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ABSTRACT

Fixed pattern noise (FPN) for a CCD sensor is modeled as a sample of a spatial white noise process. This model is,
however, not adequate for characterizing FPN in CMOS sensors, since the readout circuitry of CMOS sensors and
CCDs are very different. The paper presents a model for CMOS FPN as the sum of two components: a column
and a pixel component. Each component is modeled by a first order isotropic autoregressive random process, and
each component is assumed to be uncorrelated with the other. The parameters of the processes characterize each
component of the FPN and the correlations between neighboring pixels and neighboring columns for a batch of
sensors. We show how to estimate the model parameters from a set of measurements, and report estimates for
64 x 64 passive pixel sensor (PPS) and active pixel sensor (APS) test structures implemented in a 0.35 micron CMOS
process. High spatial correlations between pixel components were measured for the PPS structures, and between the
column components in both PPS and APS. The APS pixel components were uncorrelated.

Keywords: CMOS image sensor, fixed pattern noise, nonuniformity, image sensor characterization

1. INTRODUCTION

Fixed pattern noise (FPN) is the variation in output pixel values, under uniform illumination, due to device and
interconnect mismatches across an image sensor. In a CCD image sensor FPN is modeled as a sample from a spatial
white noise process*. This is justified by the fact that in a typical CCD sensor all pixels share the same output
amplifier. As a result FPN is mainly due to variations in photodetector area and dark current, which are spatially
uncorrelated. To estimate FPN for a CCD sensor output values are read out multiple times for each pixel at the
same constant monochromatic illumination and an average pixel value is computed. The averaging reduces random
noise and the remaining pixel output variations are the FPN. A single summary statistic of the FPN, usually the
standard deviation of the averaged pixel values, is adequate to characterize the FPN since the output values are
uncorrelated.!

This white noise model is not adequate for characterizing FPN in CMOS sensors because the readout circuitry for
CMOS sensors and CCDs are very different. As depicted in Figures 1 and 2 the readout signal paths for both CMOS
passive and active pixel sensors (PPS and APS) include several amplifiers some of which are shared by pixels and
some are not. These amplifiers introduce additional FPN, which is not present in CCDs. In particular the FPN due
to variations in column amplifier offsets and gains causes “striped” noise, which has a very different spatial structure
than the white noise observed in CCDs. Even though the offset part of this column FPN is significantly reduced
using correlated double sampling (CDS), the gain part is not. Therefore, to adequately characterize CMOS FPN,
we must estimate separately factors associated with pixel to pixel variation, and column to column variation.

In this paper we introduce a statistical model for FPN in CMOS sensors. We represent FPN as the sum of two
components: a column and a pixel component. Each component is modeled by a first order isotropic autoregressive
process, and the processes are assumed to be uncorrelated. The process parameters characterize the standard
deviation of each FPN component and the spatial correlations between pixels and columns for a batch of sensors.

Other author information: Email: abbas@isl.stanford.edu, fowler@isl.stanford.edu, minhao@isl.stanford.edu, chiao@isl.stanford.edu;
Telephone: 650-725-9696; Fax: 650-723-8473
* A spatial white noise random process is a set of zero mean uncorrelated random variables with the same standard deviation. If the
random variables are gaussian, the noise is completely specified by the standard deviation of the random variables.
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This model can be used to measure the quality of a batch of sensors by comparing the model parameters to their
nominal values, or to simulate FPN by drawing samples from the processes.

In Section 2 we describe our FPN model and show how to estimate its parameters. In section 3 we report
measurements and results using our 64 x 64 PPS and APS test structures® implemented in a 0.35 micron CMOS
process. The results show high spatial correlations between pixel FPN components for the PPS structures, but
virtually no correlation between the APS pixel FPN components. Correlations were observed between the column
FPN components in both PPS and APS. These results appear to be consistent with the nature of the spatial variations
of the different FPN sources, but as discussed in Section 4 more work remains to be done to validate our proposed
FPN model.
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Figure 1. PPS signal path. Pixel FPN is caused by photodiode leakage, variations in photodiode area, channel
charge injection from M1, and capacitive coupling from the overlap capacitance of M1. Column FPN is caused
by offset in the integrating amplifier(*), size variations in the integrating capacitor CF, channel charge injection
from M2(*), capacitive coupling from the overlap capacitance of M2(*), and threshold variations in M2(*). FPN
components that are reduced by CDS are marked with (*).

2. MODELING AND ESTIMATION

Assuming constant monochromatic illumination we model FPN as a two dimensional random process (random field)
F; ; where the F} ;s are zero mean random variables representing the deviation of the output pixel values from the
pixel value with no added random noise, and 7 and j are the row and column index respectively. To capture the
structure of FPN in a CMOS sensor we express F; ; as the sum of a column FPN component Y; and a pixel FPN
component X; ;. Thus,

Fij=Y;+ X, (1)

where the Y}s and the X ;s are zero mean random variables.

The goal of this work is to devise an FPN model to be used for measuring the quality for a batch of sensors or
to simulate FPN, e.g. in a digital camera simulator. We would like the model to be simple, but accurate enough,
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Figure 2. APS signal path. Pixel FPN is caused by photodiode leakage, variations in photodiode size, variations
in photodiode capacitance, channel charge injection from M1(*), capacitive coupling from the overlap capacitance
of M1{*), threshold variations in M1(*), and threshold variations in M2(*). Column FPN is caused by variations in
bias current (M4)(*), offset in the column amplifier, and gain variations in the column amplifier. FPN components
that are reduced by CDS are marked with (*).

with as few parameters as possible so that good estimates can be developed. We therefore make several simplifying
assumptions.

The first assumption we make is that the random processes Y; and X; ; are uncorrelated, i.e. that E[Y;X; ;] =0
for all 7,7, and k. This assumption is reasonable since the column and pixel FPN are caused by different device
parameter variations (see Figures 1 and 2). We further assume that the column (and pixel) FPN processes are
isotropic. Thus the autocorrelation functions for the processes Y; and X; ;s are space invariant. Since FPN depends
on device variations which tend to increase with the distance between the devices on the chip, we assume that the
correlation between pixels (or columns) decreases as a function of the distance between them.

We propose to use autoregressive processes to model FPN because their parameters can be easily and efficiently
estimated from data. In this paper we only consider the simplest such model, namely first order isotropic autore-
gressive processes. The work presented can be extended to higher order models. However, the results suggest that
additional model complexity may not be warranted.

Our model assumes that the column FPN process Y; is a first order isotropic autoregressive process of the form:
Yi =a(Yjoy + Y1) + Uj, (2)

where the Ujs are zero mean, uncorrelated random variables with the same variance 0%, and 0 < a < % is a parameter
that characterizes the dependency of Y; on its two neighbors . The autocorrelation function Ry (n) = E[Y;Y;;,] of
the process Y; must satisfy the recurrence equations:

Ry (0) = 0%y = 2aRy (1) + Ryy(0), (3)
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Ryu(0) = 2aRyy(1) + o, (4)
Ry(n) =a(Ry(n—~1)+ Ry(n+1)) + Ryy(n), and (5)
Ryy(n) = a(Ryy(n — 1)+ Ryy(n + 1)) (6)
for |n| > 1.

To estimate the model parameters 07 and a, we first estimate 0%y and Ry (1) (using the estimators in equa-
tions 15, 17, and 19). We express
Ry (1) = pyo®y, (7)

where 0 < py < 1. Thus py can be directly estimated from the estimates of 62y and Ry (1). It can be verified using
the recurrence equations 3, 4, 5 and 6 that

a= BZ, and (8)
2
a?]:azy(l—py)%. (9)

Thus once ¢ and py are estimated equations 8 and 9 can be used to estimate a and o).

Our model assumes that the pixel FPN process X;; is a two dimensional first order isotropic autoregressive
process of the form:
Xi,j = b(Xi__lyj + Xi+1,j + Xi,j—l -+ Xi’j+1) + V;’]', (10)

where the V; ;s are zero mean uncorrelated random variables with the same variance oy, and 0 < b < i is a
parameter that characterizes the dependency of X ; on its four neighbors. The autocorrelation function Rx (m,n) =
E[X; ; Xitm j+n] = Rx{(n,m) and the crosscorrelation function Rxv (m,n) = E[X; ;Viim, j+n] = Rxv{n, m) satisfy
the recurrence equations

Rx(0,0) = 0®x = 4bRx(0,1) + Rxv(0,0), (11)

Rxv(0,0) = 4bRxv(0,1) + o°y, (12)

RX(n,‘m) =b(Rx(n—1,m)+ RBx(n+1,m)+ Rx(n,m—1)+ Rx(n,m+ 1)) + Rxv(n,m),and (13)
Rxv(n,m) =b(Rxv(n—1,m)+ Rxv(n+1,m)+ Rxv(n,m — 1)+ Rxy(n,m + 1)) (14)

for |n|, or {m| > 1. To estimate the model parameters o, and b we first estimate 0% and Rx(1,0) = Rx(0, 1) using
the estimators given in equations 15, 16, 18, and 20). Although it may be possible to solve the above recurrence
equations analytically we use the simple numerical method described in APPENDIX A. An advantage of this method
is that it can be readily used for more complex models.

Now to estimate the parameters of the model we measure pixel output values for a subsensor array of N x M
pixels under constant illumination. We repeat this measurement P times and average the values for each pixel to
reduce the effect of random noise on the output values. We then compute the sample average output pixel value and
subtract it off the averaged values to obtain estimates of the F; ;s. To simplify our analysis we assume that these
estimates are perfect, i.e. that we know the values of the F; ;s.

To estimate Y;, X, j, 0%, 0%, Ry (1), and Rx(0,1) we use the following estimators:

_ 1
V== );F] (15)
Xi;=Fi;-Y;, (16)
— 1 M —2
Sl T DR (17
j=1
— 1 N M 2
- —_
= S L L @
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M1

RY M 1 ; j ]+17 and (19)
N M-1 N~-1 M
RX(Ovl) __1) Z Z Xz]lsz—H 2]\/[ Z ZXIJ‘Xl-l-l]' (20)
i=1 j=1 i=1 j=1
3. RESULTS

In this section we present the measured FPN results from our 64 x64 pixel PPS and APS test structures® fabricated
in a 0.35um digital CMOS process. A summary of the main test structure characteristics are provided in Table 1.

PPS APS

Technology 0.35 um, 4-layer metal 0.35 um, 4-layer metal
1-layer poly, nwell CMOS | 1-layer poly, nwell CMOS

Number of Pixels 64x64 64 x 64

Pixel Area 14pmx14pum 14pmx14pm

Transistors per pixel | 1 3

Fill Factor 37% 29%

Photodetector nwell /psub diode nwell/psub diode

Pixel Interconnect Metall and Poly Metall and Poly

Table 1. Test Structure Characteristics in 0.35um CMOS Technology

The setup used to measure FPN is described by Fowler et al..® It consists of a DC light source, a monochromator,
an integrating sphere, and a calibrated photodiode. The measurements were performed under no illumination (dark)
and at typical illumination using a monochromatic source, of wavelength A = 600nm. At the beginning of each array
measurement, all pixels are reset. The data is then read out after an integration time of 50ms. The data from each
pixel consists of a signal sample and a reset sample. Each of the signal and the reset samples are amplified using a
very low noise amplifier and then digitized using a 16 bit ADC. The amplifier is used to match the output swing of
the sensor to the input range of the ADC. The array measurement is repeated P = 1024 times for each chip. These
measurements are performed for eight PPS and eight APS chips with and without illumination. The chosen level of
illumination results in an output signal that is 70% of the maximum output signal swing.

The FPN results for the PPS and APS test structures with and without illumination are presented in Tables 2
and 3, respectively. The tables present the estimated standard deviation and autocorrelation values averaged over
the eight chips and the derived process parameters based on the averaged estimates. All values are reported in
equivalent input electrons. To find the input electron numbers we normalized the measured output voltage values
using the estimated gain numbers obtained from our QE measurements.? These results translate into estimated dark
FPN of 1.7% and 0.15% of full well capacity for PPS and APS respectively.

The results clearly show that CDS reduces FPN for both PPS and APS. It also shows that CDS is far less effective
with illumination than without illumination. After CDS the PPS FPN is higher than that of the APS. The fact that
PPS column FPN is larger than that for APS is easily explained by the additional column charge integrating amplifier
used in PPS. The higher PPS pixel FPN may be attributed to the charge injection from the overlap capacitance
transistor which is not canceled by CDS. It may also be due to the bias in the estimators.

The results also show that with illumination CDS increases FPN correlation between columns. This suggests
that CDS removes the less spatially correlated FPN components, while leaving the more correlated ones unchanged.
In particular since CDS eliminates column amplifier offset and bias current variations in APS, and column offset
variation in PPS, the results suggest that these sources are rapidly varying from column to column. On the other
hand, variation in column amplifier gains, and the integrating amplifier capacitance CF in PPS are not removed by
CDS and appear to be more spatially correlated. '

The FPN correlation between pixels is high for PPS and low for APS. This suggests that variations in column
amplifier offset, charge injection, and capacitive coupling, which dominate pixel FPN in PPS are highly correlated,
while pixel area and dark current, which dominate pixel FPN in APS, vary rapidly from pixel to pixel.
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PPS with CDS

PPS without CDS

APS with CDS

APS without CDS

oz (electrons?)
G,z (electrons?)
Ty

0% (electrons?)
0,2z (electrons?)

‘DI
N

ot (electrons?)

b
@— (electrons?)

Estimated Statistics:

Ry (1) (electrons?)
Try (1) (electrons?)

Rx(0,1) (electrons?)
Trx(0.1) (electrons?)

Estimated Paramters:

53519470
458044
12255300
1728000

4584010
128423

2217790
83427

0.11
36232900
0.19
2321600

647555000
17932700
61853600
1299050
4582680
144732
2211580
89529

0.05
557027000
0.19
2320900

145550
7851
20862
4085
597282
7133

46763
3478

0.09
87332
0.04
585761

343326
60456

100255
12704
5619600
114361

306332
17288

0.15
186633
0.03
5558750

Table 2. Estimated statistics and parameters under uniform illumination
averaged over all 8 chips.

estimators.

(=70% full well). The statistics are

Note that 02> ORy (1), Og2 , and TR, (0,1) are the estimated standard deviations of the

PPS with CDS

PPS without CDS

APS with CDS

APS without CDS

o2 (electrons?)
7,2 (electrons?)

0% (electrons?)
7,2 (electrons?)

a
o2 (electrons?)
b
o? (electrons?)

Estimated Statistics:

Ry (1) (electrons?)
TRy (1) (€lectrons?

Rx(0,1) (electrons?)
TRx(01) (electrons?)

Estimated Paramters:

6569330
45364

596727
) 119797
151812
10883
122902
6891

0.05
5694860
0.24
19949

317322000
16521500
14011000
3122460
146100
14329
120067
9524

0.02
296539000
0.24

19199

80900
32747
7421
5374
4155
1660
36

o6

0.05
70029
0.01
214

451611
68787
159550
17057
7144450
105369
442880
41255

0.18
234866
0.03
7067090

Table 3. Estimated statistics and

Note that 052, ORy (1), O,

parameters under dark conditions. The statistics are averaged over all 8 chips.
o3 and 55, (01 ) are the estimated standard deviations of the estimators.
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o compare omr model with the measured data we generated 64x61 sample FPN fmages using, the model pa
rameters in Tables 2 and 3. The measured and simulated FPN images for PPS and APS with and without CDS
are shown in Figures 3 and 1. respectively. To display the FPN images we scaled each non-CDS image so that the
maximim pixel value range is 8-bits. Each CDS image was then scaled using the same scale factor as its non-CDS
counterpart. Note that the APS mmages use a scale factor that 1= eight times smaller than that for the PI'S images
These images demonstrate that our model closelv predicts FPN for PPS and APS,
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Figure 3. Top left — measured PPS FPN without CDS. top right - measured PPS FIPN with CDS. hottom lefi
simulated PPS FPN withont CDS. and bottom right -~ simulated PPS FPN with C'DS.
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Figure 4. Top left measured APS FPN without CDS. top right  measured APS FPN with CDS. botrom lefi
simulated APS FPN without CDS. and bottom right — simulated APS FPN with CDS.



4. CONCLUSIONS

We described a new FPN model for PPS and APS CMOS image sensors. The model represents FPN as the sum of
two components: a pixel and a column FPN component. Each component is modeled using a first order isotropic
autoregressive process, and the processes are assumed to be uncorrelated. We presented a method for estimating the
parameters of the processes and reported results that justify the added model complexity compared to the simple
white noise model used in CCDs. The model appears to match the measured results well, as demonstrated by the
similarity between the simulated and measured FPN images.

A number of issues remain to be investigated. The estimators we used are biased and may have unacceptably
large variances, which may have caused several inaccuracies in our results. More data and more analysis is needed to
verify the accuracy of the estimators. It may in fact be necessary to find better estimators. The 64 x64 pixel sensors
we measured are too small to adequately represent FPN in real sensors. In particular for a large sensor there may be
a need to model the effect of systematic device variation across the sensor. Finally, a weakness of our model is that
it does not separately model gain and offset FPN components. Fowler et al.? report preliminary gain FPN results.
However, no method for estimating gain FPN correlation was provided. To use our model for characterizing gain
FPN we need to fit the model to several levels of illumination resulting in a very large amount of collected data and
a large number of parameters to be estimated. A model with less parameters needs to be developed.
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APPENDIX A. PIXEL PARAMETER ESTIMATION

To estimate the model parameters b and o we consider an array with N = M = 2] + 1 and with zero boundary
conditions and arrange equation 10 in vector notation using a raster scan pixel format to obtain

V = AX, (21)

where V=[Viy Vig ...Vim Va1 ...V m]F,and X = [X13 X12 ... X1,m X2 ... Xnum]?. Using this notation
it can be verified that the covariance matrix of X is

Lx =0l ATIAT (22)

The finite image size and zero boundary conditions result in ¥ x which is not isotropic. For example, ag(w is not a
constant and depends on the pixel distance from the edge of the array. In our isotropic model ox, ; is a constant.
The error caused by this model truncation can be minimized by choosing a large enough array size and using the
values for the pixel at the center of the array. Let A~A~T(21% + 21 + 1,20? + 2] + 1) be the center entry of the
matrix A~ A~7, we estimate b by finding a value 0 < b < 1 such that equation 23 is minimized.

Rx(0,1) A'AT(22+20+1,202+20+2)

L 23
0% A-TA-T(212 4+ 20+ 1,22 + 21+ 1) (23)
We then use b to compute A. The estimate of o2, is then found by
. 2
o = Ix (24)

A 1Ay TEE+2+1,22+20+1)

For the results reported in the paper we used values for [ in the range of 7 to 13.
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