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Abstract

This dissertation contains four essays, all of which model time series of implied

volatility (IV) and assess the forecast performance of the models. The overall

finding is that implied volatility is indeed forecastable, and its modeling can benefit

from a new class of time series models, so-called multiplicative error models. It

is often beneficial to model IV with two (or more) regimes to allow for periods of

relative stability and periods of higher volatility in markets.

The first essay uses a traditional ARIMA model to model the VIX index. As the

data displays conditional heteroskedasticity, forecast performance improves when

the model is augmented with GARCH errors. The direction of change in the VIX

is predicted correctly on over 58 percent of trading days in an out-of-sample period

of five years. An option trading simulation with S&P 500 index options provides

further evidence that an ARIMA-GARCH model works well in forecasting changes

in the VIX.

The second essay estimates two-regime multiplicative error models for the implied

volatility of options on the Nikkei 225 index. Diagnostics show that the model is

a good fit to the data. The implied volatility of call options turns out to be more

forecastable than the implied volatility of put options in a two-year out-of-sample

period. A two-regime model forecasts better than a one-regime model. When the

forecasts of the multiplicative models are used to trade options on the Nikkei 225

index, the value of using two regimes is again confirmed.

The third essay investigates the joint modeling of call and put implied volatilities

with a two-regime bivariate multiplicative error model. The data set is the same

as in the second essay. Forecast performance improves when call IV is used as an

explanatory variable for put IV, and vice versa. Forecasts with the bivariate model

outperform forecasts obtained with the univariate models in the second essay. An

vii



impulse response analysis shows that put IV recovers faster from shocks, and the

effect of shocks lasts for up to six weeks.

The fourth essay models the IV of options on the USD/EUR exchange rate. This

essay extends the models of the second and third essays with a time-varying proba-

bility between regimes. The changes in the USD/EUR exchange rate are used as a

regime indicator, with large changes in the exchange rate signifying a more volatile

regime. Out-of-sample forecasts indicate that it is beneficial to jointly model the

implied volatilities derived from call and put options: both mean squared errors

and directional accuracy improve when employing a bivariate rather than a uni-

variate model.

Keywords : Implied volatility, Forecasting, Option markets, VIX index, GARCH

models, Multiplicative error models, Mixture models.
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Chapter 1

Introduction

Implied volatility (IV) modeling and forecasting is a topic that has received much

less attention in academia compared to volatility modeling and forecasting in gen-

eral, particularly in light of the immense literature on the GARCH model and its

various extensions. Volatility as such is a fundamental issue in financial markets,

and it is significant in virtually all types of financial decision-making. Implied

volatility is often considered to be the best available forecast for future volatility.

Calculated from prevailing market prices for options, implied volatility is regarded

as the market’s expectation of volatility in the returns of the option’s underlying

asset during the remaining life of the option. The forward-looking view provided

by IV should thus reflect investor sentiment regarding the future.

Harvey and Whaley (1992) describe the benefits of IV by pointing out that

when using options to garner a volatility forecast, one does not need to specify a

time-series model to link ex-post and ex-ante volatility. IV forecasts can be valu-

able for, broadly speaking, all market participants. A forecast of future volatility

affects derivative pricing, but also all investors with risk management, asset al-

location, and portfolio insurance concerns: an expected change in volatility may

warrant altering portfolio weights and/or composition. Portfolio managers who

are judged against a benchmark can also benefit from volatility forecasts. Fleming

(1998) writes that IV can be used as an indicator of market sentiment, to evaluate

asset pricing models, and also perhaps to forecast returns. Konstantinidi et al.

(2008) also argue that IV and future returns can be linked. They assert that if
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IV is predictable, it may contain evidence on how expected asset returns change.

Asset price predictability stems from IV predictability as implied volatility is, in

essence, a reparameterization of the market price of options.

Trading based on volatility assumes one has a view on the future direction of

volatility, or that one feels the market’s view (expectation) is not correct. Such

a volatility trade requires no opinion on how the price of the option’s underlying

asset is going to develop in the future. Professional option traders such as hedge

funds and proprietary traders in investment banks can potentially profit if their

view on the direction of IV is correct, ceteris paribus. At-the-money option prices

in particular are sensitive to changes in IV (Bollen and Whaley (2004)), so a

trader with a correct view of the direction could enter into a position that stands

to gain from the impending change in the market’s volatility expectation. Ni et

al. (2008) emphasize that if a trader possesses a directional view about the price

of the underlying asset, she can trade in either the underlying directly, or then

with options. With a volatility view, the trader is restricted to trading in options

alone.

This dissertation seeks to fill gaps in existing literature by modeling implied

volatility with a variety of time series models and assessing the quality of forecasts

calculated from these models. The modeling itself answers questions on what type

of time series models fit IV data, giving new insights on how both traditional and

more recently developed models can be used in IV modeling. The goal of direc-

tional accuracy in forecasting receives support from Harvey and Whaley (1992),

who find that IV changes are not unpredictable. This dissertation confirms that

finding for three different time series of IV data. As the directional accuracy of

the models in all four essays is well above 50% (between 58.4% and 72.2%), it can

be argued that the forecasts can potentially be used to trade options profitably.

1.1 Calculating Implied Volatility

Implied volatility is calculated by inverting an option valuation formula when the

prevailing market price for an option is known. Volatility is the only ambiguous
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input into e.g. the Black-Scholes option pricing formula,1 which is shown below

for a call option on a non-dividend paying stock:

C = SN(d1) − Xe−rT N(d2) (1.1)

where

d1 = ln(S/X)+(r+σ2/2)T

σ
√

T

d2 = d1 − σ
√

T

C denotes the price of a European call option, S is the market price of the un-

derlying asset, X is the strike price of the option, r is the risk-free interest rate,

T is the time to maturity of the option, N is the cumulative normal distribution

function, and σ is the volatility in the returns of the underlying asset (in this case,

stock) during the life of the option. This last input to the model is thus easily

confirmed to be the only one that is not easily observed in the markets. Extensions

of the Black-Scholes model have been developed also for e.g. currency and futures

options.

Three of the four essays in this dissertation model IV data that is calculated

using the Black-Scholes model or one of its extensions. The data on Nikkei 225

index option IV that is used in the second and third essays is derived from the

Black-Scholes model. The IV data from USD/EUR exchange rate options that is

modeled in the fourth essay is calculated with the Garman-Kohlhagen model2 for

currency options, an extension of the Black-Scholes model. The shortcomings and

merits of the Black-Scholes model thus warrant further discussion.

The Black-Scholes option pricing model makes two assumptions that are in

contrast with what is observed in actual financial markets. First, the model as-

sumes that the volatility in the price of the underlying asset will remain constant

throughout the life of the option. Second, the logarithmic returns of the under-

lying asset are assumed to follow a normal distribution, whereas financial market

returns exhibit both skewness and excess kurtosis. The non-normality of financial

1Black and Scholes (1973).
2Garman and Kohlhagen (1983).
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returns is manifested in the fact that when IVs are calculated from prevailing mar-

ket prices with the Black-Scholes model, the so-called volatility smile or volatility

skew emerges: IVs vary with the strike price of options, even when the options

have the same maturity date.

Due to the widely recognized shortcomings of the Black-Scholes model, an

abundance of research concentrates on developing option pricing models that could

account for stochastic volatility and thus reflect market prices of options more ac-

curately.3 However, the Black-Scholes model remains largely the market consen-

sus choice for obtaining IVs, as no other model has conclusively gained ground.4

Computationally and conceptually tractable, the Black-Scholes model is often used

particularly in over-the-counter markets to calculate IVs, which are then provided

directly as market quotes rather than the option prices themselves. Numerous

studies use IVs calculated with the Black-Scholes model or one of its extensions:

examples include Day and Lewis (1992), Jorion (1995), Jackwerth (2000), Bollen

and Whaley (2004), and Ederington and Guan (2005).

In addition, existing research provides evidence that the Black-Scholes model

may not perform at all poorly as an option pricing model and source of IVs.

Hull and White (1987) find that Black-Scholes IVs are least biased for at-the-

money (ATM),5 short-term maturity options, meaning that errors in IV estimates

stemming from model misspecification can be minimized by using ATM options.

Mayhew (1995) also notes that the consensus view is that the Black-Scholes model

performs reasonably well for ATM options with no more than one or two months

to expiration. As the vast majority of IV literature, including the essays in this

dissertation, focuses on ATM options with short times to maturity, these model se-

lection concerns are mitigated. Also, Fleming (1998) maintains that Black-Scholes

IV is the rational forecast for mean volatility over the life of an option. He also

argues that using an alternative option pricing model involves uncertainty about

the chosen volatility process. Even if the process is correctly specified, additional

3One of the first, classic examples of such a competing model is that of Hull and White (1987).
4Fleming et al. (1995) assert that no commonly accepted alternative model to the Black-

Scholes model exists.
5At-the-money options are such that S = X. In-the-money call (put) options have a strike

price that is lower (higher) than the prevailing market price. Out-of-the-money call (put) options
have a strike price that is higher (lower) than the prevailing market price.
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parameters must be estimated, which makes it harder to recover the true volatility

forecast. Jorion (1995) also points out that the use of stochastic volatility models

requires the estimation of additional parameters, which introduces an additional

potential source of error.

Ederington and Guan (2002) provide evidence that the Black-Scholes model

can be correct despite the existence of the volatility smile. The authors find that

trading based on the volatility smile can yield substantial profits before transac-

tion costs. In such a strategy, options with high Black-Scholes IVs are sold and

options with low IVs bought. There should be zero profits in this strategy if the

Black-Scholes model is inaccurate, as the options are not over- or underpriced,

but correctly priced. As the returns are non-zero, the options are indeed over- or

underpriced, and the Black-Scholes model identifies the mispricing correctly. Ed-

erington and Guan (2002) conclude that a large part of the volatility smile must

reflect other forces than wrong distributional assumptions of the Black-Scholes

model. These forces could include different demand pressures for calls and puts,

and the failure of the no-arbitrage assumption. Hentschel (2003) discusses how

measurement errors in option prices can contribute to the existence of the volatility

smile. As an example, for out-of-the-money (OTM) options, sensitivity to volatil-

ity is small in the sense that large changes in volatility bring about small changes

in option prices. Conversely, if option prices are even slightly erroneous, implied

volatility estimates can be far off. Measurement errors that contribute to errors in

option prices include bid-ask spreads, finite quote precision (tick sizes), and non-

synchronous observations (such as stale component prices of indices). Hentschel

(2003) maintains that if prices are measured with error, implied volatility can smile

even if all the Black-Scholes assumptions hold.

To tackle the problems associated with model selection in acquiring IV esti-

mates, model-free methods of recovering implied volatilities directly from option

price quotes have emerged in recent years. Most notably, the VIX Volatility Index

of the Chicago Board Options Exchange, which is a measure of the IV of S&P 500

index options, has been calculated with a model-free methodology from September

2003 onwards.6 The VIX is a staple for active investors around the world, and is

6For details on how the VIX is calculated, see www.cboe.com/micro/vix. Prior to September
2003, the Black-Scholes model was used to calculate the VIX.
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considered to be a measure of investor sentiment and risk aversion. In the wake of

the VIX, numerous other implied volatility indices have switched to the model-free

methodology, including the VXN for options on the Nasdaq index, the VDAX for

options on the DAX index, and the VSTOXX for options on the Dow Jones Euro

Stoxx 50 index. The topic of the first essay of this dissertation is modeling and

forecasting the VIX index.

The second, third, and fourth essays in this dissertation model two time series

of IV data: one series recovered from call options, and the other from same-strike,

same-maturity put options. Both types of options should provide the market’s

expectation of future volatility, in other words, the exact same value of IV. How-

ever, the values of call and put IV differ, which could potentially lead to arbitrage

opportunities. Put-call parity is one of the key arbitrage bounds that apply to

option prices. If option prices depart from such arbitrage bounds, traders could

make riskless profits in the absence of transaction costs. However, the existence of

transaction costs and other market imperfections allows option prices to deviate

from their no-arbitrage values, which is then reflected in implied volatilities: the

IVs recovered from otherwise identical calls and puts should be equal, but in prac-

tice, they tend to consistently differ from one another. The demand for puts as

portfolio insurance creates demand pressure that is not matched by the demand

for equivalent call options. Such demand pressure is one reason why option prices

try to pull away from no-arbitrage bounds. Importantly, the gap in call and put

IVs provides a valuable building block for the joint modeling of the two time series

with bivariate models in the third and fourth essays.

1.2 Brief Review of IV Literature

Implied volatility forecasting in this dissertation is a separate issue from how well

IV forecasts future realized volatility. This latter issue is the topic of the majority

of IV literature to date. These studies seek to discover whether IV is an unbi-

ased and efficient predictor of future realized volatility. Examples of the above-

mentioned literature include Chiras and Manaster (1978), Day and Lewis (1992),

Canina and Figlewski (1993), Lamoureux and Lastrapes (1993), Fleming et al.

(1995), Jorion (1995), Christensen and Prabhala (1998), Blair et al. (2001), and

6



Carr and Wu (2006). Broadly speaking, these studies conclude that IV is a bi-

ased forecast of future volatility, but it tends to be efficient in the sense that the

information contained in IV subsumes all other available information. In other

words, augmenting a forecasting model with e.g. a GARCH-based forecast does

not improve the forecasts if IV is already a variable in the model. As examples

of new lines of work in this area, Bandi and Perron (2006) look at the relation

between realized and implied volatility and conclude that the time series are frac-

tionally cointegrated. Giot and Laurent (2007) estimate a model for S&P 500

realized volatility with only lagged values of the VIX index as explanatory vari-

ables and conclude that it is nearly as good as a model with jump and continuous

components of historical volatility included.

In contrast to the above studies, Harvey and Whaley (1992) argue that since

true conditional volatility is not observable, it is impossible to assess the forecast

accuracy of any models. Instead, they opt to model and forecast IV itself. Harvey

and Whaley (1992) and Brooks and Oozeer (2002) share more or less the same

structure as the first and second essays of the dissertation. Both select a time series

model for an IV series, calculate IV forecasts, and also run a trading simulation

with option price quotes based on the forecasts. The third and fourth essays differ

from this basic structure in that they do not include option trading simulations.

Harvey and Whaley (1992) model the IV of call and put options on the S&P 100

index, which was more important than the S&P 500 index at the time. Brooks

and Oozeer (2002) use European data, or the IV of options on Long Gilt futures,

which are traded on the London International Financial Futures Exchange. Both

the above-mentioned studies find in their option trading simulations that profits

disappear after taking transaction costs into account. The point of view in the

trading exercises of the first and second essays is somewhat different, as they do

not seek to find whether or not abnormal profits could be made. To that end,

transaction costs are not accounted for. The purpose of the trading simulation

is to confirm which model is the best forecaster. Also, the option trades that

are simulated in the first and second essays are straddles, whereas Harvey and

Whaley (1992) and Brooks and Oozeer (2002) simulate buy-or-sell strategies. The

straddle is the most effective way to trade options if one has a view on the change

in volatility (Bollen and Whaley (2004)).
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Other studies also model implied volatility but have a different perspective.

Guo (2000) models and forecasts the IV of currency options, but with the aim of

comparing IV forecasts to GARCH-based forecasts in an option trading exercise.

Mixon (2002) looks at the link between contemporaneous stock returns and changes

in IV, but this approach cannot be used for IV forecasting: a forecasting model

needs to contain lagged, not contemporaneous, explanatory variables. Bollen and

Whaley (2004) model changes in S&P 500 index implied volatility, focusing on how

net buying pressure drives changes in IV. Gonçalves and Guidolin (2006) model the

S&P 500 implied volatility surface, thus modeling IVs across a multitude of strike

prices and maturity dates. Konstantinidi et al. (2008) estimate various time series

models for the VIX and other IV indices. However, their directional accuracy falls

short of the results received for the VIX in the first essay of the dissertation. Their

trading simulation is carried out with VIX futures rather than S&P 500 options;

the conclusion is that no abnormal profits can be made with the VIX forecasts.

1.3 Methodology

The first essay of the dissertation uses traditional time series methodology, namely

ARIMA and GARCH modeling. The modeling of conditional heteroskedasticity

proves to be important for directional forecast accuracy. This result finds support

in Christoffersen and Diebold (2006), who show that in the presence of conditional

heteroskedasticity, direction can be forecast even in cases where reliable point

forecasts cannot be obtained.

The remaining three essays estimate mixture multiplicative error models (MEM

models), where the conditional mean µt of the IV time series is multiplied by the

error term εt:

IVt = µtεt (1.2)

This contrasts the additive structure of traditional linear models such as ARIMA

models. All three essays with MEM models assume that the error term follows the

gamma distribution, receiving only non-negative values. MEM models are suited

for non-negative time series, and were first suggested by Engle (2002) for modeling
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volatility. It is not necessary to take logarithms of data when estimating MEM

models, as is normally the case with financial time series. The structure of MEM

models is the same as in autoregressive conditional duration (ACD) models.7

The basic MEM model has turned out to be inadequate for describing the

behavior of IV time series. Therefore, the models that are estimated in this dis-

sertation have a mixture structure. The existence of mixture components in the

models means that the data is assumed to be drawn from two (or more) regimes.

The regime-switching properties of e.g. exchange rate volatility have been widely

studied (a relevant example is Bollen et al. (2000)), and Lanne (2006) finds that

a two-regime mixture MEM model is a good fit to data on the realized volatility

of exchange rates. Engle and Gallo (2006) provide a MEM application for the

returns, high-low range, and realized volatility of the S&P 500 index.8

The two-regime MEM model specification in the second essay of the disserta-

tion is drawn from Lanne (2006), and this model is extended to a bivariate setting

in the third essay. The bivariate model specification is a new model in itself.

Cipollini et al. (2006) estimate a multivariate MEM model, but using copula func-

tions. The bivariate model specification in this dissertation uses a bivariate gamma

distribution for the error term, which makes the use of copulas unnecessary. A

fixed probability for both regimes is estimated in both the univariate and bivariate

MEM models. The new ingredient in the fourth essay is a time-varying probabil-

ity between regimes, which proves necessary for the data set in that study. The

time-varying probability depends on a regime indicator, with the choice falling on

the returns of the underlying asset. The regime thresholds are not strict; in other

words, there is a range around the threshold value within which the regime switch

occurs. The width of the range is estimated as one of the parameters of the model.

7ACD models were introduced by Engle and Russell (1998) and are used to model e.g. the
duration between trades.

8The MEM model is not a good fit for the VIX index, however.
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1.4 Summaries of Essays

1.4.1 Modeling and Forecasting the VIX Index

The VIX index is followed closely by financial market practitioners as well as retail

investors. It is considered to be an indicator of market sentiment and risk aversion.

Based on the market prices of options on the S&P 500 index, the VIX is also the

market’s expected volatility in the returns of the S&P 500 index over the next

thirty days. The S&P 500 index, in turn, is the most important benchmark for

U.S. equity markets.

The VIX has been the topic of plenty of academic research over the past years.

This study extends the existing literature by estimating time series models for the

VIX, and calculating forecasts from these models. This contrasts most existing

studies, as they attempt to evaluate whether or not the VIX is an unbiased predic-

tor of future realized volatility. The current methodology for calculating the VIX is

model-free, which helps to avoid issues with option pricing model misspecification.

The models are built for log VIX first differences. An ARIMA(1,1,1) specifi-

cation is found to be the best fit. The VIX also displays volatility persistence, or

conditional heteroskedasticity. As a result, the parameters in a GARCH model for

the error terms are statistically significant. The significance of a number of finan-

cial and macroeconomic explanatory variables is investigated, but only the returns

of the S&P 500 index prove significant. For example, S&P 500 trading volume

and the returns of a stock index covering key non-U.S. markets are not significant

explanatory variables for changes in the VIX. Weekly seasonality is important in

modeling the VIX, as both Monday and Friday dummy variables are significant.

The VIX tends to rise on Mondays and fall on Fridays.

Two in-sample periods are used in the study. Both end on 31.12.2002, allow-

ing for a five-year out-of-sample period from 1.1.2003 to 31.12.2007. The longer

(shorter) in-sample period uses 3,279 (1,000) observations for parameter estima-

tion. It turns out that the directional accuracy of the VIX forecasts improves when

using the shorter sample period. The ARIMA-GARCH specification without the

underlying index returns as an explanatory variable is the superior directional

forecaster, with the correct direction of change forecasted on 58.4% of days in the

10



out-of-sample period. Mean squared errors are slightly lower when the models

are estimated with the longer in-sample, but the differences are not statistically

significant.

A straddle trading simulation with S&P 500 index options is run in order to

confirm whether or not the ARIMA-GARCH model, estimated with 1,000 obser-

vations, is indeed the forecasting model of choice. The goal of the trading exercise

is not to uncover if the forecasts could lead to abnormal profits; the results are sim-

ply used to rank the models. When leaving out four outlier days that could make

the results noisy, the ARIMAX-GARCH model (which includes S&P 500 returns

as an explanatory variable) leads to the highest returns, followed by the ARIMA-

GARCH model. Both these models are estimated with 1,000 observations. All in

all, the evidence is thus somewhat mixed regarding the significance of including

S&P 500 returns in the model, but the modeling of conditional heteroskedasticity

is important.

1.4.2 Multiplicative Models for Implied Volatility

A new class of models, so-called multiplicative error models (MEM models), have

been used successfully in recent years to model volatility. MEM models were first

suggested by Engle (2002) for modeling financial time series. Due to the way they

are set up, multiplicative models can be used for time series that always receive

non-negative values, such as trading volume or volatility. MEM models differ from

linear regression models in that the mean equation is multiplied with the error

term.

In this particular study, a mixture multiplicative error model (MMEM) similar

to that in Lanne (2006) has been estimated. The model has two mean equa-

tions and error distributions, with the error terms coming from gamma distribu-

tions. The time-varying conditional mean and possibility for a mixture of two

gamma distributions can help model the fact that in financial time series, periods

of business-as-usual alternate with periods of large shocks, which can be captured

by the second mixture components of the model. A probability parameter dictates

which state the model is in.

Daily data on the implied volatility (IV) of options on the Nikkei 225 index
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was obtained for both Nikkei 225 index call and put options for the time period

1.1.1992 - 31.12.2004. The use of separate time series of IV from calls (NIKC) and

puts (NIKP) can offer new insights into the analysis, and e.g. benefit investors

wishing to trade in only either call or put options. The in-sample period used

in model estimation extends from 2.1.1992 to 30.12.2002. Statistical significance

leads to a final choice of a MMEM(1,2;1,1) specification. In practice, the business-

as-usual equation has two lags of implied volatility and one lag of the conditional

mean, whereas the second mean equation contains one lag of each.

With financial market data, it may be that only the most recent history is

relevant in modeling and forecasting, so the MMEM(1,2;1,1) model was also es-

timated for NIKC and NIKP using only the past 500 observations. In order to

investigate the necessity of the mixture components of the model, a MEM(1,2)

specification (i.e., a model with only one mean equation and error distribution)

was also estimated. Coefficients are not statistically significant in this latter case.

The last 486 trading days of the full sample were left as an out-of-sample

period. Forecast performance is evaluated primarily with directional accuracy, and

secondly with mean squared error. In general, it appears to be somewhat easier

to forecast NIKC than NIKP. At best, the MMEM(1,2;1,1) model forecasts the

direction of change correctly on 69.1% of trading days for NIKC and on 66.0% of

trading days for NIKP. For e.g. option traders, any level of accuracy over 50% can

potentially be worth money. Also, comparing with the findings of the first essay of

the dissertation for the VIX index, where the sign was predicted accurately on 58%

of trading days at best, the directional accuracy is clearly better for the Nikkei

225 implied volatility.

When incorporating only the most recent information, or estimating the model

with 500 observations, the forecast performance deteriorates considerably. The

forecast performance of the one-regime MEM(1,2) model also falls short of that

of the MMEM(1,2;1,1) estimated from the entire in-sample. Mean squared errors

are lowest when using only 500 observations to estimate the model.

Mean squared errors from forecasts five days ahead into the future indicate that

the chosen MMEM(1,2;1,1) specification fares best. In an option trading simula-

tion with actual market prices of Nikkei 225 index options, trading straddles based

on the forecasts from the MMEM(1,2;1,1) model also leads to the highest returns.
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Therefore, the evidence leads to a recommendation of using the MMEM(1,2;1,1)

model in order to forecast the implied volatility in Japanese option markets.

1.4.3 Joint Modeling of Call and Put Implied Volatility

This study introduces a bivariate mixture multiplicative error model (BVMEM).

The model has two mean equations and error distributions, with the error terms

coming from a bivariate gamma distribution. The two-regime structure is useful

in financial market applications as financial time series have often been found to

exhibit regime-switching properties. A probability parameter that indicates how

much time is spent in each regime is estimated as one of the parameters in the

model.

The data set consists of daily observations of Black-Scholes implied volatilities

(IV) of options on the Nikkei 225 index for the time period 1.1.1992 - 31.12.2004.

The joint modeling of separate time series of IV from calls (NIKC) and puts (NIKP)

can be beneficial, as call-side IV is likely to affect put-side IV, and vice versa.

These cross effects are captured by using lagged call (put) IV as an explanatory

variable for put (call) IV. Evidence from prior literature indicates that trading in

put options can potentially have a particularly strong effect: demand for index

puts is often quite large, as institutional investors buy puts as portfolio insurance.

These demand effects can also help explain why the IV calculated from calls and

puts differs in the first place: limits to arbitrage let imbalances in demand and

supply affect prices so that they depart from their no-arbitrage bounds.

The eleven-year in-sample period used in the model estimation covers the time

period 2.1.1992 - 30.12.2002. The final model specification includes cross effects

between NIKC and NIKP in both regimes, as well as slope dummy variables for

put IV on Fridays. The weekly pattern of the IV data is that IV is highest on

Mondays and lowest on Fridays. Error terms are much more dispersed around their

mean of unity in the second regime. Diagnostic checks with probability integral

transforms, as well as a simulation of autocorrelations, indicate that the model is

a good fit to the data.

The paper includes an impulse response analysis that shows that the effect of

shocks to implied volatility can last for up to six weeks, or thirty trading days.
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Interestingly, put-side IV recovers much more quickly from shocks, even if only

NIKP receives the shock - therefore, trading in puts may be more efficient. The

point in time when the shock is introduced does not affect the impulse responses

(i.e., whether it is a time of low or high IV).

The last two years, or 486 trading days, of the data set were used as an out-of-

sample period for forecast evaluation. Forecasts were calculated from the chosen

bivariate model specification as well as from a model with no cross effects. Fore-

casts were obtained with updating and fixed coefficients, so there are a total of

four competing forecast series. Forecast performance is evaluated with both direc-

tional accuracy and with mean squared errors. It turns out to be slightly easier to

forecast NIKP than NIKC. At best, the BVMEM model forecasts the direction of

change correctly on 72.2% of trading days for NIKP and on 71.6% of trading days

for NIKC. Both results are superior to those achieved with equivalent univariate

models. Mean squared errors are lower for NIKC.

All in all, the model with cross effects and updating coefficients fares best as

a forecasting model. More importantly, these results improve upon those in the

second essay, which contains similar models but in a univariate setting. Therefore,

there is clear added value to modeling call and put implied volatility jointly.

1.4.4 Implied Volatility with Time-Varying Regime Prob-

abilities

Numerous studies document that exchange rates appear to exhibit regime-switching

tendencies. For example, Bollen et al. (2000) estimate a two-regime Markov-

switching model for log exchange rate changes, with both mean and variance

regimes switching independently of each other. Their results show that the volatil-

ity of exchange rate returns is two to three times higher in the more volatile regime.

In light of this evidence, it can be hypothesized that the implied volatility of foreign

exchange options could also be drawn from two or more regimes.

This study models the at-the-money implied volatilities of call and put options

on the USD/EUR exchange rate with two and three-regime multiplicative error

models. A model with a fixed probability between regimes (similar to the models

in the second and third essays) is not sufficient for this data set. Therefore, a
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time-varying property is added to the model so that the regime probabilities are

estimated for each data point separately. In other words, with daily observations,

regime probabilities are determined separately for each day in the data set.

Daily returns in the USD/EUR exchange rate are used as a regime indicator.

The assumption behind this choice is that large moves in the underlying asset of

the options will correspond to days that fall into the more volatile regime. The

performance of this regime indicator is confirmed by comparing the time series

of probabilities to the time series of IV data. This comparison indicates that the

regime probabilities do in fact react when IV experiences large moves, or is at a

relatively high level.

Additional flexibility is introduced into the model by allowing the regime switch

to occur within a certain range rather than at a fixed threshold value. A thresh-

old value of the exchange rate return is estimated, but an additional volatility

parameter provides the width of the range within which a regime shift occurs.

Both univariate and bivariate MEM models are estimated for the call and put

IV data. As there is no test for the number of regimes, several alternatives were

evaluated and statistical significance and diagnostic tests used to select viable

specifications. Both two and three-regime models are viable in the univariate

setting, whereas two regimes are sufficient for the bivariate model.

As in the third essay, the bivariate model proves to be a superior forecaster

when compared to the univariate models. Both the two and three-regime univari-

ate forecasts have weaker directional accuracy and mean squared errors than the

bivariate forecasts. Also in line with the results of the third essay, the implied

volatility of USD/EUR puts is more forecastable than the IV of the equivalent

calls.
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Chapter 2

Modeling and Forecasting the

VIX Index

Katja Ahoniemi1

Abstract

This paper estimates numerous time-series models of the VIX index, and finds that

an ARIMA(1,1,1) model has predictive power regarding the directional change

in the VIX. A GARCH(1,1) specification improves both directional and point

forecasts, but augmenting the model with financial or macroeconomic explanatory

variables such as S&P 500 returns does not produce further improvement. The

direction of change in the VIX is predicted correctly on over 58 percent of trading

days in an out-of-sample period of five years. An out-of-sample straddle trading

simulation with S&P 500 index options lends further support to the forecasting

model choice.

1Correspondence: Helsinki School of Economics, Department of Economics, P.O. Box 1210,
00101 Helsinki, Finland. E-mail: katja.ahoniemi@hse.fi. The author wishes to thank Markku
Lanne, Pekka Ilmakunnas, Petri Jylhä, and participants at the European Financial Management
Association 2006 annual meeting and at the 2006 European Meeting of the Econometric Society
for helpful comments. Petri Jylhä also provided valuable assistance with the data. Financial
support from the Finnish Doctoral Programme in Economics, the Jenny and Antti Wihuri Foun-
dation, the Okobank Group Research Foundation, the Finnish Foundation for Share Promotion,
and the Finnish Foundation for Advancement of Securities Markets is gratefully acknowledged.
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2.1 Introduction

Professional option traders such as hedge funds and banks’ proprietary traders

are interested primarily in the volatility implied by an option’s market price when

making buy and sell decisions. If the implied volatility (IV) is assessed to be too

high, the option is considered to be overpriced, and vice versa. Returns from

volatility positions in options, such as straddles, depend largely on the movements

in IV, and the trader does not need a directional view regarding the price of

the option’s underlying asset. As a measure of market risk, IV can also be seen

as a useful tool in all asset pricing, and its value can assist in making portfolio

management decisions. Due to these considerations, implied volatility forecast-

ing can provide added value to practitioners and retail investors alike. Though

traditionally solved by backing out volatility from an option pricing formula such

as Black-Scholes, model-free implied volatility indices have emerged over the past

years. The most popular and widely followed index is the VIX index, calculated

by the CBOE from S&P 500 index option prices. Simon (2003) describes how

markets tend to view extreme values of the VIX as trading signals. If the VIX

is very high, markets are pessimistic, which could lead to a subsequent rally in

stock prices. On the other hand, if IV is very low, the market may next face a

disappointment stemming from a downward move in prices.

Relatively little work has been done on modeling IV itself, compared with the

extensive literature on modeling the volatility of the returns of various financial

assets that exists today. Bollen and Whaley (2004) model changes in S&P 500

index implied volatility with variables such as returns and trading volume in the

underlying, as well as net buying pressure variables. Mixon (2002) finds that

contemporaneous domestic stock returns have significant explanatory power for

changes in IV, but other observable variables, such as foreign stock returns and

interest rate variables, can also be useful in IV modeling. Low (2004) uses the VIX

as a proxy for option traders’ risk perception, and investigates how changes in risk

perceptions and changes in prices are linked. Gonçalves and Guidolin (2006) model

the whole surface of S&P 500 option IV, thus incorporating the term structure of

IV and option moneyness into the model.2

2There are other examples of IV modeling from markets other than the stock market. Using
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There are a few papers that are very close in nature to this study: Harvey and

Whaley (1992) and Brooks and Oozeer (2002) are based on very much the same

approach. Harvey and Whaley (1992) forecast the implied volatility of options

on the S&P 100 index and find that changes in IV are indeed predictable. They

forecast the direction of change in IV and trade accordingly in the option market.

Brooks and Oozeer (2002) model the IV of options on Long Gilt futures, traded

on the London International Financial Futures Exchange, calculate directional

forecasts, and run an option trading simulation. Both studies suggest profits for

a market maker, but not for a trader facing transaction costs. Guo (2000) is

also a similar paper, containing a model for the changes in call and put IV of

foreign exchange options. This model is used to forecast IV, with option trades

executed based on the forecasts. The goal of this paper is somewhat different,

as it seeks to compare whether IV or GARCH forecasts lead to larger option

trading returns. Another closely related paper is Konstantinidi et al. (2008), who

estimate a variety of models for several IV indices, including the VIX. However,

the directional forecast accuracy they receive for the VIX is outperformed by the

results in this study. The models in this study are augmented with both GARCH

and day-of-the-week effects, elements which are absent from Konstantinidi et al.

(2008), and may contribute to the superior forecast performance of this study.

There are a number of studies that explore option trading in connection with

IV analysis. Harvey and Whaley (1992), Brooks and Oozeer (2002) and Corredor

et al. (2002) employ simple buy or sell option trading strategies, whereas typical

volatility trades involve various types of spreads, most commonly the straddle.

Guo (2000) and Noh et al. (1994) simulate straddle trades, and in the trading

simulation of Poon and Pope (2000), S&P 100 call options are bought and S&P 500

call options simultaneously sold, or vice versa. Kim and Kim (2003) trade exchange

rate options on futures to take advantage of observed intraweek and announcement

day effects on IV. Harvey and Whaley (1992) and Guo (2000) first convert their IV

forecasts into option prices, and compare these predicted option prices to actual

market quotes when choosing how to trade. Gonçalves and Guidolin (2006) solve

data on currency futures options, Kim and Kim (2003) model changes in implied volatility with
lagged IV changes and futures returns. Davidson et al. (2001) use data from various types of
options on non-equity futures and explain changes in IV with lagged IV changes, futures returns,
trading volume, and open interest.
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for IV from option prices, compare that value to their IV forecasts, and trade

accordingly. Both these approaches require an assumption on the option pricing

model. In this study, IV forecasts are used directly as trading signals in the same

manner as in Brooks and Oozeer (2002), so that if IV is forecast to rise (fall),

options are bought (sold), as their value is expected to increase (decrease).

Due to its popularity, the VIX has been the topic of numerous articles that

differ somewhat in perspective from the present study.3 The traditional vein of IV

research investigates how well IV succeeds in forecasting future realized volatility:

after all, IV should equal the market’s expected future volatility. Existing research

is in relatively unanimous agreement that the VIX index forecasts future volatility

better than any historical volatility measure. Fleming et al. (1995) find that the

VIX dominates historical volatility as a forecaster of future volatility. Blair et al.

(2001) agree, concluding that volatility forecasts provided by the VIX index are

more accurate than forecasts based on intra-day returns or GARCH models. Blair

et al. (2001) also maintain that there is some incremental information in daily

index returns when forecasting one day ahead, but the VIX index provides nearly

all information relevant for forecasting. Corrado and Miller (2005) report that the

VIX yields forecasts that are biased upward, but the forecasts are more efficient in

terms of mean squared error than forecasts based on historical volatility. Dennis

et al. (2006) find that daily VIX changes are very significant in predicting future

index return volatility. Giot and Laurent (2007) conclude that the information

content of the VIX is high: the explanatory power of a model for realized volatil-

ity with only lagged values of the VIX is nearly as good as that of a model with

jump and continuous components of historical volatility included. Becker et al.

(2006) provide evidence that contradicts the findings of the above-mentioned pa-

pers. They investigate the forecasting ability of the VIX and find that it is not an

efficient forecaster of future S&P 500 realized volatility, particularly when data is

sampled daily rather than at longer intervals. In other words, according to Becker

et al. (2006), other historical volatility estimates can improve volatility forecasts

based on the VIX alone.

3Note that VIX is used here to refer to both the current VIX and VXO indices. The VIX
used to be based on S&P 100 options, but is based on S&P 500 options since September 2003.
The index that is today calculated from S&P 100 option prices carries the ticker VXO. Research
conducted before the switch speaks of the VIX, when today that index is the VXO.
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This study estimates various traditional time series models for the VIX. An

ARIMA(1,1,1) model augmented with GARCH errors is found to be a good fit

for the time series of the VIX index.4 The data clearly displays conditional het-

eroskedasticity, and GARCH modeling proves important. S&P 500 index returns

have some explanatory power over VIX changes, but the trading volume of the

underlying index does not. The ARIMA-GARCH model specification produces

forecasts with a directional accuracy of up to 58.4 percent in a five-year out-of-

sample period. An accuracy of above 50% can potentially lead to profits in option

positions. A straddle trading simulation is run based on the forecasts from the es-

timated models. The goal of the simulation, however, is not to determine whether

or not abnormal profits can be achieved. The option trading returns are used in-

stead to confirm the choice of the best forecasting model. Option trades simulated

on the basis of these forecasts indicate that adding the lagged returns of the S&P

500 index to the model can perhaps be beneficial. Both the forecast evaluation and

straddle trading exercise show that it is better to estimate the forecasting models

with a shorter in-sample period of 1,000 rather than a longer period of 3,279 ob-

servations. Conditions in the market have changed sufficiently during the years in

question that more recent events are more relevant for parameter estimation.

This paper proceeds as follows. Section 2.2 describes the data used in this

study, including various financial and macroeconomic variables that could have

explanatory power over the VIX index. Section 2.3 presents the models estimated

for the VIX time series and discusses their goodness of fit. Section 2.4 contains the

analysis of forecasts, with forecast evaluation based on directional accuracy and

mean squared errors. Section 2.5 contains the option trading simulation. Section

2.6 concludes the paper.

4Fernandes et al. (2007) explore the long-memory properties of the VIX index, but find that
when forecasting one day ahead, simple linear models perform as well as more sophisticated
models.
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2.2 Data

2.2.1 The VIX index

The core data in this study consists of daily observations of the VIX Volatility

Index calculated by the Chicago Board Options Exchange.5 The VIX, introduced

in 1993, is derived from the bid/ask quotes of options on the S&P 500 index. It

is widely followed by financial market participants and is considered not only to

be the market’s expectation of the volatility in the S&P 500 index over the next

month, but also to reflect investor sentiment and risk aversion. If investors grow

more wary, the demand for above all put options will rise, thus increasing IV and

the value of the VIX. The VIX is used as an indicator of market implied volatility

in studies such as Blair et al. (2001) and Mayhew and Stivers (2003). The use of

an implied volatility index such as the VIX considerably alleviates the problems of

measurement errors and model misspecification. The simultaneous measurement

of all variables required by an option pricing model is often difficult to achieve.

When the underlying asset of an option is a stock index, infrequent trading in one

of the component stocks of the index can lead to misvaluation of the index level.

Also, there is no correct measure for the volatility required as an input in a pricing

model such as the traditional Black-Scholes model.

The calculation method of the VIX was changed on September 22, 2003 to bring

it closer to actual financial industry practices. From that day onwards, the VIX

has been based on S&P 500 rather than S&P 100 options: the S&P 500 index is the

most commonly used benchmark for the U.S. equity market, and the most popular

underlying for U.S. equity derivatives (Jiang and Tian (2007)). A wider range of

strike prices is included in the calculation, making the new VIX more robust. Also,

the Black-Scholes formula is no longer used, but the methodology is independent

of a pricing model. In practice, the VIX is calculated directly from option prices

rather than solving implied volatility out of an option pricing formula.6 Values for

the VIX with the new methodology are available from the CBOE from 1.1.1990.

5see www.cboe.com/micro/vix
6In investigations comparing implied to realized volatility, the use of model-free implied

volatility allows the researcher to avoid a joint test of the option pricing model and market
efficiency.
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The data set used in this study consists of daily observations covering eighteen

years, from 1.1.1990 to 31.12.2007. Public holidays that fall on weekdays were

omitted from the data set, resulting in a full sample of 4,537 observations.

2.2.2 Other data

Data on various financial and macroeconomic indicators was also obtained from

the Bloomberg Professional service to test whether they could help explain the

variations in the VIX. The data set contains the S&P 500 index, the trading

volume of the S&P 500 index, the MSCI EAFE (Europe, Australasia, Far East)

stock index, the three-month U.S. dollar LIBOR interest rate, the 10-year U.S.

government bond yield, and the price of crude oil from the next expiring futures

contract. Data on the S&P 500 trading volume is available only from 4.1.1993

onwards.

The variables outlined above were used to construct a number of explanatory

variables for the VIX time series models. These variables are the returns on the

S&P 500 index, the rolling one-month, or 22-trading-day, historical volatility of

the S&P 500 index and its first difference, the spread between the VIX and the

historical volatility of the S&P 500 index and its first difference, the trading volume

of the S&P 500 index and its first difference, the returns of the MSCI EAFE

(Europe, Australasia, Far East) stock index, the first difference of the three-month

USD LIBOR interest rate, the first difference of the slope of the yield curve proxied

by the 10-year rate less the 3-month rate, and the first difference of the price of

oil from the next expiring futures contract.

Many variables similar to these have been used by e.g. Simon (2003), Harvey

and Whaley (1992), and Franks and Schwartz (1991). The returns of the S&P 500

index, its trading volume, and returns in the MSCI EAFE index in particular could

be assumed to have some effect on changes in the VIX. It is well documented that

returns and volatility are linked, with large returns and high volatility going hand-

in-hand. Carr and Wu (2006) provide correlation evidence that S&P 500 index

returns predict changes in the VIX index. Fleming et al. (1995) note that spikes

in the value of the VIX tend to coincide with large moves in the underlying stock

index level. Although the U.S. market tends to dominate in global financial trends
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and events, it is also plausible that the returns of stock markets in other countries

could have some spillover effects on the U.S. market. In fact, Simon (2003) finds

that Nikkei 225 index returns are useful in a model for the term structure of IV.

High trading volume could be a signal of e.g. panic selling, linked to rising IV.

Also, the arrival of both positive and negative news, which introduces shocks to

returns and volatility, can be reflected in higher trading volume. Interest rates are

likely to affect stock markets, especially when they change rapidly. As day-to-day

changes are quite small, the interest rate variables are not likely to be significant

explanatory variables.7 Oil prices are included in the data set to identify the

significance of another important, non-equity market.

Logarithms were used for all variables except the slope of the yield curve. First

differences of the S&P 500 trading volume, the short-term interest rate, and the

slope of the yield curve are used, as p-values from the Augmented Dickey-Fuller

(ADF) test indicate that the null hypothesis of a unit root cannot be rejected

at the one-percent level for the above-mentioned time series. Also, returns must

naturally be used for the S&P 500 and MSCI EAFE indices due to the same

non-stationarity issues.

2.3 Modeling the VIX

The VIX index was relatively stable in the early 1990s, but more volatile from

the last quarter of 1997 to the first quarter of 2003. The year 2007 was also

characterized by large variability in the value of the VIX. Figure 2.1 shows the

daily level of the VIX for the entire sample. Clear spikes in the value of the VIX

coincide with the Iraqi invasion of Kuwait in late 1990, the allied attack on Iraq in

early 1991, the Asian financial crisis of late 1997, the Russian and LTCM crisis of

late summer 1998, and the 9/11 terrorist attacks. A visual inspection of the VIX

first differences points to heteroskedasticity in the data, as can be seen in Figure

2.2.

The VIX is a very persistent time series, as its daily levels display high auto-

correlation (shown in Figure 2.3). The autocorrelations for the differenced time

7This would be consistent with the findings of Harvey and Whaley (1992). On the other
hand, Simon (2003) reports (relatively weak) evidence to the contrary.
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Figure 2.1: VIX index 1.1.1990 - 31.12.2007
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Figure 2.2: VIX first differences 1.1.1990 - 31.12.2007

28



series are also provided in Figure 2.3. A unit root is rejected by the ADF test for

both the level and differenced time series at the one-percent level of significance.8
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Figure 2.3: Autocorrelations for log VIX (above) and log VIX first differences (below)

Logarithms of the VIX observations were taken in order to avoid negative

forecasts of volatility. As noted in Simon (2003), the use of logs is consistent with

the positive skewness in IV data. ARIMA and ARFIMA models were estimated

for the log VIX levels, but despite the high persistence in the time series, even the

ARFIMA models failed to produce useful forecasts (directional accuracy of over

50 percent). Also, the value received for d in the ARFIMA modeling exceeded

0.49 when its value was restricted to be less than 0.5, and fell within the non-

stationary range of [0.5, 1] when no restrictions were placed on its value. In light

of this evidence, the models in this study were built for log VIX first differences

rather than levels.9 This choice of modeling volatility changes is also supported

by Fleming et al. (1995), who argue that academics and practitioners alike are

interested primarily in changes in expected volatility. Also, given the high level of

autocorrelation in the VIX level series, Fleming et al. (1995) remark that inference

in finite samples could be adversely affected.

Descriptive statistics for the VIX index, its first differences, and log VIX first

differences (the dependent variable in the models of this study) are provided in

Table 2.1. The largest day-to-day changes in the VIX are quite large, a gain of

8The p-value of the test is 0.001 for the level series and less than 0.0001 for the differenced
series. The lag lengths in the ADF test are eleven for the level series and ten for the differenced
series, based on selection with the Schwarz Information Criterion.

9Probit models were also estimated for VIX first differences, with a move upward denoted by
1 and a move downward by 0. The forecast performance of these models was inferior to that of
ARIMA models, and these results are therefore not reported.
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9.92 and a drop of 7.80. The largest gain takes place on the first trading day after

9/11, and the largest drop was witnessed during the turbulence of late summer

and early fall 1998. The data is skewed to the right, and the differenced series

display sizeable excess kurtosis, or fat tails.

VIX VIX change ln(VIX change)

Mean 18.975 0.001 0.00006
Max 45.74 9.92 0.49601
Min 9.31 -7.8 -0.29987

Median 17.73 -0.04 -0.00224
St. dev. 6.384 1.226 0.05763
Skewness 0.974 0.522 0.64324

Excess kurtosis 0.794 6.188 4.5048

Table 2.1: Descriptive statistics for the VIX index, VIX first differences, and log VIX first

differences. Statistics cover full sample of 1.1.1990-31.12.2007.

Two alternative in-sample periods were used in the model-building phase in

order to determine the robustness of the results and stability of coefficients over

time. The full in-sample of 1.1.1990 - 31.12.2002, or 3,279 observations, is the base

case that is compared to an alternative of 1,000 observations. This corresponds to

an in-sample period of 8.1.1999 - 31.12.2002. The second sample period is selected

in order to see whether forecast performance would improve with only a short

period of observations: conditions in financial markets can change rapidly, and

perhaps only the most recent information is relevant for forecasting purposes. The

minimum number of observations is set at 1,000 to ensure that GARCH parameters

can be estimated reliably. Studies such as Noh et al. (1994) and Blair et al. (2001)

use 1,000 observations when calculating forecasts from GARCH models. Also,

Engle et al. (1993) calculate variance forecasts for an equity portfolio and find

that ARCH models using 1,000 observations perform better than models with 300

or 5,000 observations.

Based on tests for no remaining autocorrelation and the p-values for the sta-

tistical significance of the coefficients, an ARIMA(1,1,1) specification was found

to be the best fit for the log VIX time series from the family of ARIMA models.

Konstantinidi et al. (2008) also settle on this specification. As IV has been found

to exhibit weekly seasonality (see e.g. Harvey and Whaley (1992) and Brooks
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and Oozeer (2002)), the significance of day-of-the-week effects is investigated with

dummy variables. The VIX index displays a clear weekly pattern, with the index

level on average highest on Mondays and lowest on Fridays. More importantly

for the modeling of changes in the VIX, the index level tends to rise on average

on Mondays, fall slightly on Tuesdays, Wednesdays, and Thursdays, and experi-

ence a more pronounced drop on Fridays. Therefore, it can be deduced that a

day-of-the-week dummy would most likely be significant for Mondays and Fridays.

Judging by the pattern of VIX returns in Figure 2.2, the VIX index could possi-

bly display volatility of volatility, or conditional heteroskedasticity in shocks to the

VIX. To further investigate this consideration, the ARIMA(1,1,1) model was aug-

mented with GARCH errors.10 In modeling realized volatility, Corsi et al. (2008)

find that accounting for the volatility of realized volatility improves forecast per-

formance. In light of the probable existence of GARCH effects, heteroskedasticity-

robust standard errors are used in all model estimation. The financial and macroe-

conomic indicators outlined in Section 2.2.2 were also included in the regressions

to see whether they could improve ARIMA models of the VIX. The estimated

linear equation is

∆V IXt = ω + φ1∆V IXt−1 + θ1ǫt−1 +
r∑

i=1

φiXi,t−1 +
5∑

k=1

γkDk,t + ǫt (2.1)

where ∆V IXt is the log return of the VIX index, the weekday dummy variable Dk,t

receives the value of 1 on day k and zero otherwise, and all explanatory variables

other than the AR and MA components are grouped in the vector X. The model

is a first-order model throughout, as no second lags turned out to be statistically

significant. When augmenting the model of Equation 2.1 with a model for the

conditional variance, a GARCH(1,1) specification is found to be sufficient and is

parameterized as follows

ǫt = N(0, h2
t )

h2
t = κ + α1ǫ

2
t−1 + β1h

2
t−1

10GARCH modeling was proposed by Bollerslev (1986), extending the work of Engle (1982).
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The estimation results for four alternative model specifications and the two in-

sample periods are presented in Table 2.2. The estimated models are an ARIMA(1,1,1)

model, an ARIMA(1,1,1)-GARCH(1,1) model, and the same two models with other

explanatory variables included: ARIMAX(1,1,1) and ARIMAX(1,1,1)-GARCH(1,1).

Consistent with earlier evidence on weekly seasonality in implied volatility in equity

markets (see e.g. Harvey and Whaley (1992) and Ahoniemi and Lanne (2009)),

dummy variables for Monday and Friday are statistically significant. The only

financial or macroeconomic variable that was found to be statistically significant

was the lagged log return of the S&P 500 index.11 Data on the S&P 500 index trad-

ing volume was not available for the full in-sample period, so its significance was

assessed only with the shorter sample period. Contrary to expectations, neither

the volume nor its first difference proved to be significant in explaining changes in

the VIX index. Brooks and Oozeer (2002) also found that trading volume was not

significant in explaining changes in IV. The addition of the GARCH specification

for the error term fits the chosen models, with statistically significant coefficients

for both the ARCH and GARCH terms. The full value of GARCH modeling will

be underscored in the forecasting application of Section 2.4.

When using the full in-sample period for estimation and comparing goodness-

of-fit with the Schwarz Information Criterion (BIC), the ARIMA-GARCH model

emerges as the favored specification. The AR and MA parameters are close in

value for all four models. The parameters α1 and β1 of the GARCH equation sum

to 0.875 in both cases, meaning that stationarity is achieved. Also, this indicates

that the volatility of volatility is not highly persistent. The weekday dummies

have the expected signs: the positive Monday dummy (γ1) is consistent with the

VIX tending to rise on Mondays, and the negative Friday dummy (γ5) is consistent

11Davidson et al. (2001) create two explanatory variables from lagged returns by separating
positive and negative returns. This can help capture whether negative return shocks have a larger
effect on implied volatility than positive return shocks, a result that has often been reported for
stock return volatility (see e.g. Schwert (1990) and Glosten et al. (1993)). With the data sample
in this study, however, the positive and negative return series, when used separately, were not
statistically significant. Simon (2003), who models the Nasdaq Volatility Index VXN, finds that
the VXN responds in equal magnitude, but in opposite directions, to contemporaneous positive
and negative returns of the Nasdaq index. An opposite approach to the relation between IV and
stock returns is taken in Banerjee et al. (2007) and Giot (2005), who use the VIX to predict
stock market returns.
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ARIMA ARIMA-GARCH ARIMAX ARIMAX-GARCH

Panel A - 3,279 observations
BIC 4812.64 4872.43 4810.25 4868.97
R2 0.067 0.067 0.068 0.068

ω -0.004 (0.000) -0.004 (0.000) -0.003 (0.000) -0.004 (0.000)
φ1 0.812 (0.000) 0.856 (0.000) 0.788 (0.000) 0.843 (0.000)
θ1 -0.902 (0.000) -0.934 (0.000) -0.891 (0.000) -0.928 (0.000)
ψ1 - - -0.190 (0.110) -0.113 (0.286)
γ1 0.027 (0.000) 0.027 (0.000) 0.027 (0.000) 0.027 (0.000)
γ5 -0.008 (0.004) -0.009 (0.001) -0.008 (0.004) -0.009 (0.001)
κ - 0.002 (-) - 0.002 (-)
α1 - 0.085 (0.001) - 0.084 (0.001)
β1 - 0.790 (0.000) - 0.791 (0.000)

Panel B - 1,000 observations
BIC 1490.65 1491.27 1487.31 1487.89
R2 0.084 0.084 0.084 0.084

ω -0.002 (0.154) -0.004 (0.038) -0.002 (0.147) -0.004 (0.035)
φ1 0.803 (0.000) 0.777 (0.000) 0.788 (0.000) 0.765 (0.000)
θ1 -0.883 (0.000) -0.863 (0.000) -0.875 (0.000) -0.857 (0.000)
ψ1 - - -0.070 (0.643) -0.058 (0.675)
γ1 0.030 (0.000) 0.031 (0.000) 0.030 (0.000) 0.031 (0.000)
γ5 -0.015 (0.001) -0.015 (0.001) -0.015 (0.001) -0.015 (0.001)
κ - 0.001 (-) - 0.001 (-)
α1 - 0.059 (0.022) - 0.059 (0.004)
β1 - 0.889 (0.000) - 0.889 (0.000)

Table 2.2: Estimation results for ARIMA, ARIMA-GARCH, ARIMAX, and ARIMAX-GARCH

models. Models estimated with entire in-sample in upper panel, and models estimated with 1,000

observations in lower panel. P-values for the statistical significance of the coefficients are given

in parentheses. Heteroskedasticity-robust standard errors were used throughout the analysis.
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with the drop that the VIX experiences on average on Fridays.

The coefficient for S&P 500 index returns is negative, indicating that a negative

return over the previous trading day raises the VIX on the following day, and a

positive return equivalently lowers the VIX. This result is comparable to those

in Low (2004), who estimates a negative coefficient for contemporaneous index

returns in a model for VIX changes. Bollen and Whaley (2004) also estimate

a negative coefficient for contemporaneous returns of the S&P 500 index as an

explanatory variable for changes in the IV of S&P 500 index options. Fleming

et al. (1995) also find that the VIX and stock returns have a strong negative

contemporaneous correlation, although they do estimate a small positive coefficient

for lagged stock index returns as an explanatory variable of VIX changes. The use

of lagged returns is essential in the context of this study, as the models will later

be used for forecasting.

Simon (2003) provides further discussion on how to explain the finding that the

VIX tends to fall after positive returns and rise after negative returns. A fall in the

market can easily lead to more demand for puts as a form of portfolio insurance,

thus raising IV through increased option demand. On the other hand, after a

rise in the underlying index level, options with a higher strike price become at-

the-money (ATM) options. Due to the well-documented volatility skew in equity

option implied volatilities, these higher-strike options will have lower IVs than

those options that were previously ATM. Hence, the level of ATM implied volatility

will fall, even if the IV of the same-strike options does not change.

The coefficient for the S&P 500 index returns in the ARIMAX model receives

a p-value of 0.11, and in the ARIMAX-GARCH model, the p-value of the coeffi-

cient is 0.29. Therefore, it would seem to be unnecessary to include the underlying

index returns in the model specification. The ARIMAX and ARIMAX-GARCH

specifications are nonetheless included in the set of models used in the forecast-

ing application as there is mixed evidence regarding the significance of the index

returns (see Sections 2.4 and 2.5 for further discussion).

With an in-sample of 1,000 observations, the magnitude of the estimated AR

and MA parameters, as well as the dummy variables, remains more or less the

same as with the longer sample period. The coefficient for S&P 500 index returns is

negative as with the longer sample, but it is now clearly not statistically significant
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(p-values exceed 0.6). The sum of the GARCH parameters α1 and β1 is higher

than with the longer sample, 0.95 for both models. According to the BIC, the

ARIMA-GARCH model continues to be the best fit to the data.

The residuals for the ARIMA model estimated with the entire in-sample are

shown in Figure 2.4 and the conditional variances for the ARIMA-GARCH model

are in Figure 2.5. The clustering in the residuals and the spikes in the conditional

variances again point to the conditional heteroskedasticity in the time series of

VIX first differences. These figures are provided as representative examples, and

the equivalent figures from the other models are similar.
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Figure 2.4: Residuals for ARIMA-GARCH model estimated with entire in-sample (3,279 obser-

vations).

Lagrange multiplier (LM) tests for autocorrelation, remaining ARCH effects,

and heteroskedasticity were run for all the above model specifications. P-values

of the tests are reported in Table 2.3. Five lags were used in the tests for au-

tocorrelation and remaining ARCH. The test results differ somewhat depending

on the length of the data sample. For the in-sample of 3,279 observations, the

test for autocorrelation indicates that the null hypothesis of no autocorrelation

cannot be rejected for any of the considered models. GARCH errors make a pro-

nounced change to the LM test results regarding remaining ARCH effects and

heteroskedasticity, so taking conditional heteroskedasticity into account appears
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Figure 2.5: Conditional variances for ARIMA-GARCH model estimated with entire in-sample

(3,279 observations).

to be warranted. The null hypotheses of no neglected ARCH and no heteroskedas-

ticity cannot be rejected after adding the conditional variance specification to the

models. For the ARIMA and ARIMAX models, the null of no remaining ARCH

effects is rejected at the one-percent level, and the null of no heteroskedasticity at

the five-percent level.

When estimating the models with only 1,000 observations, the test results are

in part contrary to expectations. The null of no autocorrelation is now rejected at

the ten-percent level for the ARIMA and ARIMAX models, and the five-percent

level for the ARIMA-GARCH and ARIMAX-GARCH models. For the remaining

ARCH test, the results are similar to those received with the longer in-sample. The

null hypothesis is rejected at the one-percent level when GARCH errors are not

included in the model, but the null is not rejected when conditional heteroskedas-

ticity is modeled. The null of no heteroskedasticity cannot be rejected for any

model specification, including the ARIMA and ARIMAX models. Though in part

surprising, these tests results are not a cause for concern, as the shorter in-sample

period proves to be a better forecaster.
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ARIMA ARIMA-GARCH ARIMAX ARIMAX-GARCH

Panel A - 3,279 observations
Autocorrelation 0.255 0.158 0.448 0.272
ARCH effects 0.000 0.920 0.000 0.914

Heteroskedasticity 0.021 0.778 0.013 0.771
Panel B - 1,000 observations

Autocorrelation 0.094 0.038 0.051 0.018
ARCH effects 0.000 0.176 0.000 0.183

Heteroskedasticity 0.491 0.932 0.468 0.981

Table 2.3: P-values from Lagrange multiplier tests for remaining autocorrelation, remaining

ARCH effects, and heteroskedasticity. Five lags are used in the first two tests.

2.4 Forecasts

The next step in the analysis is to obtain forecasts from the four model specifica-

tions described in Section 2.3. Out-of-sample, one-step-ahead daily forecasts were

calculated for the VIX first differences for the period 1.1.2003-31.12.2007, spanning

1,258 trading days. The long out-of-sample period will help to ensure the robust-

ness of the results. The forecasts were calculated from rolling samples, keeping

the sample size constant each day. In other words, after calculating each forecast,

the furthest observations are dropped, the observations for the most recent day

are added to the sample, and the parameter values are re-estimated. In practice,

the change in the VIX from day T-1 to day T is regressed on all specified variables

with time stamps up to and including day T-1. The estimated parameter values

are then used together with day T values to predict the change in the VIX from

day T to day T+1. Only the dummy variables are treated differently, i.e. day

T+1 dummy variables are used when forecasting the change in VIX from day T

to day T+1. Both sample sizes are included in the analysis, i.e. 3,279 and 1,000

observations.

Successful forecasting of IV from a trader’s point of view primarily involves

forecasting the direction of IV correctly; a correct magnitude for the change is not

as relevant. This is because option positions such as the straddle will generate

a profit if the IV moves in the correct direction, ceteris paribus (the size of the

profit is affected by the magnitude of change, however). The forecasting accuracy
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of the various models is first evaluated based on sign: how many times does the

sign of the change in the VIX correspond to the direction forecasted by the model.

However, the point forecasts are also evaluated based on mean squared errors

(MSE). Accurate point forecasts can be valuable, for example, in risk management

and asset pricing applications.

Table 2.4 presents the forecast performance of the various models, measured

with the correct direction of change and mean squared errors. When using the

longer sample window, the models succeed in predicting the direction of change

correctly for 56.7-57.2% of the trading days, with accuracy improving to 57.3-58.4%

with the shorter sample period. The best forecaster is the ARIMA-GARCH model

estimated with 1,000 observations. A relevant result is also that the addition of

GARCH errors improves forecast performance for all four pairs of models. On the

other hand, the inclusion of S&P 500 index returns in the model does not improve

the directional forecasts. The improved performance due to modeling conditional

heteroskedasticity receives theoretical support from Christoffersen and Diebold

(2006), who show that it is possible to predict the direction of change of returns

in the presence of conditional heteroskedasticity, even if the returns themselves

cannot be predicted. In fact, Christoffersen and Diebold (2006) contend that sign

dynamics can be expected in the presence of volatility dynamics.

The choice of either the ARIMA-GARCH or ARIMAX-GARCH model coupled

with the shorter sample period is robust in the sense that the models also emerge

as the best directional forecasters if the out-of-sample period is broken down into

two sub-samples of equal length, or 629 observations. In the first sub-sample, the

accuracy of the ARIMA-GARCH model is highest with 58.8%, and in the second

sub-sample, the ARIMAX-GARCH model fares best with correct predictions on

58.5% of trading days.

A directional accuracy of over 50% can be seen as valuable for option traders.

Given the large trading volumes in U.S. markets, it also seems realistic that the

achieved accuracy is not dramatically larger than 50%. Harvey and Whaley (1992)

model the IV of S&P 100 options and achieve a directional accuracy of 62.2% for

call options and 56.6% for puts. Their sample is much older, and it is feasible that

predictability has declined over the years rather than improved. Also, the S&P

500 receives more attention among today’s investors than the S&P 100 index.
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3,279 observations 1,000 observations

Correct sign % MSE Correct sign % MSE

ARIMA 716 56.9% 0.00328 721 57.3% 0.00330
ARIMA-GARCH 720 57.2% 0.00329 735 58.4% 0.00332

ARIMAX 713 56.7% 0.00328 721 57.3% 0.00329
ARIMAX-GARCH 720 57.2% 0.00329 733 58.3% 0.00331

Table 2.4: Directional forecast accuracy (out of 1,258 trading days) and mean squared errors for

forecasts from all four models and both sample periods.

Konstantinidi et al. (2008) forecast the direction of change in the VIX at best on

54.7% of trading days in their out-of-sample period of roughly 640 days. In their

similarly oriented study, Brooks and Oozeer (2002) report correct sign predictions

for the IV of options on Long Gilt futures for 52.5% of trading days.

In the spirit of the particular nature of this study, the predictive ability of the

models was tested using the market timing test for predictive accuracy developed

by Pesaran and Timmermann (1992). The Pesaran-Timmermann test (henceforth

PT test) was originally developed with the idea that an investor switches between

stocks and bonds depending on the returns expected from each asset class, and can

be used in the present context to ascertain that the directional forecasts outperform

a coin flip. The PT test is calculated with the help of a contingency table that

shows how many times the actual outcome was up if the forecast was up, how

many times the outcome was down even if the forecast was up, and likewise for

the other two combinations. In practice, the four models analyzed here forecast

down too often, leading to more mistakes where the forecast was down but the

true change was up than vice versa. The PT test confirms that the estimated

models do possess market timing ability. The null hypothesis of predictive failure

is rejected at the one-percent level for all models with both in-sample periods.

When assessing point forecasts with MSEs, it appears to be useful to use a

longer in-sample period for model estimation. In fact, the ARIMA and ARIMAX

models now perform better than the ARIMA-GARCH or ARIMAX-GARCH mod-

els. All values obtained when using 1,000 observations are greater than when using

the entire in-sample period. When looking at the two equal-length sub-samples,

the ARIMA and ARIMAX models estimated from 3,279 observations remain the

top two performers, so this result is relatively robust. However, the similar values
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of the obtained MSEs raise the question of whether or not the differences in MSEs

are statistically significant.

To evaluate the significance of the mean squared error ranking, the test for

superior predictive ability (SPA) developed by Hansen (2005) was employed. The

SPA test of Hansen allows for the simultaneous comparison of m series of forecasts,

in contrast to e.g. the forecast accuracy test of Diebold and Mariano (1995), which

evaluates two series at a time. In the SPA test, one series of forecasts is deemed

to be the benchmark, and its MSE is compared to those of the competing fore-

cast series. In this case, the benchmark is the ARIMA model estimated with

3,279 observations. The consistent p-value of the test, which is calculated with

1,000 bootstrap resamples, is 0.992. As the null hypothesis of the test is that the

benchmark is not inferior to the alternative forecasts, it can thus not be rejected.

However, the consistent p-value when using the model with the highest MSE, or

the ARIMA-GARCH model estimated with 1,000 observations, as the benchmark

is 0.149, which is also significant. In other words, there is no statistically signifi-

cant difference between the models when evaluated with mean squared errors, and

model selection will be based on directional accuracy.

2.5 Option trading

An attractive application of the VIX forecasts is to provide useful information for

option traders. The directional forecasts from the models presented above were

used to simulate option trades with S&P 500 option market prices. The trades that

were simulated were straddles, which are spreads that involve buying or selling an

equal amount of call and put options. The trading simulation provides a way to

assess the forecasting ability of the above time series models with their economic

significance.

Straddles are the leading strategy for trading volatility (Ni et al. (2008)). Their

use in this simulation should be more realistic than the buy-or-sell strategies sim-

ulated by Brooks and Oozeer (2002) and Harvey and Whaley (1992). Bollen and

Whaley (2004) note that buying straddles is the most effective way to trade if one

expects volatility to rise. A long (short) straddle, i.e. an equal number of bought

(sold) call and put options, yields a profit if IV rises (falls).
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An out-of-sample option trading simulation, with trades executed based on

forecasts for the VIX, requires daily close quotes of at-the-money (or in practice,

near-the-money) S&P 500 index options. The S&P 500 option quotes were ob-

tained from Commodity Systems, Inc. for the out-of-sample period of 1.1.2003 to

31.12.2007. Buraschi and Jackwerth (2001) note that at-the-money S&P 500 op-

tions have the highest trading volume. Ni et al. (2008) observe that investors with

a view on volatility are more likely to trade with near-the-money options than in-

the-money or out-of-the-money options, and Bollen and Whaley (2004) point out

that at-the-money options have the highest sensitivity to volatility. Daily straddle

positions were simulated with this data by utilizing the out-of-sample forecasts

from the four models presented above, and with both in-sample period lengths.

The option positions are opened with the close quotes on day T and closed with

the close quotes on day T+1, which is the day for which the directional forecast

is made. This strategy allows for using options that are as close-to-the-money as

possible on each given day. The strike price is chosen so that the gap between the

actual closing quote of the S&P 500 index from the previous day (day T) and the

option’s strike price is the smallest available. The only exceptions to using the

closest-to-the-money options come on days when there is zero trading volume in

that series on either day T or day T+1. On such days, the next-closest contract

was used in the simulation.

Options with the nearest expiration date were used, up to fourteen calendar

days prior to the expiration of the nearby option, when trading was rolled over

to the next expiration date. This is necessary as the IV of an option close to

maturity may behave erratically. Poon and Pope (2000) analyze S&P 100 and

S&P 500 option trading data for a period of 1,160 trading days and find that

contracts with 5-30 days of maturity have the highest number of transactions and

largest trading volume.

This analysis does not incorporate transaction costs, as the main purpose of the

exercise is not to obtain accurate estimates of actual (possibly abnormal) profits,

but to use the trading profits and losses to rank the forecast models. The deduction

of a fee would naturally scale all profits downwards, but would not change the

ranking of the models. The issue of transaction costs is addressed further in the

discussion of filter use below.
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The option positions are technically not delta neutral, which means that the

trading returns are sensitive to large changes in the value of the options’ underlying

asset, or the S&P 500 index, during the course of the day. However, this problem

was not deemed critical for this analysis. The deltas of at-the-money call and put

options nearly offset each other,12 so that the positions are close to delta neutral

when they are opened at the start of each day. The deviations from delta neutrality

in this study come primarily from the fact that strike prices are only available at

certain fixed intervals. The positions are updated daily, so the strike price used

can be changed each day. Also, Engle and Rosenberg (2000) and Ni et al. (2008)

note that straddles are sensitive to changes in volatility but insensitive to changes

in the price of the options’ underlying asset. Driessen and Maenhout (2007) note

that the correlation between ATM straddle returns and equity returns is only -0.07

for the S&P 500 index. In the trading simulation of Jackwerth (2000), unhedged

and hedged strategies yield similar excess returns.

Although the straddle is a volatility trade, its returns are naturally not com-

pletely dependent on the changes in IV. Even a trader with perfect foresight about

the direction of change in the VIX would lose on her straddle position on 493 days

out of the 1,258 days analyzed, or on 39.2 percent of the days.

In practice, if the forecasted direction of the VIX was up, near-the-money calls

and near-the-money puts were bought. Equivalently, if the forecast was for the

VIX to fall, near-the-money calls and near-the-money puts were sold. The exact

amounts to be bought or sold were calculated separately for each day so that 100

units (dollars) were invested in buying the options each day, or a revenue of 100

was received from selling the options. This same approach of fixing the investment

outlay has been used in a number of studies, for example, in Harvey and Whaley

(1992), Noh et al. (1994), Jackwerth (2000), and Ederington and Guan (2002).

The return from a long straddle is calculated as in Equation 2.2, and the return

from a short straddle is shown in Equation 2.3. In this analysis, the proceeds from

selling a straddle are not invested during the day, but held with zero interest.

Rl =
100

Ct + Pt

(−Ct − Pt + Ct+1 + Pt+1) (2.2)

12see Noh et al. (1994)
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Rs =
100

Ct + Pt

(Ct + Pt − Ct+1 − Pt+1) (2.3)

In Equations 2.2 and 2.3, Ct is the close quote of a near-the-money call option, Pt

is the close quote of a near-the-money put option (with same strike and maturity

as the call option), and Ct+1 and Pt+1 are the respective closing quotes of the same

options at the end of the next trading day.

Although the emphasis is on directional accuracy, filters have also been used in

the option trading simulations. These three filters leave out the weakest signals,

i.e. signals that predict the smallest percentage changes, as they may not be as

reliable in the directional sense. Harvey and Whaley (1992) and Noh et al. (1994)

employ two filters to leave out the smallest predictions of changes, and Poon and

Pope (2000) use three filters in order to take transaction costs into account. This

use of filters can indeed be seen as a way to account for transaction costs, as

very small changes in the VIX may lead to option trading profits that are so small

that they are eaten away by transaction costs. The three filters leave out a trading

signal when the projected change in log VIX is smaller than 0.1%, 0.2%, or 0.5%.13

The returns from trading options on all days, and when employing a filter, are

presented in Table 2.5. The returns are measured in daily percentage returns on

the investment outlay of 100. One revision is done to the data before calculating

the final returns. The trading returns for four days in the 1,258 sample period are

removed from the returns in order to reduce noise. These four days, which all fall

in the year 200714, produce daily straddle returns of well over 100%. Whether the

return is positive or negative depends on the trading signal for that day. The range

of values that the returns take on these four days is from 120.4% to 310.3%, which

are deemed so large that they could easily bias the results upward or downward,

depending on whether a model forecasts the signal correctly on these select four

days. These four days happen to be days when the values of nearest-to-the-money

options experienced relatively dramatic moves. Importantly, the S&P 500 index

did not experience a large rise or drop on any of these days, so the outliers are

not a consequence of unhedged exposure to moves in the options’ underlying. The

13A filter of 1.0% gave a trading signal on only 70 to 95 trading days out of 1,258, depending
on the model.

14The exact dates are Feb. 27, June 1, July 6, and Oct. 5.
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cut-off of 100% is by no means arbitrary, as the next largest daily return is 47.5%,

well below the four outliers.

Trading P/L Filter I Filter II Filter III

Panel A - 3,279 observations
ARIMA 0.23% 0.11% (952) 0.05% (722) -0.04% (347)

ARIMA-GARCH 0.23% 0.09% (959) 0.00% (747) -0.06% (358)
ARIMAX 0.27% 0.13% (962) 0.07% (727) -0.04% (347)

ARIMAX-GARCH 0.21% 0.16% (973) -0.01% (752) -0.09% (361)
Panel B - 1,000 observations

ARIMA 0.23% 0.22% (911) 0.08% (696) -0.16% (320)
ARIMA-GARCH 0.29% 0.28% (1059) 0.17% (850) -0.02% (379)

ARIMAX 0.26% 0.27% (925) 0.05% (707) -0.10% (330)
ARIMAX-GARCH 0.36% 0.28% (1068) 0.17% (853) -0.02% (379)

Table 2.5: Option trading returns for trading on all days in column Trading P/L. Returns

expressed as percentage daily returns on an investment outlay of 100. Number of days traded

out of 1,258 in parentheses for filtered returns. Filter I leaves out signals where the change in

log VIX is projected to be less than 0.1%. The corresponding values for Filters II and III are

0.2% and 0.5%, respectively.

Turning now to the returns themselves, the model choice from Section 2.4 is

in fact confirmed. The average daily return on the straddle positions is 0.36%

with the ARIMAX-GARCH model estimated with the shorter in-sample period,

and the second-best return is produced by the ARIMA-GARCH model, again

coupled with 1,000 observations. This same top two emerged in the forecast eval-

uation. Although the series of S&P 500 returns was not statistically significant

in the models when estimated with 1,000 observations, the option trading results

indicate that there may be incremental information in the index returns as an ex-

planatory variable for the changes in the VIX. This result receives further support

from the analysis of sub-samples. As in Section 2.4, the returns are now evalu-

ated looking at sub-samples of 629 observations. In the first sub-sample, the top

returns (0.50%) come from the ARIMAX model with 1,000 observations, but the

ARIMAX-GARCH model is not far behind with average daily returns of 0.48%.

In the second sub-sample, the ARIMAX model’s returns plummet and it is the

weakest performer among all eight models with a daily return of only 0.01%. The

ARIMAX-GARCH model is now the top performer with 0.24%. Regarding the

use of the filters, it appears that it is not necessary to filter the returns in general.
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Returns improve in only one case (the ARIMAX model estimated with 1,000 ob-

servations) when using Filter I. With Filter II and Filter III, returns clearly suffer.

However, if interpreting the filters as a way of incorporating transaction costs, it

is clear that returns should indeed suffer when using the filters.

In light of the forecast evaluation in Section 2.4 and the above analysis of

option returns, the recommendation of this study would be to trade based on the

forecasts of an ARIMA-GARCH or an ARIMAX-GARCH model estimated with

1,000 observations. The evidence in favor of the two alternative specifications is

nearly as strong. The use of a shorter history proved valuable for both forecast

accuracy and option returns, indicating that the more recent market conditions

are relevant for IV forecasters. The ARIMA-GARCH model is slightly better as

a directional forecaster over the whole out-of-sample period, but the returns from

the ARIMAX-GARCH model are slightly better in the straddle trading exercise.

2.6 Conclusions

The forecasting of implied volatility is of interest for option market practitioners,

as well as for investors with portfolio risk management concerns. The size of

this latter group in particular underscores the importance of the task at hand

in this paper. This paper has sought to find well-fitting ARIMA and ARIMAX

models for the VIX index, to analyze their predictive ability, and to calculate the

returns from a straddle trading simulation based on forecasts from the models. An

ARIMA(1,1,1) specification is the best fit to the data, and the returns of the S&P

500 index are a statistically significant explanatory variable for the first differences

of the VIX when a longer in-sample period is used in model estimation. Despite

the high persistence in the time series of the VIX index, ARFIMA modeling proved

unsuccessful.

GARCH terms are statistically significant in ARIMA(1,1,1) models, and the

conditional variance specification improves the directional forecast accuracy of the

various models considered. The best model, ARIMA(1,1,1)-GARCH(1,1), fore-

casts the direction of change of the VIX correctly on 58.4 percent of the trading

days in the 1,258-day out-of-sample period. This best performance comes when us-

ing a shorter in-sample period of 1,000 observations, indicating that only the most
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recent history is relevant in forecasting the VIX index. The Pesaran-Timmermann

test confirms that the forecast accuracy of the best models is statistically sig-

nificant. In the option trading application, straddle trades confirm the value of

modeling conditional heteroskedasticity and using a shorter data sample. The

primary purpose of the trading exercise is to provide additional evidence as to

the best forecasting model, and no conclusion regarding market efficiency is thus

drawn.

As was to be expected in light of earlier research, there seems to be a certain

degree of predictability in the direction of change of the VIX index. This pre-

dictability can potentially be exploited profitably by option traders, at least for

certain periods of time. The profitability of a trading strategy after transaction

costs would most likely paint a different picture for market makers versus other

investors. A more detailed investigation of trading returns based on forecasts from

models such as those included in this study is left for future research.

46



Bibliography

[1] Ahoniemi, K. & Lanne, M. (2009). Joint Modeling of Call and Put Implied

Volatility. International Journal of Forecasting, forthcoming.

[2] Banerjee, P.S., Doran, J.S. & Peterson, D.R. (2007). Implied Volatility and

Future Portfolio Returns. Journal of Banking & Finance, 31, 3183–3199.

[3] Becker, R., Clements, A.E. & White, S.I. (2006). On the Informational Effi-

ciency of S&P500 Implied Volatility. North American Journal of Economics

and Finance, 17, 139–153.

[4] Blair, B.J., Poon, S-H. & Taylor, S.J. (2001). Forecasting S&P 100 Volatility:

the Incremental Information Content of Implied Volatilities and High-frequency

Index Returns. Journal of Econometrics, 105, 5–26.

[5] Bollen, N.P.B. & Whaley, R.E. (2004). Does Net Buying Pressure Affect the

Shape of Implied Volatility Functions?. The Journal of Finance, 59, 711–753.

[6] Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedastic-

ity. Journal of Econometrics, 31, 307–327.

[7] Brooks, C. & Oozeer, M.C. (2002). Modelling the Implied Volatility of Options

on Long Gilt Futures. Journal of Business Finance & Accounting, 29, 111–137.

[8] Buraschi, A. & Jackwerth, J. (2001). The Price of a Smile: Hedging and Span-

ning in Option Markets. The Review of Financial Studies, 14, 495–527.

[9] Carr, P. & Wu, L. (2006). A Tale of Two Indices. Journal of Derivatives, 13:3,

13–29.

47



[10] Christoffersen, P.F. & Diebold, F.X. (2006). Financial Asset Returns,

Direction-of-Change Forecasting, and Volatility Dynamics. Management Sci-

ence, 52, 1273–1287.

[11] Corrado, C.J., Miller, T.W., (2005). The Forecast Quality of CBOE Implied

Volatility Indexes. The Journal of Futures Markets 25, 339–373.

[12] Corredor, P., Lechón, P. & Santamaŕıa, R. (2002). Is it Possible to Obtain
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Chapter 3

Multiplicative Models for Implied

Volatility

Katja Ahoniemi1

Abstract

This paper estimates a mixture multiplicative error model for the implied volatil-

ities of call and put options on the Nikkei 225 index. Diagnostics show that a

two-regime mixture multiplicative model is a good fit to the data. In an out-of-

sample of two years, mixture multiplicative models correctly predict the direction

of change in implied volatility on close to 70 percent of trading days at best.

Forecast evaluation shows that a mixture model with two regimes outperforms

a multiplicative model with no mixture components. An option trading simula-

tion with Nikkei 225 index options also points to the predictive superiority of the

mixture multiplicative model over a one-regime model.

1Correspondence: Helsinki School of Economics, Department of Economics, P.O. Box 1210,
00101 Helsinki, Finland. E-mail: katja.ahoniemi@hse.fi. The author wishes to thank Markku
Lanne, Pekka Ilmakunnas, Petri Jylhä, and participants at the XII Spring Meeting of Young
Economists in 2007 for valuable comments. Financial support from the Finnish Doctoral Pro-
gramme in Economics, the Finnish Foundation for Advancement of Securities Markets, the Jenny
and Antti Wihuri Foundation, and the Yrjö Jahnsson Foundation is gratefully acknowledged.
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3.1 Introduction

Reliable volatility forecasts can greatly benefit professional option traders, market

makers who need to price derivatives, and all investors with risk management

concerns. Implied volatilities, which can be garnered from option markets, can

be particularly useful in such contexts as they are forward-looking measures of

the market’s expected volatility during the remaining life of an option. A correct

view of the direction of change in implied volatility can facilitate entering into

profitable positions in option markets, and an expected change in the level of

market volatility may lead to a need to change portfolio weights or composition.

The bulk of implied volatility research investigates how well implied volatility

forecasts the volatility that is realized in the returns of an option’s underlying asset

during the remaining life of the option.2 Implied volatility has traditionally been

modeled with linear regression models (e.g. Harvey & Whaley (1992) and Brooks &

Oozeer (2002)), or with linear models augmented with GARCH errors (Ahoniemi

(2008)). However, a new class of models, so-called multiplicative models, have

been used successfully in recent years to model volatility.

Engle & Gallo (2006), using data on the S&P 500 index, estimate a system of

multiplicative error models for squared log returns, the square of the high-low price

range, and realized volatility. They conclude that forecasts from the multiplicative

specification have significant explanatory power in modeling the value of the VIX

index. Lanne (2006) builds a mixture multiplicative error model for the realized

volatility of the Deutsche Mark and Japanese Yen against the U.S. dollar. He finds

that the in-sample fit of the model is superior to that of ARFIMA models, and

forecasts outperform those from several competing models, including ARFIMA and

GARCH models. Lanne (2007) uses the same model specification to forecast the

realized volatility of exchange rates by decomposition. Multiplicative models are

similar in structure to autoregressive conditional duration (ACD) models, which

were introduced by Engle & Russell (1998) and have since led to an abundance

of research.3 So far, multiplicative modeling has not been applied to implied

2Examples include Day & Lewis (1992), Canina & Figlewski (1993), Jorion (1995), Chris-
tensen & Prabhala (1998), and Blair et al. (2001).

3See e.g. Bauwens & Giot (2003), Ghysels et al. (2004), Manganelli (2005), Fernandes &
Grammig (2006) and Meitz & Teräsvirta (2006).
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volatility.

This paper models the implied volatility (IV) time series of call and put options

on the Nikkei 225 index with a mixture multiplicative model similar to that in

Lanne (2006). The model contains two mean equations and two error distributions,

allowing days of large shocks to be modeled separately from more average trading

days. The model specification is a good fit to both the call and put IV time series,

and produces forecasts with directional accuracy of up to 69.1% in a two-year out-

of-sample period. These forecasts outperform those obtained with a one-regime

model, so the two mixture components are indeed necessary.

Further analysis also points to the choice of a two-regime multiplicative speci-

fication for both call and put IV. When forecasting five trading days ahead, multi-

plicative models with two regimes again outperform one-regime models. An option

trading simulation using market quotes of Nikkei 225 index options reveals that

the best out-of-sample returns are yielded when trading based on the forecasts of

mixture multiplicative models. The purpose of the option trading exercise, which

is carried out by simulating straddle trades, is not to determine whether or not

the forecasts can generate abnormal profits. The results are used simply to rank

the forecast models.

This paper is structured as follows. Section 3.2 presents the mixture multiplica-

tive error model. Section 3.3 describes the data used in the study, the estimation

results, and diagnostics. Section 3.4 analyzes the forecasts from various competing

models, with forecast evaluation based on directional accuracy and mean squared

errors. Section 3.5 describes the returns from the option trading simulation. Sec-

tion 3.6 concludes the paper.

3.2 The mixture-MEM model

Multiplicative error models (MEM) were first suggested by Engle (2002) for mod-

eling financial time series. Due to the way they are set up, multiplicative models

can be used for time series that always receive non-negative values, such as the

time interval between trades, the bid-ask spread, trading volume, or volatility. In

traditional regression models, logarithms are normally taken from time series data

in order to avoid negative forecasts, but this is not necessary with MEM models.
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MEM models differ from traditional, linear regression models in that the mean

equation µt is multiplied with the error term εt:

yt = µtεt (3.1)

Shocks are assumed to be independent and identically distributed (iid), to have

mean unity, and come from a non-negative distribution. In this particular study,

a mixture multiplicative error model (MMEM) similar to that in Lanne (2006) is

estimated. In such a specification, there are two possible mean equations:

µ1t = ω1 +

q1∑

i=1

α1iyt−i +

p1∑

j=1

β1jµ1,t−j (3.2)

µ2t = ω2 +

q2∑

i=1

α2iyt−i +

p2∑

j=1

β2jµ2,t−j (3.3)

Therefore, µt depends on q past observations of implied volatility and p past

expected implied volatilities, and the model is denoted MMEM(p1, q1; p2, q2). This

autoregressive form for the mean equations can help to capture possible clustering

in the data. Clustering is often present in financial time series, meaning that high

(or low) volatility can persist. The mixture specification is also extended into the

error term, with the error terms assumed to come from two gamma distributions

with possibly different shape and scale parameters. In other words, µ1t is paired

with ε1t, and µ2t is paired with ε2t. Engle (2002) suggested the exponential distri-

bution for the error term, but the gamma distribution is more general, as it nests

e.g. the exponential distribution and the χ2 distribution.

The time-varying conditional mean and possibility for a mixture of two gamma

distributions bring considerable flexibility into the model. These elements can help

model the fact that in financial time series, periods of business-as-usual alternate

with periods of large shocks, which can be captured by the second regime of the

model. The probability parameter π (0 < π < 1) dictates which state the model

is in, i.e. the conditional mean is µ1t and errors ε1t with probability π, and the

conditional mean is µ2t and errors ε2t with probability (1 − π). There could of

course be even more mixture components in the model than just two, but the

diagnostics presented in Section 3.3 indicate that two components is sufficient for
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this application. Unfortunately, there is no way to directly test for the number of

necessary regimes.

The conditional mean equations reveal that MEM (and ACD) models are simi-

lar in structure to GARCH models, meaning that parameter constraints that apply

to GARCH models also apply to MEM models. The estimated coefficients must

therefore satisfy the positivity constraints outlined in Nelson & Cao (1992) for

GARCH models. For both mixture components of a MMEM(1,2;1,2) model, the

constraints are:

ωi ≥ 0

αi1 ≥ 0

0 ≤ βi < 1

β1αi1 + αi2 ≥ 0

with i = 1, 2. Therefore, in contrast to a (1,1) model, not all parameters need to

be non-negative.

The shape and scale parameters of the gamma distributions are constrained

so that with ε1t ∼ Gamma(γ1, δ1), δ1 = 1/γ1 and with ε2t ∼ Gamma(γ2, δ2),

δ2 = 1/γ2, or so that the scale parameter is the inverse of the shape parameter.

This ensures that the error term will have mean unity. Under these assumptions,

the conditional distribution of yt is:

ft−1(yt; θ) = π
1

µ1tΓ(γ1)δ
γ1

1

(
yt

µ1t

)γ1−1

exp

(
− yt

δ1µ1t

)
+

(1 − π)
1

µ2tΓ(γ2)δ
γ2

2

(
yt

µ2t

)γ2−1

exp

(
− yt

δ2µ2t

)
(3.4)

where θ is the parameter vector and Γ(·) is the gamma function. The model can

be estimated with conditional maximum likelihood (ML), and the log-likelihood

function can then be written as:
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ℓ(θ) =
T∑

t=1

ln[ft−1(yt)] (3.5)

3.3 Estimation

3.3.1 Data

The underlying asset for the option data used in this study is the Nikkei 225 index,

which is a price-weighted average of 225 Japanese companies listed on the Tokyo

Stock Exchange and likely to be the most closely followed stock index in Asian

markets. The Nikkei 225 reached its all-time high in December 1989, topping

38,900 at the time. In the sample used in this study, the index value ranges from

7,608 to 23,801.

Data on the implied volatility of options on the Nikkei 225 index was obtained

from the Bloomberg Professional Service for both Nikkei 225 index call and put

options for the time period 1.1.1992 - 31.12.2004. The graphs of the time series

of Nikkei 225 call and put IV are shown in Figure 3.1. The use of separate time

series of IV from calls and puts can offer new insights into the analysis, and e.g.

benefit investors wishing to trade in only either call or put options. Harvey and

Whaley (1992) also choose the approach of modeling call and put IV separately

and conclude, as does this study, that call-side IV is more predictable.

Although the implied volatility calculated from call and put options with equal

expiration dates and strike prices should theoretically be the same, as both reflect

the same market expectation, the empirical finding is that the two almost always

differ slightly. This may be a reflection of differing demand and supply balances

in the markets for calls and puts: for example, Bollen & Whaley (2004) note

that in the S&P 500 index option market, puts account for 55% of trades, with

institutional investors buying puts as portfolio insurance. They also find that the

level of at-the-money implied volatility is largely driven by the demand for at-the-

money puts. In the data set used in this study, the time series for put-side IV

reacts particularly strongly on 9/11, which is a logical reflection of the plummet in

stock prices and the ensuing panic selling that took place at the time. This high

market uncertainty would have raised the demand for put options more than the
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Figure 3.1: Nikkei 225 index call implied volatility (upper panel) and put implied volatility (lower

panel) 1.1.1992 - 31.12.2004.
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demand for call options. Differing demand and supply conditions and limits to

arbitrage, as described by e.g. Garleanu et al. (2006), Liu and Longstaff (2004),

and Figlewski (1989), can together explain how call and put IVs can differ without

there being a profitable arbitrage opportunity in the market.

The IV time series are calculated daily as the unweighted average of the Black-

Scholes implied volatilities of two near-term nearest-to-the-money options. Near-

term options tend to be most liquid, and therefore have the most accurate prices.

Options on the Nikkei 225 index are available with maturity dates for every month.

Days when public holidays fall on weekdays, or when there was no change in the

value of call or put implied volatility, were omitted from the data set. After this

modification, the full sample contains 3,194 observations.

Descriptive statistics for the Nikkei 225 call (NIKC) and put (NIKP) implied

volatility time series are given in Table 3.1. The IV of puts has been slightly more

volatile during the time period in question. The range of values that NIKC and

NIKP receive during the time period under study is remarkably wide: NIKC varied

from 9.3 to 70.8, and NIKP from 8.8 to 74.9. Both series are skewed to the right

and they display excess kurtosis. The autocorrelations for NIKC and NIKP are

displayed in Figure 3.2, revealing the relatively high degree of persistence in the

data. However, a unit root is rejected by the Augmented Dickey-Fuller test for

both NIKC and NIKP at the one-percent level of significance. Lanne (2006) finds

that with such slowly decaying autocorrelations, a multiplicative model with two

mixture components can fit the data quite well.

NIKC NIKP

Maximum 70.84 74.87
Minimum 9.26 8.80

Mean 24.68 24.82
Median 23.42 23.84

Standard deviation 7.07 7.41
Skewness 1.10 0.94
Kurtosis 5.42 4.79

Table 3.1: Descriptive statistics for NIKC and NIKP for the full sample of 1.1.1992 - 31.12.2004.
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Figure 3.2: Autocorrelations for NIKC (upper panel) and NIKP (lower panel). The dashed lines

mark the 95% confidence interval.
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3.3.2 Model estimation

The in-sample period used in model estimation covers 2,708 observations from

2.1.1992 to 30.12.2002. The base case in the estimation was the MMEM(1,2;1,2)

model, which was found to be the best specification for exchange rate realized

volatility time series by Lanne (2006). However, the coefficient for second lags of

IV in the more volatile regime (α22) is not statistically significant for NIKC or

NIKP, so the final specification choice is a (1,2;1,1) model for both time series.4

Table 3.2 presents the coefficients and log-likelihoods of the estimated models. The

estimated coefficients satisfy all the Nelson & Cao (1992) constraints.

NIKC NIKP

Log likelihood -6422.85 -6385.10

π 0.822 (0.000) 0.940 (0.000)

γ1 145.495 (0.000) 113.300 (0.000)
ω1 0.261 (0.002) 0.292 (0.000)
α11 0.638 (0.000) 0.571 (0.000)
α12 -0.261 (0.000) -0.177 (0.000)
β1 0.610 (0.000) 0.590 (0.000)

γ2 26.541 (0.000) 19.346 (0.000)
ω2 0.717 (0.060) 2.228 (0.148)
α21 0.324 (0.000) 0.587 (0.005)
β2 0.657 (0.000) 0.409 (0.001)

Table 3.2: Estimation results for the MMEM(1,2;1,1) model for NIKC and NIKP. P-values for

the statistical significance of the coefficients are given in parentheses.

The incidence of the business-as-usual regime is clearly higher for put-side

implied volatility than for call-side IV, as the probability parameter receives the

value of 0.94 for NIKP and 0.82 for NIKC. The constant terms of the model are

higher in the second regime, which indicates that this regime most likely models

days with larger shocks. The persistence of the model, reflected in the parameters

4The p-values from a likelihood ratio test for the restriction of α22 = 0 are 0.81 for NIKC and
0.53 for NIKP.
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β1 and β2, is almost equal in the first regime for both NIKC and NIKP. NIKC is

somewhat more persistent in the second regime.

Figure 3.3 shows the estimated densities of the error terms from the MMEM(1,2;1,1)

model for NIKC and NIKP. The densities for the more common, business-as-usual

component of the model are more concentrated around unity, and the densities for

the second mixture component are more dispersed and skewed to the right.
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Figure 3.3: Densities of error terms from the MMEM(1,2;1,1) model for NIKC (left) and NIKP

(right). The solid line is the density of ε1t and the dashed line is the density of ε2t.

With financial market data, it may be that only the most recent history is rele-

vant in modeling and forecasting, so the MMEM(1,2;1,1) model was also estimated

for NIKC and NIKP using only 500 observations from the end of the in-sample pe-

riod. This corresponds to an in-sample of 20.12.2000 - 30.12.2002. The estimation

results for this sample period are given in Table 3.3.5

Compared with the values in Table 3.2, the probability parameters are closer

in value between NIKC and NIKP in the models estimated with 500 observations

(0.87 and 0.93, respectively). Also, the gamma distribution shape parameters are

now close to equal in the first regime, contrary to estimates with the entire in-

sample. The coefficient for the second lag of NIKP is no longer negative in the

first regime, nor is it statistically significant. The constant in the second regime

falls to its lower limit, or 0.00001, for NIKC and is thus omitted from the model.

In order to investigate the necessity of the mixture components of the model,

a MEM(1,2) specification (i.e., a model with only one mean equation and error

distribution) was also estimated for both the call and put IV time series. The

5As before, α22 is constrained to zero in the models (the p-value for this restriction in an LR
test was 0.41 for NIKC and 0.39 for NIKP).
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NIKC NIKP

Log likelihood -1227.37 -1200.69

π 0.870 (0.000) 0.930 (0.000)

γ1 146.208 (0.000) 145.589 (0.000)
ω1 0.654 (0.011) 0.880 (0.026)
α11 0.491 (0.000) 0.452 (0.000)
α12 -0.248 (0.001) 0.042 (0.597)
β1 0.735 (0.000) 0.475 (0.000)

γ2 27.471 (0.000) 24.656 (0.004)
ω2 - 1.522 (0.667)
α21 0.633 (0.006) 0.548 (0.060)
β2 0.353 (0.139) 0.427 (0.167)

Table 3.3: Estimation results for the MMEM(1,2;1,1) model for NIKC and NIKP with an in-

sample of 500 observations. P-values for the significance of the coefficients are given in paren-

theses.

results of this estimation are given in Table 3.4. Coefficients are not statistically

significant, and the parameters of the gamma distribution are very different from

those for the MMEM models (see also Figure 3.4). This lends support to the

model specification with two mixture components. Also, this specification receives

further support from likelihood ratio tests for the two mixture components having

the same dynamics. The hypothesis of ω1 = ω2, α11 = α21, α12 = α22, and β1 = β2

is rejected with a p-value of less than 0.0001 for both NIKC and NIKP. Also, the

error terms need different distributions in the two regimes, as the hypothesis that

γ1 = γ2 is rejected with a p-value of less than 0.00001 for both call and put implied

volatility.

3.3.3 Diagnostics

Due to the use of the gamma distribution, it is not possible to conduct many

standard diagnostic tests for the MMEM models, as such tests assume a nor-

mal distribution. Also, as the model has two mixture components and switching

between the two regimes is random, there is no straightforward way to obtain
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NIKC NIKP

Log likelihood 33.31 33.57

γ1 4.485 (0.000) 4.476 (0.000)
ω 1.487 (0.830) 1.558 (0.839)
α1 0.464 (0.520) 0.484 (0.508)
α2 -0.188 (0.894) -0.166 (0.921)
β1 0.663 (0.630) 0.616 (0.715)

Table 3.4: Estimation results for the MEM(1,2) model for NIKC and NIKP. P-values for the

significance of the coefficients are given in parentheses.
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Figure 3.4: Density of error terms from the MEM(1,2) model for NIKC and NIKP.
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residuals. In-sample diagnostic checks can be made by analyzing the so-called

probability integral transforms of the data, as proposed by Diebold et al. (1998)

and employed by e.g. Bauwens et al. (2004) and Lanne (2006). The probability

integral transforms are computed as:

zt =

∫ yt

0

ft−1(u)du (3.6)

where ft−1(·) is the conditional density of yt relating to the model under analysis.

The framework of Diebold et al. (1998) was developed to evaluate density forecasts,

but it can be used for in-sample diagnostics as well. The diagnostics are based on

the idea that the sequence of probability integral transforms of a model’s density

forecasts are iid uniform U(0, 1) if the model specification is correct. Diebold et

al. (1998) recommend the use of graphical procedures to interpret the fit of the

models, which makes the approach simple to use and also easily gives clues as to

where a misspecification may lie.

Figure 3.5 plots 25-bin histograms of the probability integral transforms of both

NIKC and NIKP with the MMEM(1,2;1,1) model for estimations from the entire

in-sample as well as a sample of 500 observations. All columns fall within the 95%

confidence interval based on Pearson’s goodness-of-fit test, so the model specifi-

cation succeeds in taking into account the tails of the conditional distribution for

both NIKC and NIKP.6 This holds true even when using only 500 observations in

the estimation. The Pearson’s goodness-of-fit test statistics, as well as the confi-

dence intervals, are not valid as they are calculated without taking estimation error

into account. However, this problem most likely leads to rejecting too frequently,

and as the p-values from the test range from 0.78 to 0.90, the results lend support

to the model specification.

As a second diagnostic check, autocorrelation functions based on demeaned

probability integral transforms and their squares were computed (see Figures 3.6

and 3.7).7 There is very little autocorrelation in the levels of the demeaned prob-

ability integral transforms, but there is noticeable autocorrelation in the squares

6With a perfect model, zt would be uniformly distributed and the columns of the histogram
would all be of exactly the same height.

7The confidence intervals in the autocorrelation figures are also not valid due to the same
estimation error issues as with the Pearson’s goodness-of-fit test.
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Figure 3.5: Histograms of probability integral transforms for NIKC (upper left panel) and NIKP

(lower left panel) with the MMEM(1,2;1,1) model. Histograms for the MMEM(1,2;1,1) model

estimated with the last 500 observations of the in-sample are given on the right. The dotted

lines depict the boundaries of the 95% confidence interval.

of demeaned zt for both NIKC and NIKP. The autocorrelation in squares was also

present in the data of Lanne (2006). The situation improves clearly in the sub-

sample consisting of only the last 500 observations of the in-sample period.8 This

autocorrelation in squares is most likely a reflection of conditional heteroskedas-

ticity, or volatility of volatility, in the data.

Figure 3.6: Autocorrelation functions of demeaned probability integral transforms (upper panels)

and their squares (lower panels) from the MMEM(1,2;1,1) model. NIKC on left and NIKP on

right. The dotted lines depict the boundaries of the 95% confidence interval.

The necessity of using the mixture-MEM model specification is underscored

when inspecting the histogram of probability integral transforms calculated with

8The addition of the statistically insignificant parameter α22 to the diagnostic analysis does
not improve the autocorrelations.
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Figure 3.7: Autocorrelation functions of demeaned probability integral transforms (upper panels)

and their squares (lower panels) from the MMEM(1,2;1,1) model estimated with the last 500

observations of the in-sample. NIKC on left and NIKP on right. The dotted lines depict the

boundaries of the 95% confidence interval.

the MEM(1,2) model (Figure 3.8). With only one regime in the model, the tails

of the conditional distribution are not modeled properly, with too much emphasis

on the mid-range of the distribution. The poor fit of the MEM(1,2) model is also

visible in autocorrelation functions (Figure 3.9), with autocorrelations from even

the level series falling well beyond the confidence interval.
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Figure 3.8: Histograms of probability integral transforms with the MEM(1,2) model for NIKC

(upper panel) and NIKP (lower panel). The dotted lines depict the boundaries of the 95%

confidence interval.
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Figure 3.9: Autocorrelation functions of demeaned probability integral transforms (upper panels)

and their squares (lower panels) with the MEM(1,2) model. NIKC on left and NIKP on right.

The dotted lines depict the boundaries of the 95% confidence interval.

3.4 Forecasts

Forecasts were initially calculated from the chosen model specification of MMEM(1,2;1,1)

in order to assess the value of this modeling approach for option traders and other

investors. Of the 3,194 observations in the full sample, the last 486 trading days

were left as an out-of-sample period. This corresponds to 1.1.2003 - 31.12.2004.

In addition to the MMEM(1,2;1,1) model estimated from the entire in-sample,

forecasts were calculated from the MMEM(1,2;1,1) model using 500 observations,

as well as from the MEM(1,2) model, which is expected to fare much worse in

the forecast evaluation. Forecasts were calculated by keeping the estimated coef-

ficients constant throughout the out-of-sample period as well as by updating the

coefficients each day. In this case, the sample size was kept constant (2,708 or 500

observations), with the furthest observation dropped and the newest observation

added each day. In this alternative, the most recent information is incorporated

into the model estimation, which may result in added value if the coefficients are

not stable over time.

In practice, the one-step forecasts ŷt+1 from MMEM models are calculated

according to Equation 3.7:

ŷt+1 = πµ̂1,t+1 + (1 − π)µ̂2,t+1 (3.7)
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The forecast performance of the various models is summarized in Table 3.5.

Performance is evaluated primarily with directional accuracy, and secondly with

mean squared error. Option traders can potentially enter into profitable positions

in the market if their expected directional change in IV (up or down) is correct.

On the other hand, a forecast of the level of future volatility is of value from a risk

management point of view.

In general, it appears to be somewhat easier to forecast NIKC than NIKP,

regardless of the model choice. This could perhaps be due to the fact that trading

volumes for put options are slightly higher, making put option prices slightly more

accurate and predictions more difficult.

The results indicate that the coefficients of the MMEM(1,2;1,1) model are

stable over time when using the entire in-sample for estimation. The directional

accuracy of the model is exactly the same with fixed and updating coefficients for

both NIKC and NIKP. Therefore, it would seem that when using a sample period

that is sufficiently long, updating brings little benefit and the choice of the days

covered by the sample period is not critical.

The MMEM(1,2;1,1) model forecasts the direction of change correctly on 69.1%

of trading days for NIKC and on 66.0% of trading days for NIKP. For e.g. option

traders, any level of accuracy over 50% can potentially be worth money. Also,

comparing with the findings of Ahoniemi (2008) for the VIX index, whose sign was

predicted accurately on 58.4% of trading days at best, the directional accuracy is

clearly better for the Nikkei 225 implied volatility. With an older sample, Harvey

and Whaley (1992) achieve a directional accuracy of 62.2% for the IV of S&P 100

call options, and 56.6% for put options. The conclusion of this study that call IV

is more predictable is thus equivalent to the finding of Harvey and Whaley (1992).

Brooks and Oozeer (2002) predict the direction of change of the IV of options on

Long Gilt futures on 52.5% of trading days.

When incorporating only the most recent information, or estimating the model

with 500 observations, the forecast performance deteriorates considerably. Also,

the daily updating of coefficients becomes important, as the directional accuracy

improves if using updating rather than fixed coefficients. Further analysis of the

parameters estimated with the updating models reveals that a part of the parame-

ter estimates vary considerably over the out-of-sample period. This indicates that
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500 observations may be too few to reliably estimate the parameters.

The forecast performance of the MEM(1,2) model falls short of that of the

MMEM(1,2;1,1) model estimated from 2,708 observations, but is no poorer than

that of the MMEM(1,2;1,1) model with fixed coefficients estimated from 500 ob-

servations. All in all, each model performs at least slightly better in forecasting

the direction of change of NIKC rather than NIKP.

Actual outcome
Up Down Total

Forecast
Up 188 94 282

Down 56 148 204
Total 244 242 486

Table 3.6: NIKC 2×2 contingency table for the MMEM(1,2;1,1) model with updating coefficients

Actual outcome
Up Zero Down Total

Forecast
Up 178 1 101 280

Down 60 3 143 206
Total 238 4 244 486

Table 3.7: NIKP 2×2 contingency table for the MMEM(1,2;1,1) model with updating coefficients

The directional forecasts can be further broken down into contingency tables

to investigate where the models make mistakes. Tables 3.6 and 3.7 show 2 × 2

contingency tables with forecasts from the MMEM(1,2;1,1) model with updating

coefficients and actual outcomes. For both NIKC and NIKP, the true number of

moves up and down is almost equal, but the model forecasts a move upwards too

often. In other words, the model makes more mistakes where the prediction was

up but the true change was down than vice versa. There were four days included

in the out-of-sample when the change in NIKP was zero, but the change in NIKC

non-zero.

When evaluating the mean squared errors of the various forecast series, values

for NIKC are again superior to those for NIKP (see Table 3.5). The MMEM(1,2;1,1)

model estimated with 500 observations and updating coefficients emerges as the
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best specification for both NIKC and NIKP. This is perhaps due to the small sam-

ple including observations that are relatively near in value to the current level of

IV, whereas the entire in-sample contains observations that are tens of percentage

points apart.

The statistical significance of the forecasts is evaluated next with two sets of

tests. The value of the obtained directional forecasts can be assessed with the

market timing test developed by Pesaran and Timmermann (1992). The Pesaran-

Timmermann test (PT test) stems from the case of an investor who switches

between stocks and bonds. The test statistic is computed from contingency tables

like the one in Table 3.6. For NIKP, the days when the actual outcome was 0

are dropped from the analysis in order to run the test. The limiting distribution

of the PT test statistic is N(0, 1) when the null hypothesis that actual outcomes

and forecasts are distributed independently is true. The PT test shows that all

the evaluated directional forecast series are statistically significant, as the test

statistic has a p-value of less than 0.00001 for all forecast series. In other words,

the null hypothesis of predictive failure can be rejected at the one-percent level of

significance.

Mean squared errors can be used in the test for superior predictive ability (SPA)

due to Hansen (2005) to check that the forecasts outperform a forecast series of

zero change for each day. The SPA test allows for the simultaneous comparison of

n series of forecasts, as opposed to the Diebold-Mariano test (Diebold & Mariano,

1995), which compares forecast series one pair at a time. This makes the SPA test

useful in the context of this study, as all forecast models can be evaluated at the

same time. In the SPA test, one series of forecasts is defined to be the benchmark,

and MSE is then used as a loss function to determine whether that benchmark is

the best forecast series. The null hypothesis of the test is that the benchmark is

not inferior to the other forecast series.

Two benchmarks are used for the purposes of this paper. The first is zero

change, meaning that today’s value for NIKC or NIKP is used as the forecast for

the next day. The consistent p-value of the test, calculated using 1,000 bootstrap

resamples, is reported as less than 0.00001 for both NIKC and NIKP. Therefore,

there is at least one other forecast series that is a better forecaster than the bench-

mark of zero change. In other words, the forecasts calculated in this study can
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clearly add value to such a naive forecast.

The second benchmark is the MMEM(1,2;1,1) model estimated with the entire

in-sample and updating coefficients, which produces the second-lowest MSE for

both time series. Although being only second best, this model yields much better

directional accuracy for both NIKC and NIKP than the model with the lowest

MSE. The SPA test reports consistent p-values of 0.448 for NIKC and 0.675 for

NIKP with this benchmark, meaning that there is little evidence against the null

hypothesis that the benchmark is not inferior to the other series of forecasts.9

Investors seeking volatility forecasts in order to evaluate the risks in their port-

folios may be more interested in longer-term forecasts than simply one day ahead.

To address this issue, forecasts up to five trading days ahead in time have been

calculated for both NIKC and NIKP from the models presented above. Table 3.8

summarizes the mean squared errors for these forecasts.

Model MSE (NIKC) MSE (NIKP)

MMEM(1,2;1,1) - updating 6.29 9.33

MMEM(1,2;1,1) - fixed 6.39 9.34
MMEM(1,2;1,1) - updating; 500 obs. 6.54 9.76

MMEM(1,2;1,1) - fixed; 500 obs. 8.33 10.89
MEM(1,2) - updating 8.35 9.87

MEM(1,2) - fixed 8.65 9.90

Table 3.8: Mean squared errors from forecasts five trading days ahead. Best results for each

column in boldface.

The longer horizon advocates the use of the mixture multiplicative model with

updating coefficients and the longer in-sample period. The mean squared error for

the MMEM(1,2;1,1) model with updating coefficients is the lowest for both NIKC

and NIKP. However, the MSEs of the same model with fixed coefficients are not

much higher. The SPA test confirms the statistical significance of the ranking,

giving a consistent p-value of 0.942 to the MMEM(1,2;1,1) model with the lowest

mean squared error for NIKC and 0.884 for NIKP. The one-regime model fares

worst with the five-step-ahead forecasts for NIKC, and for NIKP, there is only one

9The consistent p-values of the SPA test when using the third model as the benchmark, or
the model with the lowest MSE, are 0.907 and 0.909 for NIKC and NIKP, respectively.
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model (MMEM(1,2;1,1) with 500 observations and fixed coefficients) that produces

a higher MSE than the one-regime specification.

To summarize the results from the forecast evaluation, it appears to be benefi-

cial to forecast Nikkei 225 index option implied volatility with a MMEM(1,2;1,1)

model specification. The use of a long in-sample period to estimate coefficients

provides added value. Two regimes fare better than one regime, and this ranking

holds whether the forecasts are calculated one or five days ahead.10

3.5 Option trading

In order to further assess the value of the forecasts calculated in Section 3.4,

an option trading simulation was carried out with market quotes for Nikkei 225

index options. If an option trader can correctly forecast the direction of change in

implied volatility over the next trading day, with all other factors held equal, it is

possible to enter into profitable positions in option markets. The purpose of this

simulation is not to determine whether trading based on these forecasts could lead

to abnormal returns, but to use the returns to rank the forecast models. Therefore,

no conclusions regarding market efficiency will be drawn.

The straddle is an option spread that is particularly useful for traders with a

view on the future movements in IV. Straddles are volatility trades where a long

position benefits from a rise in IV, and a short position benefits from a fall. Noh et

al. (1994) use straddles in their option trading simulation, and Bollen & Whaley

(2004) note that the most effective way to trade given an impending upward move

in volatility is to buy straddles. In a long straddle, an equal number of call and

put options are purchased, with a short position involving selling an equal number

of calls and puts. The options are selected so that their strike prices and maturity

dates are equal.

Option quotes for Nikkei 225 index options were obtained for the entire out-of-

sample period, or 1.1.2003 - 31.12.2004. Straddle returns were calculated based on

the directional forecasts of all the forecast series reported above. Positions were

10The favored model specification of MMEM(1,2;1,1) also outperforms various ARIMA models
as a forecaster. ARIMA models were estimated and used to calculate forecasts in order to
determine the value of using a multiplicative model rather than a traditional linear model.
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entered into at the closing quote of each day, and closed with the closing quote

of the following day. A theoretical sum of 1,000 Japanese Yen is invested in long

positions, and 1,000 Yen is received from short positions, so that the absolute value

of the options does not affect the returns. Harvey and Whaley (1992), Noh et al.

(1994), and Ederington and Guan (2002) also use such a fixed investment outlay.

The data on Nikkei 225 options that was used in this analysis contains strike

prices 500 index points apart. On each day, the strike price that was as close-

to-the-money as possible was selected. Trading volumes are usually highest for

at-the-money options and, as noted by Bollen & Whaley (2004), at-the-money

options are most sensitive to volatility. Ni et al. (2008) also observe that investors

who have a view regarding volatility are more likely to trade with close-to-the-

money options than with in-the-money or out-of-the-money options.

The straddle positions are not delta-hedged. However, at-the-money straddles

are close to delta-neutral, with the deltas from the call and put options nearly

offsetting each other. Options with the next maturity date were used up until two

calendar weeks before expiration, with trading then rolled on to the next maturity

date. This switch ensures that any odd movements in option quotes and volatility

close to expiration do not affect the results.

In practise, the return from a long straddle (Rl) was calculated as in Equation

3.8, and the return from a short straddle (Rs) as in Equation 3.9. The proceeds

from the short position are held with zero interest.

Rl =
1000

Ct−1 + Pt−1

(−Ct−1 − Pt−1 + Ct + Pt) (3.8)

Rs =
1000

Ct−1 + Pt−1

(Ct−1 + Pt−1 − Ct − Pt) (3.9)

Ct−1 is the close quote of the near-the-money call option that is used to enter into

the straddle, Pt−1 is the respective quote for the put option with the same strike

price and maturity date, and Ct and Pt are the closing quotes of the same options

at the end of the next trading day.

It may not be beneficial to trade every single day, particularly if the signal for

change in IV is very weak. Three filters have been used to leave out the forecasts

for the smallest changes in IV, i.e. treat a part of the forecasts as zero-change
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forecasts. This approach is similar to those used by Harvey and Whaley (1992)

and Noh et al. (1994), who each used two filters in their trading simulations. Poon

and Pope (2000) use three filters to account for transaction costs. The three filters

employed in this study leave out forecasts for a change of under 1.0%, under 2.0%,

and under 5.0%, respectively. No transaction costs are deducted from the returns,

as the aim of the trading exercise is not to determine the exact returns from the

trades. The inclusion of transaction costs would naturally scale all the reported

returns downwards.

The option trading returns are presented in Table 3.9 as average daily per-

centage returns to the position of 1,000 Yen. For NIKC, the forecasts from the

MMEM(1,2;1,1) model estimated with the full in-sample period of 2,708 obser-

vations yield the highest returns. Also, the use of a filter would not seem nec-

essary. When looking at the returns from NIKP forecasts, the highest value is

again received with the MMEM(1,2;1,1) model, but with the use of fixed coeffi-

cients. However, the same model with updating coefficients is by far the second

best alternative. As with NIKC, the use of a filter decreases the returns for the

MMEM(1,2;1,1) model when it is estimated using 2,708 observations. Interestingly,

the use of a filter is profitable for half of the MEM models (those with weakest di-

rectional forecast ability). This lends further support to using the MMEM(1,2;1,1)

specification with a long in-sample as the forecast model of choice: the forecasts

are reliable enough to not need filtering.11 It should be noted that the daily per-

centage returns are large, over four percent at best. This is explained in part by a

few outliers: for example, the highest daily return contributing to the best average

of 4.48% for NIKC was 132.6%. This return occurred on a day when the Nikkei

225 index rose by 2.0%, but the values of the nearest-to-the-money options more

than doubled. Leaving out the 25 largest positive and negative daily returns, the

average return for the MMEM(1,2;1,1) with updating coefficients and the longer

in-sample period falls to 1.33%.

The SPA test was employed in order to assess the statistical significance of

11Even with perfect foresight, i.e. by entering into straddles knowing what direction the IV
will take over the coming day, the trading return would be positive only on 59.5% (61.3%) of the
days for NIKC (NIKP) in this particular out-of-sample. This reflects the fact that many other
market parameters that affect option prices also change continually (in addition to volatility).
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the differences in the unfiltered option trading returns. In this application, the

opposite numbers of the returns achieved when trading every day were used as the

loss function in the test. For NIKC, the logical benchmark is the MMEM(1,2;1,1)

model with updating coefficients and the full in-sample. The consistent p-value in

this case is 0.988, indicating that there is little evidence against the null hypothesis

that this is the best forecast model. For NIKP, the same model was used as the

benchmark model despite its being only second best in option trading returns. The

use of this benchmark is supported by its consistent p-value of 0.753.12 Therefore,

the evidence from the option trading simulation as a whole is not in conflict with

the choice of the MMEM(1,2;1,1) model with updating coefficients.

3.6 Conclusions

The modeling of implied volatility can gain new dimensions from multiplicative

error models, which allow the econometrician to work directly with observed data

rather than logarithms. Implied volatility forecasting is of value in derivatives

pricing, as well as in the pricing of other assets due to the nature of IV as a

measure of market risk. Portfolio management is also an area that can benefit

from accurate IV forecasts. The forecasting of IV is a separate issue from the

oft-researched question of how well IV forecasts future realized volatility.

A multiplicative error model with two alternative mean equations and two

alternative gamma distributions for the error term was estimated in this paper

for time series of implied volatilities derived from call and put options on the

Nikkei 225 index. The mixture-MEM model was found to be a good fit, possessing

statistically significant coefficients and satisfactory in-sample diagnostics. With

only one regime, the model is a much worse fit to the data. In other words, the IV

time series appear to both be drawn from two distinct regimes, one corresponding

to stable market conditions and the other to a more volatile state.

Measured with directional accuracy, one-step-ahead forecasts calculated from

a mixture-MEM model outperform those from a multiplicative model with no

mixture components. Therefore, the successful modeling and forecasting of Nikkei

12The consistent p-value when using the MMEM(1,2;1,1) model with fixed coefficients as the
benchmark is 0.999.
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225 implied volatility requires taking the two separate regimes into account. This

result holds for both call and put option implied volatility in a two-year out-

of-sample period. When mean squared errors are used for forecast evaluation,

a two-regime MEM model estimated with a relatively short sample period (500

observations) is superior for both call and put IV.

Further analysis lends support to recommending the use of a mixture-MEM

model with a longer in-sample period for forecasting the implied volatility of the

Nikkei 225 index. Two-regime models with an eleven-year in-sample period pro-

duce lower mean squared errors when forecasting five trading days ahead in time.

Also, an option trading simulation that calculates returns from long and short

straddle positions based on the signals of the forecasts indicates that the highest

average returns can be achieved when trading based on the same mixture-MEM

model. Statistical tests confirm this superiority.

These results indicate that option traders and others interested in forecasting

the direction of change of implied volatility in the Japanese market can benefit from

using the new class of multiplicative models, as directional accuracy is well over

50 percent. The directional forecasts are also statistically significant. Investors

looking to forecast the future level of volatility implied by Nikkei 225 options or

the future level of volatility in the returns of the Nikkei 225 index can also receive

added value from the forecasts of mixture-MEM models, at least up to five trading

days into the future. Trading in the Nikkei 225 index option market can also be

shown to result in positive returns before transaction costs if entering into straddle

positions based on the forecasts from multiplicative error models - at least in the

particular out-of-sample used in this study. These returns may not be positive after

transaction costs, however, and no evidence on market efficiency is thus provided.

A detailed option trading exercise seeking to uncover the true returns for market

makers and other investors is left for future research.
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[27] Meitz, M. & Teräsvirta, T. (2006). Evaluating Models of Autoregressive Con-

ditional Duration. Journal of Business & Economic Statistics, 24, 104-124.

[28] Nelson, D.B. & Cao, C.Q. (1992). Inequality Constraints in the Univariate

GARCH Model. Journal of Business & Economic Statistics, 10, 229-235.

[29] Ni, S.X., Pan, J. & Poteshman, A.M. (2008). Volatility Information Trading

in the Option Market. The Journal of Finance, 63, 1059–1091.

[30] Noh, J., Engle, R.F. & Kane, A. (1994). Forecasting Volatility and Option

Prices of the S&P 500 Index. Journal of Derivatives, 2, 17-30.

[31] Pesaran, M.H. & Timmermann, A.G. (1992). A simple non-parametric test

of predictive performance. Journal of Business & Economic Statistics, 10, 461-

465.

[32] Poon, S-H., & Pope, P.F. (2000). Trading volatility spreads: a test of index

option market efficiency. European Financial Management, 6, 235-260.

82



Chapter 4

Joint Modeling of Call and Put

Implied Volatility

Katja Ahoniemi and Markku Lanne1

Abstract

This paper exploits the fact that implied volatilities calculated from identical call

and put options have often been empirically found to differ, although they should

be equal in theory. We propose a new bivariate mixture multiplicative error model

and show that it is a good fit to Nikkei 225 index call and put option implied

volatility (IV). A good model fit requires two mixture components in the model,

allowing for different mean equations and error distributions for calmer and more

volatile days. Forecast evaluation indicates that in addition to jointly modeling

the time series of call and put IV, cross effects should be added to the model: put-

side implied volatility helps forecast call-side IV, and vice versa. Impulse response

functions show that the IV derived from put options recovers faster from shocks,

and the effect of shocks lasts for up to six weeks.

1Correspondence: katja.ahoniemi@hse.fi and markku.lanne@helsinki.fi. The authors wish to
thank seminar participants at the Nonlinear Economics and Finance Research Community in
February 2008, at the XVI Annual Symposium of the Society for Nonlinear Dynamics and Econo-
metrics in April 2008, at the European University Institute in May 2008, and at the European
Meeting of the Econometric Society in August 2008 for valuable comments. Financial support
from the Okobank Group Research Foundation is gratefully acknowledged. Katja Ahoniemi also
thanks the Finnish Doctoral Programme in Economics, the Finnish Foundation for Advancement
of Securities Markets, and the Yrjö Jahnsson Foundation for financial support.
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4.1 Introduction

In theory, the implied volatilities derived from a call option and a put option with

the same underlying asset, strike price, and expiration date should be equal - both

reflect the market’s expectation of the volatility of the returns of the underlying

asset during the remaining life of the two options. However, empirical research

suggests that when call and put implied volatilities (IV) are backed out of option

prices using an option pricing formula, they often deviate from each other.

The reason behind the inequality of put and call implied volatilities may lie in

the different demand structure for calls and puts. There is an inherent demand for

put options that does not exist for similar calls, as institutional investors buy puts

regularly for purposes of portfolio insurance. There are often no market partici-

pants looking to sell the same options to offset this demand, meaning that prices

may need to be bid up high enough for market makers to be willing to become

counterparties to the deals. With no market imperfections such as transaction

costs or other frictions present, option prices should always be determined by no-

arbitrage conditions, making implied volatilities of identical call and put options

the same. However, in real-world markets the presence of imperfections may allow

option prices to depart from no-arbitrage bounds if there is, for example, an imbal-

ance between supply and demand in the market. References to existing literature

and more details on this topic are provided in Section 4.2.

Despite the fact that call and put-side implied volatilities differ, they must

be tightly linked to one another at all times - after all, they both represent the

same market expectation, and the driving forces behind their values are common.

Therefore, it can be argued that there is potential value added in jointly modeling

time series of implied volatilities, one derived from call option prices and the other

from put option prices. Further, the interactions between the two variables can be

studied with cross effects, i.e. allowing call IV to depend on lagged values of put

IV, and vice versa.

The modeling of IV provides a valuable addition to the extensive literature on

volatility modeling. IV is truly a forward-looking measure: implied volatility is

the market’s expectation of the volatility in the returns of an option’s underlying

asset during the remaining life of the option in question. Examples of IV modeling
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literature include Ahoniemi (2008), who finds that there is some predictability in

the direction of change of the VIX Volatility Index, an index of the IV of S&P 500

index options. Dennis et al. (2006) find that daily innovations in the VIX Volatility

Index contain very reliable incremental information about the future volatility of

the S&P 100 index.2 Other studies that attempt to forecast IV or utilize the

information contained in IV to trade in option markets include Harvey and Whaley

(1992), Noh et al. (1994), and Poon and Pope (2000). Reliable forecasts of implied

volatility can benefit option traders, but many other market participants as well:

all investors with risk management concerns can benefit from accurate forecasts of

future volatility.

The implied volatility data used in this study are calculated separately from

call and put options on the Japanese Nikkei 225 index. Separate time series for

call and put-side IV offer a natural application for the bivariate multiplicative

model presented below. In their analysis of implied volatilities of options on the

S&P 500 index, the FTSE 100 index, and the Nikkei 225 index, Mo and Wu

(2007) find that U.S. and UK implied volatilities are more correlated with each

other than with Japanese implied volatilities, indicating that the Japanese market

exhibits more country-specific movements. Therefore, it is interesting to analyze

the Japanese option market and its implied volatility in this context, as investors

may be presented with possibilities in the Japanese index option market that are

not available elsewhere. Mo and Wu (2007) also report that the implied volatility

skew is flatter in Japan than in the U.S. or UK markets. They conclude that

in Japan, the risk premium for global return risks is smaller than in the other

two countries. The developments in the Japanese stock market during the late

1990s in particular are very different from Western markets, with prices declining

persistently in Japan. This characteristic also makes the Japanese market unique.

Mo and Wu (2007) observe that out-of-the-money calls have relatively higher IVs in

Japan, as investors there expect a recovery after many years of economic downturn.

Investors in Japan seem to price more heavily against volatility increases than

against market crashes.

2The data set in Dennis et al. (2006) ends at the end of 1995, when options on the S&P 100
index were used to calculate the value of the VIX. The Chicago Board Options Exchange has
since switched to S&P 500 options.
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In this paper, we introduce a new bivariate multiplicative error model (MEM).

MEM models have gained ground in recent years due to the increasing interest in

modeling non-negative time series in financial market research.3 The use of MEM

models does not require logarithms to be taken of the data, allowing for the direct

modeling of variables such as the duration between trades, the bid-ask spread,

volume, and volatility. Recent papers that successfully employ multiplicative error

modeling in volatility applications include Engle and Gallo (2006), Lanne (2006,

2007), Brunetti and Lildholdt (2007), and Ahoniemi (2007). Lanne (2006) finds

that the gamma distribution is well suited for the multiplicative modeling of the

realized volatility of two exchange rate series, and Ahoniemi (2007), using the same

data set as in the present study, finds that MEM models together with a gamma

error distribution are a good fit to data on Nikkei 225 index implied volatility. All

the above-mentioned MEM applications consider univariate models, but Cipollini

et al. (2006) build a multivariate multiplicative error model using copula functions

instead of directly employing a multivariate distribution. In our application, we

use a bivariate gamma distribution to model the residuals.

Our results show that it is indeed useful to jointly model call and put implied

volatilities. The chosen mixture bivariate model with a gamma error distribution

is a good fit to the data, as shown by coefficient significance and diagnostic checks.

The addition of lagged cross effects turns out to be important for one-step-ahead

daily forecast performance. Our model correctly forecasts the direction of change

in IV on over 70% of trading days in an out-of-sample analysis. Impulse response

functions are also calculated, and they reveal that there is considerable persistence

in the data: shocks do not fully disappear until thirty trading days elapse. Also,

put-side IV recovers more quickly from shocks than call-side IV, indicating that

the market for put options may price more efficiently due to larger demand and

trading volumes.

This paper proceeds as follows. Section 4.2 discusses the differences in the

markets for call and put options in more detail. Section 4.3 describes the bivariate

mixture multiplicative error model estimated in this paper. Section 4.4 presents

the data, model estimation results, and diagnostic checks of the chosen model

3A special case of multiplicative error models is the autoregressive conditional duration (ACD)
model, for which an abundant literature has emerged over the past ten years.
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specification. Impulse response functions are discussed in Section 4.5, and forecasts

are evaluated in Section 4.6. Section 4.7 concludes.

4.2 The Markets for Call and Put Options

This section provides evidence on the differences between call and put option

implied volatilities, and discusses how demand pressures and limits to arbitrage

can lead to these theory-contradicting differences. For example, Bollen and Whaley

(2004) have documented that put options account for 55 % of trades in S&P 500

index options, and that the level of implied volatility calculated from at-the-money

(ATM) options on the S&P 500 index is largely driven by the demand for ATM

index puts. Buraschi and Jackwerth (2001), using an earlier data set of S&P 500

index options, report that put volumes are around three times higher than call

volumes. There is also evidence that out-of-the-money (OTM) puts in particular

can be overpriced, at least part of the time (Bates (1991), Dumas et al. (1998),

Bollen and Whaley (2004)). Garleanu et al. (2006) document that end users (non-

market makers) of options have a net long position in S&P 500 index puts, and

that net demand for low-strike options (such as OTM puts) is higher than the

demand for high-strike options. The results of Chan et al. (2004) from Hang Seng

Index options in Hong Kong are similar to those of Bollen and Whaley (2004) in

that net buying pressure is more correlated with the change in implied volatility

of OTM put options than in-the-money put options. Also, trading in Hang Seng

Index puts determines the shape of the volatility smile to a greater degree than

trading in calls.

If OTM puts are consistently overpriced, investors who write such options

could earn excess returns (empirical evidence in support of this is provided in e.g.

Bollen and Whaley (2004)). On the other hand, Jackwerth (2000) finds that it is

more profitable to sell ATM puts than OTM puts in the S&P 500 index option

market. Fleming (1999) compares ATM S&P 100 index calls and puts, and finds

that selling puts is more profitable than selling calls. Further evidence on different

market mechanisms for calls and puts is provided by Rubinstein (1994), who notes

that after the stock market crash of October 1987, prices of OTM puts were driven

upwards, changing the volatility smile into the now-observed volatility skew. He
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hypothesizes that the crash led to OTM puts being more highly valued in the

eyes of investors. Ederington and Guan (2002) also remark that the volatility

smile may be caused in part by hedging pressures which drive up the prices of

out-of-the-money puts. They point out that this notion is supported by both

trading volume evidence and the fact that in equity markets, implied volatilities

calculated from options with low strike prices have been found to be higher than

ex-post realized volatilities.

Even if the demand for a put option causes its price (and implied volatility)

to rise, no-arbitrage conditions should ensure that the price of a call option with

the same strike price and maturity date yields an implied volatility that is equal

to the one derived from the put counterpart. But as Fleming (1999) writes,

“..., transaction costs and other market imperfections can allow option

prices to deviate from their “true” values without signaling arbitrage

opportunities.”

The possibility that option prices can depart from no-arbitrage bounds, thus al-

lowing call and put IV to differ, has been documented numerous times in earlier

work. Hentschel (2003) points out that noise and errors in option prices stem-

ming from fixed tick sizes, bid-ask spreads, and non-synchronous trading can con-

tribute to miscalculated implied volatilities, and to the volatility smile. Garleanu

et al. (2006) develop a model for option prices that allows for departures from

no-arbitrage bounds. These arise from the inability of market makers to perfectly

hedge their positions at all times, which in turn allows option demand to affect

option prices. Empirical evidence lends support to this theory: market makers

require a premium for delivering index options. Even market makers cannot fully

hedge their exposures due to issues such as transaction costs, the indivisibility

of securities, and the impossibility of executing rebalancing trades continuously

(Figlewski (1989)), and capital requirements and sensitivity to risk (Shleifer and

Vishny (1997)). When market makers face unhedgeable risk, they must be com-

pensated through option prices for bearing this risk. In fact, Garleanu et al. (2006)

find that after periods of dealer losses, the prices of options are even more sensitive

to demand. Other impediments to arbitrage include the fact that a stock index

portfolio is difficult and costly to trade, but if an investor uses futures, she must
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bear basis and possibly tracking risk (Fleming (1999)): spot and futures prices

may not move hand-in-hand at all times, and the underlying asset of the futures

contracts may not be identical to the asset being hedged. Liu and Longstaff (2004)

demonstrate that it can often be optimal to underinvest in arbitrage opportuni-

ties, as mark-to-market losses can be considerable before the values of the assets

involved in the trade converge to the values that eventually produce profits to the

arbitrageur. When it is suboptimal to fully take advantage of an arbitrage oppor-

tunity, there is no reason why the arbitrage could not persist for even a lengthy

amount of time. Bollen and Whaley (2004), in their analysis of the S&P 500 option

market, find support for the hypothesis that limits to arbitrage allow the demand

for options to affect implied volatility.

4.3 The Model

In this section, we present the bivariate mixture multiplicative error model (BVMEM)

that will be used to model the two time series of implied volatilities described in

Section 4.4. Consider the following bivariate model

vt = µt ⊙ εt, t = 1, 2, ..., T,

where the conditional mean

µt =

(
µ1t

µ2t

)
=

(
ω1 +

∑q1

i=1 α1iv1,t−i +
∑p1

j=1 β1jµ1,t−j

ω2 +
∑q2

i=1 α2iv2,t−i +
∑p2

j=1 β2jµ2,t−j

)
,

εt is a stochastic positive-valued error term such that E (εt|Ft−1) = 1 with Ft−1 =

{vt−j, j ≥ 1}, and ⊙ denotes element-by-element multiplication. In what follows,

this specification will be called the BVMEM(p1, q1; p2, q2) model. As the condi-

tional mean equations of the model are essentially the same as the conditional

variance equations in the GARCH model in structure, the constraints on param-

eter values that guarantee positivity in GARCH models also apply to each of the

equations of the BVMEM model. As outlined in Nelson and Cao (1992), the pa-

rameter values in a first-order model must all be non-negative. In a higher-order

model, positivity of all parameters is not necessarily required. For example, in
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a model with pi = 1 and qi = 2, i = 1, 2, the constraints are ωi ≥ 0, αi1 ≥ 0,

0 ≤ βi < 1, and β1αi1 + αi2 ≥ 0. It should be noted that this basic conditional

mean specification must often be augmented with elements such as cross effects

between the variables and seasonality effects. In these cases, one must ensure that

positivity continues to be guaranteed. For example, if the coefficients for lagged

cross terms are positive, no problems in achieving positivity arise.

The multiplicative structure of the model was suggested for volatility modeling

in the univariate case by Engle (2002), who proposed using the exponential dis-

tribution. However, the gamma distribution nests, among others, the exponential

distribution, and is therefore more general. Also, the findings of Lanne (2006,

2007) and Ahoniemi (2007) lend support to the gamma distribution.

The error term εt is assumed to follow a bivariate gamma distribution, which is

a natural extension of the univariate gamma distribution used in previous literature

(Lanne (2006, 2007) and Ahoniemi (2007)). Of the numerous bivariate distribu-

tions having gamma marginals, the specification suggested by Nagao and Kadoya

(1970) is considered (for a discussion on alternative bivariate gamma densities, see

Yue et al. (2001)). This particular specification is quite tractable and thus well

suited for our purposes. Collecting the parameters into vector θ = (τ1, τ2, λ, ρ),

the density function can be written as

fε1,ε2 (ε1t, ε2t; θ) =
(τ1τ2)

(λ+1)/2 (ε1tε2t)
(λ−1)/2 exp

{
− τ1ε1t+τ2ε2t

1−ρ

}

Γ (λ) (1 − ρ) ρ(λ−1)/2
Iλ−1

(
2
√

τ1τ2ρε1tε2t

1 − ρ

)
,

where Γ (·) is the gamma function, ρ is the Pearson product-moment correlation

coefficient, and Iλ−1 (·) is the modified Bessel function of the first kind. The

marginal error distributions have distinct scale parameters τ1 and τ2, but the shape

parameter, λ, is the same for both. However, since the error term needs to have

mean unity, we impose the restriction that the shape and scale parameters are

equal, i.e. τ1 = τ2 = λ. In other words, we will also restrict the scale parameters

to be equal. This is not likely to be very restrictive in our application, as earlier

evidence based on univariate models in Ahoniemi (2007) indicates that the shape

and scale parameters for the time series used in this study, the implied volatilities

of Nikkei 225 call and put options, are very similar.

90



Incorporating the restrictions discussed above and using the change of variable

theorem, the conditional density function of vt = (v1t, v2t)
′ is obtained as

ft−1 (v1t, v2t; θ) = fε1,ε2

(
v1tµ

−1
1t , v2tµ

−1
2t

)
µ−1

1t µ−1
2t (4.1)

=

λ(λ+1)
[
v1tv2tµ

−1
1t µ−1

2t

](λ−1)/2
exp

{
−λ(v1tµ

−1
1t +v2tµ

−1
2t )

1−ρ

}

Γ (λ) (1 − ρ) ρ(λ−1)/2
×

Iλ−1

(
2λ

√
ρv1tv2tµ

−1
1t µ−1

2t

1 − ρ

)
µ−1

1t µ−1
2t .

Consequently, the conditional log-likelihood function can be written as4

lT (θ) =
T∑

t=1

lt−1(θ) =
T∑

t=1

ln [ft−1 (v1t, v2t; θ)] ,

and the model can be estimated with the method of maximum likelihood (ML)

in a straightforward manner. Although the gamma distribution is quite flexible

in describing the dynamics of implied volatilities, in our empirical application it

turned out to be inadequate as such. In particular, it failed to capture the strong

persistence in the implied volatility time series. As an extension, we consider a

mixture specification that allows for the fact that financial markets experience

different types of regimes, alternating between calm and more volatile periods

of time. Different parameter values can be assumed to better describe periods

of larger shocks compared with periods of smaller shocks, and error terms are

allowed to come from two gamma distributions whose shape and scale parameters

can differ. Earlier evidence from Lanne (2006) and Ahoniemi (2007) indicates that

4Specifically, for observation t,

lt−1 (θ) = (λ + 1) ln (λ) +
1

2
(λ − 1) [ln (v1t) + ln (v2t) − ln (µ1t) − ln (µ2t)]

−λ
(
v1tµ

−1

1t + v2tµ
−1

2t

)

1 − ρ
− ln [Γ (λ)] − ln (1 − ρ) − 1

2
(λ − 1) ln (ρ)

+ ln



Iλ−1




2λ

√
ρv1tv2tµ

−1

1t µ−1

2t

1 − ρ







 − ln (µ1t) − ln (µ2t) .
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the use of a mixture specification improves the fit of a multiplicative model as well

as the forecasts obtained from the models.

We will assume that the error term εt is a mixture of of ε
(1)
t and ε

(2)
t with mixing

probability π, and that ε
(1)
t and ε

(2)
t follow the bivariate gamma distribution with

parameter vectors θ1 and θ2, respectively. In other words, the error term is ε
(1)
t

with probability π and ε
(2)
t with probability 1 − π (0 < π < 1). The model based

on this assumption will subsequently be called the mixture-BVMEM model. The

conditional log-likelihood function becomes

lT (θ) =
T∑

t=1

lt−1 (θ) =
T∑

t=1

ln
[
πf

(1)
t−1 (v1t, v2t; θ1) + (1 − π) f

(2)
t−1 (v1t, v2t; θ2)

]
,

where f
(1)
t−1 (v1t, v2t; θ1) and f

(2)
t−1 (v1t, v2t; θ2) are given by (4.1) with θ replaced by

θ1 and θ2, respectively. As mentioned previously, the conditional mean parameters

can differ between regimes.

The asymptotic properties of the ML estimator for our model are not known,

and their derivation lies outside the scope of this paper. However, assuming that

vt is stationary and ergodic, it is reasonable to apply standard asymptotic results

in statistical inference. In particular, approximate standard errors can be obtained

from the diagonal elements of the matrix −
[
∂2lT (θ̂)/∂θ∂θ′

]−1

, where θ̂ denotes

the ML estimate of θ. Similarly, Wald and likelihood ratio (LR) tests for general

hypotheses will have the conventional asymptotic χ2 null distributions. Note,

however, that hypotheses restricting the number of mixture components do not

have the usual χ2 distributions due to the problem of unidentified parameters

(see e.g. Davies (1977)). We will not attempt such tests, but assume throughout

that there are two mixture components. The adequacy of the assumption will be

verified by means of diagnostic procedures (see Section 4.4.3).
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4.4 Estimation Results

4.4.1 Data

The data set in this study covers 3,194 daily closing observations from the period

1.1.1992 - 31.12.2004, and was obtained from Bloomberg Professional Service (see

Figure 4.1). The first eleven years of the full sample, or 1.1.1992 - 31.12.2002,

comprise the in-sample of 2,708 observations. The final two years, 2003 and 2004,

are left as the 486-day out-of-sample to be used for forecast evaluation.

The call-side (put-side) implied volatility time series is calculated as an un-

weighted average of Black-Scholes implied volatilities from two nearest-to-the-

money call (put) options from the nearest maturity date. Rollover to the next

maturity occurs two calendar weeks prior to expiration in order to avoid possibly

erratic behavior in IV close to option expiration. ATM options are typically used

to estimate the market’s expected volatility for the remainder of the option’s ma-

turity, as trading volumes are usually high for ATM options. Also, ATM options

have the highest sensitivity to volatility.

Table 4.1 provides descriptive statistics on both the call-side IVs (NIKC) and

put-side IVs (NIKP). The average level of put-side implied volatility is higher in

the sample of this study, a phenomenon which has also been documented in the

U.S. markets by Harvey and Whaley (1992). Tests indicate that the means and

medians of the two series are not significantly different (p-values exceed 0.4 in both

cases). On the other hand, the equality of the standard deviations is rejected at

the one-percent level. The correlation between NIKC and NIKP is 0.877 in the

full sample, but the correlation has varied from 0.534 in 1996 to 0.924 in 1994.

4.4.2 Model Estimation

Given the clear linkages between the implied volatilities of call and put options on

the same underlying asset outlined above, call-side (put-side) IV can be expected

to be a significant predictor of future put-side (call-side) IV. Therefore, the model

presented in Section 4.3 is augmented with lagged cross terms, so that call (put)

implied volatility depends on its own history as well as on the history of put

(call) implied volatility. Bollen and Whaley (2004) find that in the U.S. market,
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Figure 4.1: Nikkei 225 index call implied volatility (upper panel) and put implied volatility (lower

panel) 1.1.1992 - 31.12.2004.

NIKC NIKP

Maximum 70.84 74.87
Minimum 9.26 8.80

Mean 24.68 24.82
Median 23.42 23.84

Standard deviation 7.07 7.41
Skewness 1.10 0.94
Kurtosis 5.42 4.79

Table 4.1: Descriptive statistics for NIKC and NIKP for the full sample of 1.1.1992 - 31.12.2004.
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the demand for ATM index puts drives both the changes in ATM put implied

volatility and the changes in ATM call implied volatility. Therefore, we expect

that for our Japanese implied volatility data, lagged put IV will be more significant

in explaining call IV than lagged call IV will be in explaining put IV.

Dummy variables for Friday effects of put-side IV are also added due to the

improvement in diagnostics achieved after the addition (see Section 4.4.3 for more

details on diagnostic checks). The level of IV is lowest on Fridays for both call

and put options,5 but trading volumes are highest on Fridays. An analysis of

trading volumes of close-to-the-money, near-term maturity call and put options

on the Nikkei 225 index reveals that during the two-year out-of-sample period

used in this study, put options account for 52.0 % of trading volume (measured

with number of contracts traded). The share of puts is lowest on Mondays (50.4%)

and largest on Fridays (53.6%).

Findings similar to ours concerning weekly seasonality have been reported in

previous studies. Harvey and Whaley (1992) document that the IV in the S&P 100

index option market tends to be lowest on Fridays and rise on Mondays. Peña et al.

(1999) find that in the Spanish stock index market, the curvature of the volatility

smile at the beginning of the week is statistically significantly different from the

smile at the end of the week. Lehmann and Modest (1994) report that trading

volumes on the Tokyo Stock Exchange are substantially lower on Mondays than

on other days of the week. They hypothesize that this is due to reduced demand

by liquidity traders due to the risk of increased information asymmetry after the

weekend. Also, bid-ask spreads are largest on Mondays, making transaction costs

highest at the start of the week. The significance of trading volumes is highlighted

by Mayhew and Stivers (2003), who find that implied volatility performs well

when forecasting individual stock return volatility, but only for those stocks whose

options have relatively high trading volumes.

In order to take cross effects and the observed seasonal variation into account,

we need to modify the basic model presented in Section 4.3. Let µmt denote

the conditional mean of mixture component m (m = 1, 2), and µmt = (µC
mt, µ

P
mt)

′,

where µC
mt and µP

mt are the conditional means of the call and put implied volatilities,

5The level of IV is highest on Mondays. However, dummies for Monday effects were not
statistically significant.
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respectively.

The specifications of the conditional means are

µC
mt = ωC

m +

qC∑

i=1

αC
mivC,t−i +

rC∑

i=1

ψC
mivP,t−i +

sC∑

i=1

δCP
mi DivP,t−i +

pC∑

j=1

βC
mjµ

C
m,t−j

and

µP
mt = ωP

m +

qP∑

i=1

αP
mivP,t−i +

rP∑

i=1

ψP
mivC,t−i +

sP∑

i=1

δPP
mi DivP,t−i +

pP∑

j=1

βP
mjµ

P
m,t−j

where the ψ’s are the coefficients for lagged cross terms, and Di receives the value

of 1 on Fridays, and zero otherwise. As mentioned above, the dummy variable

in both the call and put mean equations is for put-side Friday effects (coefficients

δCP
mi and δPP

mi ). This specification is later referred to as the unrestricted model.6

In order to fully understand the value of including cross effects between NIKC

and NIKP in the model, an alternative specification with no cross terms was also

estimated. In this model, dummies for Friday effects are also included, but due

to the elimination of cross effects, the dummy in the equation for NIKC captures

the Friday effect of call-side, not put-side, implied volatility. In the second model

specification, or the restricted model,

µC
mt = ωC

m +

qC∑

i=1

αC
mivC,t−i +

sC∑

i=1

δCC
mi DivC,t−i +

pC∑

j=1

βC
mjµ

C
m,t−j

and

µP
mt = ωP

m +

qP∑

i=1

αP
mivP,t−i +

sP∑

i=1

δPP
mi DivP,t−i +

pP∑

j=1

βP
mjµ

P
m,t−j.

The estimation results for both the unrestricted and the restricted model are

presented in Table 4.2. The lag structure is selected based on the statistical sig-

nificance of coefficients as well as autocorrelation diagnostics (see Section 4.4.3).

6The model originally included six dummies: both first-regime equations had Friday-effect
dummies for the intercept, own lagged value, and the lagged value of the other variable. Only
the put-side Friday effects were statistically significant, and p-values from likelihood ratio tests
validated the constraining of the other dummies to zero.
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Unrestricted Model Restricted Model

Log likelihood -12370.0 -12653.4

π 0.919** (0.012) 0.883** (0.018)

λ1 126.594** (3.745) 127.3036** (4.614)

ρ1 0.094** (0.027) 0.019 (0.033)

ωC
1

1.264** (0.164) 0.298** (0.085)

αC
11

0.514** (0.020) 0.617** (0.025)

αC
12

0.104** (0.019) -0.223** (0.048)

ψC
11

0.321** (0.017) -

δCC
11

- 0.043** (0.006)

δCP
11

0.045** (0.005) -

βC
11

- 0.584** (0.046)
ωP

1
- 0.254** (0.077)

αP
11

0.529** (0.020) 0.611** (0.023)

αP
12

- -0.215** (0.053)

ψP
11

0.247** (0.018) -

δPP
11

0.043** (0.005) 0.046** (0.006)

βP
11

0.210** (0.026) 0.581** (0.048)

λ2 20.043** (2.003) 23.413** (2.288)

ρ2 0.360** (0.063) 0.378** (0.058)

ωC
2

1.401 (0.772) 0.718 (0.368)

αC
21

0.185** (0.070) 0.216** (0.044)

ψC
21

0.150 (0.101) -

βC
21

0.627** (0.108) 0.769** (0.048)

ωP
2

0.835 (0.688) 0.933* (0.403)

αP
21

0.244** (0.087) 0.270** (0.050)

ψP
21

0.146 (0.090) -

βP
21

0.612** (0.111) 0.717** (0.053)

Table 4.2: Estimation results for the BVMEM model. Standard errors calculated from the final

Hessian matrix are given in parentheses. (**) indicates statistical significance at the one-percent

level, and (*) at the five-percent level.
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The parameter values for all ω’s, α’s and β’s meet the Nelson and Cao (1992)

constraints discussed in Section 4.3. Also, the coefficients of cross terms (ψ’s) and

dummies (δ’s) are positive, so positivity is guaranteed in the model. The estimated

values of βC
11, ωP

1 , and αP
12 are not reported because the estimates hit their lower

bound of zero (which is required for positivity).

The probability parameter π is quite high for the unrestricted model, close to

0.92. Therefore, the second regime, which displays larger shocks, occurs on only

some eight percent of the trading days in the in-sample. The estimated shape

(and scale) parameters of the error distribution differ considerably between the

two regimes, with residuals more dispersed in the second regime. Figure 4.2 shows

the joint error density of the unrestricted model with the parameters estimated for

the first regime, while the error density for the second regime is depicted in Figure

4.3. It should be noted that the scale of the z-axis is different in the two figures.

The errors are much more tightly concentrated around unity in the first, more

commonly observed, regime, whereas the tail area is emphasized in the second

regime.

The correlation of errors, or ρ, is higher in the second regime, making changes in

call and put IV more correlated when volatility is high. This is also clearly visible

in Figures 4.2 and 4.3. The coefficients of cross terms ψ are significant at the one-

percent level in the first, more common regime, and jointly significant in the second

regime (p-value from LR test equal to 0.007). The coefficients of the cross terms

are higher in the first regime, making the cross effects more pronounced. In other

words, the cross effects are smaller when volatility is high. For both regimes, the

effect put-side IV has on call-side IV is larger than the effect call IV has on put IV,

although the difference in coefficients is quite small in the second regime. Friday

dummies for the first lag of put IV are also significant and positive, indicating

that the effect of the lagged put IV is larger on Fridays, when trading volumes are

highest. Values of intercepts are higher in the second regime, consistent with the

notion that this regime occurs on days when shocks are larger. The clearly greater

β’s in the second regime indicate higher persistence in that regime. This can be

interpreted as a sign that once the second regime is entered, it is likely that large

shocks persist, i.e. there is volatility clustering present.

As we are interested in seeing the relevance of cross terms for forecast perfor-

98



Figure 4.2: Estimated density of error terms in the first regime of the unrestricted model.

Figure 4.3: Estimated density of error terms in the second regime of the unrestricted model.
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mance, we also present the results for the restricted model without these cross

effects. It should be noted that the null hypothesis of all coefficients of cross terms

equal to zero is rejected by an LR test at all reasonable significance levels (p-value

of less than 0.00001). In the restricted model, the estimate of π is smaller than in

the unrestricted model, but the first regime remains clearly more prevalent. The

parameters of the error distribution are very similar, but the correlation of the

residuals is lower in the first regime than it was with the unrestricted model. One

notable difference to the parameter values of the unrestricted model is that the

coefficients of the second lags are both significant in the first regime, and have a

negative sign. This suggests that the exclusion of cross effects results in biased

estimates of these parameters. The dummies for Friday effects are significant,

indicating that the data behaves somewhat differently when the trading volume

is at its highest. As the shape (and scale) parameters of the error distribution

that are estimated for the restricted model are very close in value to those for the

unrestricted model, the graphs for error densities are qualitatively similar as those

in Figures 4.2 and 4.3 and are therefore not displayed.

4.4.3 Diagnostics

Most standard diagnostic tests are based on a normal error distribution, which ren-

ders these tests unfeasible for our purposes due to the use of the gamma distribu-

tion. Also, as our model specification has two mixture components and switching

between the regimes is random, there is no straightforward way to obtain residuals.

In order to investigate the goodness-of-fit of our model, diagnostic evaluations

can nevertheless be conducted by means of so-called probability integral transforms

of the data. This method was suggested by Diebold et al. (1998) and extended to

the multivariate case by Diebold et al. (1999). The probability integral transform

in the univariate case (for one IV series) is obtained as

zt =

∫ yt

0

ft−1(u)du (4.2)

where ft−1(·) is the conditional density of the implied volatility with the chosen

model specification. The transforms are independently and identically uniformly

distributed in the range [0,1] if the model is correctly specified. Although com-
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monly employed in the evaluation of density forecasts, this method is also applica-

ble to the evaluation of in-sample fit. In the bivariate case, Diebold et al. (1999)

recommend evaluating four sets of transforms, which we denote zC
t , zP

t , z
C|P
t , and

z
P |C
t . The transforms zC

t and zP
t are based on the marginal densities of the call

and put implied volatilities, respectively. Similarly, z
C|P
t is based on the density

of call IV conditional on put IV, and vice versa for z
P |C
t .

Graphical analyses of the probability integral transforms are commonplace.

These involve both a histogram of the transforms, that allows for determining

uniformity, as well as autocorrelation functions of demeaned probability integral

transforms and their squares. The graphical approach allows for easily identify-

ing where a possible model misspecification arises. Figure 4.4 presents the 25-bin

histogram and autocorrelations for z
C|P
t , and Figure 4.5 for z

P |C
t for the unre-

stricted model. Figures 4.6 and 4.7 present the equivalent graphs for zC
t and zP

t ,

respectively.

Most columns of the histograms fall within the 95 % confidence interval, which

is based on Pearson’s goodness-of-fit test. Although there are some departures from

the confidence bounds (between zero and four, depending on the case), there is no

indication that the model would not be able to capture the tails of the conditional

distribution properly. It must be noted that Pearson’s test statistics and confidence

interval are not exactly valid, as their calculation does not take estimation error

into account. However, this omission most likely leads to rejecting too frequently.

The autocorrelations of the demeaned probability integral transforms also pro-

vide encouraging evidence, although some rejections do occur at the five percent

(but not at the ten percent) level.7 There clearly seems to be some remaining au-

tocorrelation in the squares of the demeaned probability integral transforms. This

same finding has been made previously with univariate models for volatility data

(see Ahoniemi (2007) and Lanne (2006, 2007)). A potential explanation is that

the model is not quite sufficient in capturing the time-varying volatility of implied

volatility, as autocorrelation in the squares is a sign of conditional heteroskedas-

ticity.

7The confidence bands of the autocorrelations are also calculated without estimation error
accounted for. Adding fourth, fifth, or tenth lags of IV to the model does not improve the
autocorrelation diagnostics.
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Figure 4.4: Diagnostic evaluation of z
C|P
t : NIKC conditional on NIKP. Histograms of probability

integral transforms in the upper panel, and autocorrelation functions of demeaned probability

integral transforms (middle panel) and their squares (lower panel). The dotted lines depict the

boundaries of the 95% confidence interval.

Figure 4.5: Diagnostic evaluation of z
P |C
t : NIKP conditional on NIKC. Histograms of probability

integral transforms in the upper panel, and autocorrelation functions of demeaned probability

integral transforms (middle panel) and their squares (lower panel). The dotted lines depict the

boundaries of the 95% confidence interval.
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Figure 4.6: Diagnostic evaluation of zC
t : Marginal NIKC. Histograms of probability integral

transforms in the upper panel, and autocorrelation functions of demeaned probability integral

transforms (middle panel) and their squares (lower panel). The dotted lines depict the boundaries

of the 95% confidence interval.

Figure 4.7: Diagnostic evaluation of zP
t : Marginal NIKP. Histograms of probability integral

transforms in the upper panel, and autocorrelation functions of demeaned probability integral

transforms (middle panel) and their squares (lower panel). The dotted lines depict the boundaries

of the 95% confidence interval.
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The removal of dummy variables from the unrestricted model results in a clear

deterioration in the autocorrelation diagnostics, and consequently, we have deemed

the inclusion of weekly seasonality effects relevant for our model. The diagnostics

for the restricted model, or the model without cross effects, are somewhat bet-

ter than those for the unrestricted model, especially where autocorrelations are

concerned.8 The improvement in diagnostics due to the removal of cross effects

is surprising, as the cross terms are statistically significant and improve forecasts

(see Section 4.6 for discussion on forecasts).

In order to verify that our unrestricted model takes the high persistence in the

data into account, we compare the autocorrelation functions (ACF) estimated from

the call and put IV data to those calculated from data simulated with our model.

Figure 4.8 depicts the autocorrelation functions of NIKC and NIKP, as well as the

autocorrelation functions generated by the unrestricted mixture-BVMEM model

after simulating 100,000 data points. A 95% confidence band is drawn around the

estimated autocorrelation functions. The band is obtained by simulating 10,000

series of 3,194 data points (equal to the full sample size), and forming a band

that encompasses 95% of the autocorrelations pointwise at each lag. The fact

that the autocorrelation coefficients generated by our model fall within the band

at each lag lends support to the observed ACFs having been generated by our

mixture-BVMEM model.

The diagnostics underscore the necessity of using a mixture model in this case.

We also estimated a BVMEM model with only one regime, and the diagnostic

checks clearly reveal its inadequacy. In particular, the four histograms for that

model show that this specification fails to account for the tails of the conditional

distribution, giving too little weight to values close to zero and unity and too

much weight to the mid-range of the distribution.9 However, the imbalance in

the histograms is not as severe as with the univariate models in Ahoniemi (2007),

thus indicating that even for models without a mixture structure, joint modeling

improves the fit to the Nikkei 225 IV data somewhat.

8To save space, the diagnostic graphs for the unrestricted model without dummy variables
and for the restricted model are not presented in the paper, but are available from the authors
upon request.

9The estimation results and diagnostic evaluation for the no-mixture model are available from
the authors upon request.
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Figure 4.8: NIKC (upper panel) and NIKP (lower panel) autocorrelation functions. The solid

lines depict the ACFs estimated from the full sample of the data, the lines with long dashes are

the ACFs implied by the mixture-BVMEM model with 100,000 simulated data points, and the

lines with short dashes draw 95% confidence bands around the ACFs.

4.5 Impulse Response Analysis

The bivariate nature of our model allows for a further analysis of how the variables

adjust dynamically to shocks. In order to investigate this issue, impulse responses

of various types are calculated with both model specifications presented above.

This analysis should also uncover more evidence pertaining to the persistence of

the data. The more interesting specification for this purpose is naturally the unre-

stricted model, which includes lagged cross terms in the first regime. Also, as the

coefficients of the cross terms are significant, the unrestricted model specification

is favored over the restricted version.10

We generate the impulse responses by simulating data according to the con-

ditional mean profiles method proposed by Gallant et al. (1993). It turns out

that after approximately 40 periods, the effects of all considered shocks go to zero.

10Dummy variables are removed from the mean equations in the impulse response analysis.
The removal of weekly seasonality does not affect the general shape of the impulse response
functions, but makes results more easily readable from graphs.
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Therefore, we present impulse responses up to 40 periods (trading days) ahead.

The calculation of the impulse response functions proceeds as follows: we generate

1,000 series of 40 random error terms from gamma distributions with the shape

and scale parameters estimated above. Also, we generate 1,000 series of 40 ran-

dom numbers that are uniformly distributed on the interval [0,1]. These series

are used in each period to determine which regime the model is in: if the value

of the random number exceeds the value of π, the mean equation for the second

regime is used. To get initial values, a starting point in the data set is chosen, and

then 1,000 paths, forty days ahead into the future, are simulated from that point

onwards with the random error terms, random regime indicators, and estimated

parameter values. Another set of 1,000 paths are also simulated, this time with a

shock added to the values of NIKC, NIKP, or both in time period 0. The baseline

value and the value affected by the shock are calculated simultaneously, so that

the same random error terms and regime indicators are used for both. The aver-

ages of the 1,000 realizations are taken for each of the forty days, and the impulse

response function is then obtained as the difference between the series affected by

the shocks and the baseline series without the shocks.

In order to select a realistic magnitude for the shocks, we follow Gallant et al.

(1993) and study a scatter plot of demeaned NIKC and NIKP. The scatter plot,

shown in Figure 4.9, helps to identify perturbations to NIKC and NIKP that are

consistent with the actual data. As expected, the scatter plot reveals a strong

correlation in the two time series. On the basis of the graphical analysis, three

different plausible shock combinations are selected: (10,10), (10,0), and (0,10).

All these points appear in the scatter plot, and moreover, 10 appears to be the

highest magnitude that can be realistically paired with a shock of zero to the other

series.11 In other words, the shock is introduced directly into the value of NIKC

or NIKP (or both), rather than into the error terms of the model.12

11Our model is linear in the sense that it does not allow positive and negative shocks to
have effects of differing magnitude. Therefore, only the impulse responses to positive shocks are
presented. The equivalent graphs with negative shocks are mirror images.

12We cannot retrieve the residuals from our model due to the mixture structure. Therefore,
we use the demeaned observations in selecting the appropriate combinations of shocks. Because
the implied volatilities are autocorrelated, obtaining the shocks this way should be seen as an
approximation only. However, as a robustness check, we have also tried shocks of other mag-
nitudes than the ones presented here, and the results are qualitatively the same. Also, as the
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Figure 4.9: Scatter plot of demeaned NIKC (x-axis) and demeaned NIKP (y-axis) for in-sample

period (1.1.1992 - 31.12.2002).

The impulse responses for the three shock combinations are presented in Fig-

ures 4.10, 4.11, and 4.12, respectively. The starting point in the data was July 11,

1996, a time when both NIKC and NIKP were historically quite low. Three note-

worthy conclusions can be drawn from the analysis. Most importantly, put-side IV

recovers from shocks more rapidly than call-side IV, which is evident in all three

figures - even when the shock affects only put-side IV (Figure 4.12). This result

could be based on the phenomenon documented by Bollen and Whaley (2004):

the demand for ATM index puts drives the level of ATM implied volatility (in

U.S. markets). Also, trading volumes for puts are higher (measured with num-

ber of contracts). Therefore, the pricing of puts may be somewhat more efficient,

allowing shocks to persist for shorter periods of time than in a less efficient market.

Second, the effects of shocks take a relatively long time to disappear entirely:

some thirty trading days, or six weeks, seem to elapse before the effect of a shock

is completely wiped out. This finding gives further support to the existence of

considerable persistence in the data, and is in line with evidence in Jorion (1995),

results are not sensitive to the point in time when the simulation is started, the scatter plot can
be considered a reasonable approximation of the distribution of the true shocks.
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where the half-life of a variance shock is estimated to be 17 days for the IV of

currency options.

Third, the impulse responses are similar regardless of the starting point that

is selected from the data. Four different starting points were in fact considered:

a moment when both IVs were low, a moment when both were high, a moment

when NIKC was considerably higher than NIKP, and a moment when NIKP was

considerably higher than NIKC. This third result is to be expected as the nonlin-

earity in the mixture-BVMEM model arises primarily through the mixture of two

regimes, with the selection of the mixture component being random rather than

dependent on the past values of the implied volatilities.

Without the evidence on historical values provided by the scatter plot, it could

be argued that a shock of the type (10,0), or any shock with a clearly different

magnitude for call and put IVs, is not realistic. As outlined above, both IVs

represent the market’s expectation of future volatility, and should thus be equal.

However, empirical analyses again lend support to the fact that call and put IV

can differ even considerably at times, due to market imperfections and demand

shocks. As an example, the difference between NIKP and NIKC is greatest on

Sept. 12, 2001, or immediately after the 9/11 terrorist attacks, when the demand

for put options was extremely high. On that day, the difference between the put

and call implied volatilities was 33.6.

With the restricted model, or the model without cross effects, the impulse

responses look very different. The effect of a shock lasts for less than ten days, or

less than two weeks. As there are no lagged cross terms in this model specification,

if a shock affects only one variable, the other is (naturally) entirely unaffected and

the impulse response is flat.

4.6 Forecasts

In this section, we turn our attention to the forecasting ability of the two models

outlined in Section 4.4.2. Forecast evaluation is based on two separate criteria:

the direction of change in IV as well as the traditional forecast accuracy measure

mean squared error (MSE). It is of particular interest whether the inclusion of cross

effects between the two time series can improve the earlier forecast performance
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Figure 4.10: Impulse response function for a shock of (10,10) with the unrestricted model.

Figure 4.11: Impulse response function for a shock of (10,0) with the unrestricted model.

Figure 4.12: Impulse response function for a shock of (0,10) with the unrestricted model.
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of univariate models for NIKC and NIKP investigated by Ahoniemi (2007).

Both daily (one-step-ahead) and five-step-ahead forecasts were calculated with

the mixture-BVMEM model specifications outlined above for the 486-day out-of-

sample period of 1.1.2003 - 31.12.2004. Days when public holidays fall on weekdays

and the observed value of implied volatility does not change were omitted from

the data set. Parameter values are treated in two ways: they are either estimated

once using the data from the in-sample period and then kept fixed, or re-estimated

each day. If parameter values are not stable over time, there can be added value in

updating them before calculating each new forecast. When parameter values are

updated daily, the forecasts are calculated from rolling samples. In other words,

the first observation is dropped and a new one added each day, in order to include

information that is as relevant as possible. In this case, the number of observations

remains the same as in the in-sample, or 2,708.

The one-step-ahead forecasts are evaluated in terms of both directional accu-

racy and MSE. Although an accurate forecast of the future level of IV can be

valuable to all market participants with risk management concerns, a correct fore-

cast of the direction of change in implied volatility can be useful for option traders.

Various option spreads, such as the straddle, can yield profits for the trader if the

view on direction of change (up or down) is correct, ceteris paribus.

The forecast results are summarized in Table 4.3. The directional accuracy of

the bivariate model in the two-year out-of-sample is superior to the performance of

univariate models. The BVMEM model predicts the direction of change correctly

on 348 days out of 486 for NIKC, and on 351 days for NIKP. This is in contrast to

the results in Ahoniemi (2007), where the best figures from multiplicative models

were 336 and 321 for NIKC and NIKP, respectively. There would appear to be

some value to updating parameter values each day. This improves directional

accuracy for NIKC clearly, and yields a lower mean squared error for both series

of forecasts. However, the direction of change is predicted correctly for NIKP on

one day more when daily updating is not employed. Both the unrestricted and the

restricted model make more upward mistakes for NIKC, i.e. the models make a

prediction of an upward move too often. When predicting the direction of change

of NIKP, the unrestricted model forecasts a move downwards too often, but the

restricted model a move upwards too often.
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A useful statistical test of the sign forecasting ability of the BVMEM models is

the test statistic presented in Pesaran & Timmermann (1992). This market timing

test can help confirm that the percentage of correct sign forecasts is statistically

significant. The p-values from the test are below 0.00001 for all the series of

forecasts in Table 4.3, so the null hypothesis of predictive failure can be rejected

at the one-percent level for all four forecast series.

The values for MSE in Table 4.3 indicate that more accurate forecasts can

be obtained for NIKC. Mean squared errors are lower than with the univariate

models in Ahoniemi (2007), even with the restricted model. The Diebold-Mariano

(1995) test (henceforth the DM test) confirms that the improvement upon the

equivalent univariate models is statistically significant for the unrestricted model,

with the null hypothesis of equal predictive accuracy rejected at the five-percent

level for NIKC and the one-percent level for NIKP. Again, this lends support to the

joint modeling of the time series, and the inclusion of cross effects. The forecast

accuracy of NIKC with updating coefficients is significantly better than that with

fixed coefficients. For NIKP, the difference between the two alternative treatments

of parameter values is not statistically significant.13

NIKC NIKP

Correct sign % MSE Correct sign % MSE

Unrest., updating 348 71.6% 4.21 350 72.0% 5.24

Unrest., fixed 341 70.2% 4.31 351 72.2% 5.26
Rest., updating 332 68.3% 4.34 336 69.1% 5.49

Rest., fixed 332 68.3% 4.39 332 68.3% 5.55

Table 4.3: Correct sign predictions (out of 486 trading days) and mean squared errors for forecasts

from the BVMEM model with both updating and fixed parameter values. The best values within

each column are in boldface.

Overall, the results obtained for the Nikkei 225 index option market are superior

to those obtained for e.g. the U.S. market. Ahoniemi (2008) finds that ARIMA

13A bivariate model specification without cross effects and dummy terms is not a better fore-
caster than univariate models, regardless of whether directional accuracy or MSE is used as the
measure of forecast performance. For example, the directional accuracy of this model is 332 out
of 486 at best for NIKC, and 318 for NIKP. The detailed results for this third model specification
are available from the authors.
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models can predict the correct direction of change in the VIX index on 58.4 percent

of trading days at best with an identical out-of-sample period. Harvey and Whaley

(1992) achieve a directional accuracy of 62.2% for IV from call options on the S&P

100 index, and 56.6% for the corresponding put IV. Brooks and Oozeer (2002)

model the implied volatility of options on Long Gilt futures that are traded in

London. Their model has a directional accuracy of 52.5 %. Our earlier discussion

on the effects of limits to arbitrage could perhaps explain why Japanese IV is more

predictable in sign than the IV in other markets. If arbitrage is more difficult to

carry out in Japan, option prices can depart from their true values to a greater

degree, making the market more forecastable.

Table 4.4 presents the MSEs for the 482 five-step-ahead forecasts that could

be calculated within the chosen out-of-sample. The unrestricted model continues

to be the better forecaster for NIKP, but surprisingly, the simpler model, or the

specification without cross effects, yields lower MSEs for NIKC. The Diebold-

Mariano test also rejects the null of equal forecast accuracy at the ten-percent level

when comparing the restricted and unrestricted models with updating coefficients

for NIKC, but not at the five-percent level. For the corresponding NIKP values

(8.79 and 9.36), the null is not rejected. The results for NIKP are better than

in Ahoniemi (2007), but for NIKC, the univariate models provide lower mean

squared errors. The DM test does not reject the null when the best MSEs from

univariate and bivariate models are compared (this applies to both NIKC and

NIKP). Therefore, no conclusive evidence is provided regarding the best forecast

model for a five-day horizon, but in statistical terms, the BVMEM model is at

least as good as univariate models.

NIKC NIKP

Unrestricted Model, updating 7.21 8.79
Unrestricted Model, fixed 7.65 8.78

Restricted Model, updating 6.48 9.36
Restricted Model, fixed 6.60 9.43

Table 4.4: Mean squared errors for 482 five-step-ahead forecasts from the BVMEM model with

both updating and fixed parameter values. The best values within each column are in boldface.
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4.7 Conclusions

Empirical research on implied volatilities typically seeks to determine whether

or not implied volatility is an unbiased and efficient forecaster of future realized

volatility. Time series modeling and forecasting of implied volatility is a less ex-

plored, but clearly relevant topic, as implied volatility is widely accepted to be the

market’s best forecast for future volatility. Also, professional option traders can

potentially benefit from accurate IV forecasts.

It has often been empirically observed that implied volatilities calculated from

otherwise identical call and put options are not equal. Market imperfections and

demand pressures can make this phenomenon allowable, and this paper seeks to

answer the question of whether call and put IVs can be jointly modeled, and

whether joint modeling has any value for forecasters.

We show that the implied volatilities of Nikkei 225 index call and put options

can be successfully jointly modeled with a mixture bivariate multiplicative error

model, using a bivariate gamma error distribution. Diagnostics show that the joint

model specification is a good fit to the data, and coefficients are statistically signif-

icant. Two mixture components are necessary to fully capture the characteristics

of the data set, so that days of large and small shocks are modeled separately.

There are clear linkages between the implied volatilities calculated from call and

put option prices, as lagged cross terms are statistically significant. The IV de-

rived from put options is a more important driving factor in our model than the

IV from calls, as dummy variables for Friday effects of put-side IV are revealed to

be significant and to improve the diagnostics of the joint model.

Impulse response analysis indicates that put-side IV recovers more quickly from

shocks than call-side IV. Shocks persist for a relatively lengthy period of time

(thirty trading days), which is consistent with good forecastability. Also, as the

nonlinear feature of our model is primarily the random switching between regimes,

the point of time in which a shock is introduced does not affect the behavior of

the impulse response functions.

The BVMEM model provides better one-step-ahead forecasts than its univari-

ate counterparts. Both directional accuracy and mean squared errors improve

when jointly modeling call and put implied volatility. The direction of change in

113



implied volatility is correctly forecast on over 70% of the trading days in our two-

year out-of-sample period. When forecasting five trading days ahead, the BVMEM

model is at least as good as univariate models in statistical terms. Based on the

combined evidence from all forecast evaluations, we conclude that joint modeling

and the inclusion of cross effects improves the forecastability of Nikkei 225 index

option implied volatility, and can provide added value to all investors interested

in forecasting future Japanese market volatility.

The results of this paper suggest several viable alternatives for future research.

An extended version of this model could be fit to the implied volatility of stock

index options from other markets. Also, an option trading simulation using Nikkei

225 index option quotes could be run based on the directional forecasts of the

model in order to determine whether or not the model’s trading signals could lead

to abnormal returns.

114



Bibliography

[1] Ahoniemi, K. (2007). Multiplicative Models for Implied Volatility. HECER

Discussion Papers, No. 172.

[2] Ahoniemi, K. (2008). Modeling and Forecasting the VIX Index. Unpublished

working paper.

[3] Bates, D.S. (1991). The Crash of ’87: Was It Expected? The Evidence from

Options Markets. Journal of Finance, 46, 1009–1044.

[4] Bollen, N.P.B. & Whaley, R.E. (2004). Does Net Buying Pressure Affect the

Shape of Implied Volatility Functions?. Journal of Finance, 59, 711–753.

[5] Brooks, C. & Oozeer, M.C. (2002). Modelling the Implied Volatility of Options

on Long Gilt Futures. Journal of Business Finance & Accounting, 29, 111–137.

[6] Brunetti, C. & Lildholdt, P.M. (2007). Time Series Modeling of Daily Log-Price

Ranges for CHF/USD and USD/GBP. Journal of Derivatives, 15:2, 39–59.

[7] Buraschi, A. & Jackwerth, J. (2001). The Price of a Smile: Hedging and Span-

ning in Option Markets. Review of Financial Studies, 14, 495–527.

[8] Chan, K.C., Cheng, L.T.W. & Lung, P.P. (2004). Net Buying Pressure, Volatil-

ity Smile, and Abnormal Profit of Hang Seng Index Options. Journal of Futures

Markets, 24, 1165–1194.

[9] Cipollini, F., Engle, R.F. & Gallo, G.M. (2006). Vector Multiplicative Error

Models: Representation and Inference. NBER Working Paper, No. 12690.

115



[10] Davies, R.B. (1977). Hypothesis Testing When a Nuisance Parameter is

Present Only Under the Alternative. Biometrika, 64, 247–254.

[11] Dennis, P., Mayhew, S. & Stivers, C. (2006). Stock Returns, Implied Volatility

Innovations, and the Asymmetric Volatility Phenomenon. Journal of Financial

and Quantitative Analysis, 41, 381–406.

[12] Diebold, F.X., Gunther, T.A. & Tay, A.S. (1998). Evaluating Density Fore-

casts with Applications to Financial Risk Management. International Economic

Review, 39, 863–883.

[13] Diebold, F.X., Hahn, J. & Tay, A.S. (1999). Multivariate Density Forecast

Evaluation and Calibration in Financial Risk Management: High-frequency

Returns on Foreign Exchange. Review of Economics and Statistics, 81, 661–

673.

[14] Diebold, F.X. & Mariano, R.S. (1995). Comparing Predictive Accuracy. Jour-

nal of Business & Economic Statistics, 13, 253–263.

[15] Dumas, B., Fleming, F. & Whaley, R.E. (1998). Implied Volatility Functions:

Empirical Tests. Journal of Finance, 53, 2059–2106.

[16] Ederington, L. & Guan, W. (2002). Why Are Those Options Smiling?. Journal

of Derivatives, 10:2, 9–34.

[17] Engle, R.F. (2002). New Frontiers for ARCH Models. Journal of Applied

Econometrics, 17, 425–446.

[18] Engle, R.F. & Gallo, G.M. (2006). A Multiple Indicators Model for Volatility

Using Intra-daily Data. Journal of Econometrics, 131, 3–27.

[19] Figlewski, S. (1989). Options Arbitrage in Imperfect Markets. Journal of Fi-

nance, 44, 1289–1311.

[20] Fleming, J. (1999). The Economic Significance of the Forecast Bias of S&P

100 Index Option Implied Volatility. In: Boyle, P., Pennacchi, G. & Ritchken,

P. (Eds), Advances in Futures and Options Research, Vol. 10. Stamford, Conn:

JAI Press, pp.219–251.

116



[21] Gallant, A.R., Rossi, P.E. & Tauchen, G. (1993). Nonlinear Dynamic Struc-

tures. Econometrica, 61, 871–907.

[22] Garleanu, N.B., Pedersen, L.H. & Poteshman, A.M. (2006). Demand-based

Option Pricing. CEPR Discussion Papers, No. 5420.

[23] Harvey, C.R. & Whaley, R.E. (1992). Market Volatility Prediction and the Ef-

ficiency of the S&P 100 Index Option Market. Journal of Financial Economics,

31, 43–73.

[24] Hentschel, L. (2003). Errors in Implied Volatility Estimation. Journal of Fi-

nancial and Quantitative Analysis, 38, 779–810.

[25] Jackwerth, J.C. (2000). Recovering Risk Aversion from Option Prices and

Realized Returns. Review of Financial Studies, 13, 433–451.

[26] Jorion, P. (1995). Predicting Volatility in the Foreign Exchange Market. Jour-

nal of Finance, 50, 507–528.

[27] Lanne, M. (2006). A Mixture Multiplicative Error Model for Realized Volatil-

ity. Journal of Financial Econometrics, 4, 594–616.

[28] Lanne, M. (2007). Forecasting Realized Exchange Rate Volatility by Decom-

position. International Journal of Forecasting, 23, 307–320.

[29] Lehmann, B.N. & Modest, D.M. (1994). Trading and Liquidity on the Tokyo

Stock Exchange: A Bird’s Eye View. Journal of Finance, 49, 951–984.

[30] Liu, J. & Longstaff, F.A. (2004). Losing Money on Arbitrage: Optimal Dy-

namic Portfolio Choice in Markets with Arbitrage Opportunities. Review of

Financial Studies, 17, 611–641.

[31] Mayhew, S. & Stivers, C. (2003). Stock Return Dynamics, Option Volume,

and the Information Content of Implied Volatility. Journal of Futures Markets,

23, 615–646.

[32] Mo, H. & Wu, L. (2007). International Capital Asset Pricing: Evidence from

Options. Journal of Empirical Finance, 14, 465–498.

117



[33] Nagao, M. & Kadoya, M. (1970). Study on Bivariate Gamma Distribution

and its Engineering Application (1). Annals of the Disaster Prevention Re-

search Institute of Kyoto University, 13B, 105–115 (in Japanese with English

synopsis).

[34] Nelson, D.B. & Cao, C.Q. (1992). Inequality Constraints in the Univariate

GARCH Model. Journal of Business & Economic Statistics, 10, 229–235.

[35] Noh, J., Engle, R.F. & Kane, A. (1994). Forecasting Volatility and Option

Prices of the S&P 500 Index. Journal of Derivatives, 2, 17–30.

[36] Peña, I., Rubio, G. & Serna, G. (1999). Why do we smile? On the Determi-

nants of the Implied Volatility Function. Journal of Banking & Finance, 23,

1151–1179.

[37] Pesaran, M.H. & Timmermann, A.G. (1992). A Simple Non-parametric Test

of Predictive Performance. Journal of Business & Economic Statistics, 10, 461–

465.

[38] Poon, S-H. & Pope, P.F. (2000). Trading Volatility Spreads: a Test of Index

Option Market Efficiency. European Financial Management, 6, 235–260.

[39] Rubinstein, M. (1994). Implied Binomial Trees. Journal of Finance, 49, 771–

818.

[40] Shleifer, A. & Vishny, R.W. (1997). The Limits of Arbitrage. Journal of Fi-

nance, 52, 35–55.

[41] Yue, S., Ouarda, T.B.M.J. & Bobée, B. (2001). A Review of Bivariate Gamma

Distributions for Hydrological Application. Journal of Hydrology, 246, 1–18.

118



Chapter 5

Implied Volatility with

Time-Varying Regime

Probabilities

Katja Ahoniemi and Markku Lanne1

Abstract

This paper presents a mixture multiplicative error model with a time-varying

probability between regimes. We model the implied volatility derived from call

and put options on the USD/EUR exchange rate. The daily first difference of the

USD/EUR exchange rate is used as a regime indicator, with large daily changes sig-

naling a more volatile regime. Separate mean equations and error distributions are

estimated for each regime. Forecasts indicate that it is beneficial to jointly model

the implied volatilities derived from call and put options: both mean squared er-

rors and directional accuracy improve when employing a bivariate rather than a

univariate model. In a two-year out-of-sample period, the direction of change in

implied volatility is correctly forecast on two thirds of the trading days.

1Correspondence: katja.ahoniemi@hse.fi and markku.lanne@helsinki.fi. Financial support
from the Okobank Group Research Foundation is gratefully acknowledged. Katja Ahoniemi also
thanks the Finnish Doctoral Programme in Economics, the Finnish Foundation for Advancement
of Securities Markets, and the Yrjö Jahnsson Foundation.
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5.1 Introduction

Implied volatility (IV) forecasting in foreign exchange markets is a relevant issue for

numerous market participants. Not only are accurate implied volatility forecasts

valuable for option traders and market makers who price derivatives, they can

benefit investors facing risk management issues in international portfolios. As

argued by Pong et al. (2004), option traders may possess additional information

about future events on top of what is provided by historical data, making implied

volatilities potentially more accurate forecasts of future volatility than those based

on history alone.

The traditional vein of foreign exchange IV literature investigates how well IV

forecasts future realized volatility. Pong et al. (2004) report that historical fore-

casts contain substantial incremental information beyond that included in IV for

short forecast horizons of exchange rate realized volatility, crediting this result to

the use of high-frequency data. Jorion (1995) and Xu and Taylor (1995) provide

the opposite result, with IV from foreign exchange options yielding more accurate

forecasts. In another study using high-frequency returns, Martens and Zein (2004)

conclude that for options on USD/JPY futures, long-memory forecasts from frac-

tionally integrated models and implied volatility both possess information that the

other does not contain. Guo (2000) links volatility forecasting to the option mar-

ket by investigating returns from trading foreign exchange options, with option

strategies based on conditional volatility predictions stemming from either IV or a

GARCH model specification. This study concludes that trading is more profitable

when IV is used to forecast future volatility.

The level and behavior of asset prices and their volatilities can be very different

when comparing times of relative calm to times of distress or panic in the market.

Both exchange rate returns and their volatility have been found to exhibit regime-

switching properties. It is therefore easy to surmise that the implied volatility of

options on foreign exchange could also possess the same property. If a time series

follows two or more distinct regimes, good model fit and forecasting performance

will require a specification that allows for different conditional means and error

distributions for each regime.

Studies that document regime shifts in exchange rates include Engel and Hamil-

120



ton (1990), Bekaert and Hodrick (1993), and Engel and Hakkio (1996). Engel and

Hamilton (1990) observe that exchange rate returns vary more when the U.S. dol-

lar is appreciating, and that a regime-switching model outperforms a random-walk

model as a forecaster. Bekaert and Hodrick (1993) estimate a two-regime model

and find that the variances of forward premiums are nine to ten times larger in the

more volatile regime. In Engel and Hakkio (1996), the difference between variances

of exchange rate returns in the stable and volatile states is even larger.

Bollen et al. (2000) estimate a Markov-switching model with two regimes for log

exchange rate changes and their variances, but with mean and variance regimes

allowed to switch independently. This modification allows for high volatility in

times of both appreciation and depreciation of an exchange rate. The model

produces more accurate variance forecasts than competing models, and estimation

results indicate that the standard deviations of exchange rate returns are two to

three times higher in the more volatile regime. Klaassen (2002) shows that a

regime-switching GARCH model outperforms a single-regime GARCH model in

terms of mean squared forecast errors.

Both regime-switching and mixture models introduce separate regimes for times

of business as usual and times of higher volatility. In essence, a model with various

regimes is an alternative to the GARCH class of models: volatility clustering is

now modeled through changes in the variance of the underlying data generating

process, with switches in regime corresponding to these changes (see Bollen et al.

(2000)).2 Mixture multiplicative error models with two regimes have been found

to fit time series of the realized volatility of exchange rates (Lanne (2006)) and

the implied volatility of Nikkei 225 index options (Ahoniemi (2007) and Ahoniemi

and Lanne (2009)).

In this study, we present an extension of a mixture multiplicative error model

that allows for a time-varying probability between regimes, with the mixing prob-

abilities depending on an observed variable that functions as a regime indicator.

2The literature is rife with examples of GARCH modeling of exchange rate series, Baillie and
Bollerslev (1991) and Hansen and Lunde (2005) among them. Rapach and Strauss (2008) find
strong evidence of structural breaks in GARCH models for seven exchange rate series of the U.S.
dollar against other currencies, with substantial differences in unconditional variance between
regimes. In their out-of-sample forecast exercise, models with structural breaks provide lower
mean squared errors than competing models. Klaassen (2002) and Haas et al. (2004) present
Markov-switching GARCH models with promising results for exchange rate series.
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Our data set consists of the implied volatilities calculated from call and put op-

tions on the USD/EUR exchange rate, and USD/EUR exchange rate returns serve

as our indicator variable. Although implied volatilities calculated from call and

put options with the same strike prices and maturity dates should be equal, in

practice we observe that that is rarely the case. Differences in call and put IVs

can arise due to differing demand pressures and limits to arbitrage, as explained

in e.g. Garleanu et al. (2006), Bollen and Whaley (2004), and Figlewski (1989).

The aim of this study is to find a good model fit with time-varying regime

probabilities and to generate forecasts of the IV of USD/EUR currency options that

succeed both in predicting the direction of change of implied volatility and its value.

We model call and put IV separately with two-regime and three-regime model

specifications, but also estimate a bivariate specification that jointly models both

call and put implied volatilities. In this latter model, we include cross terms that

allow call-side IV to affect put-side IV, and vice versa. The bivariate specification

proves to be valuable, as the directional accuracy and mean squared errors of

forecasts both improve with the bivariate model. The correct direction of change

in IV is forecast on two thirds of the 514 trading days in the two-year out-of-

sample period. Two regimes are sufficient in the bivariate model, but it is not

evident whether two or three regimes should be preferred in the univariate setting.

This paper proceeds as follows. Section 5.2 describes the univariate and bivari-

ate multiplicative error models with time-varying regime probabilities. Section

5.3 presents the data, the model estimation results, and diagnostics. Section 5.4

discusses forecast results and their evaluation, with performance measured with

directional accuracy and mean squared errors. Section 5.5 concludes the paper.

5.2 The Model

In this section, we describe univariate and bivariate mixture multiplicative er-

ror models, and present an extension with multiple mixture components and

time-varying mixing probabilities. Henceforth, this new model will be called the

TVMEM model.

Multiplicative error models are suitable for modeling any time series that al-

ways receives non-negative values. This particular study focuses on volatility, but
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the same type of model could be used in, for example, duration or trading vol-

ume applications. Engle (2002) first suggested applying MEM models to volatility

modeling, pointing out that with a MEM model, there is no need to take loga-

rithms of the data. Since then, promising results with MEM models in volatility

applications have been obtained by e.g. Ahoniemi (2007), Ahoniemi and Lanne

(2009), Engle and Gallo (2006), and Lanne (2006). In a standard multiplicative

error model volatility vt is specified as

vt = µtεt, t = 1, 2, ..., T (5.1)

where εt is a stochastic non-negative error term, and the conditional mean µt is

specified as

µt = ω +

q∑

i=1

αivt−i +

p∑

j=1

βjµt−j. (5.2)

As the mean equation is structured in the same way as in GARCH models, the

parameter values must comply with the restrictions for GARCH models outlined

in Nelson and Cao (1992) in order to ensure positivity. In the simplest setting,

or with a first-order model, all parameter values must be non-negative. With

higher-order models, non-negativity is not always required.3

We extend the basic MEM model by considering a mixture-MEM model. In

a mixture model, the data is allowed to follow i regimes with i ≥ 2. This type

of model specification lends itself particularly well to financial time series data,

as financial markets typically alternate between periods of high and low volatility.

With possibly different mean equations and error distributions for each mixture

component, the variations in the market in calm and more volatile time periods can

be more thoroughly captured. When estimating a mixture-MEM model, one must

also estimate the probability of each regime (πi) along with the other parameters.

Lanne (2006), Ahoniemi (2007), and Ahoniemi and Lanne (2009) all estimate a

mixture-MEM model with a fixed mixing probability. In other words, one value of

πi is estimated in their models, and the probability of each regime is thus the same

3For example, in a model with p = 1 and q = 2, the constraints are ω ≥ 0, α1 ≥ 0, 0 ≤ β < 1,
and βα1 + α2 ≥ 0.
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every day. We extend the basic mixture-MEM model by allowing the probability

of the regimes, πi, to vary over time. In practice, the values of the parameters

that determine πi are estimated from the data, and a value for πi is generated for

every time period.

The regime probability varies in time according to a regime indicator. We

reason that when modeling implied volatility, the returns of the options’ underlying

asset would work well as an indicator: a large change in the value of the underlying

can be taken as a signal of higher volatility in the market. We later confirm

the functioning of such an indicator graphically by plotting the IV data and the

regime probabilities together (see Section 5.3.2). It is also important to note that

absolute values of the returns are used when estimating a model with two regimes:

this allows both large positive and negative returns to be properly accounted for.

When estimating a model with three regimes, the first differences are used as

such, with one threshold separating large negative shocks, and a second threshold

separating large positive shocks. In a two-regime model, we expect the largest

probability mass to fall into the first regime of calmer days, whereas with three

regimes, the middle regime should capture the largest number of trading days.

When using an indicator variable to determine the thresholds between regimes,

strict thresholds that allow for no gray area around the value of the threshold are

often estimated. However, we introduce an additional error term, ηt, into the

indicator function

I(ci−1 + ηt ≤ yt−d < ci + ηt) (5.3)

with ηt ∼ NID(0, σ2
η) and independent of εt. This idea was previously applied

to autoregressive models by Lanne and Saikkonen (2003). The indicator function

divides the observations onto both sides of the thresholds, but with the addition

of the unobservable white noise term ηt, variation around the threshold value is

introduced. In other words, it is not clear which regime the model is in when the

indicator variable receives a value that is close to the threshold. Also, a switch

in regime does not always occur when the value of the indicator variable crosses

the threshold. This element brings additional flexibility into the model, which

is beneficial as models with regime switches based on a strict threshold may not
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always be realistic (Lanne and Saikkonen (2003)). The volatility of ηt, ση, is

later estimated as one of the parameters of our model and used as follows when

determining the daily regime probabilities πi,t−d

πi,t−d =






1 − Φ((yt−d − c1)/ση), i = 1

Φ((yt−d − ci−1)/ση) − Φ((yt−d − ci)/ση), i = 2, . . . , m − 1

Φ((yt−d − cm−1)/ση), i = m

(5.4)

where Φ(·) denotes the cumulative distribution function (cdf) of the standard

normal distribution, m is the number of mixture components (regimes), ση denotes

the standard deviation of ηt and satisfies ση > 0, and c1, . . . , cm−1 denote the values

of the threshold parameters and satisfy c1 < . . . cm−1. The larger the volatility

parameter ση, the larger is the range around the estimated threshold where a

regime switch is probable. One common value of ση is estimated for all thresholds.

In practice, the time index t− d is always t− 1 in our application, as further lags

would not be relevant in a financial application.

We assume that the error term of our TVMEM model follows the gamma

distribution. The gamma distribution has the benefit that it is very flexible and

nests e.g. the exponential and χ2 distributions. Also, earlier work by Lanne

(2006), Ahoniemi (2007) and Ahoniemi and Lanne (2009) shows that the gamma

distribution is suitable for volatility modeling purposes. Our requirement that

the error terms have mean unity means we must impose the restriction that the

shape and scale parameters of the gamma distribution are reciprocals of each other.

Under this restriction, the conditional density of vt with two mixture components

(regimes) is

ft−1(vt; θ) = π1
1

µ1tΓ(λ1)δ
λ1
1

(
vt

µ1t

)λ1−1

exp

(
− vt

δ1µ1t

)
+

(1 − π1)
1

µ2tΓ(λ2)δ
λ2
2

(
vt

µ2t

)λ2−1

exp

(
− vt

δ2µ2t

)
(5.5)
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where θ is the vector of parameters, Γ(·) is the gamma function, λ1 and λ2 are

the shape parameters of the gamma distribution, and δ1 and δ2 are the scale

parameters.

As a further extension of the univariate TVMEM model, we also consider a

bivariate model that allows us to jointly model the implied volatilities garnered

from call and put options. As the evidence in Ahoniemi and Lanne (2009) indi-

cates, there can be clear added value to modeling call and put IVs jointly. In the

bivariate case, the mean equations include cross terms that allow call-side IV to

affect put-side IV, and vice versa. The mean equations in our bivariate TVMEM

model are

µC
mt = ωC

m +

qC∑

i=1

αC
mivC,t−i +

rC∑

i=1

ψC
mivP,t−i +

pC∑

j=1

βC
mjµ

C
m,t−j

and

µP
mt = ωP

m +

qP∑

i=1

αP
mivP,t−i +

rP∑

i=1

ψP
mivC,t−i +

pP∑

j=1

βP
mjµ

P
m,t−j

where µC
mt and µP

mt are the conditional means of call-side and put-side implied

volatility, respectively, and the ψ’s are the coefficients for lagged cross terms.

There are a number of bivariate gamma distributions with gamma marginals

(see Yue et al. (2001) for a review). From the available bivariate distributions, we

select the specification suggested by Nagao and Kadoya (1970), as it is a tractable

alternative. The density function in this case can be written as

fε1,ε2 (ε1t, ε2t; θ) =
(τ1τ2)

(λ+1)/2 (ε1tε2t)
(λ−1)/2 exp

{
− τ1ε1t+τ2ε2t

1−ρ

}

Γ (λ) (1 − ρ) ρ(λ−1)/2
Iλ−1

(
2
√

τ1τ2ρε1tε2t

1 − ρ

)
,

(5.6)

where ρ is the Pearson product-moment correlation coefficient, and Iλ−1 (·) is the

modified Bessel function of the first kind. The ρ’s reflect the correlation of shocks

between the two time series and are constrained to be between zero and unity.

The fact that ρ cannot be negative should not be restrictive, as the underlying

asset of the options in our application is the same. In the bivariate application,

both error distributions have a distinct scale parameter. However, the shape pa-
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rameter is the same for both time series, which makes the scale parameters also

equal: with the parametrization of Equation 5.6, the scale and shape parameters

must be equal (rather than reciprocals) to ensure mean unity. Given the earlier

evidence in Ahoniemi (2007) and the results for univariate models in this paper,

this requirement is not restrictive: while the shape (and scale) parameters tend to

differ clearly between regimes, they are very close in value between the call and

put IV time series.

For the conditional density function of vt = (v1t, v2t)
′, we use the change of

variable theorem and make the substitution τ1 = τ2 = λ to obtain

ft−1 (v1t, v2t; θ) = fε1,ε2

(
v1tµ

−1
1t , v2tµ

−1
2t

)
µ−1

1t µ−1
2t (5.7)

=

λ(λ+1)
[
v1tv2tµ

−1
1t µ−1

2t

](λ−1)/2
exp

{
−λ(v1tµ

−1
1t +v2tµ

−1
2t )

1−ρ

}

Γ (λ) (1 − ρ) ρ(λ−1)/2
×

Iλ−1

(
2λ

√
ρv1tv2tµ

−1
1t µ−1

2t

1 − ρ

)
µ−1

1t µ−1
2t .

The conditional log-likelihood function for the two-regime case can thus be written

as

lT (θ) =
T∑

t=1

lt−1 (θ) =
T∑

t=1

ln
[
πi,t−df

(1)
t−1 (v1t, v2t; θ1) + (1 − πi,t−d) f

(2)
t−1 (v1t, v2t; θ2)

]
,

where f
(1)
t−1 (v1t, v2t; θ1) and f

(2)
t−1 (v1t, v2t; θ2) are given by (5.7) with θ replaced

by θ1 and θ2, respectively. All the TVMEM models described in this section

can be estimated with the method of maximum likelihood (ML). The asymptotic

properties of the ML estimators are not known; however, assuming stationarity

and ergodicity, it is reasonable to apply standard asymptotic results in statistical

inference.
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5.3 Estimation Results

5.3.1 Data

The data set used in this study includes two time series of at-the-money (ATM),

30-day maturity implied volatility data: one calculated from call options on the

USD/EUR exchange rate, and the other from put options (see Figure 5.1). Each

observation is interpolated from the implied volatilities of four different options:

two nearest-to-the-money strikes are used, one above and one below the current

spot rate, and maturities are selected from both sides of the 30-day interval. As

noted by Ederington and Guan (2005), at-the-money options are typically the most

liquid, have the smallest bid-ask spreads, and are most commonly used in empirical

research. The use of ATM options helps in avoiding the effects of the volatility

smile. Also, at-the-money options have the highest sensitivity to volatility (Bollen

& Whaley (2004)), and IV is more likely to equal the mean expected volatility

over the remaining life of the option when ATM options are used (Day and Lewis

(1992)). A 30-day maturity is commonly used in established IV indices such as

the VIX index.

The implied volatilities of the options are calculated using the Black-Scholes

extension for currency options, namely the Garman-Kohlhagen model.4 The data

is obtained from Datastream, and includes daily observations for the time period

1.8.2000-31.12.2007. Days when public holidays fall on weekdays are omitted from

the data set. The full sample covers 1,904 trading days, 1,390 of which are treated

as the in-sample. The last two years, or 514 days, are left as an out-of-sample pe-

riod and used for forecast assessment. Our data set also includes the WM/Reuters

daily closing spot rates for the EUR/USD exchange rate, which are obtained from

Datastream. The reciprocals of these rates are used, as the underlying asset of

the options is the USD/EUR rate. The raw IV data is multiplied by 100 before

performing any estimations, and log exchange rate returns are also multiplied by

100.

The correlation of the call (USD/EUR C) and put (USD/EUR P) implied

volatility time series is 84.4%. Basic descriptive statistics for the series are provided

4Campa et al. (1998) report that in the over-the-counter currency option market, the conven-
tion is to quote prices as Garman-Kohlhagen implied volatilities.
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Figure 5.1: USD/EUR exchange rate call option implied volatility (upper panel) and put option

implied volatility (lower panel) 1.8.2000 - 31.12.2007.

in Table 5.1, and autocorrelation functions in Figure 5.2. Table 5.1 shows that

the values for the two implied volatilities clearly differ: although there is no great

difference in the means, the maximum values of the two time series are far apart:

22.5 for USD/EUR C and 18.5 for USD/EUR P. The maximum value of USD/EUR

C is higher, but its minimum value is also lower. Both time series are slightly

skewed to the right.

Table 5.1 also provides descriptive information on the USD/EUR exchange rate

return series. The largest positive daily return in our full sample is 3.3%, and the

largest negative return is -2.3%. The return distribution is more kurtotic than the

IV distributions. The autocorrelation functions of USD/EUR C and USD/EUR

P reveal that there is high persistence in the data, although augmented Dickey-

Fuller tests indicate that both series are stationary (a unit root is rejected at the

one-percent level for USD/EUR C and the five-percent level for USD/EUR P).
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USD/EUR C USD/EUR P USD/EUR return

Maximum 22.481 18.549 3.321
Minimum 3.296 4.075 -2.266

Mean 9.604 9.872 0.024
Median 9.583 9.790 0.018

Standard deviation 2.225 2.308 0.578
Skewness 0.144 0.225 0.113
Kurtosis 3.536 3.169 4.052

Table 5.1: Descriptive statistics for USD/EUR C, USD/EUR P, and the log first differences of

the USD/EUR exchange rate for the full sample of 1.8.2000 - 31.12.2007. Raw IV data and log

exchange rate returns are all multiplied by 100.
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Figure 5.2: Autocorrelation function of USD/EUR exchange rate call option implied volatility

(left panel) and put option implied volatility (right panel).
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5.3.2 Model Estimation

We estimate three competing model specifications: two-regime and three-regime

univariate models as well as a two-regime bivariate model.5 In the two-regime

models, the regime indicator variable is the absolute value of the lagged log return

of the USD/EUR exchange rate, and in the three-regime models, we use the lagged

log first difference as such. Thus, in the two-regime case we hypothesize that

both large positive and large negative shocks have the same dynamics, whereas in

the three-regime case, both tails of the return distribution are allowed to provide

separate mean equations and error distributions. Kim and Kim (2003) corroborate

our view that exchange rate returns could function well as a regime indicator by

providing evidence that the implied volatility of currency options on futures is

higher when currency futures returns are large. They also note that both positive

and negative movements in the currency futures price contribute to increases in

IV. However, there is evidence that IV reacts differently to positive and negative

return shocks, at least in equity markets. In a study on S&P 500 index options,

Bakshi and Kapadia (2003) look at implied volatility changes after large positive

and large negative index returns. After a large negative return shock, the relative

change in IV was 10.6% on average, and after a large positive return shock, the

average change was -1.5%.

Table 5.2 shows the parameter values for the two-regime univariate models.

The estimate of the threshold parameter c1 is very similar for both call and put

implied volatilities: 1.83 for the call IV model and 1.81 for the put IV model.

The volatility parameter ση equals 0.6 for both models. In other words, the time-

varying regime probability, which is modeled by using exchange rate returns as

a regime indicator, behaves in a very similar fashion for both call-side and put-

side IV. The range within which a regime switch is likely to occur is centered on

1.8% returns of the exchange rate. In a hypothetical model with ση = 0, when

the absolute return is greater than 1.8%, the data is assumed to be drawn from

5Estimation of a four-regime univariate model shows that three regimes is sufficient: the first
threshold reaches its lower limit of 2.26, which is the smallest exchange rate return in our sample.
Thus, no observations would be left for a fourth regime. Similarly, the results for a three-regime
bivariate model indicated that a two-regime model is sufficient in the bivariate case: none of the
coefficients of the two high-volatility regimes were statistically significant.
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the second regime. However, given our estimated range around the threshold,

the regime switch does not automatically occur when the absolute exchange rate

return exceeds the estimated threshold value. The standard errors of ση are very

small, which lends support to this specification over the alternative where ση = 0.

The error distributions of the two regimes are also nearly identical for two-

regime univariate call and put IV models, as the estimated shape parameters are

very close in value for both time series. Figure 5.3 depicts the error distributions

of the two-regime call IV model (the figure is qualitatively the same for the put IV

model). The residuals of the models are more concentrated around their mean in

the first, more common regime, and more wide-tailed in the more volatile regime.

The constant terms are, somewhat surprisingly, higher in the more common

regime for both the call and put models. In fact, there are no constants in the

second regime as their values are estimated to be zero (in practice, 1e-5, the

lower limit). As there are no radical differences in the α or β coefficients either,

the largest difference between the two regimes arises from the difference in error

distributions.

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0
1

2
3

4
5

Regime 1
Regime 2

Figure 5.3: Estimated density of error terms of two-regime univariate model for USD/EUR

exchange rate call option implied volatility.

We next estimate a univariate model specification with three regimes. We

wish to check whether the use of more than two regimes is necessary, and in the

absence of a formal test for the optimal number of regimes, explore the issue

by estimating both alternative specifications. Parameter values for the three-

regime models are presented in Table 5.3. The estimated threshold values are now
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USD/EUR C USD/EUR P

Log likelihood -1669.52 -1713.31

c1 1.826** (0.178) 1.806** (0.190)

ση 0.601** (0.093) 0.600** (0.093)

λ1 145.72** (0.003) 145.67** (0.003)

ω1 0.142** (0.054) 0.304** (0.056)

α11 0.333** (0.032) 0.238** (0.019)

α12 -0.080 (0.045) -

β11 0.733** (0.034) 0.727** (0.022)

λ2 24.46** (7.870) 25.90** (8.440)

ω2 - -

α21 0.393 (0.269) 0.288 (0.228)

β21 0.625* (0.257) 0.715** (0.225)

Table 5.2: Estimation results for two-regime univariate TVMEM models. Standard errors calcu-

lated from the final Hessian matrix are given in parentheses. ** indicates statistical significance

at the one-percent level, and * at the five percent level. Note that for ση, zero is on the boundary

of the parameter space so that statistical significance cannot be interpreted in the standard way.

Constants are excluded from the second regime as their estimated value was at the lower limit

(1e-5). Second lags of IV values are excluded on the basis of likelihood ratio tests with the

exception of the more common regime for USD/EUR C.
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distinctly different for USD/EUR C and USD/EUR P, with the regime of large

negative shocks receiving clearly more weight for call IV (greater value of c1 for call

side). On the other hand, the regime of large positive shocks receives more weight

with put IV (smaller value of c2 for put side). These large weights coincide with

gamma distribution shape parameters that are similar in size to those of the most

common regimes. In other words, a more dispersed error distribution occurs only

when the threshold value leaves a relatively small amount of days into a regime (in

practice, the positive-shock regime of USD/EUR C and the negative-shock regime

of USD/EUR P).

USD/EUR C USD/EUR P

Log likelihood -1676.77 -1705.64

c1 -0.932 (0.676) -1.714** (0.103)

c2 1.997** (0.230) 1.201** (0.278)

ση 0.989** (0.144) 0.641** (0.072)

λ1 146.47** (0.070) 20.28** (6.660)

ω1 0.009 (0.058) -

α11 0.109 (0.058) 0.412 (0.305)

β11 0.889** (0.059) 0.591 (0.303)

λ2 145.67** (0.450) 147.30** (0.003)

ω2 0.251* (0.121) 0.386** (0.072)

α21 0.370** (0.062) 0.264** (0.022)

β21 0.606** (0.069) 0.691** (0.027)

λ3 22.81** (7.610) 145.47** (1.450)

ω3 - -

α31 0.462 (0.288) 0.109** (0.034)

β31 0.549 (0.282) 0.892** (0.035)

Table 5.3: Estimation results for three-regime univariate TVMEM models. Standard errors cal-

culated from the final Hessian matrix are given in parentheses. ** indicates statistical significance

at the one-percent level, and * at the five percent level. Note that for ση, zero is on the boundary

of the parameter space so that statistical significance cannot be interpreted in the standard way.

The estimate of the volatility parameter ση is larger for USD/EUR C in the

three-regime model, with the same value of ση applying to both thresholds. As
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with the two-regime models, constants are highest in the most common regime,

and omitted due to the lower limit being reached in three of the four remaining

cases. The highest persistence in the models emerges in the negative-shock regime

for USD/EUR C and the positive-shock regime for USD/EUR P, with β coefficient

values of 0.89.6 In general, the parameter values of all three regimes differ clearly

from one another for both the call and put IV models, so that the use of three

regimes rather than two seems justified. However, we will calculate forecasts from

the two-regime models as well, as we are interested in discovering the best model

specification for forecasting purposes.

The coefficients for the two-regime bivariate model specification are shown in

Table 5.4. The threshold value c1 is similar to that of univariate two-regime mod-

els, but the volatility parameter ση is somewhat smaller. Due to the distributional

properties of the bivariate gamma distribution, the upper bound of the shape pa-

rameter is lower than in the univariate case, making the error distribution slightly

less concentrated around unity than in the univariate case (see Figure 5.4 for the

densities of the residuals with the bivariate model). The correlation of shocks,

ρ, is at its lower bound for both regimes, which yields the somewhat surprising

interpretation that the shocks of USD/EUR C and USD/EUR P are quite uncorre-

lated with each other.7 The constant term is higher in the higher-volatility regime

for USD/EUR P, which is in line with the result we originally expected to see in

all cases. The more volatile regime is more persistent, with β coefficients clearly

higher in the second regime for both call and put IV. Cross terms are significant

only in the more common regime.

Based on the coefficients, call-side IV affects put-side IV slightly more than the

other way around. This result is in contrast to results achieved earlier for equity

6The sum of the α and β coefficients is slightly greater than unity in nearly all cases for the
more volatile regimes, indicating explosive dynamics. However, a visual inspection of very long
simulated data series shows that the data process with our models is not explosive. Alos, the
means and medians of the simulated data series are close in value to those of the original data
set.

7This may be a consequence of the fact that the underlying asset of the options in this study
is an exchange rate, which naturally involves two currencies. Investors with positions in either
the USD or the EUR may have differing exposures in the option market, with demand for calls
and demand for puts originating from different sets of investors. Depending on which currency a
shock affects more, the shock can thus affect call and put options (and their implied volatilities)
differently.
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index option implied volatility (see e.g. Ahoniemi and Lanne (2009), Bollen and

Whaley (2004)), as in those markets, trading in put options tends to dominate

developments in the overall market. With currency options, the demand of hedgers

is not as clearly concentrated on put options, so the demand and supply balances

in the markets of exchange rate call and put options may be more even than for

equity index call and put option markets.8

Figure 5.4: Estimated density of error terms of two-regime bivariate model: first regime in left

panel and second regime in right panel.

Figures 5.5 and 5.6 plot the estimated regime probabilities and IV data in the

same graphs. This setting allows us to see how the probabilities vary over time,

but also to verify that the regime indicator is functioning properly: the regime

probability, though calculated solely from exchange rate returns, will preferably

have a stronger reaction on days when there is a large change in the value of

IV. The regime probability should also react when the level of IV is relatively

high. As can be seen from Figures 5.5 and 5.6, this relation holds quite well, so

we are satisfied with the performance of the exchange rate returns as our regime

indicator.9

8The significance of Friday and Monday dummy variables for lagged IV observations was also
investigated. Earlier evidence indicates that there is a weekly pattern in IV (see e.g. Ahoniemi
and Lanne (2009), Kim and Kim (2003), Harvey and Whaley (1992)). In particular, Kim and
Kim (2003) use exchange rate options on futures data and discover that IV is low on Mondays
and tends to rise by Wednesday, remaining high for the rest of the week. No weekday effects
were found for the data sample used in this study, however.

9As regards the necessity of time-varying regime probabilities, it must be noted that with this
particular data set, a fixed regime probability that would not vary over time was not sufficient.
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Bivariate, 2 regimes

Log likelihood -3323.84

c1 1.551** (0.080)

ση 0.412** (0.043)

λ1 127.29 (-)

ρ1 0.01 (-)

ωC
1

0.312** (0.114)

αC
11

0.325** (0.034)

ψC
11

0.238** (0.029)

βC
11

0.401** (0.056)

ωP
1

0.036 (0.085)

αP
11

0.369** (0.038)

ψP
11

0.270** (0.035)

βP
11

0.364** (0.062)

λ2 28.72** (6.65)

ρ2 0.01 (-)

ωC
2

-

αC
21

0.138 (0.101)

ψC
21

-

βC
21

0.868** (0.097)

ωP
2

0.833 (0.939)

αP
21

0.248 (0.208)

ψP
21

-

βP
21

0.696** (0.224)

Table 5.4: Estimation results for the bivariate TVMEM model. Standard errors calculated from

the final Hessian matrix are given in parentheses. Standard errors of (-) indicate that a parameter

value is at a predefined limit. λ1 reaches its upper limit, beyond which the likelihood function

is no longer numerically tractable. Both ρ1 and ρ2 reach their lower limit of 0.01, which was

set at slightly above the theoretical lower limit of zero. ** indicates statistical significance at

the one-percent level. Note that for ση, zero is on the boundary of the parameter space so that

statistical significance cannot be interpreted in the standard way.
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Figure 5.5: Implied volatility on left axis and probability of first regime on right axis. Two-

regime model for USD/EUR C on left in upper row, two-regime model for USD/EUR P on right

in upper row, and two-regime bivariate model in lower row.

Figure 5.5 depicts the probabilities of the first, more common regime together

with the original IV data for all three two-regime models (univariate and bivariate).

The average probability of the more common regime is 96.4% for USD/EUR C,

96.2% for USD/EUR P, and 96.0% for the bivariate model. Looking at the average

probability alone, all models would seem to leave a relatively small share of days

for the more volatile regime. However, the graphs show that on days of large moves

in the market, the probability of the more common regime falls significantly, even

to close to zero.

The probabilities obtained from the three-regime models are detailed in Figure

5.6. A more pronounced difference between the call and put IV time series now

emerges, as was already evident from the threshold values presented in Table 5.3.

With call-side IV, the regime of negative shocks receives an average probability of

20.8%, the regime of positive shocks has an average probability of 4.5%, with 74.7%

left for the most common regime. For put-side IV, the corresponding averages are

For example with the bivariate specification, a fixed-probability model was not able to distinguish
separate regimes from the data.
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2.7%, 9.1%, and 88.2%.

5.3.3 Diagnostics

Due to the fact that our models have two or three mixture components and thus

do not produce conventional (Pearson) residuals, we cannot perform standard

diagnostic checks for the models’ goodness-of-fit. As residuals cannot be obtained

in any straightforward way, we use probability integral transforms of the data

to evaluate the models’ in-sample fit through autocorrelation diagnostics. This

approach was suggested by Diebold et al. (1998) and extended to the multivariate

case by Diebold et al. (1999). For a univariate model, the probability integral

transforms are calculated as

zt =

∫ vt

0

ft−1(u)du (5.8)

where ft−1(·) is the conditional density of the data with the chosen model specifi-

cation. This procedure transforms each data point into a value between zero and

unity. Following Diebold et al. (1999), we calculate four series of probability inte-

gral transforms for the bivariate case: zC
t and zP

t (based on the marginal densities

of call and put IV), and z
C|P
t and z

P |C
t (call IV conditional on put IV, and vice

versa).

Graphs of the autocorrelation functions of demeaned probability integral trans-

forms and their squares are presented in Figure 5.7 for the two-regime and three-

regime univariate models and in Figure 5.8 for the bivariate model. The auto-

correlations of the demeaned probability integral transforms in Figure 5.7 are ex-

tremely satisfactory for USD/EUR C, but leave some to be desired for USD/EUR

P.10 In line with previous research, there clearly seems to be some remaining au-

tocorrelation in the squares of the demeaned probability integral transforms (this

same finding has been made for volatility data in Ahoniemi and Lanne (2009) and

Lanne (2006, 2007)). This autocorrelation in squares is a signal of conditional het-

eroskedasticity in the data, so it may be that the multiplicative model structure

10Note that the confidence bands of the autocorrelations are not exactly valid, as estimation
error is not taken into account. However, this most likely leads to too frequent rejections, so the
diagnostics might in fact be slightly better than those shown here.
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Figure 5.7: Diagnostics for two-regime model of USD/EUR C (top left), two-regime model of

USD/EUR P (top right), three-regime model of USD/EUR C (bottom left), and three-regime

model of USD/EUR P (bottom right). Autocorrelation functions of demeaned probability inte-

gral transforms in the upper panels and of their squares in the lower panel. The dotted lines

depict the boundaries of the 95% confidence interval.
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Figure 5.8: Diagnostics for two-regime bivariate model. Top left: zC
t , top right: zP

t , bottom left:

z
C|P
t , bottom right: z

P |C
t . Autocorrelation functions of demeaned probability integral transforms

in upper panel and of their squares in lower panel. The dotted lines depict the boundaries of the

95% confidence interval.

is not sufficient in capturing the time-varying volatility of USD/EUR exchange

rate option implied volatility.11 We witness an improvement when turning our

attention to the bivariate model diagnostics in Figure 5.8. All autocorrelations

of demeaned probability integral transforms now nearly fall within the confidence

bands.

5.4 Forecasts

In this section, we proceed to calculate forecasts from the three models presented

above. Daily one-step-ahead forecasts are obtained for the out-of-sample period

11As Corsi et al. (2008) note, realized volatility models may be subject to heteroskedastic errors
due to time-varying volatility in the realized volatility estimator. This evidence can possibly also
be extended to implied volatility.
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of 1.1.2006-31.12.2007, amounting to 514 forecasts. Forecasts are calculated using

the parameter values presented in Section 5.3.2. Forecast evaluation involves two

separate paths: directional accuracy and mean squared errors (MSE). We are in-

terested in the direction of change of implied volatility due to volatility’s important

role in option pricing. Option traders can potentially profit if they have the correct

view on the direction of IV. We use MSEs to assess the relative performance of

the models in generating point forecasts, which are of interest in e.g. portfolio risk

management.

Table 5.5 summarizes the forecast results. The results clearly indicate that

the model of choice is the bivariate model: both directional accuracy and MSEs

improve when switching from a univariate to a bivariate model. For USD/EUR

C, the number of days with a correct prediction of sign improves from 301 to 326

when employing the bivariate model, providing a correct sign on 63.4% of trading

days. For USD/EUR P, the result is even more impressive: an improvement from

318 to 346, which translates to the correct sign on 67.3% of trading days in the

out-of-sample period. Any result above 50% could potentially yield profits to a

trader. Mean squared errors are also lowest with the bivariate model specification.

USD/EUR C USD/EUR P

Correct sign % MSE Correct sign % MSE

Univariate, 2 regimes 295 57.4% 0.358 318 61.9% 0.383
Univariate, 3 regimes 301 58.6% 0.357 313 60.9% 0.389
Bivariate, 2 regimes 326 63.4% 0.335 346 67.3% 0.303

Table 5.5: Correct directional forecasts (out of 514 trading days) and mean squared errors for

forecasts from both univariate and bivariate TVMEM models. The best values within each

column are in boldface.

When comparing the two-regime and three-regime univariate models, it is not

obvious which model specification is superior. For USD/EUR C, the three-regime

model is a better forecaster of the direction of change, but for USD/EUR P, the

two-regime model dominates. The rank of the models is also the same when using

MSE as the criterion. In general, it can be noted that the TVMEM models forecast

up too often: the models make more mistakes by predicting a move up when the

true direction was down than vice versa. This tendency could exaggerate forecast

performance in periods of consistently rising IV, but in our particular out-of-sample
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period, there are 243 moves up and 271 down for call IV, and 249 moves up and

265 down for put IV. The best balance by far is achieved with the bivariate model

for USD/EUR P, with 279 forecasts up and 235 down. The bivariate model is also

the most balanced for USD/EUR C, but the hits are more off: 358 up forecasts

and 156 down forecasts.

We next run two types of tests in order to determine the statistical signifi-

cance of the models’ differences in predictive ability. First, we calculate Pesaran-

Timmermann test statistics for the directional forecasts.12 This test allows us to

verify that the sign predictions of the forecast series outperform a coin flip. The

null hypothesis of predictive failure can be rejected at all relevant levels of signif-

icance for all of our models, as the p-values of the test statistic are all less than

0.00001.

The Diebold-Mariano test (from Diebold and Mariano (1995)) is next used to

see whether the improvement in mean squared errors achieved with the bivari-

ate model is statistically significant. When comparing the MSE from the bivari-

ate model to the best univariate model (three regimes for USD/EUR C and two

regimes for USD/EUR P), the null hypothesis of equal predictive accuracy can be

rejected at the one-percent level for USD/EUR P. However, for USD/EUR C, the

test delivers a p-value of 0.16. Therefore, in statistical terms, the bivariate model

specification does not deliver a better MSE than the best univariate model.

Compared to earlier studies that explore directional forecast accuracy, these

results fall short of only those of Ahoniemi and Lanne (2009), who calculate the

correct direction of change for Nikkei 225 index option implied volatility on at

best 72% of trading days. In other work on IV modeling, Ahoniemi (2008) obtains

the correct sign for the VIX index on 58.4% of trading days with an ARIMA

model, and Harvey and Whaley (1992) achieve an accuracy of 62.2% (56.6%) for

the implied volatility of S&P 100 index call (put) options. Brooks and Oozeer

(2002), who model the implied volatility of options on Long Gilt futures, report

a correct sign prediction on 52.5% of trading days. The fact that put IV is more

predictable than call IV for USD/EUR currency options contrasts the results of

12This test statistic is presented in Pesaran and Timmermann (1992).
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Harvey and Whaley (1992), whereas Ahoniemi and Lanne (2009) have the same

result.

In another comparison to earlier work, we choose to look at relative MSEs. For

this purpose, we calculate root mean squared errors (RMSE). The average value of

USD/EUR C in the out-of-sample period is 7.12, and the best RMSE is some 8.1%

of that. For USD/EUR P, the corresponding percentage is 7.5%. In the bivariate

model for Nikkei 225 index option implied volatilities of Ahoniemi and Lanne

(2009), call-side RMSE amounted to 9.6% of the average out-of-sample value, and

put-side IV had a relative RMSE of 10.2%. Therefore, the point forecasts generated

by the TVMEM model seem to be quite accurate.

5.5 Conclusions

Existing research has documented that exchange rate returns and volatilities ap-

pear to be drawn from several regimes. It is therefore plausible that the modeling

of implied volatilities of currency options would benefit from allowing for two or

more regimes. The results of this paper lend support to that assumption: for

the IV of options on the USD/EUR exchange rate, a mixture multiplicative error

model can be successfully fit to the data. Moreover, the regime probabilities vary

in time, which proves to be a valuable feature of the model. Both two and three-

regime models are viable in a univariate setting, but when the IV time series are

jointly modeled, two mixture components are sufficient. The daily returns of the

underlying exchange rate series function well as a regime indicator: days of large

moves in the exchange rate seem to coincide with days of high levels of IV and

days of large shifts in IV.

The bivariate model specification emerges as the model of choice for a fore-

caster. Both directional accuracy and point forecasts improve when moving from

a univariate to a bivariate setting. The bivariate model predicts the direction of

change in implied volatility correctly on 63% (67%) of trading days for call (put)

options. This information can be particularly useful for traders in currency op-

tions, as the hit ratio is well over 50%. Also, at-the-money options, on which

the data is based, are particularly sensitive to changes in volatility. Whether or

not the forecast results could be profitably exploited in an out-of-sample option
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trading exercise is left for future research.
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