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ABSTRACT 

This paper compares models and experiments involving Scout II, an untethered four-legged 

running robot with only one actuator per compliant leg. Scout II achieves dynamically stable 

running of up to 1.3 m/s on flat ground via a bounding gait. Energetics analysis reveals a highly 

efficient system with a specific resistance of only 1.4. The running controller requires no task-

level or body-state feedback and relies on the passive dynamics of the mechanical system. These 

results contribute to the increasing evidence that apparently complex dynamically dexterous 

tasks may be controlled via simple control laws. The authors discuss general modeling issues for 

dynamically stable legged robots. Two simulation models are compared with experimental data 

to test the validity of common simplifying assumptions. The need for including motor saturation 

and non-rigid torque transmission characteristics in simulation models is demonstrated. Similar 

issues are likely to be important in other dynamically stable legged robots as well. An extensive 

suite of experimental results documents the robot’s performance and the proposed models’ 

validity. 

KEY WORDS – Legged locomotion, modeling, quadrupedal robot, dynamic running, bounding 

gait, dynamic stability. 

1. INTRODUCTION 

As mobile robots are required to operate outside the laboratory, the limitations of traditional 

wheeled and tracked vehicle designs become increasingly apparent. To overcome these 

limitations, one branch of the mobile robotics field has turned to biological inspiration for other 

possible solutions, including legged systems, which promise a versatility and mobility 

unparalleled in more traditional designs. 

Early attempts to implement legged designs resulted in slow moving, statically stable 

systems. These designs are still the most prevalent today. One of the more successful examples 

of this large class of legged robots is Hirose’s Titan series [16]. Because of the negligible 

momentum in the gaits developed by such vehicles, maintaining stability requires only that the 

position of the Center-Of-Mass (COM) is kept within the polygon of support created by the 

stance legs [36]. 
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In this paper we focus on dynamically stable legged robots. To date, the most significant 

research on dynamic legged locomotion was led by Raibert at the CMU and MIT Leglabs in the 

1980s and 1990s [32]. His research revolved around fundamental principles for controlling 

hopping height, forward speed and body posture, making various gaits possible on monopedal, 

bipedal and quadrupedal robots. His controllers resulted in fast and stable dynamic running with 

different paired-leg gaits, such as the trot, pace and bound. 

Other dynamically stable running designs have been proposed since Raibert, including 

the articulated-knee Scamper bounding quadruped by Furusho et al. [12]. The controller divided 

one running cycle into eight states and switched the two joints per leg between free rotation, 

position control and velocity control. Following a different approach, Kimura et al. implemented 

bounding by transitioning from pronking in the Patrush robot based on principles from 

neurobiology [17]. They combined explicit compliance with a neural oscillator network, whose 

frequency matched that of the vertical spring-mass environment-system oscillation. Patrush’s 

three Degree-Of-Freedom (DOF) legs each featured an actuated hip and knee, and an unactuated, 

compliant foot joint while the robot was physically constrained to move in the sagittal plane by 

overhead beams. Other leg designs have also been proposed, most involving more actuators than 

Scout II. One such recent design is the OSU-Stanford KOLT quadrupedal robot that houses all of 

the leg actuators at the hip or on the body [25]. 

Various models have been proposed to study dynamically stable quadrupeds. Murphy and 

Raibert studied bounding and pronking using a model with kneed legs whose lengths were 

controllable [31]. They discovered that active attitude control in bounding is not necessary when 

the body’s moment of inertia is smaller than the mass times the square of the hip spacing. 

Following-up on their work, Berkemeier showed that this result applies to a simple linearized 

running-in-place model and that it can also be extended to pronking [4]. Brown and Raibert 

investigated the conditions for obtaining passive cyclic motion [31]. They studied two limiting 

cases of system behavior: the grounded and the flight regimes, and found that the system in both 

regimes can passively trot, gallop or bound if provided with the proper initial conditions. More 

recently, from a minimalist open loop perspective and inspired by results in biomechanics [19], 

and dynamical systems [14], Poulakakis et al. showed that passively generated stable bounding 

of a conservative model of Scout II is possible under appropriate initial conditions and 

sufficiently high speeds [27], [28]. 
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In a different spirit, Formalsky et al. investigated ballistic motions of a sagittal 

quadrupedal model involving leg pairs such as the trot, the pace and the bound that were 

achieved by appropriate initial speeds resulting from impulsive active control torques acting at 

the boundaries of support phases [9]. Other work on modeling the dynamics of quadrupedal 

running includes studies of more complex gaits such as galloping, where no legs are used in 

pairs. Schmiedeler and Waldron studied the kinematics and dynamics of the gallop on a three-

dimensional, five DOF quadruped with massless legs, where they found that as drag increases, 

the footfall patterns approach the half-bound gait [34]. Herr and McMahon studied the transverse 

gallop of a horse-type model and concluded that their robot model could exhibit stable galloping 

without requiring control over postural orientation and also without any sensing of body attitude 

[15]. 

This paper addresses a subject that is central to advancing the state of the art in 

autonomous, dynamically stable legged locomotion beyond the purely experimental realm: 

experimentally validated models. Although many models for open or closed loop dynamic 

legged locomotion have been studied (e.g. [4], [9], [15], [31], [34]), and many simulation 

techniques have been proposed for efficient integration of the dynamic equations and 

visualization of the resulting motion (e.g. [10]), no models exist in the literature which are 

experimentally validated down to the actuator torque level. And yet, without such validation, the 

relevance of theoretical and simulation results to physical legged robots remains uncertain. Thus, 

we turn our attention to proposing (Section 4) and testing (Section 5) various modeling 

assumptions for Scout II. Power autonomous legged robots like Scout II typically operate at the 

limits of their actuators and require a model of the actuator dynamics and their interaction with 

the power source. Furthermore a detailed description of the hip torque transmission systems, 

including belt compliance and gearbox dynamics, is necessary for achieving more accurate 

simulations. 

Before deriving models and studying their experimental validation, we introduce the 

subject of our study in Section 2: the Scout II quadrupedal robot [5] (Fig. 1). Scout II features a 

radically new, and indeed simplest, mechanical design of any dynamically stable running 

quadruped to date: it has only one actuator per leg located at the hip, which actively rotates the 

leg in the sagittal plane while the leg itself has a single prismatic compliant joint. In Section 3 we 

introduce a simple controller, which demonstrates experimentally that dynamic running on flat 
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ground via a bounding gait is possible by merely positioning the legs at a fixed desired 

touchdown angle during flight (not modified during successive strides), and commanding a 

motor torque during stance until a sweep limit angle is reached. The most striking feature of the 

controller is that it only requires touchdown/lift-off detection and local feedback of the leg angles 

relative to the body, available from leg potentiometers and motor encoders respectively, which, 

are the only sensors needed. The motion is largely the result of the interaction between the 

actuators and the natural dynamics of the mechanical system. To the best of the authors’ 

knowledge, Scout II is the first power and computationally autonomous quadrupedal robot that 

achieves compliant running and features the simplest running control algorithm. 

 

Figure 1. Scout II running during a demonstration at AMAM2003 in Kyoto, Japan [29]. 

The fundamental contribution of Scout II is the demonstration that fast and stable 

dynamic quadrupedal locomotion can be achieved without a high power leg actuator, directly 

changing the energy stored in the compliant legs during stance. Beyond the fundamental insights 

into the control and dynamics of legged locomotion, the practical implications are significant. 

With reliability and cost being some of the main obstacles to the commercial viability of legged 

robots, mechanical simplicity is essential. A Scout II–like robot has potential applications in 

education or entertainment. If rough terrain mobility is desired, the legs could be rotated full 

circle to achieve optimal ground clearance. In fact, this idea, while not implemented in Scout II, 

in part gave rise to the design of the six-legged, highly mobile RHex robot [33]. RHex uses the 

same single-actuator-per-compliant-leg principle as its precursor, Scout II [5]. Finally, if full leg 
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revolution is not desired, a low power knee actuator (locked during stance) can be added, which 

merely reduces the leg length during the flight phase for improved ground clearance, resulting in 

greatly improved rough terrain mobility. 

2. MECHANICAL DESIGN AND EXPERIMENTAL PLATFORM 

2.1. Design Concept 

The design of Scout II (Fig. 2, refer to [3] for details) is an exercise in simplicity. It consists of a 

rigid body with four compliant prismatic legs. The most striking feature of Scout II is the fact 

that it uses only a single actuator per leg located at the hip joint, which provides leg rotation in 

the sagittal plane. Each leg assembly consists of a lower and an upper leg, connected via a spring 

to form a compliant prismatic joint. Thus each leg has two DOF: the hip’s rotational DOF 

(actuated), and the prismatic compliant DOF (passive). 

    

Figure 2. Mechanical structure of Scout II (left) and compliant prismatic leg design with 

one actuated hip DOF (right). Figures adapted from [3], [37]. 

This configuration allows for the realization of different dynamically stable running gaits 

on flat ground such as dynamic walking [8], pronking [37], bounding [26], [38], as well as 

dynamic step climbing [37]. Furthermore, half-bounding and galloping have recently been 

implemented for the first time [29]. In this paper however, we concentrate on the bounding 

running behavior both in simulation and in experiments. 
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2.2. Hardware Description 

The chassis of Scout II (see Fig. 2) consists of three modules: one torso and two hip assemblies. 

The torso forms a structure that houses the computer unit with the I/O boards as well as one of 

the three batteries. The front and back hip assemblies house two batteries and the actuation 

mechanisms including amplifiers, motors, gearboxes and pulleys. 

Each hip is actuated by a Maxon 118777 brushed DC motor, a Maxon 110404 three-stage 

planetary gearbox [21], and a belt and pulley pair, which further amplifies the torque and isolates 

impact forces from the motor shaft. The motor position and thus the leg angles are controlled via 

1 kHz Proportional-Derivative (PD) control loops. The motors are driven by four Advanced 

Motion Controls 25A8 PWM servo amplifiers [1]. The amplifiers control the current to the 

motor, thus delivering predictable torques at the motor shaft as long as the motors are not 

saturated. The system operates at 36 V nominal voltage, provided by three battery packs, each 

consisting of ten Sanyo HR-D NiMH cells. Scout II has a PC/104 stack with a 300 MHz Pentium 

II class processor, which, together with multiple I/O boards, collects data from the sensors and 

performs all the necessary computations for implementing the various controllers. 

Various sensors are used to monitor the motion of Scout II. Apart from incremental 

optical encoders that measure the angular displacements of the motor shafts, linear 

potentiometers measure leg lengths, and are only used to infer ground contact. Laser range 

finders are used to measure the distance of the front and back ends of the robot from the ground 

and thus provide an estimate of the body’s pitch and COM height. 

2.3. Scout II Bounding Model 

In this paper, we restrict our attention to the bounding running gait. The essentials of the motion 

in bounding take place in the sagittal plane and the motion is assumed to be planar. Therefore, 

Scout II can be considered as a three-body kinematic chain composed of the body and the front 

and back leg pairs, also called the virtual legs [32] (see Fig. 3). A linear spring/damper system 

models the leg compliance during the stance phase. 

Each of the virtual legs can be in stance or in flight resulting in four robot states: double 

leg flight, back leg stance, double leg stance and front leg stance. In each of these phases the 

equations of motion of the system are different, placing Scout II in the category of intermittent or 
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variable structure systems. The two-dimensional model presented in Fig. 3, can be described by 

seven coordinates 

 
T

b b f fx y l lθ ϕ ϕ⎡ ⎤= ⎣ ⎦x , (1) 

where all the variables and the sign conventions are shown in Fig. 3 and are summarized in Table 

I. The design parameters of the robot are presented in Table II. Note that an alternative 

representation of the system’s configuration would be to express the leg angles relative to the 

vertical i.e., 

 i iγ ϕ θ= + , (2) 

where ,i b f= . 

Sagittal Plane
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Figure 3. Virtual legs for the bounding gait and the two-dimensional bounding model for 

Scout II in the sagittal plane. 
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Table I. Scout II Variables 

Symbol Description 

( ),x y  COM Cartesian coordinates 

θ  Pitch angle 

iϕ  Leg angle relative to the body 

iγ  Leg angle relative to the vertical

il  Leg length 

 

Table II. Scout II Parameters 

Symbol Description 

L Half hip spacing 

0l  Nominal leg length 

m  Body mass 

I  Body moment of inertia  

ik  Spring stiffness, i
th

 leg 

ib  Damping constant, i
th

 leg 

3. BOUNDING CONTROLLERS 

3.1. Constant Touchdown Angle Bounding Controller 

The controller proposed in this paper can be parameterized by four parameters tdϕ , swlϕ , A , 

maxτ , representing the touchdown and sweep limit angles, the motor torque/speed slope and its 

maximum torque, respectively, for each of the virtual legs. The controller is structured in two 

hierarchical levels. At the high level the control action independently regulates the motion of the 

front and back virtual legs based on their state, without a notion of overall body state. The front 

and back virtual legs each detect three possible leg states: stance-retraction, stance-brake and 

flight, which are separated by touchdown, sweep limit and lift-off events, as shown in Fig. 4. 

There is no actively controlled coupling between the front and back virtual legs - the bounding 

motion is purely the result of the controller interaction through the multi-body dynamic system. 

At the low level, the controller ensures that the assumptions for the virtual legs hold true so that 

the front and back physical legs are properly synchronized to form the front and back virtual 

legs, respectively. This leg synchronization function changes the desired torque value to each leg 

in the lateral leg pair using a PD controller which monitors hip angle and angular velocities, 

ensuring that the corresponding error is small. To enforce the virtual leg assumption, state 

changes only occur when both physical legs in a lateral pair have the same state, a requirement 

that can be relaxed to allow for three-dimensional gaits [29]. 

Depending on the state of the virtual legs, different control actions are assigned by the 

high level controller as shown in Fig. 5. 
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Figure 4. The bounding controller state machine. 

 

Figure 5. Control action during the phases of the bounding gait. 

Flight. During the flight leg state, the controller servos the leg to a desired touchdown angle tdϕ , 

which is defined with respect to the body, resulting in the ϕ -controller. Variations of the flight 

controller can be introduced by defining the touchdown angles with respect to the vertical, 

resulting in the γ -controller (see [37]). However, as opposed to the ϕ -controller, the γ -

controller requires body-state feedback, namely the pitch angle θ , which is necessary for 

calculating γ  from (2). Because we follow a minimalist approach in this paper, we have 

included only ϕ -controller results. It is important to mention here that recent work [27], [28], 

reveals the significance of the touchdown angles as inputs directly available for the control of 
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Scout II’s cyclic motion. This fact, in combination with the actuator saturation constraints during 

the stance phase, suggests that the leg touchdown angles, rather than the actuator torques, are the 

dominant control inputs during cyclic motion. Therefore, most of the control action is applied 

during flight (for a theoretical justification in the context of the Spring Loaded Inverted 

Pendulum (SLIP) template see [2]). 

Stance-Retraction. During this leg state, the controller sweeps the leg backwards, until a sweep 

limit angle swlϕ  is reached. Actuator constraints are the dominant feature in the stance-retraction 

phase. The motors have to be capable of not only supporting the robot’s weight, but also of 

imparting significant accelerations to the body, and to support large dynamic loads. Therefore, 

they often operate at their limits, characterized by their torque/speed curve. While this curve is 

well known, it is rarely taken into account in robot modeling and control. To include motor 

saturation in our controller, we command torques according to 

 des max Aτ τ ϕ= − + &  (3) 

 max
T

A

K V

R
τ α= , T

A

K K
A

R

ωβ= − , (4) 

where maxτ  and A  are the offset and the slope of the torque/speed line referred at the leg and ϕ&  

is the leg’s rotational speed. In (4) TK  and Kω  are the torque and speed constants of the motor 

respectively and AR  is its armature resistance. The values of these parameters are available in 

[21] and are presented in Table III. The parameters α  and β  in (4) are used to relate variables at 

the motor shaft (prior to the gearbox) to the corresponding ones at the leg (after the gearbox) and 

are given by 

 ( )( )G G P Pn nα η η= ⎡ ⎤⎣ ⎦ , ( )( )2 2

G G P Pn nβ η η⎡ ⎤= ⎣ ⎦ , (5) 

where Gn  and Gη  correspond to the ratio and the efficiency of the gearbox and Pn  and Pη  to the 

pulley combination and efficiency respectively; see Table III. 

In (4), V  represents the average voltage at the motor terminals, which is set to 36 V . 

Note also that according to our sign conventions, during stance-retraction the motors operate in 

the third quadrant where both the torque and speed are negative. There are two additional 

constraints that must be imposed on the desired hip torques desτ , 
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 if maxdes TK iτ α>  then maxdes TK iτ α= − , (6) 

 if 0desτ ≥  then 0desτ = . (7) 

The constraint (6) ensures that the commanded torque will not exceed the maximum value 

predicted by the amplifier current limit maxi , which is discussed in Section 4.1. The constraint (7) 

prevents the commanded torque from becoming positive, thus decelerating the robot
2
. 

Table III. Motor Parameters 

 Parameter Value Units 

 Torque Constant 0.0389 Nm/A 

 Speed Constant 46.78 10−×  V/deg/s 

 Armature Resistance 1.23 Ω  

 Belt & Pulley Combination 48/34 n/a 

 Belt & Pulley Efficiency 96% n/a 

 Planetary Gear Ratio 72.38 n/a 

 Max. Gear Efficiency 68% n/a 
 

 

Stance-Brake. When the sweep limit event is reached (when the leg angle becomes smaller than 

a specific sweep limit angle swlϕ ), a PD controller holds the leg at that angle. Although, this 

modification has the undesirable effect of braking the robot, it is necessary for ensuring toe 

clearance especially during the early protraction phase because of the absence of active control 

of the leg length during flight. The addition of the sweep limit was found to significantly 

improve the robustness of the motion at the expense of performance and energy consumption. 

It is important to mention that the controllers described here are simpler than those 

proposed by Raibert in two respects. First, no task-level (e.g. forward velocity) and no body-state 

(e.g. body posture) feedback is required and second, no explicit control over leg length ensuring 

toe clearance during the leg protraction phase is necessary, provided that the modification 

outlined above is added to the stance phase. These characteristics have had and are expected to 

have significant implications in the design of other legged robots too. Indeed, similar design and 

                                                 
2 (6) arises when ϕ&  is too small so that excessively large torques are predicted from (3) which cannot be applied by 

the motors due to saturation of the PWM amplifiers that are not capable of delivering sufficiently large currents. (7) 

occurs when the legs spin at speeds large enough to result in a sign change of the desired torque. 
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control ideas have been successfully used to generate bounding in the modified (one actuator per 

leg) AIBO [39], and by Campbell and Buehler [7] in the hexapedal RHex, developed by Buehler 

and Koditschek and their collaborators [33].  

3.2. The Resulting Bounding Gait 

Fig. 6 presents snapshots of the robot’s motion along with experimental data showing cyclic 

motion. The controller parameters used for each of the physical legs are presented in Table IV 

and the resulting average forward speed was 1.3 m/s. 

 

Table IV. Controller parameters 

(SI units, angles in degrees) 

Parameter Front Back

Touchdown Angle 21 19

Sweep Limit Angle 0 0
 

Flight ( ),P Dk k  (250,5) (250,5) 

Stance-brake ( ),P Dk k  (300,5) (300,5)

 

Figure 6. Snapshots of the robot at different phases (top) and body pitch and hopping 

height data (bottom right) in the bounding gait implemented on Scout II. 

It should be mentioned here that, based on the control strategy presented in Section 3.1, a 

family of similar controllers can be introduced by changing the control action during the flight 

1 2 3 

4 5 6 
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(e.g. control the leg angle γ  relative to the vertical instead of the ϕ  angle) or the stance phase 

(e.g. control the sweep speed ϕ& ). As was shown in [37] these significant controller differences 

have relatively minor effects on bounding performance. Moreover, variations of the ϕ -controller 

recently resulted in the half-bound and rotary gallop gaits for the first time [29]. 

3.3. Energetics 

For mobile robots to be of practical utility, they must operate in a power autonomous fashion for 

extended periods of time. An increasingly accepted measure of energy efficiency is the specific 

resistance - a measure originally proposed by Gabrielli and von Karman [13], 

 ( ) ( )P

mg

υ
ε υ

υ
= , (8) 

where P  is the power expenditure, m  is the mass of the vehicle, g  is the gravitational 

acceleration constant, and υ  is the vehicle speed. 

Since many vehicle specific resistances quoted in the literature are based on the average 

mechanical output power of the actuators, we illustrate this as a function of speed in Fig. 7. Even 

though energy efficiency has not been optimized, Scout II at top speed achieves a low specific 

resistance based on mechanical power, equal to 0.47. This value places Scout II among the most 

energy efficient running robots, only slightly higher than the (lowest published running robot 

efficiency) 0.22 value for the ARL Monopod II [6], but still lower than any other running robot. 

The specific resistance based on mechanical output power has drawbacks, since it does 

not take the actuator efficiency or the power consumption of the entire system into account. Both 

of these effects can have a dramatic negative influence on runtime. Therefore, a more useful 

measure of energy efficiency is the specific resistance based on total power consumption. For 

Scout II, the specific resistance based on electrical power
3
 is approximately 1.4 at a forward 

speed of about 1.3 m/s, i.e. three times the specific resistance based on mechanical power. As 

can be seen in Fig. 7, at an average speed of approximately 0.85 m/s the specific resistance 

related to mechanical output is approximately 0.75 while the electrical specific resistance is 

approximately 2.2, indicating that Scout II becomes less efficient at lower speeds. For this reason 

we concentrate on higher speeds in this paper. For reasons of comparison, Fig. 7 (right) also 

                                                 
3 The electrical power is calculated as the total average product of battery current and voltage. 
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includes the specific resistance based on electrical power published in [7] for RHex in bounding 

and pronking. 

 

Figure 7. Specific resistance for Scout II based on mechanical and electrical power (left) 

and specific resistance based on electrical power for Scout II and RHex [7]. Error bars 

indicate standard deviation. 

3.4. Discussion 

Scout II is a highly nonlinear, underactuated, intermittent dynamical system. Furthermore, as 

Full and Koditschek state in [11] p. 3326, “Locomotion results from complex, high-dimensional, 

nonlinear, dynamically coupled interactions between an organism and its environment.” Thus, 

the task itself is also complex and cannot be specified via reference trajectories in Cartesian or in 

state space. Even if such trajectories could be found, developing a tracking controller is still not 

straightforward or perhaps even possible. Friction, actuator limitations and unilateral ground 

forces limit the hip torques, which may be required to achieve trajectory tracking. Furthermore, 

there are no experimentally validated models, which could be used to derive model-based 

controllers for legged robots. This reveals the necessity for constructing simulation models to test 

the validity of various simplifying modeling assumptions as will be discussed in Section 5. 

It is apparent from the above discussion why direct application of modern robot control 

theory had limited success in deriving controllers for dynamically stable legged robots. Despite 

this complexity, we found that simple Raibert-style control laws like those described in Section 
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3.1 and in [32], operating mostly in a feedforward fashion, with minimal sensing, can stabilize 

periodic motions resulting in robust and fast running powered by only four hip actuators. It is 

therefore natural to ask why such a complex system can accomplish such a complex task via 

minor control action. 

As outlined in [27] and [28], a possible answer is that Scout II's unactuated, conservative 

dynamics already exhibit asymptotically stable bounding cycles and therefore a simple controller 

is all that is needed to keep the robot bounding. Indeed, for sufficiently high forward speeds and 

pitch rates there exists a regime where the system can be passively stable and can tolerate small 

perturbations of the nominal conditions without any control action taken. This fact could provide 

a possible explanation as to why the Scout II robot can bound without the need for complex state 

feedback. It is important to mention that this hypothesis is in agreement with recent research in 

biomechanics, which shows that when animals run at high speeds, passive dynamic self-

stabilization from a feed-forward, tuned mechanical system can reject rapid perturbations and 

simplify control [11], [19]. Analogous behavior has been discovered by McGeer in his passive 

bipedal running work [22], and more recently in the conservative
4
 SLIP template [14], [35]. 

To conclude, Scout II and its simple, body-state and task-level open loop controller 

embodies these general underlying principles and can be considered as an experimental 

demonstration contributing to the increasing evidence that, as Full and Koditschek suggested in 

[11], control laws operating mostly in the feedforward regime with “mechanical feedback” are 

sufficient to induce stable dynamic behaviors in legged machines. 

4. MODELING COMPONENTS 

4.1. Electrical Subsystem 

In this section we present simple models for the motor driving system, including the battery, 

PWM amplifier, actuator and gearbox units. As will be shown in Section 5, these models must be 

included in simulations to improve their accuracy. A battery-amplifier-motor combination 

actuating the front and back virtual legs may be approximated as shown in Fig. 8. We assume 

that the coupling between the lateral (physical) legs forming the front and back pairs is 

                                                 
4 An explanation as to why conservative intermittent dynamical systems can exhibit asymptotically stable limit 

cycles despite the incompressibility of the stance flow was presented in [2]. 
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insignificant so instead of modeling the four motors driving the actual legs, we model the two 

equivalent virtual motors actuating the front and back virtual legs. 

Battery Model. Since electrically actuated autonomous robots draw significant peak power and 

operate from non-ideal voltage sources, the variation of the supply voltage as a function of the 

total load current must be considered. As shown in Fig. 8, the battery model is composed of a 

resistance, bR , in series with an ideal voltage source, nomV . The equation that describes the 

output voltage is, 

 b nom b bV V i R= − . (9) 

To determine the parameters in (9), namely nomV  and bR , the current bi  and voltage bV  were 

measured during a set of experiments and then the model described by (9) was fit in a least 

square sense to the experimental data resulting in the values 37.17 VnomV =  and 0.13  bR = Ω . 

As can be seen from Fig. 9 (left), the simple battery model described by (9) captures the resulting 

supply voltage fluctuations occurring in experiments. 

        

Figure 8. Two motor/amplifier blocks in parallel with the battery: Amplifiers operate in 

current mode (left) and motors operate in saturation mode (right). 

Motor/Amplifier Model. As was mentioned above, actuator constraints are dominant in Scout II’s 

motion and ignoring them not only results in a large discrepancy between simulation and 

experimental data but, most importantly, may also result in failure of the simulation model to 

converge to stable cyclic bounding motion. Fig. 8 shows the model for the amplifier/motor 

combination when the amplifier is in current and in saturation modes.  

We assume that the PWM switching signal may be completely removed from the motor 

input. When the motor is not saturated, the amplifier operates in current mode and achieves the 
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desired motor current by appropriately adjusting its terminal voltage via an internal current 

monitoring feedback loop [1]. In this regime, the amplifier can be approximated by an ideal 

voltage-controlled current source whose output current is directly proportional to its input 

voltage signal, denoted in Fig. 8 by 1AV  and 2AV , i.e. 

 i
i amp Ai

T

i K V
K

τ
= = , (10) 

where 1,2i =  for the back and front virtual leg respectively and 4.3 A/VampK =  is the voltage-

to-current gain of the amplifier. Note that the amplifier’s peak current is limited to max 20 Ai =  

by internal circuitry to prevent the motor from being critically overdriven. This limit is taken into 

account in the stance-retraction controller by (6). 

As the motor shaft accelerates under a desired torque T desK i , its rotational speed ω , 

increases until the back EMF Kωω , becomes larger than the available power supply voltage 

b des AV i R− . Therefore, the current mode applies only up to a speed limit, maxω , given by 

 ( )max
b des A

des

V i R
i

Kω

ω −
= , (11) 

after which the motor enters its saturation regime, where we assume that the amplifier operates 

as an ideal conductor, see Fig. 8 (right). In this regime the motor torque τ  is given by 

 ( )T
b

A

K
V K

R
ωτ ω= − , (12) 

in which the motor inductance has been neglected. Combining (10) and (12) we obtain the 

equation describing the torque τ  applied by the motor in both the saturation and non-saturation 

regimes. The leg torque l̂egτ  that takes into account the motor but not the amplifier saturation can 

be calculated by the motor torque using 

 

max

max

for 

ˆ
for 

T des

leg T b T

A A

K i

K V K K

R R

ω

α ω ω
τ

α β ϕ ω ω

⎧ − ≤
⎪= ⎨− − >⎪
⎩

&
, (13) 

which is valid in the third quadrant of the torque/speed line (stance-retraction). In (13) the 

velocity maxω  is given by (11), the parameters α  and β  are given by (5), and the sign 
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conventions described in Section 2.3 have been applied. Finally, the torque legτ  that is delivered 

at the leg and that includes both the motor and amplifier saturation is given by 

 ( ) { }max
ˆ ˆsgn min ,leg leg leg TK iτ τ τ α=  (14) 

where maxi  is the amplifier’s peak current. Equations (13), (14) constitute the motor model in the 

third quadrant and with the appropriate sign changes can be extended to the first quadrant of the 

torque/speed curve. 

Fig. 9 shows current, voltage and torque plots. The data curves in the right-hand plot of 

Fig. 9 are as follows, from bottom to top. The bottommost solid curve represents the desired 

torque from the controller as calculated by (3), which is identical to the one predicted by (14) for 

a fixed 36 V supply voltage. The second, dashed, curve is the maximum achievable torque and 

includes the battery voltage fluctuations calculated by (9). The third, dotted, curve illustrates the 

torque with an additional loop gain fix due to amplifier gain modeling error. Finally, the topmost 

solid curve represents the current-estimated motor torque measured during a bounding 

experiment. The exceptionally good match between the topmost solid and dotted torque curves in 

the right-hand plot of Fig. 9 validates the model and demonstrates both its importance and its 

effectiveness in predicting motor saturation. 

  

Figure 9. Left: Voltage (upper) and current (lower) measured in the experiment (solid 

lines) and voltage calculated (dashed line) using (9). Right: Torque profiles during the 

stance-retraction phase. 
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4.2. Mechanical Subsystem 

Throughout the course of this research it has become clear that modeling only the motor driving 

system (batteries, PWM amplifiers and actuators) as in Section 4.1 is not sufficient for obtaining 

simulation results which closely follow the experimental data. A more detailed model of the hip 

unit that includes backlash and belt compliance, must be included in simulation in order to 

improve its accuracy. It is important to mention here that the assumptions of zero backlash and 

rigid torque transmission are very common in modeling dynamically stable robots. However, as 

will be shown in Section 5, for Scout II and the controllers presented in Section 3, they not only 

result in large mismatches between simulation and experimental data but more importantly, for 

some set points, they might even result in failure to converge to cyclic motion. Note also that 

these effects are not specific to Scout II. Indeed, because of space limitations for motor 

placement and due to the desire to isolate impact forces from the motor shafts, structural 

elements like belts are very common for torque transmission in leg designs e.g. [12]. Moreover, 

torsional compliance is inherent in composite leg designs as in RHex [23], even without the 

existence of belts. Therefore, the consequences of torsional compliance on the dynamics of the 

Scout II are likely to be significant in other dynamically stable robots. 

To capture these effects, the three stage planetary gearbox has been approximated by a 

pair of spur gears as shown in Fig. 10, with a gear ratio equal to the combined gear ratios of the 

gearbox and pulleys. Also, friction and damping present in the hip joint were taken into account 

to improve the leg response during the flight phase. To estimate the values of the inertias of the 

drive and driven gears and the friction and damping coefficients of the hip joint, two sets of 

experiments were performed. In the first set a known mass was placed at the toe, the leg was 

brought to a known angle and then it was left to rotate freely. In the second set, the robot was 

placed so that both the front and back legs were in flight and various touchdown angles were 

commanded. All these experiments were simulated in Working Model 2D™ [18], and the 

resulting parameter values for the physical legs are presented in Table V. 

Finally, the combined effect of gear backlash and belt compliance has been approximated 

by a rotational spring in parallel with a damper as shown in Fig. 10. The values of the hip 

spring/damper constants were chosen so that the maximum spring deflection during bounding in 

simulation does not exceed that which is measured by the robot applying maximum hip torque 
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with the torso and legs constrained on a horizontal plane (approximately 8
o
 of combined 

backlash and belt stretching). 

 

 

Table V. Hip Joint Properties 

Parameter Value Units 

Drive Gear Inertia 
-63.5 10×  kg m

2
 

Driven Gear Inertia -310  kg m
2 

Stiction (joint) -35.5 10×  Nm 

Damping (joint) -76.2 10×  
Nm/deg/s

 

Spring (belt) 7.0 Nm/deg 

Damper (belt) 4.0 Nm/deg/s 

 

Figure 10. Details and modeling parameters of the hip unit. 

In all of the above experiments none of the structural elements were examined in 

isolation. For instance, isolating the gearbox and performing detailed identification experiments 

to find the inertia of the gears requires special equipment not available to the authors. Instead, we 

performed simple experiments examining the behavior of the hip unit as a whole under different 

dynamic conditions as described above. Then parameter values were selected that matched 

experiment and simulation under these different conditions. 

5. EXPERIMENTS AND SIMULATION 

5.1. Simulation Models 

The planar model of Scout II, see Fig. 11, was constructed in Working Model 2D™ [18], to 

study the behavior of the robot using various controllers. This model, augmented with the motor 

driving system described in the previous sections, proved to be invaluable in deriving controllers 

which, when applied to our physical prototype, resulted in high performance robust running 

behaviors. The Working Model 2D™ script used to implement the controllers has the following 

structure. First, the model of the robot is generated, then the simulation loop collects the values 
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of the data of interest (i.e. the values of the state variables of the robot), by integrating the 

dynamic equations and, based on these values, calculates the desired torques. The desired torques 

are entered into a subroutine, which implements the motor driving system described in Section 

4.1 and returns the actual torques that form the inputs to the hip “actuator constraints”. The 

animation step is set to 1 ms, which matches the control loop time step used on the Scout II 

robot, and which can be different from the integration step. The adaptive step Kutta-Merson 

integrator was used with integration error set to 1e-10, to obtain the simulation results. Two 

models were used to test the validity of simplifying modeling assumptions common to the 

literature. These models, whose parameters are listed in Table VI, are illustrated in Fig. 11. 

 

Figure 11. Scout II sagittal plane model built in Working Model™ 2D [18]: (a) Model I and 

(b) Model II. 

Model I. In the simplest simulation model, called Model I (see Fig. 11a), the legs are attached to 

the body via an actuator constraint, which applies the torque to the leg, as calculated from the 

model described in Section 4.1. This model does not include the dynamics induced by the 

transmission mechanisms such as the gears and pulleys. This assumption has been widely used in 

analytical models for studying the basic properties of running (e.g. [9], [15], [34]), but, as will be 

shown in the following sections, it results in relatively large errors between simulation and 

experimental data in the case where compliant belts are present. 

Model II. In the full model, called Model II (see Fig 11b), the hip unit has been modeled in more 

detail, as shown in Section 4.2. The leg is attached to the driven gear via a rotational 
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spring/damper system and the driven gear is attached to the drive gear via a “gear constraint” 

implementing the combined gear ratio of the gearbox and belt and pulley pair. 

Table VI. Basic Mechanical Properties of Scout II 

 Parameter Value Units 

 Body Mass 20.865 kg 

 Body Inertia 1.3 kg m
2 

 Leg Mass 0.97 kg 

 Leg Inertia 0.01 kg 

 Spring Constant 3520 N/m 

 Damping Constant 55 N/m/s 

 Hip Separation 0.552 m 

 Leg Length 0.323 m 

5.2. Simulation and Experimental Results 

In this section the comparison between simulation and experimental data is undertaken. The 

controller gains and set points in simulation are the same as those used in the experiments and 

are presented in Table IV. In presenting the data, as with Muybridge [24], the term step refers to 

the stance phase together with the subsequent flight phase of one of the legs and the term stride 

refers to the combination of all four phases starting with the lift-off event of the back virtual leg, 

which is considered to be the reference leg. Therefore, for the sake of clarity, the body state 

variables are presented in detail for one stride while the leg variables and hip torques are 

presented for only one step. 

Fig. 12 shows the pitch angle (left) and COM height (right) in experiment and in both 

simulation models corresponding to the highlighted region in Fig. 6. In experiment the pitch and 

COM hopping height are measured using two laser range finders located at the front and back 

ends of the body. The laser data were low-pass filtered after-the-fact at 15 Hz via FFT analysis in 

Matlab™ [20]. Unfortunately, as can be seen from Fig. 12, the remarkable match in the pitch 

angle did not extend to the hopping height where the difference between simulation and 

experiment, especially in Model I, is significant. This is attributed to the stiction and nonlinear 

damping (which depends on the leg angle and applied torque) effects that are inherent in the 

telescopic leg design and are not included in the simulation model. The difference in shape 
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results from the fact that the evolution of the COM height depends on both translation and 

rotation of the body that are strongly affected by the leg state sequence, which is slightly 

different between experiment and simulation. In experiment, front touchdown occurs slightly 

after back lift-off while in simulation it occurs slightly before. 

     

Figure 12. Steady state pitch angle (left) and COM height (right) during one stride. 

Experiment (solid), Model I (dotted) and Model II (dashed). 

Fig. 13 shows the angles and angular velocities of the front and back legs relative to the 

body. For clarity, back and front leg plots correspond to one step and are synchronized based on 

the corresponding lift-off events. The square wave included in all the plots presenting data 

related to the legs represents the leg states: flight (high), stance-retraction (low) and stance-brake 

(medium). As expected, the leg response during the flight phase is significantly improved by the 

addition of the gearbox dynamics in Model II. Also, it is obvious from Fig. 13 that in the stance-

retraction and stance-brake phases of both the front and back virtual legs the discrepancy 

between experimental and simulation results is larger than that of the flight phase. 

The main source of errors in both models is the absence of a good estimate of the toe-

ground friction coefficient combined with the simplifying assumptions in modeling the hip joint. 

However, including the hip model described in Section 4.2 significantly improves the accuracy 

of the simulation during the stance-brake phase. This is especially evident in the behavior of the 

back legs. For instance, in Model I the sweep limit controller is not able to hold the back leg at 

the desired sweep limit angle. This fact significantly affects the simulation results to the point 
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where cyclic motion might not even be achievable with the set points and gains used in 

experiment. This was the case in [38], where in simulation different sweep limit angles were 

used than those in experiment, for the model to converge in cyclic bounding motion. 

     

  

Figure 13. Back (left) and front (right) leg angles (upper) and leg angular velocities (lower) 

during one step. Experimental data (solid), Model I (dotted) and Model II (dashed) during 

one step. The square wave represents the leg states: Flight (high), stance-retraction (low) 

and stance-brake (medium). 

It should be noted here that the stance-brake phase is very difficult to model in an 

accurate way because it depends on the interaction of several effects, which are difficult to 

estimate. In experiment, when the sweep limit is reached the motor initially loads the torsional 
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leg-belt-gear compliance without actually feeling the full load of the robot. Then, depending on 

the ground friction and the lift-off time instant (which itself depends on the robot’s state), 

slipping might be present or contact with the ground might be lost. Thus, in experiment, it is 

easier for the motor to hold the leg at the desired angle during the stance-brake phase than in 

Model I, a fact that is adequately captured only by Model II. 

Fig. 14 presents the torques applied by the motors in experiment and in simulation. As 

expected, there are relatively large discrepancies between the torques predicted by Model I and 

the torques estimated in experiment. In Model II, the simulation predicted torques are much 

closer to the current-estimated torques in experiment. However, it is clear that there are still 

discrepancies between experimental and simulation torques. These differences are coupled to the 

differences observed in the leg angle rates in Fig. 13, since motor saturation and thus torque 

application depends on the leg speed. This becomes apparent when one compares the torques in 

Fig. 14 with those predicted by the models, given in Fig. 9. Although the same motor model (14) 

has been used in both cases, the torques presented in Fig. 9 are much closer to the actual ones 

because they have been calculated using the encoder-measured motor shaft angular speeds 

during an experiment. On the contrary, the torques presented in Fig. 14 have been obtained using 

the simulation rotational speeds. 

    

Figure 14. Back (left) and front (right) torques. Experimental data (solid), Model I (dotted) 

and Model II (dashed) during one step. The square wave represents the leg states: Flight 

(high), stance-retraction (low) and stance-brake (medium). 



 

 
 

27 

Fig. 15 shows the legs’ angular speed as a function of the applied motor torque in 

experiment and simulation. The concentration of data points along straight lines (the motor’s 

torque/speed line) in the first and third quadrants indicates that that the motors are saturated most 

of the time. As can be seen, both simulation models adequately capture this effect. Careful 

inspection of Fig. 15 reveals that most of the discrepancies lie in the non-saturation region, 

where the applied torques mostly depend on the dynamics of the system. Note also that 

according to the sign conventions shown in Fig. 3 during stance-retraction, the motors operate in 

the third quadrant while during flight they operate in the first quadrant (positive torques 

correspond to the leg moving forward), see Fig. 15. 

  

Figure 15. Back (left) and front (right) motor saturation characteristics. 

5.3. Simulation Error Assessment 

In this section an attempt is made to assess the quality of the simulation results obtained using 

the simulation models described in Sections 5.1 and 5.2. To do so, the results presented above for 

one stride have been generalized to multiple strides corresponding to different bounding 

experiments. Thus, for the comparison ten bounding experiments were performed on carpet. In 

each experiment, the robot took at least seven steady state strides defined by the back leg lift-off 

event. Unfortunately, due to the absence of sensors for measuring instantaneous forward speed, 

only the average speed was calculated for each experimental run. The average forward speed 

measured in the ten bounding experiments was 1.26± 0.04 m/s while the forward speed in Model 

I was 1.56 m/s, and in Model II was 1.43 m/s. Although a discrepancy exists in both models with 

respect to the actual robot, Model II still provides a closer representation of the robot’s speed. 
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It is important to point out that the existence of phase difference between simulation and 

experimental results precludes state variable error calculations with respect to time. Therefore, 

the comparison is undertaken in terms of percent errors in some key gait parameters i.e. stride 

frequency sω , duty factor β , and the max and min values of the body’s pitch angle and hopping 

height over the 70 strides taken. Fig. 16 reports the mean Xe eδ±  and maximum errors max

Xe  for 

each of the compared variables { }max min max min, , , , , ,s b fX y yω β β θ θ∈ . 

 

Figure 16. Mean and max errors between simulation models and experimental results in 

gait parameters and max and min values of the pitch and hopping height over 70 bounding 

strides at average forward speed approximately 1.3 m/s. 

As can be seen from Fig. 16, despite the simplifying assumptions and the uncertainty 

associated with some of the design parameters, Model II captures the behavior of the robot not 

only qualitatively but also quantitatively. Indeed, the average errors for Model II in all the 

parameters are below the corresponding ones for Model I, and most strikingly, all are smaller 

than 25%, which is very good for dynamically stable robots. However, it is clear that there are 

still some issues that need to be resolved to provide a better match. For instance, the unmodeled 

gearbox efficiency varies as a function of the applied torque. In all the simulations the maximum 

gearbox efficiency was used to command and estimate torques since this is the only number 

available from the gear manufacturer. However, the gearbox efficiency varies dramatically as a 
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function of speed and torque, a fact that might explain some of the discrepancies between 

simulation and experiment. Maxon describes how the efficiency of the gearbox changes with the 

applied torque [21]. Unfortunately, this information is only qualitative and thus it has not been 

used in the simulation results presented here. 

Despite the encouraging results of Model II, the exceptionally good match between 

simulation and experiment did not extend to average forward speeds drastically different from 

1.3 m/s. In order to test the robustness of the models presented here, the authors repeated the 

experiments and simulations with controller set points that correspond to an average forward 

speed of approximately 0.8 m/s. At this speed, Model I (which already goes far beyond the 

modeling completeness common in the legged robot community) fails to bound entirely (the 

robot takes few steps and then stops). Model II still provides a very good estimate of the 

evolution of the individual variables (body pitch, leg angles, angular speeds and torques) but it 

converges to a “quasi-bounding” period-two gait, which bears a close resemblance to the 

bounding gait followed by the robot but repeats itself every two cycles. In one cycle, back leg 

lift-off occurs slightly before front leg touchdown while in the next cycle, back lift-off occurs 

slightly after front leg touchdown. 

Nevertheless, this paper presented the first (to the authors’ knowledge) thorough 

investigation of modeling issues for dynamically stable legged robots. It has been shown that 

assumptions common in modeling other types of robots cannot be transferred to dynamically 

stable legged robots, unless they are experimentally validated. Indeed, dynamically stable legged 

robots suffer from impacts, peak loads and a variety of control constraints not common in other 

robotic systems. Furthermore, absence of strong feedback control that would “push” the 

dynamics towards some a priori known desired trajectories, errors associated with the 

identification experiments, uncertainty in the knowledge of some parameters provided by 

manufacturers of certain components (e.g. dynamic gearbox efficiency), in combination with the 

intermittent nature of the system, are some of the qualities that make the task of obtaining an 

accurate simulation model challenging. However, establishing the role of modeling assumptions 

and the validity of the resulting models for dynamically stable legged robots is essential, both in 

identifying key properties inherent to system behavior and in achieving prescriptive models, 

which is the main reason for modeling. 
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6. CONCLUSION 

This paper presented Scout II, a four-legged, untethered robot that runs in a dynamically stable 

fashion. Scout II relies on the passive dynamics of its mechanical system featuring a low degree 

of freedom actuation and passively compliant leg designs with only one actuator per leg. The 

authors proposed a very simple control algorithm that only relies on proprioceptive feedback 

from motor encoders and leg length potentiometers and results in running at average forward 

speeds up to approximately 1.3 m/s. Scout II provides an experimental instantiation of 

fundamental design and control principles for a new class of dynamically stable legged robots 

with reduced mechanical complexity and power requirements. 

This paper also addressed a very important subject that has not received much attention in 

the dynamically stable legged robot literature: experimentally validated models. Two different 

simulation models were constructed to test the validity of commonly made assumptions in 

modeling dynamic legged robots. Both models included an experimentally validated motor 

driving system (amplifier/actuator units) with a battery model. Without the actuator saturation 

taken into account, both models do not converge to cyclic motion with the controller used in 

experiments. 

The authors also demonstrated that in order to construct a model that accurately describes 

the physical behavior, one needs to include a detailed model of the hip joint including torsional 

belt compliance and gear dynamics. The assumption of rigid torque transmission is not valid and 

significantly affects the accuracy of the results. Model I, which already goes far beyond the 

modeling completeness common in the legged robot community but does not include torsional 

hip compliance, not only results in larger errors but, most importantly for lower speeds, fails 

entirely to converge to cyclic bounding motion. On the other hand Model II is remarkably 

accurate over a limited operating range. The authors hope that these results will shed light on 

which commonly made assumptions (e.g. constant maximum torque, rigid torque transmission) 

might result in misleading models especially for dynamic legged robots. 
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