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Introduction prediction. The scope of research has been broad, from system-
wide predictions of origin-destination matrices to single-point
Internationally, the transportation focus in developed nations hasforecasts of traffic flow.
shifted from the construction of physical system capacity to im- ~ The purpose of this paper is to present a case for acceptance of
proving operational efficiency and integration. The infrastructure @ specific time series formulation—the seasonal autoregressive
deployed within this new focus is commonly called intelligent Moving average process—as the appropriate parametric model for
transportation system@TSs). Access to information about dy- @ specific type of ITS forecast: short-term traffic condition fore-
namic system conditions is essential to this effort. Consequently, casts at a fixed location in the network, based only on previous
the final years of the 20th century saw the widespread instrumen-observations at the forecast location. In the balance of the paper,
tation of surface transportation networks in the world’s metropoli- this forecast type will be referred to as the univariate short-term
tan areas, and this effort continues unabated. The data providedPrediction problem.
by these sensor systems are disseminated to travelers and support Univariate short-term predictions are, of course, not the only
modest control systems, such as freeway ramp metering. How-fyPe of _trafflc condition forecasts thgt _W|II be need_ed in next-
ever, the dynamic system optimization potential inherent in real- 9eneration ITS. For example, at sufficiently short discrete time
time data remains largely untapped. intervals, discrete approximations of continyum traffic flow mod-
Accurate short-term prediction of system conditions is one of €IS, such as Daganzo’s lagged cell-transmission m(aaganzo
the keys to optimizing transportation system operations. In the 1999, are promising candidate prediction methods. However, ac-
absence of explicit forecasts, traveler information and transporta-curate modeling and forecasting of fixed-point traffic data streams
tion management systems simply react to the currently sensed®'® foundational and vylll proylde the primary demand forecasts at
situation. In essence, this approach assumes that the current corincongested entry points to instrumented systems. _
ditions provide the best estimate of the near-term conditions. This ~ Univariate short-term predictions will also continue to be im-
is obviously a poor general assumption, especially for times when portant for f_orec_astlng traffl_c condition data series th_at are aver-
traffic conditions are transitioning into or out of congestion. aged over time intervals with lengths above a certain threshold,
This need for accurate system forecasts has motivated researcfy for éxample 15 min. At longer discrete time intervals, a situ-

efforts in traffic condition predictiorin most cases, traffic flow ation will eventually be reached where it is no longer possible to
theoretically establish and model stable correlation with other de-

tection locations within the instrumented network. In such cases,
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given as an equivalent flow rate in vehicles per hour. Speed isbe specified by the expression{B5)PX,, with S denoting the
typically given as the algebraic mean of the observed vehicle length of the seasonal cycle abddenoting the order of seasonal
speedgalthough the harmonic mean would be more appropriate differencing.
from a traffic flow theory perspectiyeLane occupancy is a mea-
sure of traffic stream concentration and is the percentage of time
that the sensor is detecting vehicle presence, or, in other words,
the percentage of time that the sensor is “on.” The base discrete A brief presentation of the ARIMA model form is given below.
time interval of the traffic condition data series varies from sys- For a more detailed discussion, the reader is referred to a com-
tem to system, generally falling in the range of 20 s to 2 min. ITS prehensive time series analysis text, such as Brockwell and Davis
software systems usually create one or more archivable data se¢1996 or Fuller (1996.
ries from the base series. These archivable data series are aggre- A time series{X;} is a seasonal ARIMAf,d,q) (P,D,Q)s
gated at longer intervals ranging from 1 min up to a quarter, half, process with perio® if d andD are nonnegative integers and if
or full hour. Actual data-archiving practices vary widely from the differenced serie¥,=(1—B)%(1—B%)PX, is a stationary au-
system to system. toregressive moving averag8@RMA) process defined by the ex-
The univariate short-term prediction problem involves gener- pression
ating forecasts for one or more discrete time intervals into the s\v s
future based only on the previous observations. By way of formal $(B)R(B)Y=6(B)O(B)e: “)
definition, let{V,} be a discrete time series of vehicular traffic Wwhere B=backshift operator defined bB*X;=X;_,; ¢$(2)=1

Seasonal ARIMA Definition

flow rates at a specific detection station. The univariate short-term— ¢,z = $,z°, ®(2) = 1—- Pz = Ppz";  0(2)=1-0,2

traffic flow prediction problem is —---—equ,e(z):1—elz—---—eQzQ; e, is identically and
N normally distributed with mean zero, variance?, and
Verk=f(Ve,Vie1,Viez, ), k=123, (1) cov(e;,e_ ) =0Vk#0, that is{e,} ~WN(0,02).

whereV,, is the prediction ofV,., computed at time. The The parameterg and P represent the nonsegsonal and sea-
prediction wherek=1 is the single interval or one-step forecast. SOnal autoregressive polynomial order, respectively, and the pa-

Likewise, multiple interval forecasts are those whierel. rameterg] andQ represent the nonseasonal and seasonal moving
average polynomial order, respectively. As discussed above, the

parameted represents the order of normal differencing, and the
Seasonal ARIMA Process parameteiD represents the order of seasonal differencing.

From a practical perspective, fitted seasonal ARIMA models
provide linear state transition equations that can be applied recur-
sively to produce single and multiple interval forecasts. Further-
An understanding of time series differencing, time interval back- more, seasonal ARIMA models can be readily expressed in state
shift, and associated notation is prerequisite to a basic understandspace form, thereby allowing adaptive Kalman filtering tech-
ing of the seasonal autoregressive integrated moving averageniques to be employed to provide a self-tuning forecast model.
(ARIMA) process. Therefore, a brief presentation of these impor-
tant concepts and conventions follows.

Differencing creates a transformed series that consists of theTheoretical Justification for Seasonal ARIMA
differences between lagged series observations. The single lag
difference operator is often denoted by the symBolUsing this The theoretical justification for modeling univariate time series of
symbol, the first and second differences for an arbitrary time se- traffic flow data as seasonal ARIMA processes is founded in the
ries{X;} can be defined as time series theorem known as the Wold decomposition, which

_ applies to discrete-time data series that are stationary about their
VX=X~ X¢_1 (2a) : L
mean and variance. Therefore it is also necessary to support an
V2X= X=X 1~ (Ko 1= Xi—2) = X = 2X— 1+ X2 (2b) assertion that an appropriate seasonal difference will induce sta-
tionarity.

Time Series Notation

Differencing with the single lag operatdv is sometimes
called ordinary differencing, with the superscript denoting the -
order of ordinary differencing. Differencing can also be applied at Wold Decomposition

a seasonal lag. In this case, a subscript is employed to specify therpe \yg|q decomposition is a fundamental time series analysis

length of the seasonal cycle. For example, for a series with ay,eqr0m which states thatfiK,)} is a stationary time series, then
seasonal cycle of 12 intervals, the first seasonal difference would

be defined a¥,,X;=X;— X;_1,. Higher-order seasonal differenc-
ing can also be specified by using an integer superscript greater Xt:Z bie-j+ Vi (5)
than one in combination with the seasonal cycle subscript. =0
In ARIMA model expressions it is more common to see the wherey,=1 and Ef:0¢1«2<oo; {e}~WN(0,062); {V{} and{e}
backshift operatoB used to define the required differencing. The are uncorrelatede,=limit of linear combinations ofXg, s<t;
backshift operator is defined by the expression andV, is deterministiqBrockwell and Davis 1996; Fuller 1996
BIX.—X. . 3) _ In prgctical terms, Wold’s the(_)rem says thgt_ any st{_ationary
R time series can be decomposed into a deterministic series and a
Using the backshift operator, the first difference can be written stochastic series. Furthermore, the theorem states that the deter-
as (1-B)X,=X,—X,_;, the second difference as €IB)?X, ministic part can be exactly represented as a linear combination of
=(1—-2B+B?)X,=X;—2X,_;+X,_,, and so on. In general ex- past values and that the stochastic part can be represented as a
pressions, the superscrigtis used to denote the degree of ordi- moving average time series via the time-invariant linear filer
nary differencing. In the same manner, seasonal differencing can={y,¥s1,...}.

©
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S S AN R i e R level of traffic flow and the covariance between time-lagged traf-
fic flow observations are strongly time dependent. The first dif-

k ference of a traffic flow series is also clearly nonstationary. Let
K | {X;} be a traffic flow time series and/;} ={V X;}. Under normal

Traffic Volume
———
—

Traffic Volume

peak and off-peak conditions will occur. Consequently, for the

\4 time intervalst when traffic volumes are expected to be rising to

M2S Motorway - September 28.October 5, 1995 175 North - November 29.December 5, 1898 a peak, the expected value ¥%f is greater than zero, dg[Y,]

>0. Likewise, for the time intervals when traffic volumes are

“ expected to be falling from a peak, the expected valug, i less
than zero, oE[Y,]<0.

L However, a one-week seasonal difference intuitively holds the

Vl M \ tion data series. Traffic condition data in urban areas generally

| promise of yielding a stationary transformation for traffic condi-
exhibit a characteristic weekly pattern closely tied to work week
Fig. 1. Typical weekly patterns for two freeways activij[ies. Weekdays typically involve significant pegking in the.
morning and the afternoon, and weekend days typically experi-
ence lower-level peaks, with a single midday peak in some cases.
This is in essence identical to the definition of an ARMA pro- For example, Fig. 1 shows two typical weeks, each at two free-
cess. Therefore, if we can defensibly assume that traffic flow dataway locations. The left side of Fig. 1 includes the traffic flow
series can generally be made stationary through seasonal differprofiles for 2 weeks at a detector location on the o(trckwise
encing, then the case is made that seasonal ARIMA is an appro-loop in the southwest quadrant of the M25 orbital motorway

l conditions, we can know with a high degree of certainty when

Traffic Volume

Traffic Volume

priate parametric model. around London, and the right side of Fig. 1 includes traffic flow
profiles for two weeks at a detector location on northbound Inter-
Time Series Stationarity state 75(1-75) inside the northwest quadrant of the Interstate 285

N ) ~ (1-285) perimeter freeway in Atlanta.

As touched on above, the Wold decomposition applies to time  Gjyen this stability in weekly traffic flow patterns, it follows
series that are stationary with respect to mean and variance. Stathat creating a series composed of the differences between traffic
tionarity \_N|th respect to mean and variance is referred toveak condition observations and the observations one-week prior
stationarity. Stochastic processes such as time series can also bgpguid remove the predominant time dependencies in the mean
strictly stationary this more restrictive condition is called strict or  gnq variance. Okutani and Stephaned®884 previously put
strong stationarity. For a stochastic process to be strictly station-forth the assertion that a weekly seasonal difference of traffic
ary, any two finite samples of the same size must have the same&,qngition data will induce stationarity.
joint distribution function. Strict stationarity is not an important As stated above, the assertion that a weekly seasonal differ-
concept in time series analysis, and therefore when a time serieg, e | yield a stationary transformation of discrete time traffic
is said to be stationary, it is generally understood that this meansy,qition data series, coupled with the Wold decomposition theo-
wegkly statl(?nfary. | definiti . . . id 10 b rem, provides theoretical justification for the application of

y way of formal definition, a time ser_leS(t} IS said to be ARIMA models. This theoretical foundation in turn supports the
weakly stationary(stationary if the following two conditions hypothesis that properly fitted seasonal ARIMA models will pro-
hold: vide accurate traffic condition forecasts. The next section presents

L Expec_ted value ok, is same for alk; ar_1d . S testing of this hypothesis through the empirical evaluation of sea-
2. Covariance between any two observations in series is depen-

dent only on lag between observatioisdependent of). sonal ARIMA modeling of several freeway data sets.

In practice, it is seldom possible to prove or assume strict
adherence to these two conditions. However, if the time depen- o
dencies in the expected values and covariances are small relativEmpirical Results
to the nominal level of the series, the series may be close enough
to stationarity to be effectively modeled as an ARIMA process. Following a brief introduction to the analyzed data sets, the pre-
Therefore, sound ARIMA modeling strategy begins with selecting sentation of empirical results focuses first on correlation analysis
the differencing scheme that will yield the most nearly stationary as a basis for assessing the stationarity of series transformations
transformation of the raw series. using a first weekly difference. This is followed by a presentation

Untransformed time series of vehicular traffic flow clearly do of the model-fitting results and a discussion of the heuristic
not meet either of the conditions for stationarity. The expected benchmarks used to assess the predictive performance of the fitted

Table 1. Descriptive Statistics—M25 Motorway Data

Series length Mean absolute
Data serie$1996 (number of observations Missing values Percent missing Series mégrh) one-step change
Development 4,608 122 2.6 3,112 316
September 1-October 18
Test 4,128 355 8.6 2,953 299

October 19—November 30
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forecasting by researchers at the Institute for Transport Studies at
the University of LeedgITS-Leeds.

M25 has four travel lanes at the location of detector station
4762A. The modeled data represent total 15-min hourly flow rates
across all four lanes and cover the period from September 1
through November 30, 1996. Table 1 presents some descriptive
statistics on the M25 Motorway data including the number and
percentage of missing observations. Fig. 2 illustrates the location
of the M25 data.

Detector Interstate 75
Locations The Georgia Department of Transportation provided 15-min ar-
chived traffic condition data from the NaviGAtor system. Data
from detector station 10048 were used in this study. At the loca-
tion of detector station 10048, northbound 1-75 has four regular
travel lanes and one high-occupancy vehi@#OV) lane. The
HOV lane is not physically separated from the regular lanes. The
Fig. 2. M25 data location modeled data represent average per-lane 15-min hourly flow rates
for the four regular travel lanes. Therefore the relative level of the
I-75 data differs from the M25 data by a factor of between three
seasonal ARIMA models. The results section concludes with anand four.
assessment of the model forecast accuracy. The analyzed station 10048 data cover the period from No-
vember 1, 1998, through March 23, 1999. Table 2 presents some
descriptive statistics on the I-75 data, including the number and
The Data percentage of missing observations, and Fig. 3 illustrates the lo-

Data from two freeway locations, one in the United States and cation of the I-75 data.
one in the United Kingdom, are used in this study. In addition to
representing different cogntries, the two data sets involve differ- Correlation Analysis
ent freeway types and different detection technologies. As men-
tioned above in reference to Fig. 1, the U.K. data are from the The most common method for assessing whether or not a data
outer loop in the southwest quadrant of the M25 motorway series is stationary is to examine the sample autocorrelation func-
around London, a location representative of modern major urbantion. For stationary series, the sample autocorrelation function
circumferential freeways. The U.S. data are from northbound I-75 exhibits either exponential decay or an abrupt end to significant
inside the northwest quadrant of the 1-285 perimeter freeway correlation after a finite number of lags. As discussed above, traf-
around Atlanta, a location representative of a major urban radial fic condition data series are clearly nonstationary. Examination of
freeway. Traffic condition data on the M25 are gathered by the the weekly patterns exhibited in Fig. 1 leads to an expectation that
Highway Agency’s Motorway Incident Detection and Automatic the autocorrelations will be very strong at 1-day and 1-week lags
Signaling(MIDAS) system using paired inductive loops. The At- (96 and 672 intervals, respectively, for 15-min discrete interval
lanta I-75 data are collected by Georgia’s statewide advanced traf-data. This expectation is clearly realized in the sample autocor-
fic management system, NaviGAtor, using the Autoscope video relation function plots for the development data sets of the two
detection technology. For both data sets, the modeling and fore-freeway locations(Fig. 4). The autocorrelation peaks occur at
casting were performed on traffic flow data aggregated at 15-min even multiples of the 1-day lag of 96 intervals, and the peak
discrete time intervals, with a portion of the data held out from correlation rises at the 1-week lag of 672 intervals.
model estimation for the purpose of model testing and validation. It was asserted above that a first seasonal difference at a one-
week lag should induce stationarity for traffic condition data se-
M25 Motorway ries. This premise can be evaluated by examining the sample
The Highways Agency provided the data on archival CD-ROM autocorrelation plots for the differenced series. The sample auto-
media. The data include traffic condition observations at 1 min correlation functions for the 1-week differenced model develop-
discrete intervals. The initial seasonal ARIMA modeling research ment data are plotted in Fig. 5. The M25 plot more clearly dem-
using these data was performed on detector station 4762A, be-onstrates stationarity than the I-75 plot, but the I-75 development
tween the M3 and M23 interchanges, at a 15-min discrete datadata timeframe includes the weeks of the Thanksgiving, Christ-
aggregatior{Williams 1999. This was done to allow direct com- mas, and New Year’s holidays. The effect of these weeks on the
parison with the results of published and ongoing modeling and correlation structure of the development data sample is signifi-

Table 2. Descriptive Statistics—Interstate 75 Data

Series length Mean absolute
Data serie$1998-1999 (number of observations Missing values Percent missing Series méagh) one-step change
Development 7,200 987 13.7 1,075 81
November 1-January 14
Test 6,528 348 5.3 1,169 89

January 15—March 23
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Fig. 3. 1-75 data location

cant. The sample autocorrelation function plot of the 1-week dif-

ferenced test data, Fig. 6, exhibits a more clearly stationary pat-
tern.

Fitted Models

The M25 data were used in previous research aimed at investi-
gating the appropriateness of seasonal ARIMA for univariate traf-
fic flow prediction(Williams 1999. This earlier research included
development of a robust parameter estimation procedure building
on the work of Chen and Li(1993a, 1993) Detection and mod-

vealed that ARIMA (1,0,)(0,1,1) consistently emerges as the
preferred model, based on minimization of the Schwarz Bayesian
information criterion(SBC). Although the model estimation pro-
cedure generally includes an estimate for a constant term, this
term is often not statistically significant and is small relative to
the nominal level of the observations. Therefore it is recom-
mended that in most cases the constant term be omitted from the
forecast equations.

For this study the robust model identification and estimation
procedure was further applied to the I-75 station 10048 data, with
the results consistent with the previous findings. Table 3 presents
the SBC values for the three seasonal models with the lowest
SBC values for each data set; and the final parameters derived
from the development data sets are presented in Table 4. Fitted
ARIMA models can be rearranged into recursive one-step predic-
tors using previous one-step prediction errors to approximate the
series innovations. The corresponding prediction equation for the
ARIMA (1,0,1)(0,1,1)%7, models is

Vir1=Vicert d1(Vi—Vi_ 79— 02(Vi— V) —01(Vi_g71

—Vi_670)+0101(Vi—g7— Vi_670) (6)

Eq. (6) provides a simple linear recursive estimator. The test
data forecasts presented in the next section were calculated by
implementing Eq.(6) in Microsoft Excel spreadsheets with the
parameters given in Table 4.

Heuristic Forecasting Benchmarks

Although the purpose of this paper is not to definitively establish
the practical viability of widespread use of seasonal ARIMA for
ITS traffic condition forecasting, it is nonetheless important to
compare the empirical forecasting results to reasonable heuristic

eling of outliers in traffic condition data are necessary to elimi- forecasting methods. The purpose of this comparison is to assess
nate model identification errors and parameter estimate bias.the likelihood that fitted ARIMA models will provide a statisti-
Capacity-reducing incidents are the principal cause of outliers in cally significant increase in forecast accuracy sufficient to justify

univariate traffic condition data streams.
In Williams (1999 and follow-on researctSmith et al. 2002

going beyond easy-to-understand heuristic techniques that require
little or no customization. The predictive performance of the sea-

the joint outlier detection and parameter estimation procedure wassonal ARIMA models presented in this paper is tested against
applied to several freeway traffic condition data sets, with the three heuristic forecasting methods: the random walk forecast, the
final model form selected on the basis of the Schwarz Bayesianhistorical average forecast, and a deviation from the historical

information criterion(Schwarz 1978 These modeling efforts re-

M25 Autocorrelation in Model Development Data

average forecast.

175 Autocorrelation in Model Development Data
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M25 Autocorrelation in Model Development Data 175 Autocorrelation in Model Development Data
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Fig. 5. Autocorrelation function for seasonally differenced data
Random Walk Forecast min, there will be a lag of 672 intervals between each successive

If we explicitly or implicitly consider that traffic condition data  observation at the same time of day and day of week. In this case,
streams can be well modeled as a 2D random walk, then the besthe exponentially smoothed forecast would be calculated with
forecast for the next observation in the series is simply the most smoothing parametex by the equation

recent observation, that i¥,, ;=V,. This is because if our data ~ o S
series is a random walk we't h?ave ;10 expectation of the direction or Vizerz=aVit (1= )V, ()
magnitude of the change from one step to the next. This is obvi-  To be considered a heuristic approach, the smoothing param-
ously not the case with traffic condition data, but changes from eter o must be based on expert judgment rather than estimated
one interval to the next are often relatively small, so this approach from representative data. dfis estimated from the data, the result
gives somewhat reasonable predictions in many cases. As toucheis essentially a fitted ARIMAO,1,1) model, and each time of day
on in the introduction, traffic management and control actions or and day of week could have its own smoothing parameter.
decisions made in response to currently sensed conditions carry The smoothing parametex in general should fall between
an implicit assumption that random walk forecasts are reasonable zero and one. Ast approaches zero, the forecast approaches a
One way of looking at the random walk forecast is that it is straight average of past observations, andxagpproaches one,
fully informed by the current conditions but completely unin- the forecast approaches the random walk forecast. Ga(tia@®
formed by historical patterns. If the modeled process were truly a found that smoothing parameters smaller than 0.3 were usually
random walk, there would be no historical patterns, only uncor- recommended by practitioners. Intuitively it seems reasonable
related fluctuations. However, we know, as illustrated by Fig. 1, that the smoothing parameter for traffic condition data should be
that traffic condition data follow dependable weekly patterns. relatively small because it is desirable for the estimates to follow
This leads to the second heuristic forecasting approach, historicalthe modest cycles and trends while not being thrown off by ab-

average forecasts. normally high or low observations. Therefore, a smoothing pa-
rametera of 0.2 is used for historical average estimation in this

Historical Average Forecast study.

The phenomenon that traffic conditions follow nominally consis- If the current conditions are normal, historical average fore-

tent daily and weekly patterns leads to an expectation that histori-casts can outperform random walk forecasts, especially during
cal averages of the conditions at a particular time and day of the
week will provide a reasonable forecast of future conditions at the

me time of n f the week. A straight histori -
same time o daya d dayo the wee straight histo cal aver 175 Autocorrelation in Model Test Data

age forecast is the antithesis of the random walk forecast; in the with One-week Lagged Difference
historical average forecast, predictions are informed solely by
previously observed patterns, but completely uninformed by the 1
current conditions. 0.8
A straight historical average prediction method was used inthe ~ _ 06 ¢
AUTOGUIDE ATIS demonstration project in Londo(leffrey g 04 f
et al. 1987. However, intuition holds that averaging that applies e 02
greater weight to more recent observations would provide consis- § 0 MMW
tently better forecasts than straight averages, either of all past 3 -02 ¥
observations or of a fixed moving window of past observations. 0.4
This would allow the historically based estimates to track with the 08 .
yearly ebb and flow of traffic levels, as well as general long-term -0.8 . , ‘ ; :
traffic level trends. 0 100 200 300 400 500 600 700
Simple exponential smoothing of traffic condition observa- Interval Lag

tions at each time of day and day of week provides a convenient
method of computing such a weighted average. Let our traffic
condition data series bg/}. If the discrete data interval is 15

Fig. 6. Autocorrelation function for seasonally differenced 1-75 test
data
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Table 3. Fitted Models with Lowest SBC Values Table 5. Forecast Performance Comparison

ARIMA model SBC MAPE STDEV
M25 models Data series/model RMSEP MAD (%) error
(1,01)(0,1,1)%7, 58,092 M25 station 4762A
(1,02)(0,1,1)%7, 58,100 Seasonal ARIMA 332.22 204.89 8.74 324.68
(2,01)(0,1,1)%7, 58,100 Random walk 466.29 288.60 12.53 463.75
I-75 models Historical average 400.99 258.00 11.43 400.64
(1,01)(0,1,1)7» 146,807 Deviation from 378.89 228.47 9.78 378.92
(3,00)(0,1,1)7, 146,811 historical average
(1,02)(0,1,1)7, 146,812 I-75 station 10048
Seasonal ARIMA 141.73 75.02 8.97 138.15
Random walk 180.02 95.05 10.10 205.95
times when traffic levels are routinely increasing or decreasing. Historical average 192.63 123.56 12.85 180.01
However, historical average forecasts cannot respond to dynamic Deviation from 153.54 81.19 9.54 153.54
conditions that differ from the norm, such as increased traffic historical average

levels related to a special event or decreased traffic levels during
a general holiday. The final forecasting heuristic seeks to remedy

this weakness by combining the dynamic responsiveness of themodel is essentially an ARMAL,1) model fitted to the deviations

random walk forecast with the process memory of the historical from the current smoothed time period averages. The intuition
average forecast. that the ratio of current conditions to historical conditions will
persist into the near-term future is supported by the fact that both
fitted models have a high estimate for the autoregressive param-
eterd,, 0.88 and 0.95, respectively, for M25 and [-75.

Deviation from Historical Average Forecasts

The final heuristic prediction method is a straightforward combi-
nation of the random walk and historical average forecasts. In this
method, exponentially weighted historical averages are computed
for each time of the day and day of the week. To compute the Predictive Performance
forecast for the next interval, the ratio of the most recent obser-
vation to its corresponding historical average is multiplied by the
current historical average for the forecast interval. In equation
form, let{V,} be a 15-min discrete interval traffic data series and
{S} be the corresponding series of smoothed historical average
calculated by

The seasonal ARIMA predictions were compared to the three heu-

ristic approaches described above. The one-step predictions were

generated for the second partition of each of the data sets as
resented in Table 1 and Table 2. These data were not used in the
odel identification or parameter estimation phases.

Three statistics are used to compare predictive performance:
Si=aVi+(1—a)S_g7 (8) root mean square error of predictigRMSEP, mean absolute
deviation(MAD), and mean absolute percentage efMAPE).

The MAPE statistic is the most useful and illustrative because the
N t nominal level of traffic flow measurements varies by an order of
Vt+1:§*3t—671 ©) magnitude between the daily peaks and troughs. Furthermore, the
o ) ) ) MAPE statistic allows for some degree of comparison of general
Once again, if the smoothing parameter is based on expert judg-predictive performance among processes that have different
ment rather than derived from the data, this method can be con-oming| levels. For example, the M25 and 1-75 data series used in
sidered a heuristic approach. The underlying assumption is thatinis study differ by a factor that largely results from the fact that
the mqst recgntly observed ratio of existing to historical condi- {he M25 flow rates are aggregate rates across all travel lanes
tions will persist into the near future. _ while the I-75 flow rates are average per lane rates. This factor

A similar approach is used in the Leitund Information System .5rries over to the RMSEP and MAD statistics but not to the

Berlin (LISB) to forecast link travel timgKaysi et al. 1993 MAPE statistic.
LISB was a fuII-_scaIe commercial route-guidance system trial in  Tgpje 5 presents the predictive performance of each forecast-
West Berlin. This system, now referred to as ALI-SCOUT, uses jnq method for the test data sets. In addition to the goodness of fit
infrared communications to transmit traveler information to the giatistics described in the previous paragraph, Table 5 also in-
drivers of equipped vehicles. o cludes the standard deviati®8TDEV) of each method’s forecast

It is worth noting that the deviation from the historical average grors. The error standard deviations are provided to give a sense
forecast is quite similar to the seasonal ARIMA (1,0,1) ofthe one-step forecast confidence intervals.

X(0,1,1)7, model that emerged from systematic time series  The Taple 5 results support the theoretical applicability of sea-
analysis of the development data sets. The seasonal component afyna| ARIMA for univariate traffic condition modeling and fore-
the selected ARIMA mod_el prodgces exponentially We'G_ht?d av- casting. The seasonal ARIMA models provide the best forecasts
erages at each 15-min time period. Therefore the multiplicative ased on all the prediction performance statistics. As expected,
the deviation from the historical average heuristic prediction
method provided the second best forecast performance. The per-
Table 4. ARIMA (1,0,1)(0,1,1);, Model Parameters formance of the random walk and historical average predictions is
Data series by 0, 0, reversed for the two data sets. As discussed above, the historical
average prediction would be expected to achieve its best results
during times when traffic levels are closely following normal con-
ditions, and the random walk prediction would be expected to

The one-step prediction is calculated by

M25 station 4762A 0.88 0.54 0.85
I-75 station 10048 0.95 0.15 0.85
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Table 6. M25 Forecast Performance Comparison to Clark et al.
(1998

. Model MAD MAPE (%)

& 2000

5 W Seasonal ARIMA 384 8.6

5 1500 W Kohonen map/ARIMA 514 115

£ ﬁ/ Random walk 488 10.4

S 1000 /

§ s00 A . .

slowly to the lower than normal observations as they persist. Al-

0

though its immediate adaptation to the observed to historical ratio
allows the deviation from the historical average forecast to per-
form quite well during the period from 8:15 a.m. to 9:45 a.m., this
characteristic also results in model instability in the face of rapid
shifts. The clearest example of this is the greater than 100% fore-
cast error at 8:00 a.m. caused by the deviation from historical
average forecast fully applying the higher than average observa-
tion at 7:45 a.m in its one-step prediction.

Comparison to Other Research

The M25 data set used in this study has been the subject of
considerable traffic flow prediction research performed at ITS-
LeedsJincluding Clark et al. 1998 and Chen and Grant-Mueller
(2001)]. Clark et al.(1998 presented a layered forecast approach
consisting of a Kohonen map neural network used to classify
Fig. 7. Representative plots of observed and predicted flow rates traffic flow data streams into one of four categories, each category
in turn having an independent fitted ARIMA forecast model. The
Clark et al.(1998 research used the same data location and time
outperform the historical average forecasts at times when currentframe as the seasonal ARIMA modeling presented in this paper,
traffic levels are exhibiting significant deviation from normal con- but forecast performance statistics were presented only for the
ditions. Therefore, it is likely that close inspection of the test data hours of 6:00 a.m. to 9:00 p.m. on the weekdays of October 25
sets for the two locations would reveal that traffic conditions at and 28 to 31, 1996. Table 6 provides a comparison of the seasonal
the M25 detector station are more closely following normal pat- ARIMA forecasts to the Kohonen map/ARIMA forecasts over
terns during the time period of the test data than are traffic con- this same time period, along with the corresponding random walk
ditions at the I-75 detector station. forecasts. It is noteworthy that the Kohonen map/ARIMA fore-

A visual example of the comparative forecast performance is casts were outperformed by the random walk forecasts in terms of
given in Fig. 7. The plots show the observed 15-min traffic vol- both MAD and MAPE.
umes from 5:00 a.m. to noon for an arbitrarily selected weekday = Chen and Grant-Muellg®2001) present the findings of further
morning from the test data for each site. The plots also show thelTS-Leeds research to develop and test a “sequential learning”
corresponding seasonal ARIMA, exponentially weighted histori- neural network forecasting approach. The data are the same M25
cal average, and deviation from the historical average predictions.traffic volumes used in this paper and in the earlier ITS-Leeds
In the interest of clarity, the random walk forecasts are not shown, research. As with the Kohonen map modeling discussed above,
but would simply be the observed traffic volumes shifted one the researchers used the final five weekdays in October 1996 for
15-min interval to the right. forecast model testing. However, for the sequential learning neu-

The I-75 plot in Fig. 7 illustrates that the seasonal ARIMA and ral network effort, the 1-min flows were aggregated into running
deviation from historical average forecasts are nearly identical 15-min averages; in other words, 15-min averages were computed
when observed values are tracking closely to historical norms. at each 1-min interval rather than only at the quarter-hour points.
The M25 plot, on the other hand, shows how the response of the As a quick comparison, the seasonal ARIMA model presented
seasonal ARIMA and deviation from historical average forecasts in this study was applied to the series of running 15-min averages.
differs when observations go through an extended departure fromThis process was straightforward in that the series of 1-min run-
normal levels. The M25 plot indicates that observations were nor- ning 15-min averages can be treated as 15 interleaved discrete
mal through 7:30 a.m., but the 7:45 a.m. observation was aboutinterval time series. No parameter reestimation was done, and
1,500 vehicles per hour above normal, and the 8:00 a.m. throughtherefore the seasonal ARIMA forecasts were computed using
10:45 a.m. observations were approximately 2,000 vehicles perparameters estimated only on the original quarter-hour interval
hour below normal. In this extended period of below-normal traf- development series. From the graphs and discussion in Chen and
fic volumes, the deviation from the historical average forecast Grant-Mueller (2001), the best-performing sequential learning
tracks well with the observations. This is as expected because theneural network achieved a MAPE of approximately 9 to 9.5% for
deviation from historical average forecasts assume that each raticdhe five test days. The seasonal ARIMA model applied as de-
of observed to historical traffic volume will fully persist into the scribed above achieved a MAPE of 8.9% over the same period.
next interval. This is only slightly higher than the 8.6% MAPE for the original

In contrast, the M25 seasonal ARIMA forecasts continue to 15-min discrete interval series over the same five days. It is likely
give a measure of deference to the historical levels, adapting morethat the seasonal ARIMA MAPE for the 1-min running 15-min

1000

0 ; ; ; ; ; ;
5:00AM 6:00AM 7:00AM 8:00AM 9:00 AM 10:00 AM 11:00 AM 12:00 PM

[~ Observed = SARIMA —— HA - DHA|

JOURNAL OF TRANSPORTATION ENGINEERING © ASCE / NOVEMBER/DECEMBER 2003 /671



average series would improve slightly if the parameters were op-from the historical average prediction method described in this
timized for running averages in the development data. paper provides good forecasts and should be considered a key
heuristic forecast benchmark.

Discussion of Findings
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