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Abstract

We propose a new framework for modeling and forecasting common financial risks based on
(un)reliable realized covariance measures constructed from high-frequency intraday data. Our new
approach explicitly incorporates the effect of measurement errors and time-varying attenuation
biases into the covariance forecasts, by allowing the ex-ante predictions to respond more (less)
aggressively to changes in the ex-post realized covariance measures when they are more (less)
reliable. Applying the new procedures in the construction of minimum variance and minimum
tracking error portfolios results in reduced turnover and statistically superior positions compared
to existing procedures. Translating these statistical improvements into economic gains, we find
that under empirically realistic assumptions a risk-averse investor would be willing to pay up to
170 basis points per year to shift to using the new class of forecasting models.
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1. Introduction

The presence of common risk factors plays a crucial role in the theory and practice of finance.

Common risks, and predictions thereof, are typically quantified through return covariances. While

inherently unobservable, there is extensive empirical evidence to support the idea that covariances

of asset returns vary through time. From a practical estimation and forecasting perspective, this

naturally poses a trade-off between the use of long historical samples to accurately estimate the

latent covariances, potentially biasing the forecasts if the risks are changing, or restricting the esti-

mation to more recent observations to better capture the short-term dynamics, thereby potentially

increasing the estimation and forecast errors. In response to this, we develop a new framework for

more accurately forecasting dynamically varying covariances by explicitly incorporating the effects

of (un)reliable past covariance measures into the forecasts. Applying the new procedures in asset

allocation decisions, we show that these statistical improvements in the accuracy of the covariance

forecasts translate into sizeable economic gains for a representative risk averse investor seeking to

minimize the overall risk or the tracking error of her portfolio.

Modeling and forecasting of dynamically varying covariances have received much attention in

the literature, with numerous multivariate ARCH, GARCH and stochastic volatility specifications

been proposed for the job. All of these procedures effectively treat the covariances as latent. More

recently, however, the increased availability of reliable high-frequency intraday asset prices have has

spurred somewhat of a paradigm shift based on the idea of directly modeling and forecasting ex-

post realized covariance measures constructed from intraday data (see, e.g., Andersen, Bollerslev,

Christoffersen, and Diebold, 2013, for a discussion of both the earlier parametric models and the

more recent realized volatility literature). The benefits of high-frequency-based realized volatility

procedures for practical investment and portfolio allocation decisions have also been extensively

documented in the literature (e.g., Fleming, Kirby, and Ostdiek, 2003; Bandi, Russell, and Zhu,

2008; Pooter, Martens, and Dijk, 2008; Liu, 2009; Varneskov and Voev, 2013; Hautsch, Kyj, and

Malec, 2015, among others).

Even though the use of high-frequency intraday data generally allows for the construction of

more accurate realized covariance measures than lower frequency (e.g., daily) data, they are still

estimates and as such subject to estimation error. Correspondingly, the use of these covariance

estimates in dynamic forecasting models leads to a classical errors-in-variables problem and an at-

tenuation of the parameters towards zero relative to a forecasting model based on the true (latent)

covariances. If the measurement errors were homoskedastic, this attenuation would be time invari-

ant, and from a practical forecasting perspective inconsequential. If, however, the measurement

errors are heteroskedastic, as we show is the case with realized covariance estimates, all observations

are “not equal,” and the presence of such heteroskedastic measurement errors can indeed have con-

sequences for forecasting. A covariance estimate with below average measurement error provides a

stronger signal and should be more informative about future covariances than an estimate with an
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above average measurement error.

Extending the basic idea and simple univariate volatility models in Bollerslev, Patton, and

Quaedvlieg (2016), we propose a new class of multivariate realized covariance based forecasting

models that explicitly take into account the influence of measurement errors. To do so, we rely on

the asymptotic distribution theory for high-frequency realized covariance estimation (Barndorff-

Nielsen and Shephard, 2004; Barndorff-Nielsen, Hansen, Lunde, and Shephard, 2011) to help guide

the magnitude of the time-varying attenuation in the parameters of the models: the parameters

should be relatively large on days when the realized covariances are precisely estimated and more

heavily attenuated on days when the measurement errors are large and the signals are weak. By

contrast, the average attenuation bias implicit in conventional constant parameter models will be

too large (small) on days when the realized covariances are (im)precisely estimated.

Our empirical investigations are based on high-frequency data for a sample of ten individual

stocks together with a variety of evaluation criteria and out-of-sample methods. Based on standard

statistical tests and model confidence sets, we firstly show that the new models systematically beat

their constant attenuation benchmarks in the sense of providing covariance matrix forecasts that

are significantly closer to the ex-post covariances.1

Next, in an effort to underscore the practical relevance of the forecast improvements afforded

by the new class of models, we evaluate their performance in portfolio allocation decisions. The

detrimental impact of measurement errors in the context portfolio construction has already been

widely studied in the literature, and it is well established that the use of ill conditioned and/or

poorly estimated covariance matrices often lead to extreme positions far away from the ex-post

optimal portfolio weights (see, e.g., Li, 2015, and the many references therein). These extreme

positions also typically result in excessively high turnover and transaction costs. One popular

strategy to help mitigate these problems, and prevent the portfolio optimizers from “reading too

much into the data,” is to directly constrain the portfolio weights. Jagannathan and Ma (2003),

for instance, advocate the use of no short-sale constraints, while DeMiguel, Garlappi, Nogales,

and Uppal (2009a) and Brodie, Daubechies, De Mol, Giannone, and Loris (2009) propose L-norm

constrained portfolios. Another popular strategy is to “shrink” the covariance matrix estimates

to indirectly help control the portfolio weights. Ledoit and Wolf (2003, 2004a,b), in particular,

recommend shrinking the unconditional sample covariance matrix estimate towards some “target”

matrix based on a simple factor structure or some other pre-determined matrix.2

We propose a new approach that can be interpreted as a dynamic shrinkage procedure. Instead

of exogenously shrinking the unconditional covariance matrix estimate, we provide a dynamic alter-

native in which the covariance matrix forecasts are endogenously shrunk away from the conditional

1We further document that these improvements in forecast accuracy are not restricted to the attenuation of
especially noisy covariance estimates, but occur in response to both reliable and unreliable covariances.

2Numerous other combination and related Bayesian model averaging and learning approaches have also been
proposed in the literature to help improve on the standard portfolio allocation procedures; see, e.g., Tu and Zhou
(2011) and Anderson and Cheng (2016) and the many additional references therein.
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to the unconditional covariance matrix with a time-varying shrinkage intensity that depends on

the degree of (time-varying) measurement error. Consistent with the idea that the use of shrink-

age techniques generally results in less extreme and more stable portfolio allocations, applying the

new procedures in the construction of minimum variance portfolios using simulated data leads to

positions that are systematically closer to the optimal positions than those implied by otherwise

identical benchmark models without any dynamic shrinkage. Importantly, turnover is also reduced

substantially compared to the positions for the benchmark models.

Our empirical analysis involves returns on ten stocks from the Dow Jones Industrial Average.

Relying on the utility-based framework of Fleming, Kirby, and Ostdiek (2001, 2003), we find that

in the absence of any transaction costs, a risk averse investor seeking to minimize the daily variance

of her portfolio would be willing to sacrifice up to 140 basis points annually to switch to the more

accurate forecasts from our dynamic attenuation model compared to the forecasts obtained from

the same model without any attenuation effects. Incorporating empirically realistic transaction

costs results in additional gains of 20-70 basis points per year stemming from the reduced turnover.

These same qualitative gains hold true for an investor seeking to minimize the tracking error of

her portfolio relative to an S&P 500 benchmark portfolio. These utility gains remain intact after

imposing no short-sales constraints. They also remain over longer weekly and monthly investment

horizons, although the relative magnitudes of the gains tend to decrease with the horizon.

The utility benefits obtained from implementing the new models at the daily horizon also exceed

the benefits obtained from implementing the models at the weekly and monthly frequencies, despite

the increased turnover. In contrast, but consistent with past research, the utility from benchmark

models that do not adjust for the time-varying estimation errors in the realized covariances are not

generally higher at the daily level, underscoring the detrimental impact of unbalanced positions

and “too much trading” stemming from the use of more conventional covariance forecasting proce-

dures. Moreover, we show that our proposed new models compare favorably with existing portfolio

allocation procedures, e.g. that of Ledoit and Wolf (2003), intended to counter the adverse effects

of estimation errors discussed above.

The remainder of the paper is organized as follows. Section 2 sets up the notation and motivation

for the new class of models. Section 3 defines the specific parametric models that we rely on our

empirical applications. Section 4 discusses the data. Section 5 presents our estimates of the

different models, along with various statistical in- and out-of-sample forecast comparisons. Section

6 discusses the metrics and utility-based approach that we rely on in our economic assessments of

the new procedures. Our main empirical findings are presented in Section 7. Section 8 extends

our main results to other forecast horizons and also compare the new dynamic attenuation models

to other already existing static shrinkage procedures. Section 9 concludes. Additional technical

details and empirical results are deferred to four appendices.
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2. Motivation and realized covariance estimation

Estimated realized covariances can be decomposed into the sum of two components: the latent

true covariance and a measurement error term. Since the latter represents “noise,” the time series

of realized covariances will appear less persistent than they truly are. As a result the estimated pa-

rameters in conventional autoregressive models for the realized covariances are attenuated towards

zero. When the measurement error is homoskedastic, the degree of attenuation is proportional to

the measurement error variance, but when the measurement error is heteroskedastic, the parameter

estimates will be attenuated based on the average magnitude of the measurement errors. Conse-

quently, the attenuation is never optimal: it is too strong (weak) when the past realized covariances

are (im)precisely estimated.

In most errors-in-variables settings, the distributions of the measurement errors are unknown.

In the context of realized covariance estimation, however, the covariances of the measurement

errors may be estimated on a day-to-day basis using theoretical developments in Barndorff-Nielsen

and Shephard (2004) and Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011). By directly

incorporating an estimate of the magnitude of the errors into the formulation of realized covariance

based forecasting models, it is possible to dynamically attenuate the parameters of the models, and

in turn improve on the forecasts.

The discussion below briefly summarizes the basic theoretical arguments underlying this dy-

namic attenuation approach. We purposely keep the setup below as simple as possible to convey

the main ideas and intuition.

2.1. Realized covariances

To set out the notation, consider the N -dimensional log-price process,

P (s) =

∫ s

0
µ(u)du+

∫ s

0
σ(u)dW (u), (1)

where µ(u) and σ(u) denote the instantaneous drift and volatility processes, respectively, with

corresponding spot covariance matrix Σ(u) ≡ σ(u)σ(u)′, W (u) is an N -dimensional vector of inde-

pendent Brownian motions, and the unit time interval is normalized to a day. We exclude jumps

for simplicity, but the same ideas readily extend to price process that contain jumps. Following

advances in the realized volatility literature, we are interested in modeling and forecasting the daily

ex-post covariation, or the daily integrated covariance (see, e.g., the discussion in Andersen, Boller-

slev, Diebold, and Labys, 2003). For the price process in equation (1) the integrated covariance for

day t simply equals,

Σt =

∫ t

t−1
Σ(u)du. (2)

The integrated covariance is not directly observable. However, it may be consistently estimated

based on ever-finer sampled high-frequency intraday data.
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In addition to the practical market microstructure complications that plague the estimation of

integrated variances (see, e.g., the discussion in, Hansen and Lunde, 2006) the practical estimation

of integrated covariances is further complicated by the Epps (1979) effect and non-synchronous

price observations. A number of alternative estimators have been proposed in the literature to

circumvent these complications. In our empirical analysis below, we rely on the Multivariate

Kernel (MK) of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011), for which the asymptotic

variance of the measurement errors can easily be estimated; further details about the MK estimator

and its asymptotic distribution are provide in Appendix A below. However, the same basic ideas

carry over to any consistent estimator for Σt, say St.
3

To facilitate the discussion, let ςt ≡ vech Σt denote the N∗ = N(N+1)/2 dimensional vectorized

version of the true latent integrated covariance matrix of interest Σt. Similarly, let st ≡ vech St

denote the vectorized version of the St realized covariance matrix estimator. We will refer to the

N∗×N∗ covariance matrix for the corresponding measurement error vector ηt = st− ςt by Πt. The

exact form of Πt obviously depends on the specific estimator St. For the MK estimator that we

rely on in the empirical analysis below, Πt is proportional to the so-called integrated quarticity,

Πt ∝
∫ t

t−1
Σ(u)⊗Σ(u)du,

where ⊗ denotes the Kronecker product.4 In parallel to the integrated covariance Σt, the inte-

grated quarticity matrix may be consistently estimated using high-frequency intraday data. In the

empirical results reported below, we rely on the specific estimator proposed by Barndorff-Nielsen,

Hansen, Lunde, and Shephard (2011). In the following we will refer to the resulting (up-to-scale)

measurement error covariance matrix estimates as Πt for short.

2.2. (Un)reliable covariances and attenuation biases

The effect of measurement errors in univariate autoregressive models has been extensively stud-

ied in the literature (see, e.g., Staudenmayer and Buonaccorsi, 2005). In the multivariate setting

the problem is less well-developed and the literature have mostly focussed on the effect of mea-

surement errors for identification and hypothesis testing (see, e.g., Holtz-Eakin, Newey, and Rosen,

1988; Komunjer and Ng, 2014). Even so, it is well-established that the autoregressive parameter

estimates are attenuated towards zero, both in the uni- and multivariate setting.

In order to provide some intuition for this result and our new dynamic attenuation approach,

assume for simplicity that the true (latent) vectorized integrated covariance ςt follows a VAR(1)

3Other “noise” robust consistent covariance estimators include Aı̈t-Sahalia, Fan, and Xiu (2010), and Christensen,
Kinnebrock, and Podolskij (2010).

4A similar result holds true for other realized covariance matrix estimators. Instead of relying on explicit analytical
asymptotic expressions for estimating Πt, following Gonçalves and Meddahi (2009) the variance of the measurement
errors may alternatively be estimated by bootstrap procedures.
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model,

ςt = Φ0 + Φ1ςt−1 + ut, (3)

where Φ0 is of dimension N∗, and the autoregressive parameter Φ1 is of dimension N∗×N∗. Even

though this does not necessarily correspond to the exact discretization of the underlying continuous-

time model in equation (1), a simple first-order VAR may still provide a good approximation in

many situations (see also the related discussion in Andersen, Bollerslev, and Meddahi, 2004).

In practice, of course, ςt is not observable, so the researcher must estimate any given model using

realized covariances, st. Suppose that the researcher relies on the identical VAR(1) formulation,5

st = Θ0 +Θ1st−1 + εt. (4)

For simplicity, assume that the “structural” errors ut and the measurement errors ηt = st − ςt are

both i.i.d. and uncorrelated. (This, of course, would not be the case for the realized covariances if

the underlying σ(u) process is time- varying.) Under these simplifying assumptions, it is straight-

forward to show that the OLS estimate of Θ1 will be functionally related to the population value

of Φ1 by,

Θ̂1 = (s′s)−1(ς ′ς)Φ1

= (ς ′ς + η′η)−1(ς ′ς)Φ1,
(5)

where s = (s1, ..., sT−1) denotes the T − 1×N∗ matrix of lagged realized covariances, with ς and

η defined analogously. The actual estimated parameter matrix therefore equals the population

parameter matrix times the ratio of the variation of the true latent process divided by the variation

of the estimated process.6 This latter ratio is commonly referred to as the reliability ratio. As this

relationship makes clear, depending on the covariance structure of η, certain parameters may be

biased towards zero, while other parameters may be biased away from zero. However, regardless of

the direction, the bias is always proportional to the magnitude of the measurement errors.

The bias implied by equation (5), could be removed based on an estimate for the reliability ratio

to arrive at an unconditionally unbiased estimate for the “structural” Φ1 parameters. Although

these parameters may sometimes be of interest in their own right, from a practical forecasting

perspective it is the Θ1 parameters and the dynamic dependencies in the actually observed realized

covariances st that matter. It follows from the expression in equation (5) that even if the Φ1

parameters are time-invariant, as long as the measurement errors are heteroskedastic, the “optimal”

Θ1 parameters to be used for forecasting purposes should be dynamically attenuated to reflect the

5In the univariate case the population parameters of an AR(p) model with homoskedastic measurement errors
can easily be identified by estimating an ARMA(p, p) model. In the multivariate case the composite error term
εt − ηt + Θ1ηt−1 is typically not a finite order moving average process, so a finite dimensional VARMA model will
not identify the population parameters.

6In the univariate case the relationship simplifies to the easier to interpret Θ̂1 = (1+V ar(ηt)/V ar(ςt))
−1Φ1, where

the estimated parameter equals the population parameter times a noise-to-signal ratio.

6



temporal variation in the reliability of the past realized covariance measures.

The specific expression in equation (5) is based on a number of simplifying assumptions and

merely meant to illustrate the main idea. A number of important choices need to be made in

the way in which the dynamic attenuation idea is actually implemented in practice. Firstly, a

VAR(1) model is likely not the best specification for characterizing the dynamic dependencies in

st. Secondly, reliable estimation of all the elements in the Πt matrix on a period-by-period basis,

not to mention the inverse, presents some formidable challenges, even for moderately large N . The

next section discusses the dynamic attenuation models that we rely on in our actual empirical

investigations.

3. Dynamic attenuation models

The specification of empirically realistic, yet practically feasible, multivariate realized volatility

models raises a number of important practical issues. Motivated by the discussion in the previous

section, we propose new parsimonious dynamic specifications for the high-frequency realized co-

variances, in which we allow the autoregressive parameters of the models to depend linearly on the

measurement errors of covariance matrix estimates. We purposely restrict the parameterizations

to relatively simple scalar formulations, while allowing each element of the covariance matrix to

exhibit its own distinct dynamic dependencies as a function of the measurement errors variances.

We consider three popular baseline models: the vech-HAR (Chiriac and Voev, 2010), the HAR-

DRD model (Oh and Patton, 2015), and the HEAVY model (Noureldin, Shephard, and Sheppard,

2012). For comparison purposes, we also consider a simple Exponentially Weighted Moving Average

(EWMA) filter, in which we allow the filter weights to vary with the estimation error. It is not our

goal to run a horse-race between the various models. Instead, we seek to illustrate how the basic

approach may be implemented quite generally, and in turn evaluate the performance of the models

with dynamically attenuated parameters relative to the otherwise identical models with constant

parameters.

3.1. HARQ models

The Heterogeneous AutoRegressive (HAR) model of Corsi (2009) has arguably emerged as the

most widely used realized volatility-based forecasting model. The model was first extended to a

multivariate setting by Chiriac and Voev (2010). The scalar version of the vech HAR model is

formally defined by

st = θ0 + θ1st−1 + θ2st−5|t−1 + θ3st−22|t−1 + εt, (6)

where st−h|t−1 = 1
h

∑h
i=1 st−i denote the vectorized version the h-day realized covariance matrix.

The intercept θ0 is a N∗×1 dimensional vector, while the θ1, θ2 and θ3 parameters are all assumed to

be scalar. This simple specification is highly parsimonious and readily ensures that the covariance

matrix forecasts are positive definite.
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The standard vech HAR formulation in (6) does not take into account the fact that the lagged

realized covariances are measured with error. Bollerslev, Patton, and Quaedvlieg (2016) proposed a

simple modification to accommodate this in the context of univariate volatility models, by allowing

θ1 in (6) to depend on an estimate for the measurement error variance: θ1,t = (θ1 + θ1QRQ
1/2
t ),

where RQt denotes the daily realized quarticity. Following the discussion in the previous section,

the resulting “HARQ” model may be interpreted as a linear approximation to the inverse of (5)

in the univariate setting.7 This same idea may be extended to multivariate settings. In such

settings, measurement errors may be of even greater importance, given the growth in the number

of estimated quantities, however in these cases it is also more difficult to accurately estimate the

magnitude of the measurement errors. Correspondingly, it is imperative to strike a balance between

the difficulties in accurately estimating all of the elements in Πt and the way in which the dynamic

attenuation of the autoregressive parameters is actually implemented.

In particular, as for the covariance matrix st itself, it is generally easier to accurately estimate

the diagonal elements of Πt than the off-diagonal covariance elements. Hence, we focus on πt ≡√
diag(Πt), the vector of asymptotic standard deviations for each of the individual element in the

St covariance matrix. The correspondingly modified vech HARQ model estimated below takes the

form,8

st = θ0 + θ1,t ◦ st−1 + θ2st−5|t−1 + θ3st−22|t−1 + εt,

θ1,t = θ1ι+ θ1Qπt−1,
(7)

where ◦ denotes the Hadamard product, ι is an N∗ dimensional vector of ones, and θ1 and θ1Q

are scalar parameters. More general specifications could, of course, be implemented, but the

parsimonious formulation in (7) is shown in our out-of-sample analyses to perform well. Also,

note that even though the θ1 and θ1Q parameters are both assumed to be scalar, the resulting θ1,t

parameter vector allows for different dynamics in each of the individual elements in the covariance

matrix based on their own measurement error variances.9 Given the intuition underlying this

model, we expect θ1 to be larger than would be found in a conventional HAR model, and we expect

θ1Q to be negative, so that realized covariance matrices that are measured with greater error are

given lower weight in the forecasting model.

3.2. HARQ-DRD models

An alternative approach to possibly allow for more general dynamic dependencies, while en-

suring positive definite covariance matrix forecasts, is to model the variances and correlations

7The Q suffix refers to the use of the quarticity measure to guide the attenuation.
8In all of the empirical results reported below, we demean the πt vector to render the θ1 coefficients directly

interpretable as the value at the average measurement error level.
9The θ2 and θ3 parameters could similarly be allow to depend on the measurement errors in st−5|t−1 and st−22|t−1,

respectively. However, the magnitude of the errors generally decrease with the horizon, and the difficulties in ac-
curately estimating the integrated quarticity may easily outweigh the benefits of adjusting the weekly and monthly
coefficients; Bollerslev, Patton, and Quaedvlieg (2016) provides an analysis of the corresponding tradeoffs in the
univariate context.
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separately. The HAR-DRD model of Oh and Patton (2015), is based on the decomposition of a

covariance matrix into

St = DtRtDt, (8)

where Dt denotes the diagonal matrix of standard deviations, and Rt is the correlation matrix, see

Bollerslev (1990). In the HAR-DRD model, the individual variances are modeled by univariate HAR

models, and the conditional correlation matrix is modeled using a scalar multivariate HAR model.

The HAR-DRD model is readily extended to allow for dynamic attenuation effects by incorporating

the influence of measurement errors into the parameters in the models for the variances and/or

correlations.

In the HARQ-DRD model analyzed below, we rely on the univariate HARQ model of Bollerslev,

Patton, and Quaedvlieg (2016), defined analogously to the multivariate model in equation (7) above,

together with the scalar multivariate HAR in equation (6) for modeling the vectorized correlation

matrix. It would of course be possible to also consider a HARQ specification for the correlations.

However, the heteroskedasticity in the measurement errors for the correlations tend to be somewhat

limited, likely outweighing the benefits of attenuating the autoregressive correlation parameters.10

The parameters in the vech HAR(Q) and the HAR(Q)-DRD models discussed above are easily

estimated by standard OLS procedures. The estimation of the parameters in the HEAVY(Q)

models, which we discuss next, require the use of more complicated (pseudo-)maximum likelihood

techniques and non-linear optimization procedures.

3.3. HEAVYQ models

The multivariate HEAVY class of models was originally introduced by Noureldin, Shephard,

and Sheppard (2012). In contrast to the HAR models discussed above, which are only meant to

forecast the daily covariances, HEAVY models are designed to characterize the entire conditional

daily return distribution, explicitly incorporating information in past realized covariances.

To set out the basic idea, let Vt = E(rtr
′
t | Ft−1) denote the conditional covariance matrix

for the daily returns rt, where the time t− 1 information set Ft−1 includes all of the past realized

covariances. Correspondingly, let vt = vech Vt denote the vectorized version of the daily conditional

covariance matrix. The HEAVY model with covariance targeting that we rely on for modeling vt

below, may then be expressed as,

vt = (Id∗ − b− aκ)λV + bvt−1 + ast−1, (9)

where a and b are scalar parameters, and κ serves to adjust the expectation of the high-frequency

intraday covariance matrix to match the unconditional expectation of the daily covariance matrix

10Following Barndorff-Nielsen and Shephard (2004) and assuming a constant spot volatility for simplicity, it is
possible to show that the asymptotic standard deviation for the correlation coefficient ρt approximately equals 1−ρ2t ,
which invariably is limited by |ρt| ≤ 1.
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λV .11 The model’s parameters can be estimated using standard quasi-maximum likelihood tech-

niques. To facilitate the practical implementation, we rely on the composite likelihood approach

of Pakel, Shephard, Sheppard, and Engle (2014), which is easy to implement in large dimensions;

further details are provided in Appendix C.

The conventional HEAVY model in (9) does not account for estimation errors in the realized

covariance estimates. Following the same approach used in the specification of the vech HARQ and

HARQ-DRD models above, the HEAVY model may similarly be adapted to allow the impact of

st−1 to vary over time depending on the degree of measurement error,

vt = (Id∗ − b− atκ)λV + bvt−1 + at ◦ st−1,

at = aι+ aQπt−1,
(10)

where again aQ is assumed to be scalar. We will refer to this specification as the HEAVYQ model

below.

3.4. EWMAQ filters

Our last empirical approach is based on an Exponentially Weighted Moving Average (EWMA)

filter. EWMA filters are widely used in practice as a simple and easy-to-implement procedure to

accommodate time-varying variances and covariances. EWMA filters have traditionally been based

on daily or lower frequency data, but they are equally applicable in the high-frequency realized

volatility setting (see, e.g., Fleming, Kirby, and Ostdiek, 2003, for an early application of an EWMA

filter with realized covariances).

Let vt = vech Vt denote the vectorized daily covariance matrix of interest. The standard EWMA

filter based on high-frequency realized covariances may then be expressed as,

vt = (1− α)vt−1 + αst−1, (11)

where α defines the decay rate.12 Standard choices for α are 0.03 and 0.06. When α is low the

filter is persistent and the filtered Vt covariance matrices are fairly stable. When α is high more of

the information in st−1 is immediately incorporated into the filtered Vt. In the analysis reported

on below, we estimate α based on the auxiliary assumption that the daily returns are conditionally

normally distributed using the same composite likelihood approach described in Appendix C used

in estimating the HEAVY(Q) models.

11Formally, let ΛΣ and ΛV denote the unconditional expectations of the high-frequency and low-frequency daily
covariance matrices, respectively, with λΣ and λV their vectorized versions. The adjustment coefficient is then
defined by κ ≡ LN (κ̄ ⊗ κ̄)DN , where κ̄ = Λ

1/2
Σ Λ

−1/2
V , and LN and DN denote the elimination and duplication

matrices respectively (see, e.g., Magnus and Neudecker, 1980).
12As long as the initial V0 matrix is positive definite, the EWMA filter automatically ensures that the filtered Vt

matrices are all positive definite.
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In parallel to the models described above, the EWMA filter is readily adapted to incorporate

the effect of measurement errors in st by allowing the α parameter to vary with πt. Specifically, we

define the EWMAQ filter as,

vt = (1− αt) ◦ vt−1 + αt ◦ st−1,

αt = αι+ αQπt−1.
(12)

We would naturally expect the α parameter in the EWMAQ filter to be higher than the α param-

eter in the conventional EWMA filter, allowing for more immediate reactions to st−1 on average.

Correspondingly, the αQ parameter should be negative so that the impact of highly uncertain st−1

estimates are attenuated, shifting more of the weight towards the the past filtered vt−1 estimates.

4. Data

Our empirical analysis is based on a set of ten Dow Jones stocks. The names and ticker symbols

for each of the stocks are listed in Table 1. In addition, we use the SPY exchange traded fund

in the construct of S&P 500 tracking portfolios. We rely on 5-minute returns retrieved from the

TAQ database over the February 1993 to December 2013 sample period, for a total of 5,267 daily

observations. To most directly highlight the benefits of the high-frequency-based procedures and

the new dynamic attenuation models, we focus our analysis on the intraday realized covariances and

corresponding open-to-close returns. This also mirrors a number of studies in the recent literature

(see, e.g., Lunde, Shephard, and Sheppard, 2015; Hautsch, Kyj, and Malec, 2015; De Lira Salvatierra

and Patton, 2015, among others).13

Table 1 provides summary statistics for the resulting daily MK covariance estimates. The first

two columns report the averages and time series standard deviations of the realized variances for

each of the individual asset. The following two columns report the mean and standard deviation of

estimated measured errors, based on realized quarticity. The presence of variation in measurement

error is the basis for all of the analysis in this paper, and we see from Table 1 that it is substantial:

the coefficient of variation is well above one for all ten of these stocks. The last four columns

summarize the linear dependence between returns on these assets, showing the average realized

correlation of each asset with all other assets, as well as the average realized beta (defined as in

Andersen, Bollerslev, Diebold, and Wu, 2006) with respect to the SPY market portfolio. The

average correlation among the assets is around 0.28, indicating important diversification benefits

and potentially large gains from risk minimizing portfolios constructed on the basis of more accurate

13Following Andersen, Bollerslev, and Huang (2011), who treat the overnight returns as “jumps,” a separate model
could be used to predict the overnight variation. However, a dynamic attenuation model is unlikely to provide
any benefits in that context, as the variation of the overnight measurement errors cannot be accurately estimated.
Alternatively, following Hansen and Lunde (2005) the intraday variation may be scaled up to reflect the variation for
the whole day, akin to the κ adjustment term in the HEAVY model.
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Table 1: Descriptive Statistics

Name Ticker Variance Quarticity Correlations Beta

Mean StDev Mean StDev Mean StDev Mean StDev
Market SPY 0.954 1.165 3.882 13.933

American Express AXP 3.906 55.941 3.694 12.797 0.315 1.120 1.043 0.634
Boeing BA 2.782 16.425 1.714 5.192 0.271 0.934 0.821 0.584
Chevron CVX 1.975 13.185 0.671 1.775 0.307 1.113 0.764 0.530
DuPont DD 2.723 15.397 1.562 4.466 0.315 1.132 0.928 0.562
General Electric GE 2.709 35.373 1.621 6.342 0.351 1.287 0.998 0.499
IBM IBM 2.250 10.700 1.152 3.367 0.321 1.148 0.883 0.497
JPMorgan Chase JPM 4.329 84.575 4.392 16.741 0.316 1.110 1.172 0.656
Coca-Cola KO 1.740 6.757 0.605 1.797 0.274 0.922 0.640 0.447
Microsoft MSFT 2.897 13.411 1.716 4.344 0.310 1.079 1.061 0.603
ExxonMobil XOM 1.789 13.271 0.546 1.623 0.329 1.208 0.773 0.474

Note: The table reports averages and time series standard deviations for the variances of each individual asset, as
well as their estimated measurement error variances (Quarticity). Next it depicts averages and standard deviations
of the average correlations with the other assets and the final two columns show averages and standard deviations
of the realized betas with respect to the SPY market index.

covariance matrix forecasts. The average realized beta equals 0.91. However, the betas vary

importantly both across stocks and time, again suggesting potentially large gains from portfolios

designed to track the market based on more accurate covariance matrix forecasts. We turn next to

a discussion of the models that we rely on below to explore these conjectures.

5. Model estimates and covariance forecasts

We begin our empirical analysis by comparing and contrasting the estimated dynamic atten-

uation models with their constant counterparts based on conventional statistical criteria. Section

5.1 discusses the in-sample parameter estimates and quality of the model fits, while Section 5.2

presents the results from out-of-sample forecast comparisons and corresponding model confidence

sets.

5.1. In-sample estimates

The parameter estimates obtained for each of the different models are reported in Table 2, along

with robust standard errors in parentheses. To conserve space, for the HAR(Q)-DRD models, we

only report the averages of the parameter estimates and standard errors over each of the ten

individually estimated HAR(Q) variance models.

As expected, all of the estimated Q-coefficients are negative and statistically significant. This

directly corroborates the basic idea and mechanics of the models, that as the measurement error

variance πt increases (decreases), the informativeness of the past covariance estimate decreases

(increases), resulting in the models endogenously increasing (decreasing) the degree of attenuation.

To put the magnitude of the attenuation in further perspective, the cross-sectional average of the
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Table 2: In-Sample Estimates

HAR HARQ HAR-

DRD

HARQ-

DRD

EWMA EWMAQ HEAVY HEAVYQ

Average Variances
θ1 0.247 0.541 θ1 0.260 0.660 α 0.079 0.102 a 0.106 0.148

(0.040) (0.040) (0.064) (0.065) (0.003) (0.004) (0.009) (0.009)
θ2 0.410 0.333 θ2 0.395 0.223 αQ -0.004 b 0.876 0.825

(0.038) (0.038) (0.016) (0.022) (0.001) (0.004) (0.004)
θ3 0.244 0.113 θ3 0.240 0.101 aQ -0.026

(0.038) (0.038) (0.028) (0.028) (0.012)
θ1Q -0.043 θ1Q -0.067

(0.018) (0.026)
Correlation

θ1 0.049 0.049
(0.007) (0.007)

θ2 0.159 0.159
(0.003) (0.003)

θ3 0.560 0.560
(0.003) (0.003)

Frob. 12.282 12.190 11.987 11.952 12.324 12.255 12.539 12.532
QLIKE 15.484 15.392 15.289 15.205 15.408 15.393 15.517 15.505

Note: The table reports in-sample parameter estimates and measures of fit for the different models. For the
HAR(Q)-DRD models the reported parameter estimates and standard errors for the variance specification are the
averages across the ten individually estimated univariate HAR(Q) models. The bottom panel reports the in-sample
fit for the different models as measured by the Frobenius distance and the QLIKE loss.

composite θ1,t parameter for the HARQ model varies substantially over the sample, from a low

of 0.21 to a high of 0.87. Correspondingly, there is a “redistribution” of weight from the longer

weekly and monthly lags to the daily lag when comparing the HARQ to HAR model. This effect is

even more pronounced for the HAR-DRD(Q) models, in which the individual variances have their

own separate dynamics, and in turn their own individual sensitivity to the degree of measurement

error. As such, the (average) estimated θ1Q parameter is also greater (in absolute value) for the

HARQ-DRD model than it is for the HARQ model.14

The same results carry over to the EWMA(Q) filters and HEAVY(Q) models. The estimated

α for the EWMAQ filter exceeds the α for the standard EWMA filter, allowing for a greater

immediate impact of the realized covariance on average. However, when the estimation error is

large, the negative αQ implies that the weight is shifted away from the current noisy estimate

towards the long-run weighted average. Similarly, the estimated a parameter is higher for the

HEAVYQ model than for the standard HEAVY model, together with a negative aQ estimate for

the HEAVYQ model.

In addition to the parameter estimates, the last two rows in Table 2 report the Frobenius

distance and QLIKE loss for the fitted covariance matrices, say Ht, with respect to the ex-post

14This in itself represents an attenuation effect, as the measurement error in πt aggregates in the cross-section for
the HARQ model, rendering the dynamic θ1Q parameter less effective.
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realized covariances St. The Frobenius norm is commonly used to measure the distance between

two matrices,

LFrobeniust =
√
Tr(Ht − St). (13)

The quasi-likelihood (QLIKE) measure is based on the negative of the log-likelihood of a multi-

variate normal,

LQLIKEt = log |Ht|+ Tr(H−1t St). (14)

The results reported in the table are obtained by summing LFrobeniust and LQLIKEt over the full

sample. Both functions measure “loss,” so that lower values are preferable.15 With the exception

of the QLIKE loss for the EWMAQ filter, the dynamic attenuation models systematically result

in lower losses than their constant counterparts. The HARQ-DRD model results in the lowest

in-sample loss overall. The next section investigates how the models compare on an out-of-sample

basis using these same statistical loss functions.

5.2. Out-of-sample forecasts

Our out-of-sample forecast comparisons are based on the one-day-ahead forecasts for the same

ten-dimensional covariance matrix and set of models analyzed above. All of the models are re-

estimated every day based on a rolling sample window of the past 1,000 days.16 The forecasts are

evaluated based on the same Frobenius distance and QLIKE loss defined in equations (13) and (14),

respectively, where the in-sample fitted value Ht are replaced with the forecast from the relevant

model.

Consistent with the in-sample results, the full out-of-sample results reported in the first two

columns of Table 3 show that our new dynamic attenuation models systematically improve on their

non-attenuated counterparts. If anything, the out-of-sample improvements are even bigger. This

holds true for both loss functions.17 To help understand where these forecast improvements are

coming from, the last four columns of the table split the sample into days with the 95% lowest

and 5% highest measurement error variances, respectively, as defined by the Frobenius norm of πt.

As the table shows, the dynamic attenuation models offers improvements in both situations, by

either increasing the responsiveness when the realized covariances are precisely estimated, or in-

creasing the attenuation when the estimates are poor. Interestingly, however, the largest percentage

improvements stem from the increased responsiveness when the estimates are precise.

15Despite the use of an ex-post estimate in place of the true covariance matrix, both of the loss functions provide
consistent model rankings, as further discussed in Patton (2011) and Laurent, Rombouts, and Violante (2013).

16Due to the difficulties in estimating the integrated quarticity matrix, the HARQ and HARQ-DRD models oc-
casionally produce negative definite forecasts. If this occurs, we apply an “insanity filter,” and replace the negative
definite covariance matrix forecast with the simple average realized covariance over the relevant estimation sample.
This only happens for one or two forecasts per series over the entire sample.

17Unreported results show that all of the models produce approximately unbiased forecasts, and that the apparent
improvements for the Q-models mainly stem from a reduction in the forecast error variance.
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Table 3: Out-of-Sample Forecast Results

Full Sample Lower 95% ||πt|| Upper 5% ||πt||
Frob. QLIKE Frob. QLIKE Frob. QLIKE

HAR 12.305 14.382 9.274 13.275 69.723 32.651
HARQ 12.107* 14.159* 9.161* 13.206* 69.703 32.190*
HAR-DRD 12.134 14.140 8.940 13.022 70.467 32.603
HARQ-DRD 11.976* 13.896* 8.888* 12.990* 70.056* 31.050*
EWMA 12.379 14.105 9.303 13.109 71.104 32.686
EWMAQ 12.178* 14.091* 9.172* 13.122 70.633* 32.643*
HEAVY 12.473 14.051 9.299 13.041 71.789 32.263
HEAYVQ 12.161* 14.004* 9.093* 13.050 70.170* 32.258

Note: The table reports out-of-sample forecast loss for the different models. The first two columns are based on
the full-sample. The last four columns split the sample into days when the measurement error variance is low, and
||πt|| is below the 95% quantile, and days when the estimation error is high, and ||πt|| is above the 5% quantile.
Entries in boldface indicate models that are part of the 90% model confidence set (MCS) for the relevant column.
Q-models that significantly improve on their non-Q benchmark are indicated by an asterisk.

In order to formally determine whether the quality of the forecasts differ significantly across the

different models, we apply the Model Confidence Set (MCS) of Hansen, Lunde, and Nason (2011).

This approach identifies the (sub)set of models that contains the best forecasting model with 90%

confidence. For each of the two loss functions and three sample-splits we determine the subset

of models that comprise the MCS (members of the set indicated in boldface). Additionally, we

separately compare each of the Q-models with their non-attenuated counterpart using the Diebold

and Mariano (2002) test (significance indicated by *).

Looking first at the pairwise comparisons, the Diebold and Mariano (2002) test confirms that

each of the Q-models significantly outperforms their respective benchmark over the full sample.

This is true irrespective of the loss function used in comparing the models. The Q-models generally

also beat their non-Q counterparts over each of the two split samples, but the differences are not

always significant. Jointly comparing all of the eight models, the HARQ-DRD model stands out as

always being included in the MCS, regardless of the loss function and/or sample-split underlying

the comparisons. The EWMAQ filter and HEAVYQ model are also both included the MCS for

the full sample based on either loss function. The HARQ model, on the other hand, appears to

work particularly well when the covariances are imprecisely estimated. Taken as whole, the results

clearly corroborate the superior statistical performance of the dynamic attenuation models.

The next section seeks to address whether these statistical improvements translate into economic

gains by evaluating the new dynamic attenuation models from a practical portfolio allocation

perspective.

6. Minimum variance and tracking error portfolios

Our economic evaluations of the different models are based on their use in the construction of

Global Minimum Variance (GMV) portfolios and portfolios designed to track the aggregate market.
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The GMV and tracking portfolio weights only depend on return covariances, and as such provide an

especially clean framework for assessing the merits of the different covariance forecasting models.

Most other portfolio allocation decisions depend on forecasts for the expected returns as well, and

these are notoriously difficult to accurately estimate. As reported by Jagannathan and Ma (2003)

and DeMiguel, Garlappi, Nogales, and Uppal (2009a), mean-variance optimized portfolios typically

do not perform as well as GMV portfolios in terms of out-of-sample Sharpe ratios, as the estimation

error in the expected returns tend to distort the positions. In order to most directly highlight the

advantages of the new dynamic attenuation models, we initially focus on a daily investment horizon.

Daily re-balancing schemes have also previously been employed in a number of studies concerned

with volatility-timing strategies (see, e.g., Fleming, Kirby, and Ostdiek, 2003; Fan, Li, and Yu,

2012, among others). In Section 8, we also consider weekly and monthly investment horizons.

6.1. Practical implementation and utility comparisons

Consider a risk-averse investor who allocates her funds into N risky assets based on the forecasts

for the daily covariance matrix of the returns on the assets, Ht|t−1. To minimize the conditional

volatility, the investor solves the global minimum variance portfolio problem,

wt = arg min w′tHt|t−1wt

s.t. w′tι = 1,
(15)

where ι is a N × 1 vector of ones, resulting in the optimal portfolio allocation vector,

wt =
H−1t|t−1ι

ι′H−1t|t−1ι
. (16)

In the sequel, we will denote the nth element of wt, corresponding to the allocation to the nth

asset, by w
(n)
t . Correspondingly, we will denote the return on the nth asset by r

(n)
t .

One potentially important feature of the dynamic attenuation models is that they result in

more stable covariance matrix forecasts, and therefore less turnover than conventional procedures.

Importantly, this should make trading strategies based on the new models cheaper to implement.

To evaluate this, we assume that the investor faces fixed transaction costs c proportional to the

turnover rates in her portfolios. Specifically, following standard arguments (see, e.g., the discussion

in Han, 2006; Liu, 2009; DeMiguel, Nogales, and Uppal, 2014), the total portfolio turnover from

day t to day t+ 1 is readily measured by,

TOt =
N∑
n=1

∣∣∣∣∣w(n)
t+1 − w

(n)
t

1 + r
(n)
t

1 + w′trt

∣∣∣∣∣ . (17)

With proportional transaction costs cTOt, the portfolio excess return net of transaction cost is
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therefore,

rpt = w′trt − cTOt. (18)

In the results below, we consider values of c ranging from 0 to 2%, in line with values for this

parameter employed in earlier studies, see Fleming et al. (2003) and Brown and Smith (2011) for

example.

The more stable and less susceptible to estimation error covariance matrix forecasts from the

dynamic attenuation models should also result in less extreme portfolio allocations. To assess this,

we also report the portfolio concentrations,

COt =

(
N∑
n=1

w
(n)2
t

)1/2

, (19)

and the total portfolio short positions,

SPt =

N∑
n=1

w
(n)
t I{w(n)

t <0}. (20)

Again, less extreme and fewer short positions are likely to facilitate the practical implementation

of the portfolios, and help further mitigate transaction costs in situations when the costs are not

simply proportional to the turnover.

In addition to the GMV portfolios define in (16), we also consider portfolios designed to track

the SPY market portfolio. Many institutional investors are evaluated based on their performance

relative to a benchmark, thus the ability to closely track a particular portfolio is often of great

import. Our construction of the tracking portfolios is based on minimizing the variance of the

tracking error, or equivalently the GMV for the returns on each of the assets in excess of the SPY

return. Since the assets correlate to varying degrees with the market, the covariances among the

returns net of the market return are typically more dispersed than the covariances of the returns

themselves. As such, this renders the construction of the minimum tracking error portfolios more

challenging and potentially also more prone to extreme positions than the GMV portfolios.

To evaluate the economic significance of the different forecasting models, we consider the utility-

based framework of Fleming, Kirby, and Ostdiek (2001, 2003). In particular, assuming that the

investor has quadratic utility with risk aversion γ, the realized daily utility generated by the port-

folio based on the covariance forecasts from model k, may be expressed as

U(rkpt, γ) = (1 + rkpt)−
γ

2(1 + γ)
(1 + rkpt)

2. (21)
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The economic value of the different models may therefore be determined by solving for ∆γ in

T∑
t=1

U(rkpt, γ) =
T∑
t=1

U(rlpt −∆γ , γ), (22)

where ∆γ can be interpreted as the return an investor with risk aversion γ would be willing to

sacrifice to switch from using model k to using model l. In order to determine whether the ∆γ are

significantly different from zero we use the Reality Check of White (2000), based on the stationary

bootstrap of Politis and Romano (1994), with 999 bootstrap samples and an average block length

of 22 days.

7. Dynamic attenuation models in action

In parallel to the statistical model comparisons in Section 5.2, in our economic evaluations we

rely on a one-day-ahead out-of-sample forecasting scheme, in which we re-estimate all of the models

based on a rolling estimation window of 1,000 days, re-balancing the resulting portfolios daily. In

addition to the basic features of the daily GMV and tracking error portfolios, we are particularly

interested in whether accurate and stable covariance matrix forecasts from the dynamic attenuation

models manifest in systematically lower portfolio turnover and reduced transaction costs. We

begin by considering the results from an empirically realistic simulation study explicitly designed

to highlight these features. We then present our main empirical findings.

7.1. Fundamental and spurious turnover

The statistically more accurate covariance forecasts from the dynamic attenuation models

should result in portfolio allocations closer to the optimal weights implied by the true covari-

ance matrix. The more stable forecasts from the attenuation models should also result in more

stable portfolio allocations and a reduction in turnover. Comparing the estimated GMV portfolios

with the optimal GMV portfolio based on the true covariance matrix within a controlled simulation

setting, allow us to directly asses these conjectures and dissect the workings of the models.

To keep the simulations manageable, we restrict the analysis to N = 5 and focus on the easy-to-

implement vech HAR and HARQ models. We begin by simulating 2,000 days of one-second returns;

a more detailed description of the simulation setup is given in Appendix B. We then aggregate the

one-second returns to 1, 5 and 15-minute returns (M = 390, 78, 26), and estimate the models on

rolling windows of the corresponding 1,000 daily MK estimates, resulting in a total of 1,000 out-of-

sample portfolio decisions for each of the different models and procedures. As a baseline, we also

consider a HAR model for the true population covariances Σt, so that there are no measurement

errors, only forecast errors. We will refer to this model as HAR∞. We report the portfolio turnover

defined in (17), as well as the portfolio standard deviation based on the true covariances,
√
ŵtΣtŵ′t.

To asses how far the estimated weights are from the “fundamental” weights, we also report the
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Table 4: Simulation Results: Fundamental and Spurious Turnover

M ∞ 390 78 26

Optimal HAR HAR HARQ HAR HARQ HAR HARQ

Turnover 0.2206 0.1878 0.2379 0.2071 0.2830 0.2257 0.2999 0.2360
StDev 0.1650 0.1829 0.1844 0.1837 0.1879 0.1853 0.1920 0.1887
Distance to Optimal 0.0000 0.0446 0.0471 0.0457 0.0531 0.0488 0.0601 0.0457
Distance to HAR∞ 0.0446 0.0000 0.0104 0.0062 0.0198 0.0102 0.0231 0.0141

Note: The table reports the results from a simulation study pertaining to the out-of-sample GMV portfolios. The
covariance matrix forecasts are based on the HAR and HARQ models and the MK estimates with M intraday
observations. The M = ∞ column shows the results for the HAR model applied to population covariance matrix
as well as the optimal results based on ex-post estimates. Turnover is defined in equation (17). StDev refers to the
portfolio standard deviation based on the population covariance. Distance reports the distance, as defined in the
main text, between the portfolio weights and the weights based on the true covariance matrix Σt, or the weights
based on the HAR∞ model.

distance to the weights based on the true covariances,

√∑
n(ŵ

(n)
t − w

(n)
t )2. Finally, we report the

distance of the portfolio weights to the weights implied by the HAR∞ model based on the true

integrated covariances.

Table 4 details the findings from the simulations. To begin, note that even if the true covariances

are observed, there are still non-trivial forecast errors, as evidenced by the results for the HAR∞

model. This provides a useful benchmark for the other models. Comparing the results for the HAR

models across the different sampling frequencies clearly shows the detrimental impact of unreliable

realized covariances, as manifest in higher turnover, portfolio standard deviation, and distance to

the true Σt weights for lower values of M and increasingly inaccurate realized covariance matrices.

By contrast, the performance of the HARQ model is much more stable across the different values

of M , and also closer to the HAR∞ benchmark model. Compared to the HAR model, the HARQ

model reduces the spurious turnover induced by estimation error by more than half when M = 26,

and even more for M = 78 and M = 390.18 In addition to the reduced excess turnover, the HARQ

portfolios also achieve lower ex-post standard deviations than the HAR portfolios, and portfolio

weights that are systematically closer to the true Σt weights.

7.2. Empirical intuition

Before presenting our main empirical results, it is instructive to visualize the key features of

the dynamic attenuation models behind our findings. To do so, we consider a simple illustrative

example based on just two stocks, Boeing (BA) and JP Morgan (JPM), over the two-week period

from August 11-25, 2002. Following the simulations discussed in the previous section, we focus on

the vech HAR and HARQ models, and the use of these models in the construction of daily GMV

portfolios.

18The greater improvements relative to the HAR model for higher M stem from the fact that the degree of
measurement error also needs to be estimated, which similarly becomes more accurate for higher values of M .
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Figure 1: Dynamic Shrinkage
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Note: The top row of panels shows the estimated (co)variance for BA and JPM, along with the
forecasted values from the HAR and HARQ models. The bottom left panel shows the GMV weights
for BA based on the HAR and HARQ models, the middle panel shows the turnover, and the right
panel the cumulative portfolio return net of transaction costs.

The top row in Figure 1 shows the ex-post estimated realized (co)variances and corresponding

95% confidence bounds, along with the one-day-ahead HAR and HARQ model forecasts. Evidently,

the HARQ forecasts respond less aggressively to the lagged (co)variances than the HAR-based

forecasts when the measurement errors are large. Since large uncertainty is often accompanied by

transitory spikes in volatility, the HARQ-based forecasts appear more stable over time. Importantly,

this translates into more stable portfolio allocations, as evidenced by the first two panels in the

bottom row, which display the portfolio weight for BA and the portfolio turnover. Although the

allocations for both of the models average around 70% to BA, the variability around this weight

is obviously lower for the HARQ model. This in turn results in uniformly lower turnover for the

HARQ model, and a reduction in transaction costs, as seen in the bottom right panel, which

displays the cumulative net return over the two-week period based on transaction costs c = 2%.

While these two-week cumulative differences may appear numerically small, the results in the next

section show that they add up to substantial improvements on an annual basis.
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Table 5: Unconstrained Global Minimum Variance Portfolio Allocations

HAR HARQ HAR-

DRD

HARQ-

DRD

EWMA EWMAQ HEAVY HEAVYQ

TO 0.522 0.385 0.391 0.339 0.135 0.096 0.172 0.122
CO 0.513 0.517 0.487 0.497 0.505 0.506 0.497 0.497
SP -0.105 -0.109 -0.070 -0.082 -0.095 -0.096 -0.089 -0.089
Mean Ret 3.079 3.156 3.612 4.371 3.455 3.867 3.847 4.124
StDev Ret 14.912 14.781 15.016 14.566 14.972 14.637 14.922 14.614

c = 0% Sharpe 0.206 0.214 0.241 0.300 0.231 0.264 0.258 0.282
∆1 009.7 082.6* 046.2 032.2
∆10 027.3 142.6* 090.9* 073.3*

c = 1% Sharpe 0.118 0.148 0.175 0.241 0.208 0.248 0.229 0.261
∆1 044.3* 095.6* 055.9* 044.9
∆10 061.9* 155.6* 100.7* 086.0*

c = 2% Sharpe 0.030 0.082 0.109 0.183 0.185 0.231 0.200 0.240
∆1 078.8* 108.6* 065.7* 057.6*
∆10 096.4* 168.7* 110.4* 098.7*

Note: The table shows the results for the global minimum variance portfolio (GMV). We report turnover (TO),
portfolio concentration (CO), and short positions (SP), as well as the average annualized return and standard
deviation. Standard deviations in bold indicate the models that belong to the 90% model confidence set (MCS) of
lowest ex-post daily volatility. The table also reports the economic gains of switching from the conventional model
to the Q-model in annual basis points, ∆γ , for various transaction cost levels c and risk aversion coefficients γ.
Asterisks denote ∆γ significantly different from zero at the 5% level.

Table 6: Unconstrained Minimum Tracking Error Portfolio Allocations

HAR HARQ HAR-

DRD

HARQ-

DRD

EWMA EWMAQ HEAVY HEAVYQ

TO 0.173 0.102 0.134 0.114 0.063 0.045 0.080 0.057
CO 0.339 0.338 0.339 0.342 0.340 0.340 0.338 0.338
SP -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
StDev TE 6.618 6.489 6.610 6.521 6.636 6.513 6.637 6.506

c = 0% ∆1 29.1 27.8 33.6 32.5
∆10 39.1 35.0* 43.4 42.8

c = 1% ∆1 46.9* 42.8* 38.2 38.5
∆10 56.9* 50.0* 47.9* 48.8

c = 2% ∆1 64.6* 47.8* 42.7* 44.5*
∆10 74.6* 55.0* 52.5* 54.8*

Note: The table shows the results for the the minimum tracking error portfolio. We report turnover (TO), portfolio
concentration (CO), and short positions (SP), as well as the standard deviation of the tracking error (TE). Standard
deviations in bold indicate the models that belong to the 90% model confidence set (MCS) of lowest ex-post daily
volatility. The table also reports the economic gains of switching from the conventional model to the Q-model in
annual basis points, ∆γ , for various transaction cost levels c and risk aversion coefficients γ. Asterisks denote ∆γ

significantly different from zero at the 5% level.

7.3. Dynamically attenuated portfolio allocations

Our main empirical results are reported in Tables 5 and 6. The first table gives the results

related to the GMV portfolios, while the second reports the results for the portfolios designed

to track the market. Looking first at the summary numbers in the top panel of Table 5, the

HARQ-DRD model yields the lowest portfolio variance overall, and using the Model Confidence
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Set (MCS) approach of Hansen, Lunde, and Nason (2011), we find the ex-post portfolio variances

for the EWMAQ filter and the HEAVYQ model are not significantly larger. All other models

generate significantly larger portfolio variances. The variation in the turnover observed across the

different classes of models is quite large. Interestingly, however, even in the absence of transaction

costs the models with the highest turnover do not result in the highest Sharpe ratios and/or lowest

portfolio variance. On the contrary, all of the dynamic attenuation models result in lower turnover

than their conventional benchmarks, while attaining a reduction in variance, an increase in average

returns, and a higher Sharpe ratio.19

The bottom panel of Table 5 shows the economic gains of switching from each of the conventional

models to their dynamic attenuation counterparts. In the absence of transaction costs, or c = 0%,

the gains range between 10 and 140 basis points annually, depending on the model and coefficient

of risk aversion. Since all of the Q-models result in lower turnover, these gains rise to 60 to 170

basis points when the transaction costs rise from c = 0% to c = 2%.20

Turning to Table 6 and the results for the minimum tracking error portfolios tell a similar

story. The standard deviation of the tracking error is significantly reduced by the Q-models, which

jointly comprise the model confidence set of minimum TE models. The percentage reductions

in turnover also closely mirror those of the GMV portfolios. Meanwhile, as the turnover for the

tracking portfolios tend to be somewhat lower than for the GMV portfolios, the economic gains

are similarly reduced. Nonetheless, the gains are consistently positive ranging from between 30 to

70 basis points annually. Again, these are non-trivial improvements from a practical investment

perspective.

As indicated by the summary statistics in the top part of Table 5, many of the portfolios in

Table 5, and the GMV portfolios in particular, involve negative or short positions. Short positions

are generally more costly to implement than long positions. Many financial institutions are also

explicitly prevented from holding short positions. Hence, in an effort to investigate the sensitivity of

our results to the imposition of no-short-sale constraints, we repeat the previous analysis by adding

the constraint that w
(n)
t ≥ 0,∀n to the optimization problem in (15). While this constrained

optimization problem no longer allows for an explicit closed form solution to the optimal portfolio

weights, the constrained minimum variance portfolios may easily be solved for numerically using

standard quadratic programming tools (see, e.g., Lawrence and Tits, 2001).

The results pertaining to these constrained minimum variance portfolios not allowing for short-

sales are reported in Table 7.21 Interestingly, and consistent with the prior empirical evidence in

19This finding is in line with the low volatility anomaly documented in Chan, Karceski, and Lakonishok (1999),
Jagannathan and Ma (2003) and Baker, Bradley, and Wurgler (2011), among others.

20The turnover is reduced by a minimum of 14% for the HARQ-DRD model up to almost 30% for the HEAVYQ
model.

21Since the unconstrained tracking portfolios involve much fewer short positions, the results for the constrained
tracking portfolios are much closer to the results in Table 5, and we purposely defer these results to Appendix D to
conserve space.
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Table 7: No Short-Sale Minimum Variance Portfolios

HAR HARQ HAR-
DRD

HARQ-
DRD

EWMA EWMAQ HEAVY HEAVYQ

TO 0.390 0.284 0.322 0.280 0.101 0.071 0.131 0.093
CO 0.477 0.479 0.466 0.471 0.475 0.475 0.469 0.469
Mean Ret 3.755 3.927 3.922 4.633 3.925 4.355 4.229 4.668
StDev Ret 15.365 14.977 15.296 14.855 15.260 14.821 15.249 14.784

c = 0% Sharpe 0.244 0.262 0.256 0.312 0.257 0.294 0.277 0.316
∆1 023.1 077.8* 062.3 064.7
∆10 076.1 137.6* 114.7* 120.0*

c = 1% Sharpe 0.180 0.214 0.203 0.264 0.241 0.282 0.256 0.300
∆1 049.7 088.4 057.0* 060.6
∆10 102.8* 148.3* 116.4* 123.6*

c = 2% Sharpe 0.116 0.167 0.150 0.217 0.224 0.270 0.234 0.284
∆1 076.4* 099.0* 064.3* 070.3*
∆10 129.4* 158.9* 123.9* 133.2*

Note: The table reports the results for minimum variance portfolios that do not allow for short positions. The
table shows the portfolio turnover (TO), portfolio concentration (CO), together with the average annualized return
and standard deviation. Standard deviations in bold indicate the models that belong to the 90% model confidence
set (MCS) of lowest ex-post daily volatility. The table also reports the economic gains of switching from the
conventional model to the Q-model in annual basis points, ∆γ , for various transaction cost levels c and risk
aversion coefficients γ. Asterisks denote ∆γ significantly different from zero at the 5% level.

Jagannathan and Ma (2003), the no short-sale restriction generally leads to higher ex-post Sharpe

ratios than for the unconstrained GMV portfolios.22 The no-short-sale constraint also systemat-

ically reduces turnover. As such, the economic gains from the dynamic attenuation models are

slightly lower compared to the gains for the unconstrained GMV portfolios in Table 5. Nonethe-

less, the benefits of switching to the new Q-models remain economically large and statistically

significant, ranging up to nearly 160 basis points per year in some situations.

8. Longer horizons and alternative procedures

Dynamic portfolio decisions naturally present a tradeoff between the horizon over which the

pertinent risks are assumed to be constant versus the accuracy with which the risks can be measured

and the costs of implementing the investment decisions. In the results reported above, we relied

on a daily horizon for both estimating the new models and re-balancing the portfolios. This

section presents additional results pertaining to longer weekly and monthly investment horizons.

In addition to the use of coarser re-balancing schemes, alternative shrinkage type procedures have

previously been advocated in the literature to help mitigate the impact of estimation errors and

excessive turnover. Below we also compare and contrast the new dynamic attenuation procedures

developed here with some of these alternative shrinkage type procedures, in which the covariance

22As discussed by Jagannathan and Ma (2003), restricting the portfolio weights to be non-negative may be seen as
a way to limit the impact of estimation errors, akin to the main idea behind the new dynamic attenuation models,
and the more traditional shrinkage type procedures discussed further below.
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Table 8: Longer Horizon Portfolio Allocations

Weekly Monthly
HAR-DRD HARQ-DRD HAR-DRD HARQ-DRD

TO 0.112 0.116 0.031 0.031
CO 0.487 0.497 0.488 0.497
SP -0.070 -0.082 -0.069 -0.081
Mean Ret 3.122 3.258 3.244 3.364
StDev Ret 15.366 14.734 15.856 15.540

c = 0% Sharpe 0.203 0.221 0.205 0.217
∆1 023.1 016.9
∆10 108.9* 061.6*

c = 1% Sharpe 0.185 0.201 0.200 0.211
∆1 022.0 016.8
∆10 107.8* 061.5*

c = 2% Sharpe 0.166 0.181 0.195 0.206
∆1 020.9 016.8
∆10 106.6* 061.5*

Note: The table reports the long-horizon GMV portfolio results. The portfolios are re-balanced weekly
or monthly based on the relevant weekly and monthly covariance matrix forecasts. Each panel shows
turnover (TO), portfolio concentration (CO), and short positions (SP). The top panel also shows
the average annualized return and standard deviation, while the bottom panel reports the standard
deviation of the tracking error (TE). The table also reports the economic gains of switching from the
standard HAR-DRD model to the HARQ-DRD model in annual basis points, ∆γ , for various transaction
cost levels c and risk aversion coefficients γ. Asterisks denote ∆γ significantly different from zero at
the 5% level.

matrix forecasts are shrunk toward some pre-determined target. We focus our comparisons on the

HARQ-DRD model, which performed the best in the daily results discussed above.

8.1. Weekly and monthly rebalancing

The daily horizon underlying the results in the previous section might be expected to favor the

new dynamic attenuation models, compared to the results obtained over longer weekly and monthly

horizons, where the estimation errors in the realized covariances play a less important role. On the

other hand, daily portfolio construction likely results in higher transaction costs than less frequent

re-balancing. Correspondingly, some investors might be reluctant to change their positions on a

daily basis, preferring instead a less frequent weekly or monthly re-balancing scheme. To investigate

the robustness of our findings to the use of longer holding periods, we present the results in which

we rely on the HAR(Q)-DRD models implemented at weekly and monthly frequencies.

To implement the models over these longer forecast horizons, we replace the one-day-ahead co-

variance matrix with the realized covariance matrix over the relevant horizon of interest.23 Specif-

23In the forecasting literature, this is commonly referred to as “direct” as opposed to “iterated” forecasting; see,
e.g., Marcellino, Stock, and Watson (2006). In theory, if the daily model is correctly specified the iterated forecasts
constructed from that model should be the most efficient. However, there is ample empirical evidence that even
minor model mis-specifications tend to get amplified in iterated volatility forecasts, and as a result the direct forecast
procedures often work better in practice; see, e.g., Andersen, Bollerslev, Diebold, and Labys (2003) and Sizova (2011).
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Table 9: Daily versus Weekly and Monthly Portfolio Allocations

Weekly HARQ-DRD Monthly HARQ-DRD
HAR-DRD HARQ-DRD HAR-DRD HARQ-DRD

c=0% ∆1 031.2 113.7* 092.4* 174.9
∆10 00-6.6 136.0* 152.7* 295.4*

c=1% ∆1 0-38.1 057.5* 001.7 097.3*
∆10 0-75.9* 079.7* 061.9* 217.7*

c=2% ∆1 -107.3* 001.3 0-88.9* 061.1*
∆10 -145.2* 023.5 0-28.8 140.0*

Note: The table reports the economic gains of switching from weekly or monthly re-balanced GMV
portfolios based on HARQ-DRD forecasts to a daily strategy based on HAR(Q)-DRD forecasts in
annual basis points, ∆γ , for various transaction cost levels c and risk aversion coefficients γ. Asterisks
denote ∆γ significantly different from zero at the 5% level.

ically, for the HAR formulation in equation (6),

st|t+h = θ0 + θ1st−1 + θ2st−5|t−1 + θ3st−22|t−1 + εt, (23)

where h = 4 and 21 for the weekly and monthly forecasts, respectively. We continue to rely

on (overlapping) daily data in actually estimating the models. However, when forecasting the

weekly (monthly) covariances, the weekly (monthly) lag tend to receive a relatively larger weight

compared to its weight in the daily forecasting model. Correspondingly, we explicitly tailor the

HARQ formulations to the specific forecast horizons, and only attenuate the relevant autoregressive

parameters.24 That is, for the weekly HARQ model we keep θ1 and θ3 constant and replace θ2

with θ2,t = (θ2ι + θ2Qπt−1|t−5), where πt−1|t−h ≡ ( 1
h

∑h
i=1 πt−i)

1/2, while for the monthly model

we keep θ1 and θ2 constant and replace θ3 with θ3,t = (θ3ι + θ3Qπt−1|t−22). In parallel to the

previous analysis, we assume that the investor relies on the resulting weekly Σt|t+4 and monthly

Σt|t+21 covariance forecasts to construct GMV portfolios, re-balancing her positions at a weekly or

monthly frequency, respectively.

The results for these longer horizon forecasting models and corresponding GMV portfolios av-

eraged across all possible weekly (i.e., Monday-to-Monday, Tuesday-to-Tuesday, etc.) and monthly

(i.e., 1st day-of-the-month, 2nd day-of-the-month, etc.) horizons are reported in Table 8. As ex-

pected, the estimated economic gains for the HARQ-DRD models relative to their conventional

counterparts tend to be somewhat lower at the weekly level compared to the daily results reported

in Table 5, and lower still at the monthly level. Moreover, turnover and portfolio concentrations

are slightly higher for the “Q” models relative to their conventional counterparts. However, all of

the ∆γs remain positive and statistically significant for all of the more risk averse cases, though

not for the less risk averse cases. This again indicates the non-trivial benefits from using to the

new dynamic attenuation models, even for longer holding periods.

To help illuminate the tradeoffs between the use of faster, but more costly-to-implement daily

24This also mirrors the simple univariate approach adopted in Bollerslev, Patton, and Quaedvlieg (2016).
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models, versus slower and cheaper-to-implement weekly and monthly models, Table 9 reports the

estimated economic gains from shifting from the use of a daily HAR(Q)-DRD model to a weekly or

monthly HARQ-DRD model. A positive ∆γ in this table represents evidence in favor of daily mod-

eling and re-balancing, while a negative ∆γ supports the corresponding weekly or monthly model

and less frequent re-balancing. Looking first at the results for the benchmark daily HAR-DRD

portfolios, we see that in the absence of transaction costs, daily re-balancing generally improves on

the weekly and monthly re-balanced HARQ-DRD portfolios, as reflected by the fact that all but one

of the ∆γs for c = 0% are positive. However, the benefits of the daily HAR-DRD model over the

weekly HARQ-DRD model are systematically wiped out when transaction costs are incorporated

into the comparisons. This supports the common choice of coarser weekly or monthly re-balancing

schemes as a simple way to help mitigate trading costs, when using simple forecasting models. In

sharp contrast to this, all of the ∆γs for the our proposed daily HARQ-DRD model are positive,

and all but two are statistically significant. This shows that by accounting for the time-varying

measurement errors in the daily realized covariance estimates and obtaining more disciplined fore-

casts, the new dynamic attenuation models make daily re-balancing economically beneficial, even

in the presence of transaction costs.

8.2. Alternative ex-post shrinkage procedures

The dynamic attenuation models endogenously shrink the influence of past realized covariances

based on dynamically varying weights determined by an estimate of the reliability of the realized

covariances. Alternative exogenous shrinkage type procedures, in which the forecasts themselves

are shrunk to some target, have previously been proposed in the literature for mitigating the impact

of estimation errors in the context of portfolio construction, notably the work by (Ledoit and Wolf,

2003, 2004a,b). This section compares the effectiveness of these shrinkage procedures to the new

dynamic attenuation models in the construction of daily GMV portfolios, again focussing on the

HARQ-DRD model.

Our implementation of the shrinkage procedures, is based on the traditional lower frequency

estimators and theoretical set-up of Ledoit and Wolf (2003), as recently adapted to the high-

frequency setting by Hautsch, Kyj, and Malec (2015). Specifically,

Ht|t−1 = αt−1Ft−1 + (1− αt−1)St−1, (24)

where αt−1 and Ft−1 denote the shrinkage intensity and shrinkage target, respectively. For αt−1 ≡ 0

this obviously reduces to a random walk forecast based on the realized covariance matrix St−1, while

for αt−1 ≡ 1 the covariance matrix forecast is identically equal to the target matrix Ft−1. In the

results reported on below, we rely on the estimate for the “optimal” shrinkage intensity formally

derived by Ledoit and Wolf (2003) to determine the amount of shrinkage away from the random

walk forecast. Several different choices have been proposed for the shrinkage target Ft. We consider

three.
26



Table 10: Shrinkage-based Portfolio Allocations

HARQ-
DRD

RW Shrunk RW 1/N

Factor Equicorr Identity

TO 0.339 2.506 1.383 1.245 0.892 0.009
CO 0.497 0.867 0.620 0.596 0.453 0.316
SP -0.082 -0.547 -0.175 -0.136 -0.095 0.000
Mean Ret 4.371 3.649 4.497 4.600 1.437 1.044
StDev Ret 14.566 18.861 16.277 16.169 16.056 18.579

c = 0% Sharpe 0.300 0.193 0.276 0.284 0.090 0.056
∆1 144.0* 013.8* 001.7 316.2* 399.2*
∆10 790.1* 251.6* 223.8* 521.5* 997.1*

c = 1% Sharpe 0.241 -0.141 0.062 0.090 -0.050 0.055
∆1 690.0* 276.8* 230.1* 455.5* 316.2*
∆10 1334.5* 514.2* 451.9* 660.6* 914.1*

c = 2% Sharpe 0.183 -0.476 -0.152 -0.104 -0.190 0.054
∆1 1236.1* 539.7* 458.6* 594.7* 233.1
∆10 1879.1* 776.7* 680.0* 799.7* 831.1*

Note: The table reports the results for different shrinkage procedures. The top panel shows turnover (TO),
portfolio concentration (CO), short positions (SP), as well as the average annualized return and volatility. The
bottom panel shows the economic gains of switching from the different alternatives to the HARQ-DRD-based
forecasts in annual basis points, ∆γ , for various transaction cost levels c and risk aversion coefficients γ. Asterisks
denote ∆γ significantly different from zero at the 5% level.

First, motivated by the single-factor model advocated in Ledoit and Wolf (2003), we consider

a high-frequency-based realized equivalent. In particular, we equate the diagonal elements of Ft

to the realized variances for each of the stocks, while the off-diagonal elements are set equal to

S
(mkt)
t btb

′
t, where S

(mkt)
t and bt denote the realized variance of the market and the realized market

betas for each of the stocks, respectively. This one-factor structure reduces the correlation among

the stocks to their exposure to the common market factor. Second, following Voev (2008) among

others, we rely on an equicorrelation structure based on the decomposition in equation (8), in

which we restrict the correlations among all of the stocks to be the same.25 That is we set the

target matrix to DtR̄tDt, where the off-diagonal elements in the R̄t matrix is fixed at the average

correlation among all of the stocks ρ̄t = 1
N(N−1)/2

∑N−1
i=1

∑N
j=i+1 ρ̂ij,t. Finally, following Ledoit and

Wolf (2004b), we consider the identity matrix as an all-purpose shrinkage target. For the target

intensity αt−1 ≡ 1 this reduces to an equal weighted portfolio of all the stocks. As shown by

DeMiguel, Garlappi, and Uppal (2009b), this 1/N portfolio is often difficult to beat, especially in

large dimensions, and we include it as a final competitor.

The results from using these different shrinkage-based forecasts in the construction of daily GMV

portfolios are reported in Table 10.26 As a reference, the first column reports the results based on

the HARQ-DRD model, as previously reported in Table 5. The second column, labeled RW for

random walk, reports the results corresponding to αt−1 ≡ 0, followed by the results for the various

25This same idea also underlies the DECO model of Engle and Kelly (2012).
26The results for the minimum tracking error portfolios are again deferred to Appendix D.
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shrinkage targets and the equally-weighted 1/N portfolio. Comparing the results for the different

shrinkage portfolios, to the portfolios based on the random walk forecasts, reveals a significant

reduction in both the turnover and the portfolio standard deviation. As such, this confirms the

idea that the use of the historical realized covariance matrix leads to poor allocations, and that

some regularization in the form of shrinkage generally improves on the portfolio performance.27

Abstracting from transaction costs, the Sharpe ratios for the factor- and equicorrelation-based

shrinkage portfolios are also fairly close to the Sharpe ratio for the HARQ-DRD-based portfolios.

However, the economic gains of shifting from any one of the shrinkage procedures to the HARQ-

DRD model, as measured by the ∆γs, are always positive, and statistically significant in all but two

cases. Moreover, including transaction cost into the comparisons results in massive economic gains

of up to eight percent per year relative to the more traditional shrinkage-based portfolios. These

results clearly underscore the advantages of dynamically incorporating the effect of measurement

errors in the high-frequency-based realized covariances into the construction of covariance matrix

forecasts and financial decisions, rather than simply shrink the covariance forecasts underlying the

financial decisions to some naive target.

9. Conclusion

Fusing ideas from the econometrics literature on errors-in-variables with more recent results

from the finance literature on the use of high-frequency intraday data and the estimation of realized

risk measures, we provide a new and broadly applicable framework for more accurately forecasting

financial risks. The basic idea behind the new approach is simple and intuitive: when current risks

are measured with a high (low) degree of uncertainty, they should receive relatively low (high)

weights in forecasts of future risks. Adapting various state-of-the-art realized covariance-based

models to accommodate this feature and dynamically attenuate the influence of the past covariances

not only results in on average more accurate, but importantly also more stable and from a practical

perspective cheaper to implement, covariance forecasts. These improvements in turn translate into

sizeable economic gains for a risk-averse investor seeking to minimize the variance of her equity

portfolio or track the aggregate market.

The practical implementation of a host of other key concepts in risk management and asset

pricing finance similarly depend on the ability to accurately forecast common risks as measured by

the covariances of individual asset returns, or the covariances with appropriately defined benchmark

portfolios. The new approach and simple-to-implement covariance forecasting models developed

here thus holds the promise of empirically more accurate pricing models and improved financial

decision making generally.

27The poor performance of the 1/N portfolio reflects the fact that with “only” ten stocks, it is still possible to
forecast the covariance matrix sufficiently precisely to beat a completely uninformative forecast.
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Appendix A. Multivariate Kernel theory and estimation

Let the N -dimensional vector of discrete-time returns for the ith intraday time-interval on

day t be denoted by ri,t ≡ Pt−1+i∆ − Pt−1+(i−1)∆. Further assume that we observe M = 1/∆

synchronized intra-daily returns for each of the N assets. The Multivariate Kernel (MK) estimator

of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011) (henceforth BHLS) is then defined as

MKt =
M∑

h=−M
k(h/H)Γh, (A.1)

where Γh =
∑M

i=h+1 ri,tr
′
i−h,t, Γh = Γ ′−h, and k(.) denotes an appropriate kernel function with

bandwidth H. In the implementation here we use the Parzen kernel. The asymptotic theory of

the MK further requires “jittering,” as discussed in more detail in the BHLS paper. According to

Theorem 2 of BHLS, it then follows that

M1/5(vech MKt − vech Σt)→Ls MN(ωt, Πt), (A.2)

where Πt = 3.777IQt, and IQt denotes the Integrated Quarticity. The bias term ωt is negligibly,

and we ignore it in our implementation. We estimate Πt based on pre-averaged data using the

estimator of Barndorff-Nielsen and Shephard (2004). Specifically, defining xi,t ≡ vech(r̄i,tr̄
′
i,t),

where r̄i,t refers to the pre-averaged data,

ÎQt = M
M−H∑
i=1

xi,tx
′
i,t −

M

2

M−H−1∑
j=1

(xi,tx
′
i+1,t + xi+1,t, x

′
i,t). (A.3)

defines our consistent estimator for IQt.

Appendix B. Simulation design

In order to simulate empirically realistic sample paths of daily varying covariances, we draw

from the empirical distribution of our data. To do so, we randomly select five of the ten stocks

to obtain an MK-based covariance sample path of 2,000 consecutive days. For each day within

that sample, we then simulate one-second returns with integrated covariance matrix equal to the

MK estimate for that day. We do not allow for within day stochastic variation in the covariances,

but we do include a diurnal pattern. The intraday volatility pattern is modeled by means of a

diurnal U-shape function, σd(u), by simulating form the following process using a standard Euler

33



discretization scheme,

dP (u) = S(u)1/2dW (u), (B.1)

S(u) = σd(u)S (B.2)

σd(u) = C +Ae−au +Be−b(1−u), (B.3)

where, following Andersen, Dobrev, and Schaumburg (2012), we set the periodicity parameters to

A = 0.75, B = 0.25, C = 0.88929198, and a = b = 10, respectively.

Appendix C. Composite likelihood estimators

The use of composite likelihoods in the estimation of large dimensional volatility models was

recently popularized by Pakel, Shephard, Sheppard, and Engle (2014). To define the approach, let

Vt denote the N×N conditional covariance matrix for the N×1 vector of returns rt. The standard

quasi-likelihood obtained under the auxiliary assumption of conditional normality then takes the

form,

logL(ψ; r) =

T∑
t=1

`(ψ; rt), (C.1)

where,

`(ψ; rt) = −1

2
log |Vt| −

1

2
r′tV

−1
t rt. (C.2)

If N is of large dimension, this can be difficult and time-consuming to implement and also result

in numerically unstable V −1t matrices. The composite likelihood approach sidestep these problems

by instead approximating the likelihood with a number of lower dimensional marginal densities, so

that the dimension of the problem is reduced from N to 2. In the implementation adopted here,

we rely on contiguous pairs, Y1t = (r1,t, r2,t), Y2t = (r2,t, r3,t),..., Yd−1,t = (rd−1,t, rd,t), resulting in

the composite likelihood,

CL(ψ) =
1

T (N − 1)

N−1∑
j=1

T∑
t=1

`jt(ψ;Yjt). (C.3)

Maximizing this much easier-to-implement CL(ψ) function yields a consistent and asymptotically

normal estimate for ψ.
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Appendix D. Minimum tracking error portfolios

Table D.1: No Short-Sale Minimum Tracking Error Portfolios

HAR HARQ HAR-
DRD

HARQ-
DRD

EWMA EWMAQ HEAVY HEAVYQ

TO 0.172 0.102 0.134 0.114 0.063 0.045 0.080 0.056
CO 0.339 0.337 0.339 0.342 0.340 0.340 0.338 0.338
StDev TE 6.610 6.450 6.609 6.489 6.630 6.470 6.630 6.463

c = 0% ∆1 27.8 38.0 31.7 39.0
∆10 37.2 45.1* 41.1 47.0

c = 1% ∆1 45.4* 43.0* 36.3 36.8
∆10 54.9* 51.0* 45.7 46.7*

c = 2% ∆1 63.1* 48.0* 48.0* 42.8*
∆10 72.6* 55.1* 53.0* 52.7*

Note: The table reports the results for minimum tracking error portfolios that do not allow for short positions. The
top panel shows the portfolio turnover (TO), portfolio concentration (CO), and annualized tracking error volatility.
Standard deviations in bold indicate models that belong to the 90% model confidence set (MCS) of lowest ex-post
daily volatility. The bottom panel reports the economic gains of switching from the conventional model to the
Q-model in annual basis points, ∆γ , for various transaction cost levels c and risk aversion coefficients γ. Asterisks
denote ∆γ significantly different from zero at the 5% level.
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Table D.2: Longer Horizon Tracking Portfolios

Weekly Monthly
HAR-DRD HARQ-DRD HAR-DRD HARQ-DRD

TO 0.041 0.033 0.012 0.011
CO 0.339 0.342 0.339 0.342
SP 0.000 0.000 0.000 0.000
StDev TE 6.639 6.577 6.794 6.746

c = 0% ∆1 23.6* 07.0
∆10 27.3* 09.9*

c = 1% ∆1 25.5* 07.0
∆10 29.2* 09.9*

c = 2% ∆1 27.3* 07.1
∆10 31.0* 10.0*

Note: The table reports the long-horizon minimum tracking error portfolio results. The portfolios are
re-balanced weekly or monthly based on the relevant weekly and monthly covariance matrix forecasts.
The top panel shows turnover (TO), portfolio concentration (CO), short positions (SP), and annualized
tracking error volatility. The bottom panel reports the economic gains of switching from the standard
HAR-DRD model to the HARQ-DRD model in annual basis points, ∆γ , for various transaction cost
levels c and risk aversion coefficients γ. Asterisks denote ∆γ significantly different from zero at the 5%
level.

Table D.3: Weekly and Monthly versus Daily Tracking Portfolios

Weekly Monthly
HAR-DRD HARQ-DRD HAR-DRD HARQ-DRD

c=0% ∆1 09.0 46.9* 46.1* 084.0*
∆10 07.0 52.0* 55.1* 100.1*

c=1% ∆1 -16.5 26.4* 15.2 058.1*
∆10 -18.5 31.5* 24.2 074.2*

c=2% ∆1 -41.9* 05.9 -15.7 037.7*
∆10 -43.9* 11.1* 0-6.7 048.3*

Note: The table reports the economic gains of switching from weekly or monthly re-balanced min-
imum tracking error portfolios based on HARQ-DRD model forecasts to a daily strategy based on
HAR(Q)-DRD forecasts in annual basis points, ∆γ , for various transaction cost levels c and risk aver-
sion coefficients γ. Asterisks denote ∆γ significantly different from zero at the 5% level.
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Table D.4: Shrinkage-based Tracking Portfolios

HARQ-DRD RW Shrunk RW 1/N
Factor
Model

Equicorrelation Identity

TO 0.114 1.128 0.618 0.555 0.415 0.009
CO 0.342 0.461 0.380 0.375 0.344 0.316
SP 0.000 -0.087 -0.004 -0.001 -0.004 0.000
StDev TE 6.521 8.577 7.243 7.085 7.060 7.146

c = 0% ∆1 254.5* 041.9* 0-60.4* 152.4* 36.9*
∆10 394.3* 086.7* 0-25.8 185.5* 85.4*

c = 1% ∆1 510.1* 168.9* 050.7* 228.2* 20.5*
∆10 649.8* 213.6* 085.2* 261.3* 59.1*

c = 2% ∆1 765.7* 295.9* 161.8* 304.0* 0-5.8
∆10 905.3* 340.6* 196.3* 337.1* 32.7*

Note: The table reports minimum tracking error portfolios formed based on exogenously shrunk forecasts. The
top panel shows turnover (TO), portfolio concentration (CO), short position(SP), as well as the average annualized
tracking error volatility. The bottom panel shows the economic gains of switching from the alternatives to the
HARQ-DRD model forecasts in annual basis points, ∆γ , for various transaction cost levels c and risk aversion
coefficients γ. Asterisks denote ∆γ significantly different from zero at the 5% level.
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