (76)

L2
dî2
dt

= −d̂×Vc2 − V̂c3 (77)
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C1
dV̂c1

dt
= Îin − Î1 (78)

C3
dV̂c3

dt
= Î2 −

V̂c3

R
(79)

Representing Equations (76)–(79) in matrix form,
dî1
dt
dî2
dt

dV̂c1
dt

dV̂c3
dt

 =


0 0 1/L1 0
0 0 0 −1/L2

−1/C1 0 0 0
0 1/C3 0 −1/RC3




Î1
Î2

V̂c1
V̂c3

+


0
0

1/C1
0

[ Îin
]
+


0

−Vc2/L2

0
0

[d̂]

The above matrix equation is of the form

.
X̂ = ÃX̂ + B̃Ũ + Ed̂ where Ã =


0 0 1/L1 0
0 0 0 −1/L2

−1/C1 0 0 0
0 1/C3 0 −1/RC3

, B̃ =


0
0

1/C1
0


and E =


0

−Vc2/L2

0
0


Referring to Equation (40), the state variable matrix is


Î1
Î2

V̂c1
V̂c3

 =


s 0 1

L1
− H(s)

Vp
× Vc2

L2
−H(s)

Vp
× Vc2

L2

0 s 0 − 1
L2−1

C1
0 s 0

0 1
C3

0 s− 1
RC3


−1

0
0

1/C1
0

[ Îin
]

(80)

From Equation (79), the small-signal transfer functions can be obtained,

Î1

Îin
=

−
(

L2Vp − H(s)Vc2L1
)

L1L2VpC1s2 + L2Vp − L1Vc2H(s)
(81)

V̂c1

Îin
=

L1L2Vps
L1L2VpC1s2 + L2Vp − L1Vc2H(s)

(82)

The small-signal control transfer function can be obtained by substituting Ũ(s) = 0 in
Equation (38).

Therefore, 
Î1
Î2

V̂c1
V̂c3

 =


s 0 1/L1 0
0 s 0 −1/L2

−1/C1 0 s 0
0 1/C3 0 s− 1/RC3


−1

0
−Vc2/L2

0
0

[d̂] (83)

The inductor current L2 and the capacitor voltage C3 are thus given by

Î2

d̂
= − Vc2(C3Rs− 1)

s2C3L2R− sL2 + R
(84)

V̂c3

d̂
= − RVc2

s2C3L2R− sL2 + R
(85)
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2.3. Pass-Through Mode

In pass-through mode, switches S1 and S3 are permanently switched OFF, and switches
S2 and S4 are permanently switched ON. The input voltage is directly passed on to the
output. Hence no controller is required for this mode.

3. Control Design of Split-Pi Converter

Following the mathematical analysis and small-signal modeling of the SPC, the open
loop transfer functions of the input current and output voltage are derived in the previous
section. Now, with the available transfer functions, a sample case study of the control
design is carried out using MATLAB SISOTOOL for both the boost and buck modes of
operation [26].

The converter ratings for the sample case study are furnished in Table 1.

Table 1. Ratings of the SPC.

Sl. No. Parameter Rating

1 Input Voltage (Vin) 35.7 to 48 V
2 Output Voltage (Vo) 48 V
3 Frequency (f ) 25 kHz
4 Inductors (L1 = L2) 100 mH
5 Capacitors (C1 = C2) 100 µF
6 Capacitor (C3) 80 µF
7 Duty Cycle (d) 0.75

3.1. Boost Mode of Operation

With the converter ratings given in Table 1, the controller for boost mode operation
can be designed. Substituting the converter ratings in Equation (44), we have

V̂c1

d̂
= − 48

1 + 1× 10−5s2 = Gvd (86)

The system represented by the transfer function in (85) is marginally stable with open-

loop poles on the imaginary axis. The root locus and Bode plots for V̂c1
d̂

are presented in
Figures 6 and 7, respectively.

It is understood from the above plots that the open-loop system represented by the
transfer function in Equation (86) is unstable. Therefore, a suitable compensator has to be
inserted to make it stable.

The compensator design is performed through MATLAB SISOTOOL. The PID tuning
method was adopted for the design. The compensator transfer function after suitable
tuning is given by

C(s) = −1.186 (1 + 0.002s)(1 + 0.063s)
s

(87)

with a pole at origin (p = 0) and two zeros on the negative real axis (z =−499.848, −15.8774)
The closed-loop transfer function of the system with the compensator is given by

G(s) =
C(s) ∗ Gvd(s)

1 + C(s) ∗ Gvd(s) ∗ H(s)
(88)

G(s) =
7.173× 10−8s5 + 3.7× 10−5s4 + 7.742× 10−3s3 + 3.7s2 + 56.93s

1× 10−10s6 + 7.173× 10−8s5 + 5.7× 10−5s4 + 7.742× 10−3s3 + 4.7s2 + 56.93s
(89)

The pole-zero map, root locus, and Bode plots of the compensated system are depicted
in Figures 8–10, respectively.
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The compensated system is observed to have an infinite gain margin at a phase
crossover frequency of 916 rad/s and a phase margin of 120◦. The system is thus stable.

3.2. Buck Mode of Operation

The controller for the buck mode of operation can be designed in this section. Substi-
tuting the converter ratings given in Table 1 into Equation (84), we have
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Î2

d̂
= − 0.0432s− 54

8× 10−5s2 − 100× 10−3s + 10
= Gid (90)
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The system represented by the transfer function in Equation (90) is unstable with
two poles (p = 1140, 109.6) and a zero (z = 1250) on the positive real axis. The root locus
and Bode plots for the system are shown in Figures 11 and 12, respectively.
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It is understood from the above plots that the closed-loop system represented by the
transfer function in Equation (92) is unstable. Therefore, a suitable compensator has to be
inserted to make it stable.

The compensator design is performed through MATLAB SISOTOOL. The LQG syn-
thesis method was adopted for the design. The compensator transfer function after suitable
tuning is given by

C(s) =
0.011801 (1− 0.01s)(1− 15s)

s(1 + 1.7× 10−5s + 1.764× 10−9s2)
(91)

with three poles (p = 0,−4819± 23317i) and two zeros (z = 99.933, 0.0667).
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The closed-loop transfer function of the system with the compensator is given by

G(s) =
C(s) ∗ Gid(s)

1 + C(s) ∗ Gid(s) ∗ H(s)
(92)

G(s) =
−1.079× 10−17s8 − 7.59× 10−14s7 − 5.87× 10−9s6 + 1.57× 10−5s5 − 0.01182s4 + 1.987s3 − 95.65s2 + 6.373s

1.27× 10−17s8 + 8.128× 10−14s7 + 3.25× 10−11s6 + 9.33× 10−8s5 − 0.00029s4 − 0.01s3 + 4.35s2 + 6.373s
(93)

The pole-zero map, root locus, and Bode plots of the compensated system are depicted
in Figures 13–15.
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4. Experimental Prototype of Split-Pi Converter

An experimental hardware of 500 W SPC was constructed as shown in Figure 16
to verify its operation. The hardware ratings and component specifications are listed in
Table 2 The STM32 controller was used to generate switching pulses to the converter. A
generic PCB board was used. Two MOSFET switches were stacked in series to obtain the
required voltage range. The design of the controller is vital to overcome the nonlinearity of
the system and to obtain the desired output voltage with good dynamics. The direct pole
placement scheme was used here. The control block diagram is given in Figure 17. Here,
Hv(s) and Hi(s) denote the error amplifiers [27].
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Table 2. Ratings and component specifications of the converter hardware.

Rated Power 500 W
Voltage Range 24–48 V

Switching Frequency 25 kHz
Load 4.6 Ω

Inductances L1, L2 178 µH
Capacitances C1, C3 100 µF

Capacitance C2 80 µF

The converter was operated in both the forward and reverse modes to verify its
bidirectional property. Switches S1 and S2 were alternatively triggered, while S3 and S4
were kept OFF and ON, respectively, to allow the converter operation in boost mode. The
input and output voltage waveforms were recorded for both the forward and reverse modes
and are depicted in Figures 18 and 19, respectively. The input voltage was maintained at
12 V, and a 24 volt output was measured as seen in Figure 18 for forward mode of operation.
A different input voltage of 18 volts was maintained as the input side for the reverse mode
of operation, and a 36 volt output was measured as seen in Figure 19.
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The input current and voltage waveforms under both forward and reverse modes
of operation of the converter were also recorded and are presented in Figures 20 and 21,
respectively. The prototype of the split-pi converter was tested for half and full load
conditions also, and the results show good matching with the simulation studies performed.
The current ripples were less than 5%, and the voltage ripples were less than 2% in all
loading conditions. The efficiency at the indicated voltages and currents is nearly 88.7%,
and the temperatures reached by the power components after full load were only 2 degrees
more than the ambient.
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5. Conclusions

In this paper, the steady-state modeling for different modes of operation of the SPC
was studied in detail. A state–space averaging scheme was adopted to formulate the
small-signal open-loop transfer functions of the input current and output voltage. The
small-signal transfer functions were derived for both the boost and buck modes of operation
of the converter. Sample case studies of compensator design for stable operation of the
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converter under various operating modes were presented. Frequency response plots
were illustrated for both the uncompensated and compensated systems. An experimental
prototype of the SPC with closed-loop control proving its bidirectional capability was
developed, and the recorded results were presented.
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