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Abstract—The paper presents a major update of the software
tool TimeNET, a package for the modeling and performance
evaluation of standard and colored stochastic Petri nets. Among
its main characteristics are simulation and analysis modules for
stationary and transient evaluation of Petri nets including non-
exponentially distributed delays, as well as an efficient simulation
module for complex colored models.

An overview of the tool is given as well as a description of
the new features, which are demonstrated using a manufacturing
system application example. The tool is available free of charge
for non-commercial use.
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I. INTRODUCTION

The design of non-trivial technical systems is more efficient
and less risky when the effect of design decisions can be
estimated early. Model-based performance evaluation is an
important help. In the area of computer-controlled technical
systems, numerous model classes within the field of stochastic
discrete event systems have been proposed. Stochastic Petri
nets and their variants are widely accepted today as a mature
tool for describing systems exhibiting concurrency, resource
restrictions, synchronization, time-dependency, and probabilis-
tic behavior. However, their usability in practice depends on
the availability of powerful software tools that are easy to
use. A graphical user interface is required to efficiently enter
the graphical representation. The task of improving a model
until it behaves as expected can be supported by qualitative
checks on the model as well as an interactive simulation or
visualization of the behavior. Finally, evaluation algorithms
and other aspects such as code generation or direct control
have to be implemented.

TimeNET is a software tool for the modeling and per-
formability evaluation using stochastic Petri nets. Its two
main characteristics are the evaluation of models with non-
exponentially distributed firing delays and the ability to model
and evaluate complex colored stochastic Petri nets. The latter
model type combines colored Petri nets with freely definable
object-like tokens with the probability and time concept that
is generally accepted for stochastic Petri nets such as GSPNs
(generalized stochastic Petri nets [1]). The tool is thus capable
of modeling complex systems in a compact way, and to
obtrain performance measures for them. TimeNET has been
successfully applied during several modeling and performance

evaluation projects and there are several hundred installations
in universities and other organizations worldwide.

The tool is available free of charge for non-commercial use.
To get a copy of the tool, follow the instructions on the web
page http://www.tu-ilmenau.de/sse/timenet/.
There are regular updates with minor additions and bug re-
leases made available at the tool home page. A comprehensive
user manual dan be downloaded as well.

This paper describes version 4.1 of the TimeNET tool,
which is available since April 2012. A brief history is given
in the sequel, followed by an overview of related software
packages. Section II describes the main features of TimeNET.
Specifically, the supported net classes and corresponding anal-
ysis modules are mentioned; a description of user interface and
software architecture is given, and the section ends with a list
of applications with references.

Section III describes the new features of TimeNET 4.1.
Among the most important improvements are stationary and
transient simulation modules with statistical accuracy control,
extended color-dependencies for inscriptions, and rare-event
simulation (all for stochastic colored Petri net models); and
non-interactive token game visualization, better graphical dis-
play of analysis results, and PNML exchange format [2] import
and export (all for eDSPN models). The tool in general is now
available as a self-contained installation program, has been
ported to Windows 7, and improved by a help system inside
the user interface.

An example demonstrates some of the improvements in Sec-
tion IV. A manufacturing system model from the literature is
used, which shows how compact the behavior can be specified
with a colored model in comparison to the original generalized
stochastic Petri net. The paper ends with conclusions and
acknowledgements.

History of TimeNET: The development of TimeNET started
in the mid-1990s, based on an earlier implementation of
DSPNexpress [3], both at Technische Universität Berlin. Mod-
eling and evaluation of extended deterministic and stochastic
Petri nets (eDSPNs) were added. The graphical user interface
was originally based on the X Athena Widget toolkit, and not
easily adaptable to extensions. TimeNET 3 [4] contained a
major change with a new Motif-based user interface Motif
and ability to capture several modeling environments within
the same (generic) tool. This allowed for extensions included
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variable-free colored Petri nets, fluid stochastic Petri nets,
discrete-time stochastic Petri nets, and modular blocks of
SPNs. Other extensions dealt with specialized analysis algo-
rithms for existing model classes.

The next major development step was TimeNET 4 [5], [6] in
2007, which included modeling and simulation capabilities for
colored stochastic Petri nets. A new graphical user interface
was implemented in Java, making the whole tool available both
in Linux and Windows environments. Model type descriptions
and models themselves are stored in an application-specific
XML format since then. Some prototypical modules of the
tool are discontinued with TimeNET 4 to reduce maintenance
efforts, including discrete-time models, fluid models, and
variable-free colored nets (which are replaced by the broader
class of SCPN now).

Tool development has moved to Technische Universität
Ilmenau in 2008, and version 4.1 has been released in April
2012. This paper covers the improvements contained in this
update (c.f. Section III).

Related Software Tools: Numerous commercial, research
and prototype software tools have been developed for stochas-
tic Petri nets and related formalisms in the past; overviews are
given in [7], [8]. Probably the best starting point for a search
is the Petri net home page [9]. A non-exhaustive overview of
related tools is given here.

GSPN models are graphically edited, analyzed or simu-
lated with the software package GreatSPN 2.0 [10]. The tool
provides a graphical user interface for editing and evaluating
generalized stochastic Petri net models. Moreover, stochastic
well-formed nets (SWN) with colored tokens can be evaluated.
Symmetries in the reachability graph can be detected and
lumping techniques facilitate analysis algorithms with less
computational effort in many cases. Components for direct
numerical analysis and simulation (transient and steady-state)
are contained.

Some analysis methods and a graphical user interface for
GSPN models have been implemented in the PIPE tool [11].

The software package SPNP 6 [12] has been developed at
Duke University. It contains components for the transient and
steady-state analysis of stochastic reward nets (SRNs), which
are comparable to GSPNs. Models are specified alphanu-
merically as C functions. Very general performance measure
specifications can be given and a sensitivity analysis module
is available. Transient and cumulative reward measures are
obtained using randomization. The tool has been extended with
a Tcl/Tk based graphical user interface, which is referred to
as iSPN.

The tool WebSPN 3.3 [13] analyzes non-Markovian stochas-
tic Petri nets, and has a web-enabled user interface. Phase-type
fitted functions may be used to specify non-Markovian delays.
The tool can map UML models to Petri nets.

Advanced methods for the analysis of non-Markovian Petri
net models, especially symbolic state-space analysis of pre-
emptive Time Petri nets, have been implemented in the Oris
tool [14].

Colored Petri nets [15] with ML-based inscriptions are

supported by the CPN-Tools [16]. The tool is not primarily
aiming at performance evaluation, but offers a time notion
embedded in tokens for simulation which is different from the
usual understanding of time in SPN.

Other approaches to tool implementations have been to-
wards the integration of other tools in one common user
interface, and by combining the results of the individual tools.

One example is the SHARPE tool (Symbolic Hierarchical
Automated Reliability and Performance Evaluator [17]). It can
be used for specifying and analyzing performance, reliability
and performability models. The toolkit provides a graphical
user interface, specification language, and solution methods
e.g. for fault-trees, queuing networks, semi-Markov reward
models, and GSPNs. Steady-state, transient and interval mea-
sures can be computed and used in other models.

OpenSESAME [18] covers reliability block diagrams with
inter-block dependencies to evaluate the reliability of complex
fault-tolerant systems.

Different net classes, including colored models, can be
edited with the Snoopy tool [19]. It can be used to simulate
models and uses analysis modules of several other tools to
gain results. Its main application area is Petri net models of
biochemical processes.

The software package HiQPN [20] has been developed at
the University of Dortmund. It uses the model class queuing
Petri nets (QPNs) as well as their hierarchical combination
(HiQPNs), including colored Petri net tokens and queuing
places. Several analysis techniques for the steady-state per-
formance evaluation are provided, namely decomposition ap-
proaches based on tensor algebra. The hierarchical structure of
the model is used for a structured description of the stochastic
generator matrix. QPME [21] is a recent Java-based simulator
and editor for this net class.

Möbius 2.3 [22] is a multi-formalism, multi-solution soft-
ware tool, in which model classes as well as analysis al-
gorithms can be combined. This is done using an abstract
model description. Its implementation is consequently done
as an abstract functional interface. The Möbius framework
is able to integrate additional solvers that are applicable to
some of its model classes in a modular way, and thus relieves
the developers of prototype implementations from designing
a complete tool from scratch. On the other hand it is possible
to use existing evaluation algorithms once a new model class
has been described with the abstract functional interface. A
significant point of Möbius is the possibility to combine model
parts from different classes, and a simultaneous simulator for
such models.

II. OVERVIEW OF TIMENET

This section gives a brief overview of TimeNET’s model
classes and available analysis methods (Subsection II-A).
Moreover, its graphical user interface, the underlying software
architecture, and some application areas are presented in
Subsections II-B, II-C, and II-D.



A. Net Classes and Analysis Methods

TimeNET supports modeling and evaluation of different net
classes, namely

• eDSPNs — extended deterministic and stochastic Petri
nets, which include generalized stochastic Petri nets as a
special case;

• SCPNs — colored stochastic Petri nets;
• and stochastic UML state charts (prototype status).

Characteristics of the model classes and analysis modules
available in the tool are listed below.

The classic main model class of TimeNET are eDSPNs.
In this net class with indistinguishable tokens, firing delays
of transitions can either be zero (immediate), exponentially
distributed, deterministic, or belong to a class of general
distributions called expolynomial. Such a distribution function
can be piecewise defined by exponential polynomials and has
finite support. It may also contain jumps, making it possible
to mix discrete and continuous components. Many known
distributions (uniform, triangular, truncated exponential, finite
discrete) belong to this class. A textual syntax is used to define
such delay functions.

If all transitions with non-exponentially distributed firing
times are mutually exclusive in a model, stationary numerical
analysis is possible [23]. If the non-exponentially timed transi-
tions are restricted to have deterministic firing times, transient
numerical analysis is also provided [24], [25]. If there are only
immediate and exponentially timed transitions, the model is a
GSPN and standard algorithms for steady-state and transient
numerical evaluation based on an isomorphic Markov chain
are applicable.

Structural properties of eDSPNs like extended conflict sets
and invariants (semi flows) can be obtained with TimeNET.
They are displayed and checked by the modeler to examine the
correct model specification [26]. For a steady-state or transient
analysis of a simple stochastic Petri net model of any kind,
the reachability graph is computed. Structural properties are
exploited for an efficient generation of the reachability graph.
Subnets of immediate transitions are evaluated in isolation.

Transient analysis of DSPNs is based on supplementary
variables [24], [25], which capture the elapsed enabling time
of transitions with non-exponentially distributed firing delays.
TimeNET shows the evolution of the performance measures
from the initial marking up to the transient time graphically
during a transient analysis.

The tool also comprises a simulation component for
eDSPN models [27], which is not subject to the restriction
of only one enabled non-Markovian transition per marking.
Steady-state and transient simulation algorithms are available.
Results can be obtained faster by parallel replications (master
/ slave architecture), using control variates. During the simula-
tion run, intermediate results of the performance measures are
displayed graphically together with the confidence intervals.

In safety-critical systems, catastrophic events are impor-
tant, but happen only rarely. Their standard simulation up
to a certain statistical confidence is thus unacceptably time-

consuming. The field of rare-event simulation covers this issue,
and a technically attractive solution is the RESTART algo-
rithm [28]. The RESTART implementation in TimeNET was
done for restricted problem types of simple stochastic Petri
nets first [29]. Some of the restrictions have been overcome
by allowing more general performance measures [30] later.

An automatic optimization method for eDSPN models
based on a two-phase simulated annealing has been imple-
mented as a prototypical extension of TimeNET [31], which
is not part of the distributed version.

A TimeNET model class capturing UML Statecharts has
been added recently [32]. Such a model is translated into an
eDSPN for performance evaluation.

Stochastic colored Petri nets (SCPNs) are available since
TimeNET 4 [33]. Due to the inherent complexity of the
models, a requirement of only one non-exponential transition
per marking was decided to be too restrictive. Thus only simu-
lation has been implemented for the performance evaluation of
SCPN models so far. A recent improvement are transient and
steady-state SCPN simulations with statisical error control
and on-line graphical output of results.

In addition to a standard simulation, a model-distributed
simulation method has been implemented as a prototype. This
module allows the efficient optimistic simulation of complex
models on a cluster of workstations, exploiting fine-grained
model partitioning and optimized rollbacks based on a special
notion of concurrent time [34].

Rare-event simulation of SCPN models with the RESTART
method has been proposed in [6], [35], and is now imple-
mented in TimeNET 4.1. This allows evaluating the reliability
of complex safety-critical systems.

The token game, i.e., an interactive simulation of the be-
havior of a model, is available for eDSPNs and SCPNs in
TimeNET. Enabled transitions are highlighted in the graphical
user interface, and are fired by clicking them with the mouse.
The state is updated and shown in the window. A recent
extension is an automatic animation of the model behavior
for eDSPNs.

B. User Interface and Tool Use

The graphical user interface (GUI) of TimeNET had been
completely rewritten in JAVA for version 4. It is generic in the
sense that more or less any graph-like modeling formalism can
be easily integrated without much programming effort. This is
achieved using a XML description of net classes that are not
only used to implicitly define the model file format(s), but also
all drawing elements for the GUI as well as the icons that are
shown to the user. The GUI is thus not restricted to Petri nets.
As a stand-alone program it is named PENG, which is short
for platform-independent editor for net graphs.

Model classes are described in an XML schema file, which
defines the elements of the model. Node objects, connectors
and miscellaneous others are possible elements. Nodes can
be hierarchically refined by corresponding submodels, which
may even belong to a different net class. For each node and
arc type of the model the corresponding attributes and the



Fig. 1. Sample screen shot of TimeNET’s graphical user interface.

graphical appearance are specified. The shape of each node
and arc is defined using a set of primitives (e.g. polyline,
ellipse, and text). Shapes can depend on the attribute value
of an object, making it possible to show, e.g., tokens as dots
inside places. Actual models are stored in an XML file that
must be consistent with the model class definition, which
can be checked automatically with library toolkits for XML.
Editing and storing a model can already be done after the
corresponding schema is available.

Figure 1 shows a sample screen shot of the GUI during an
editing session of a SCPN model of a logistic process. There
are standard menus with the necessary editing commands in
the top row, e.g., File to open, close, save, create a model, or
to export it in SVG format for printing. Commands under the
entries Edit (cut, copy, paste, undo, ...) and View (grid on/off,
zoom, go up or down in the hierarchy, ...), Window, and Help
should be self-explanatory and follow common GUI style.
There is a set of icons below the menu bar where the modeler
can access menu commands which are most commonly used.
Below this are buttons to switch between multiple windows
in a tab-like fashion since version 4.1.

Program modules implementing model-specific algorithms
can be added to the tool. A module has a predefined interface
to the main GUI program. It can select its applicable net
classes and extend the menu structure by adding new algo-
rithms. All currently available and future extensions of net
classes and their corresponding analysis algorithms are thus

integrated with the same “look-and-feel” for the user, and re-
use of existing program parts for other net classes is simplified.

For the eDSPN net class, as an example, the menu bar is
extended by Validation (including commands for state-space
size estimation; token game; and structural analysis covering
P and T semi flows, extended conflict sets, traps, as well as
siphons), Evaluation (with numerous simulation and analysis
methods and variants, such as stationary analysis, stationary
simulation, RESTART simulation, transient analysis, and tran-
sient simulation), and Export with the possibility to export the
current model into the former .TN file format as well as the
PNML exchange format. The File / Open command reads
eDSPNs in .XML, .TN, and .pnml format.

The main window contains the drawing area. Models can
be edited with the left mouse button like using a standard
drawing tool with operations for selecting, moving, and others.
The lower icon bar shows all model elements available in the
current model class. The contents of this bar are automatically
derived from the model class description. Clicking one of
them changes the mouse pointer into a tool that creates the
corresponding object. Arcs are added by clicking and holding
at the source element, and then drawing the mouse to the
destination.

Attributes of an element are edited by selecting the latter in
the drawing area and then changing the values in the right
tab. There is one entry in this window for every attribute
as defined in the model class for that object. Transition



TransportToPlant is currently selected in Fig. 1, and the
attributes of a SCPN transition are shown.

The dynamic behavior of a Petri net model can be checked
with an interactive simulation, the token game. A recent
extension is a non-interactive animation mode for eDSPN
models, which will be available for SCPNs in the near future
as well. A background simulation without a visualization can
be started for SCPN models, for instance. Once the actual
simulation program is created and running, the result monitor
is started as well. This JAVA program receives all result
measures from the simulation during run time and displays
them graphically in windows. Moreover, it allows to inspect
the final results in various ways. A sample screen shot is shown
in the example section (Fig. 4).

C. Software Architecture

The main constituents of TimeNET are the graphical user
interface (GUI) and analysis algorithms. The latter are usually
started as background processes from the GUI, but can be run
from the command line prompt as well. Shell scripts control
the execution. Data exchange between GUI and analysis
algorithms is mainly done with data files, while sockets are
used between processes for efficiency.

A major goal in the development of TimeNET 4 was
platform-independency, to allow Windows users access to
the tool. The GUI has thus been completely rewritten in
JAVA, while the internal evaluation modules are primarily
implemented using C++ (older parts in C) for a better com-
putational efficiency. The whole tool now runs on both Unix-
and Windows-based environments, although being compiled
from the same source tree. This has been achieved by using
development tools and run-time libraries that can be configured
on both platforms, such as Eclipse and the gcc compiler. Only
shell scripts are written in their individual platform-specific
language. For the rest of platform dependencies, a few switch
macros or statements covering incompatibilities are sufficient.

Software development for TimeNET is usually done by
students as part of their Master or Ph.D. thesis. It is thus
of high importance to keep all analysis components modular
with well-defined interfaces. The overall tool architecture as
well as the graphical user interface have to be extendable and
adaptable to new net classes and analysis algorithms, to allow
easy prototypical implementations of new research ideas.

Figure 2 shows the interaction between GUI and other
programs for the simulation of stochastic colored Petri nets.
The model is edited with the GUI according to the SCPN
model class. Models as well as model class descriptions are
stored in XML format. The tool architecture allows to run
the graphical user interface on a client desktop PC, while the
computationally expensive simulations run on a remote server.
Both parts may reside on the same host as the desktop default.
This aspect is implemented with a simple middleware-like
remote system. It allows to start and stop programs, transfer
input and output data, and other functions independently of
whether the interacting programs are located on machines
running Unix or Windows.

Code generation

SCPN model

Compilation, linking

monitor

Result

Token game
GUI

Model class

User client PC

Simulation server

Remote system - client part

Remote system - server part

Simulation kernel

Model-specific program part

Single-step modeNormal mode

Fig. 2. Software architecture for SCPN modeling and evaluation

The program code implementing the SCPN transition’s
functionality is generated at the beginning of a simulation
run by an automatic code generation module. This takes the
model as input, and writes C++ classes for each token type
and transition that has been changed since the last simulation.
The resulting code is then compiled forming a model-specific
program, which is linked to a simulation kernel to generate
the actual simulation program. By doing so, efficiency of the
later simulation program increases substantially compared to a
standard simulation which “interprets” the model parts during
the run. While such an approach may work well for uncolored
nets (where tokens in places are just numbers), it turns out to
be quite complex with the set of possibilities of a SCPN.
In fact, the actual program code that checks for enabling
of transition bindings, or fires the transition is completely
encoded in the generated C++-code. Code generation and
linking is done on the remote simulation server. If necessary,
a data base can be combined with the tool to store model
information. A SCPN model can thus be configured using
data from the data base, using the ODBC standard as interface.

The simulation program has two working modes: normal
simulation, which is intended for an efficient computation
of performance measures; and a single-step mode used in
conjunction with the GUI for an interactive visualization of
the behavior (token game). Results of the simulation run are
graphically displayed on the client PC during the simulation
in a result monitor program. They are also stored in files that
can be analyzed after a completed simulation.



Performance evaluation modules for eDSPNs do not use the
remote system. They usually run on the client PC, while time-
consuming evaluation tasks such as replications of simulation
runs as well as transient solution of the Markov chains associ-
ated with non-exponential transitions in a stationary eDSPN
solution can be done in parallel using several (Linux) PCs.

D. Application Areas

TimeNET has been used in a variety of areas, including
• Communication systems [36], [23],
• Manufacturing systems [26] (as well as their indirect

optimization [31]),
• Reliable train control [30],
• Dependability [37], [38],
• Business Processes [39],
• Logistics and supply chains [40], [33], and
• Electronic funds transfer systems [41].

A more comprehensive list of references is given in [6].

III. WHAT IS NEW IN TIMENET 4.1
This section lists some of the improvements that have

been implemented since 2006, when version 4.0 Beta became
available to the public [5].

For the eDSPN net class, the following features are new:
• The structural analysis module has been extended and

derives and displays T semiflows (informally, similar to
transition invariants).

• Probabilities of token distributions in the places of an
eDSPN model can now be displayed (numbers and
graphics) after an analytical solution.

• The token game has been significantly extended and can
now be run in a non-interactive mode with adjustable
speed to show a visualization of the net behavior. The
user can choose if transition firing times should be used
to control firing speed or if the firing should be done in
a clocked fashion.

• The result monitor, which was originally implemented
for the SCPN model class, is now fully integrated with
eDSPN models as well. Results of a transient analysis
or simulation are shown during run-time showing the
evolving curves, as well as afterwards displaying the
final results. Values of performance measures for a set of
automatically executed solutions (denoted experiment in
the tool) can be visualized versus the changing parameter.

• eDSPN models can be exported and imported in the Petri
net markup language (PNML) exchange format.

• Especially for situations in which models are automat-
ically generated and TimeNET’s analysis modules are
used as a part of another tool chain, the allowed string
lengths for names (model object identifiers) as well as for
measure expressions have been extended substantially.

• A graphical visualization of the reachability graph is
currently under development.

Added functions for SCPN models include:
• Transition delays can now be marking-dependent as well

as color-selective.

• Allowed delay distributions have been extended by uni-
form (Uni and DUni), triangular (Triang), and normal
(Norm).

• Performance measures can be defined for individual col-
ors (token types) in place markings and transition firings.

• Compared to the simple one-shot transient simulation
available before, the tool now includes regular transient
and steady-state simulation methods with statistical accu-
racy control (confidence interval, relative error).

• All simulation results are visualized in the result monitor,
including confidence intervals.

• Rare-event simulation has been added for SCPNs.
• Implementation of the extended token game functionality

available for eDSPNs is under way for SCPNs.

Some technical improvements for graphical user interface
and the tool in general:

• A self-contained installation program is available for the
Windows environment (a zip-archive based installation is
still possible).

• TimeNET has been ported to Windows 7.
• Multiple windows containing models are now arranged in

a tabbed layout to make switching between them easier.
• Curves and graphics displayed in the result monitor can

now be exported as a SVG image for editing and inclusion
in other documents.

• A help system based on the user manual has been
implemented.

• Numerous bugs in all modules have been solved.
• A set of example models with descriptions has been put

together for eDSPN and SCPN models.

TimeNET is an academic tool, and used for prototype de-
velopment in research projects. Thus there are some additional
modules which are not in a finished or documented state for
the public. Examples are the model class stochastic UML state
charts as well as distributed simulation techniques for SCPN
models in a cluster of workstations.

IV. AN SCPN EXAMPLE

This section demonstrates some recently added features of
TimeNET. As a demonstration example we introduce a SCPN
model of a flexible manufacturing system (FMS) with an
automated guided vehicle (AGV). Manufacturing systems are
among the classic application areas of Petri nets, and many
results and applications have been reported in the literature
(compare [42] for a survey and bibliography).

The example considered in the following has been intro-
duced in [1] (Section 8.3.2) with a GSPN model. Parts are
transported throughout the FMS mounted on type-specific
pallets. A Load/Unload station (LU) unmounts finished parts
(which don’t have to be considered further in the model),
and puts a new part on the pallet. A push policy is adopted,
meaning that there are always raw parts available and the
throughput of the system is only limited by the speed of
machines and transport system.



Furthermore, there are three machines (M1, M2 and M3)
available, and one AGV which is responsible for all transport
tasks between LU and the machines.

Two types of product are considered, named A and B. The
work plans include alternative schedules and are set as follows:
Parts of type A are processed by M1 first (processing time
10 seconds), and either M2 or M3 afterwards (15s or 10s,
respectively). Type B parts only go through either M2 (20s)
or M3 (30s). All parts have to be transported back to LU
after being finished by M2 or M3. Loading/unloading takes
4s, while each AGV transport requires 2s time. A scheduling
decision is necessary at M2/M3 because of the alternative work
plans. In this paper the same policy is chosen as in the GSPN
model in Figure 8.12 of [1]: To enforce machines to process
the “faster” part, parts of type A have priority at M3, while
B parts are preferred at M2. In case a machine is free and
there is no prioritized part waiting, a part of the other type is
selected.1

Performance evaluation questions for such a system could
analyse the overall throughput and the individual throughput
per part as well as their dependence on the number of pallets.
Other analyses may answer machine selection problems, bot-
tleneck detection, or how a second AGV would improve the
throughput.

The FMS example is modeled with a SCPN in TimeNET,
the resulting model is shown in Figure 3.2 The “second
experiment” shown in Figure 8.12 of [1] has been selected.
As a by-product, it shows how a colored model describes the
same behavior in a more compact and generic way (i.e., the
number of part types would not add much to the net structure,
while it significantly increases GSPN net size). The original
model has 25 places and 24 transitions compared to only 13
places and 16 transitions in the colored model presented here.

Two token types are user-defined in the model: Part with
attribute string name denoting the type, and AGV with
attribute Part p (denoting the part reference that is currently
loaded onto the AGV). Theer are not specific pallet tokens, as
they only exist with parts loaded onto them except for the
short time during load/unload operation. Tokens are internally
treated as C++ objects; thus, colors (or token types) are related
to class definitions.

Input arc inscriptions (such as x) describe variables that
are bound to tokens from the corresponding input place. The
association of an available token to each of the input variables
of a transition denotes a binding, which can be checked for
being enabled and has an associated firing delay distributions
(for timed transitions) or weight (for immediate ones). When a
transition fires, tokens specified by the output arc inscriptions
are added to the output places, by referring to the input
tokens via variable names. For a full definition of the type
of stochastic colored Petri nets used in TimeNET, the reader

1This behavior differs slightly from the text in [1], but reproduces the
behavior modeled in the figure.

2The model has been exported in SVG format and transformed into a PDF
(using Inkscape). No post-processing was necessary except for removing type
(color) definitions and result measure objects to save some space.

Fig. 3. Colored Petri net model of the example

is referred to [6] or the TimeNET user manual.
After leaving the load/unload station mounted on a pallet

(where the processing needs 4s), tokens have to be transported
either to machine 1 or to machines 2 and 3. Both tasks are done
by the AGV, which is modeled in the usual semaphore-like
way (idleAGV and for each transport task a sequence of start
transition waitAGV*, in-transport place *to*, and transport
delay transition AGVto* (2s each). When an AGV task starts,
a reference to the transported part token is stored in the AGV
token (a(p=x)). The reference is transformed back into a
token when the transport has finished (extract a.p), while
the AGV token is emptied (a(p={})). Scheduling policies for
the AGV can be implemented using transition priorities. For
the first transport after the load/unload station, the destination



Measure TimeNET Result in [1] Error
ThroughputAll 0.113838 0.107327 6.1%
ThroughputA 0.040232 0.042504 5.3%
ThroughputB 0.059607 0.064823 8.0%

TABLE I
COMPARISON OF SIMULATION RESULTS

depends on their part type. This is simply modeled with
guard functions associated to waitAGV1 and waitAGV2,
e.g., x.name=="B". Thus a binding can be enabled only
if the type of product is of type B.

Machines are modeled by their input and output buffers
(e.g., places inM2 and outM2 for machine 2) and a transition
representing the processing delay (e.g., M2). In most cases sim-
ply the exponential delay distribution with firing delay as given
in [1] is used, except for the more complex machine delays.
As an example, Machine 2 has a different firing delay for the
two part types, which is modeled by a color- and marking-
dependent expression EXP(15*#inM2(t.name=="A")
+20*#inM2(t.name=="B") describing an exponential
distribution with mean delay of either 15 or 20, depending
on the current part.3 The restriction that each machine can
process only one part at a time is simply done by using an
exclusive server semantics for all machine-delay transitions.
For M2 and M3, the corresponding input places inM2 and
inM3 have a restricted capacity of 1 each to ensure scheduling
decisions at the time when a machine becomes empty only.
The decision about which part to process at machines M2 and
M3 is done with the four transitions btoM2, AtoM2, BtoM3,
and AtoM3. Using transition priorities and guard functions,
the desired behavior is specified.

For the initial marking, one AGV token is put in place
idleAGV, while as many pallet/part tokens as chosen for each
type A or B are put into place inLU (not shown in the figure).

The model is then evaluated with a steady-state simulation
using TimeNET. To compare our results with the ones given
in [1], the same settings as for the second experiment are used,
in which the influence of pallet numbers for both part types
on the throughput values are evaluated. We arbitrarily chose
N = 3 pallets for type A, and M = 4 for type B as done in
Table 8.7 of the reference.

Performance measures are added to the model for
the overall throughput (ThroughputAll = #AGVtoLU)
and the throughput for the specific parts (e.g., for A:
ThroughputA = #AGVtoLU(a.p.name=="A")). The
mean number of tokens of type A in machine 2, for instance,
can be measured with AinM2 = #inM2(t.name=="A")
as an example of a measure using a place marking. In the
case of a place, the #-sign denotes the number of tokens in
it, while for transitions it means the number of firings. Both
types of measures can be made color-specific by adding an
expression in parentheses.

The results of the simulation are shown in Table I, compared

3Such a delay could be expressed more elegantly using an input-variable
x depending delay, which is a feature currently under development.

Fig. 4. Result monitor showing the transient evolution of overall throughput
with confidence intervals

with the analytical results from Table 8.7 of the reference. The
experiment was done on a laptop computer with an Intel Core
i5 M520 at 2.4 GHz in a 64bit Windows 7 environment. Full
code generation and compilation of the complete model took
30s (less if only parts of the model are changed), while the
actual simulation run time was less than one second to achieve
a statistical accuracy of 5% relative error for a confidence in-
terval size corresponding to 95%. Accuracy-controlled steady-
state and transient simulations are new in TimeNET 4.1, just
like the possibility to visualize mean transient behavior of
performance measures together with their confidence intervals
as shown in Figure 4 for the overall throughput.

V. CONCLUSIONS

This paper introduced version 4.1 of the software package
TimeNET, a tool for the modeling and performance evaluation
with different types of stochastic Petri nets. Among the new
features for stochastic colored Petri nets are stationary and
transient simulation with statistical accuracy control, extended
color-dependencies for their inscriptions, and rare-event sim-
ulation. Improvements for (uncolored) extended determinis-
tic and stochastic Petri nets include a non-interactive token
game animation, better graphical display of analysis results,
and PNML import and export. A self-contained installation
program as well as a help system have been implemented,
and the whole tool is now available for Windows 7.

Future plans for further improvements include the semi-au-
tomatic parameter selection for rare event simulation; indirect
optimization of complex system models with accuracy-adap-
tive simulation; domain-specific modeling and evaluation for
energy-efficient embedded systems; implementation of a net
class and analysis modules for stochastic automata; and a port
to a native 64 bit application.
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