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Abstract: This article presents the theoretical basis for modeling univariate traffic condition data streams as seasonal autoregr
integrated moving average processes. This foundation rests on the Wold decomposition theorem and on the assertion that a on
lagged first seasonal difference applied to discrete interval traffic condition data will yield a weakly stationary transformation. More
empirical results using actual intelligent transportation system data are presented and found to be consistent with the theoretical h
esis. Conclusions are given on the implications of these assertions and findings relative to ongoing intelligent transportation sy
research, deployment, and operations.
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Introduction

Internationally, the transportation focus in developed nations
shifted from the construction of physical system capacity to i
proving operational efficiency and integration. The infrastructu
deployed within this new focus is commonly called intellige
transportation systems~ITSs!. Access to information about dy
namic system conditions is essential to this effort. Consequen
the final years of the 20th century saw the widespread instrum
tation of surface transportation networks in the world’s metropo
tan areas, and this effort continues unabated. The data prov
by these sensor systems are disseminated to travelers and su
modest control systems, such as freeway ramp metering. H
ever, the dynamic system optimization potential inherent in re
time data remains largely untapped.

Accurate short-term prediction of system conditions is one
the keys to optimizing transportation system operations. In
absence of explicit forecasts, traveler information and transpo
tion management systems simply react to the currently sen
situation. In essence, this approach assumes that the current
ditions provide the best estimate of the near-term conditions. T
is obviously a poor general assumption, especially for times w
traffic conditions are transitioning into or out of congestion.

This need for accurate system forecasts has motivated rese
efforts in traffic condition prediction~in most cases, traffic flow
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prediction!. The scope of research has been broad, from system
wide predictions of origin-destination matrices to single-point
forecasts of traffic flow.

The purpose of this paper is to present a case for acceptance
a specific time series formulation—the seasonal autoregressiv
moving average process—as the appropriate parametric model fo
a specific type of ITS forecast: short-term traffic condition fore-
casts at a fixed location in the network, based only on previous
observations at the forecast location. In the balance of the pape
this forecast type will be referred to as the univariate short-term
prediction problem.

Univariate short-term predictions are, of course, not the only
type of traffic condition forecasts that will be needed in next-
generation ITS. For example, at sufficiently short discrete time
intervals, discrete approximations of continuum traffic flow mod-
els, such as Daganzo’s lagged cell-transmission model~Daganzo
1999!, are promising candidate prediction methods. However, ac-
curate modeling and forecasting of fixed-point traffic data streams
are foundational and will provide the primary demand forecasts a
uncongested entry points to instrumented systems.

Univariate short-term predictions will also continue to be im-
portant for forecasting traffic condition data series that are aver-
aged over time intervals with lengths above a certain threshold
say for example 15 min. At longer discrete time intervals, a situ-
ation will eventually be reached where it is no longer possible to
theoretically establish and model stable correlation with other de-
tection locations within the instrumented network. In such cases
the most accurate forecasts will be univariate predictions even fo
data locations interior to the network. Williams~2001! provides
further discussion and analysis of multivariate traffic condition
forecasting approaches.

Short-Term Prediction Problem

Fixed-location roadway detection systems commonly provide
three basic traffic stream measurements: flow, speed, and lan
occupancy. Flow~alternatively referred to as volume! is typically

e

st
e

r.
le
his

-

MBER/DECEMBER 2003



c
t

m
rd
e
s
S

g
l

r
h
a

c
r

t.

k
n

a
o

th
l

e

e
a
t

u

a

e
e

e

i-
c

l

m-
vis

a-
pa-
ing
the
e

ls
ur-
r-
ate
-

.

of
he
ch
heir

an
ta-

sis

ry
d a
ter-
of

as a
given as an equivalent flow rate in vehicles per hour. Speed
typically given as the algebraic mean of the observed vehi
speeds~although the harmonic mean would be more appropria
from a traffic flow theory perspective!. Lane occupancy is a mea-
sure of traffic stream concentration and is the percentage of ti
that the sensor is detecting vehicle presence, or, in other wo
the percentage of time that the sensor is ‘‘on.’’ The base discr
time interval of the traffic condition data series varies from sy
tem to system, generally falling in the range of 20 s to 2 min. IT
software systems usually create one or more archivable data
ries from the base series. These archivable data series are ag
gated at longer intervals ranging from 1 min up to a quarter, ha
or full hour. Actual data-archiving practices vary widely from
system to system.

The univariate short-term prediction problem involves gene
ating forecasts for one or more discrete time intervals into t
future based only on the previous observations. By way of form
definition, let $Vt% be a discrete time series of vehicular traffi
flow rates at a specific detection station. The univariate short-te
traffic flow prediction problem is

V̂t1k5 f ~Vt ,Vt21 ,Vt22 ,...!, k51,2,3,... (1)

where V̂t1k is the prediction ofVt1k computed at timet. The
prediction wherek51 is the single interval or one-step forecas
Likewise, multiple interval forecasts are those wherek.1.

Seasonal ARIMA Process

Time Series Notation

An understanding of time series differencing, time interval bac
shift, and associated notation is prerequisite to a basic understa
ing of the seasonal autoregressive integrated moving aver
~ARIMA ! process. Therefore, a brief presentation of these imp
tant concepts and conventions follows.

Differencing creates a transformed series that consists of
differences between lagged series observations. The single
difference operator is often denoted by the symbol¹. Using this
symbol, the first and second differences for an arbitrary time s
ries $Xt% can be defined as

¹Xt5Xt2Xt21 (2a)

¹2Xt5Xt2Xt212~Xt212Xt22!5Xt22Xt211Xt22 (2b)

Differencing with the single lag operator¹ is sometimes
called ordinary differencing, with the superscript denoting th
order of ordinary differencing. Differencing can also be applied
a seasonal lag. In this case, a subscript is employed to specify
length of the seasonal cycle. For example, for a series with
seasonal cycle of 12 intervals, the first seasonal difference wo
be defined as¹12Xt5Xt2Xt212. Higher-order seasonal differenc-
ing can also be specified by using an integer superscript gre
than one in combination with the seasonal cycle subscript.

In ARIMA model expressions it is more common to see th
backshift operatorB used to define the required differencing. Th
backshift operator is defined by the expression

BjXt5Xt2 j (3)

Using the backshift operator, the first difference can be writt
as (12B)Xt5Xt2Xt21 , the second difference as (12B)2Xt

5(122B1B2)Xt5Xt22Xt211Xt22 , and so on. In general ex-
pressions, the superscriptd is used to denote the degree of ord
nary differencing. In the same manner, seasonal differencing
JOURNAL OF TRANSPOR
is
le
e

e
s,
te
-

se-
re-

f,

-
e
l

m

-
d-

ge
r-

e
ag

-

t
he
a
ld

ter

n

an

be specified by the expression (12BS)DXt , with S denoting the
length of the seasonal cycle andD denoting the order of seasona
differencing.

Seasonal ARIMA Definition

A brief presentation of the ARIMA model form is given below.
For a more detailed discussion, the reader is referred to a co
prehensive time series analysis text, such as Brockwell and Da
~1996! or Fuller ~1996!.

A time series$Xt% is a seasonal ARIMA (p,d,q) (P,D,Q)S

process with periodS if d andD are nonnegative integers and if
the differenced seriesYt5(12B)d(12Bs)DXt is a stationary au-
toregressive moving average~ARMA ! process defined by the ex-
pression

f~B!F~Bs!Yt5u~B!U~Bs!et (4)

where B5backshift operator defined byBaXt5Xt2a ; f(z)51
2f1z2¯2fpzp,F(z)512F1z2¯2FPzP; u(z)512u1z
2¯2uqzq,U(z)512U1z2¯2UQzQ; et is identically and
normally distributed with mean zero, variances2; and
cov(et ,et2k)50;kÞ0, that is,$et%;WN(0,s2).

The parametersp and P represent the nonseasonal and se
sonal autoregressive polynomial order, respectively, and the
rametersq andQ represent the nonseasonal and seasonal mov
average polynomial order, respectively. As discussed above,
parameterd represents the order of normal differencing, and th
parameterD represents the order of seasonal differencing.

From a practical perspective, fitted seasonal ARIMA mode
provide linear state transition equations that can be applied rec
sively to produce single and multiple interval forecasts. Furthe
more, seasonal ARIMA models can be readily expressed in st
space form, thereby allowing adaptive Kalman filtering tech
niques to be employed to provide a self-tuning forecast model

Theoretical Justification for Seasonal ARIMA

The theoretical justification for modeling univariate time series
traffic flow data as seasonal ARIMA processes is founded in t
time series theorem known as the Wold decomposition, whi
applies to discrete-time data series that are stationary about t
mean and variance. Therefore it is also necessary to support
assertion that an appropriate seasonal difference will induce s
tionarity.

Wold Decomposition

The Wold decomposition is a fundamental time series analy
theorem, which states that if$Xt% is a stationary time series, then

Xt5(
j 50

`

c jet2 j1Vt (5)

wherec051 and ( j 50
` c j

2,`; $et%;WN(0,s2); $Vt% and $et%
are uncorrelated;et5 limit of linear combinations ofXs , s<t;
andVt is deterministic~Brockwell and Davis 1996; Fuller 1996!.

In practical terms, Wold’s theorem says that any stationa
time series can be decomposed into a deterministic series an
stochastic series. Furthermore, the theorem states that the de
ministic part can be exactly represented as a linear combination
past values and that the stochastic part can be represented
moving average time series via the time-invariant linear filterC
5$c0 ,c1 ,...%.
TATION ENGINEERING © ASCE / NOVEMBER/DECEMBER 2003 / 665
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This is in essence identical to the definition of an ARMA pr
cess. Therefore, if we can defensibly assume that traffic flow d
series can generally be made stationary through seasonal d
encing, then the case is made that seasonal ARIMA is an ap
priate parametric model.

Time Series Stationarity

As touched on above, the Wold decomposition applies to ti
series that are stationary with respect to mean and variance.
tionarity with respect to mean and variance is referred to asweak
stationarity. Stochastic processes such as time series can als
strictly stationary; this more restrictive condition is called strict o
strong stationarity. For a stochastic process to be strictly stat
ary, any two finite samples of the same size must have the s
joint distribution function. Strict stationarity is not an importan
concept in time series analysis, and therefore when a time se
is said to be stationary, it is generally understood that this me
weakly stationary.

By way of formal definition, a time series$Xt% is said to be
weakly stationary~stationary! if the following two conditions
hold:
1. Expected value ofXt is same for allt; and
2. Covariance between any two observations in series is de

dent only on lag between observations~independent oft).
In practice, it is seldom possible to prove or assume st

adherence to these two conditions. However, if the time dep
dencies in the expected values and covariances are small rel
to the nominal level of the series, the series may be close eno
to stationarity to be effectively modeled as an ARIMA proces
Therefore, sound ARIMA modeling strategy begins with selecti
the differencing scheme that will yield the most nearly stationa
transformation of the raw series.

Untransformed time series of vehicular traffic flow clearly d
not meet either of the conditions for stationarity. The expec

Fig. 1. Typical weekly patterns for two freeways
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level of traffic flow and the covariance between time-lagged tra
fic flow observations are strongly time dependent. The first d
ference of a traffic flow series is also clearly nonstationary. L
$Xt% be a traffic flow time series and$Yt%5$¹Xt%. Under normal
conditions, we can know with a high degree of certainty whe
peak and off-peak conditions will occur. Consequently, for th
time intervalst when traffic volumes are expected to be rising t
a peak, the expected value ofYt is greater than zero, orE@Yt#
.0. Likewise, for the time intervalst when traffic volumes are
expected to be falling from a peak, the expected value ofYt is less
than zero, orE@Yt#,0.

However, a one-week seasonal difference intuitively holds t
promise of yielding a stationary transformation for traffic cond
tion data series. Traffic condition data in urban areas genera
exhibit a characteristic weekly pattern closely tied to work wee
activities. Weekdays typically involve significant peaking in th
morning and the afternoon, and weekend days typically expe
ence lower-level peaks, with a single midday peak in some cas
For example, Fig. 1 shows two typical weeks, each at two fre
way locations. The left side of Fig. 1 includes the traffic flow
profiles for 2 weeks at a detector location on the outer~clockwise!
loop in the southwest quadrant of the M25 orbital motorwa
around London, and the right side of Fig. 1 includes traffic flo
profiles for two weeks at a detector location on northbound Inte
state 75~I-75! inside the northwest quadrant of the Interstate 28
~I-285! perimeter freeway in Atlanta.

Given this stability in weekly traffic flow patterns, it follows
that creating a series composed of the differences between tra
condition observations and the observations one-week pr
should remove the predominant time dependencies in the m
and variance. Okutani and Stephanedes~1984! previously put
forth the assertion that a weekly seasonal difference of traf
condition data will induce stationarity.

As stated above, the assertion that a weekly seasonal dif
ence will yield a stationary transformation of discrete time traffi
condition data series, coupled with the Wold decomposition the
rem, provides theoretical justification for the application o
ARIMA models. This theoretical foundation in turn supports th
hypothesis that properly fitted seasonal ARIMA models will pro
vide accurate traffic condition forecasts. The next section prese
testing of this hypothesis through the empirical evaluation of se
sonal ARIMA modeling of several freeway data sets.

Empirical Results

Following a brief introduction to the analyzed data sets, the p
sentation of empirical results focuses first on correlation analy
as a basis for assessing the stationarity of series transformat
using a first weekly difference. This is followed by a presentatio
of the model-fitting results and a discussion of the heuris
benchmarks used to assess the predictive performance of the fi
Table 1. Descriptive Statistics—M25 Motorway Data

Data series~1996!
Series length

~number of observations! Missing values Percent missing Series mean~vph!
Mean absolute

one-step change

Development
September 1–October 18

4,608 122 2.6 3,112 316

Test
October 19–November 30

4,128 355 8.6 2,953 299
MBER/DECEMBER 2003



n
t
e
e
h
a

7
a

h
ic
t-
r
e

m
o

M

c

a

n

at

n
es

1
tive
d

ion

r-
a
a-
ar

he
tes
e
e

o-
me
nd
lo-

ata
nc-
on
nt
af-
of
at

gs
al
r-
o

t
k

ne-
e-
ple
to-
p-
-
nt

st-
the
ifi-
seasonal ARIMA models. The results section concludes with
assessment of the model forecast accuracy.

The Data

Data from two freeway locations, one in the United States a
one in the United Kingdom, are used in this study. In addition
representing different countries, the two data sets involve diff
ent freeway types and different detection technologies. As m
tioned above in reference to Fig. 1, the U.K. data are from t
outer loop in the southwest quadrant of the M25 motorw
around London, a location representative of modern major urb
circumferential freeways. The U.S. data are from northbound I-
inside the northwest quadrant of the I-285 perimeter freew
around Atlanta, a location representative of a major urban rad
freeway. Traffic condition data on the M25 are gathered by t
Highway Agency’s Motorway Incident Detection and Automat
Signaling~MIDAS! system using paired inductive loops. The A
lanta I-75 data are collected by Georgia’s statewide advanced t
fic management system, NaviGAtor, using the Autoscope vid
detection technology. For both data sets, the modeling and fo
casting were performed on traffic flow data aggregated at 15-m
discrete time intervals, with a portion of the data held out fro
model estimation for the purpose of model testing and validati

M25 Motorway
The Highways Agency provided the data on archival CD-RO
media. The data include traffic condition observations at 1 m
discrete intervals. The initial seasonal ARIMA modeling resear
using these data was performed on detector station 4762A,
tween the M3 and M23 interchanges, at a 15-min discrete d
aggregation~Williams 1999!. This was done to allow direct com-
parison with the results of published and ongoing modeling a

Fig. 2. M25 data location
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forecasting by researchers at the Institute for Transport Studies
the University of Leeds~ITS-Leeds!.

M25 has four travel lanes at the location of detector statio
4762A. The modeled data represent total 15-min hourly flow rat
across all four lanes and cover the period from September
through November 30, 1996. Table 1 presents some descrip
statistics on the M25 Motorway data including the number an
percentage of missing observations. Fig. 2 illustrates the locat
of the M25 data.

Interstate 75
The Georgia Department of Transportation provided 15-min a
chived traffic condition data from the NaviGAtor system. Dat
from detector station 10048 were used in this study. At the loc
tion of detector station 10048, northbound I-75 has four regul
travel lanes and one high-occupancy vehicle~HOV! lane. The
HOV lane is not physically separated from the regular lanes. T
modeled data represent average per-lane 15-min hourly flow ra
for the four regular travel lanes. Therefore the relative level of th
I-75 data differs from the M25 data by a factor of between thre
and four.

The analyzed station 10048 data cover the period from N
vember 1, 1998, through March 23, 1999. Table 2 presents so
descriptive statistics on the I-75 data, including the number a
percentage of missing observations, and Fig. 3 illustrates the
cation of the I-75 data.

Correlation Analysis

The most common method for assessing whether or not a d
series is stationary is to examine the sample autocorrelation fu
tion. For stationary series, the sample autocorrelation functi
exhibits either exponential decay or an abrupt end to significa
correlation after a finite number of lags. As discussed above, tr
fic condition data series are clearly nonstationary. Examination
the weekly patterns exhibited in Fig. 1 leads to an expectation th
the autocorrelations will be very strong at 1-day and 1-week la
~96 and 672 intervals, respectively, for 15-min discrete interv
data!. This expectation is clearly realized in the sample autoco
relation function plots for the development data sets of the tw
freeway locations~Fig. 4!. The autocorrelation peaks occur a
even multiples of the 1-day lag of 96 intervals, and the pea
correlation rises at the 1-week lag of 672 intervals.

It was asserted above that a first seasonal difference at a o
week lag should induce stationarity for traffic condition data s
ries. This premise can be evaluated by examining the sam
autocorrelation plots for the differenced series. The sample au
correlation functions for the 1-week differenced model develo
ment data are plotted in Fig. 5. The M25 plot more clearly dem
onstrates stationarity than the I-75 plot, but the I-75 developme
data timeframe includes the weeks of the Thanksgiving, Chri
mas, and New Year’s holidays. The effect of these weeks on
correlation structure of the development data sample is sign
Table 2. Descriptive Statistics—Interstate 75 Data

Data series~1998–1999!
Series length

~number of observations! Missing values Percent missing Series mean~vph!
Mean absolute

one-step change

Development
November 1–January 14

7,200 987 13.7 1,075 81

Test
January 15–March 23

6,528 348 5.3 1,169 89
TATION ENGINEERING © ASCE / NOVEMBER/DECEMBER 2003 / 667
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cant. The sample autocorrelation function plot of the 1-week dif-
ferenced test data, Fig. 6, exhibits a more clearly stationary pat-
tern.

Fitted Models

The M25 data were used in previous research aimed at investi-
gating the appropriateness of seasonal ARIMA for univariate traf-
fic flow prediction~Williams 1999!. This earlier research included
development of a robust parameter estimation procedure building
on the work of Chen and Liu~1993a, 1993b!. Detection and mod-
eling of outliers in traffic condition data are necessary to elimi-
nate model identification errors and parameter estimate bias.
Capacity-reducing incidents are the principal cause of outliers in
univariate traffic condition data streams.

In Williams ~1999! and follow-on research~Smith et al. 2002!,
the joint outlier detection and parameter estimation procedure was
applied to several freeway traffic condition data sets, with the
final model form selected on the basis of the Schwarz Bayesian
information criterion~Schwarz 1978!. These modeling efforts re-

vealed that ARIMA (1,0,1)(0,1,1)S consistently emerges as the
preferred model, based on minimization of the Schwarz Bayes
information criterion~SBC!. Although the model estimation pro-
cedure generally includes an estimate for a constant term, t
term is often not statistically significant and is small relative t
the nominal level of the observations. Therefore it is recom
mended that in most cases the constant term be omitted from
forecast equations.

For this study the robust model identification and estimatio
procedure was further applied to the I-75 station 10048 data, w
the results consistent with the previous findings. Table 3 prese
the SBC values for the three seasonal models with the low
SBC values for each data set; and the final parameters deri
from the development data sets are presented in Table 4. Fit
ARIMA models can be rearranged into recursive one-step pred
tors using previous one-step prediction errors to approximate
series innovations. The corresponding prediction equation for t
ARIMA (1,0,1)(0,1,1)672 models is

V̂t115Vt26711f1~Vt2Vt2672!2u1~Vt2V̂t!2U1~Vt2671

2V̂t2671!1u1U1~Vt26722V̂t2672! (6)

Eq. ~6! provides a simple linear recursive estimator. The te
data forecasts presented in the next section were calculated
implementing Eq.~6! in Microsoft Excel spreadsheets with the
parameters given in Table 4.

Heuristic Forecasting Benchmarks

Although the purpose of this paper is not to definitively establis
the practical viability of widespread use of seasonal ARIMA fo
ITS traffic condition forecasting, it is nonetheless important t
compare the empirical forecasting results to reasonable heuri
forecasting methods. The purpose of this comparison is to ass
the likelihood that fitted ARIMA models will provide a statisti-
cally significant increase in forecast accuracy sufficient to justi
going beyond easy-to-understand heuristic techniques that req
little or no customization. The predictive performance of the se
sonal ARIMA models presented in this paper is tested again
three heuristic forecasting methods: the random walk forecast,
historical average forecast, and a deviation from the historic
average forecast.

Fig. 3. I-75 data location
Fig. 4. Autocorrelation function for undifferenced data
668 / JOURNAL OF TRANSPORTATION ENGINEERING © ASCE / NOVEMBER/DECEMBER 2003



Fig. 5. Autocorrelation function for seasonally differenced data
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Random Walk Forecast
If we explicitly or implicitly consider that traffic condition data
streams can be well modeled as a 2D random walk, then the be
forecast for the next observation in the series is simply the mos
recent observation, that is,V̂t115Vt . This is because if our data
series is a random walk we have no expectation of the direction o
magnitude of the change from one step to the next. This is obvi
ously not the case with traffic condition data, but changes from
one interval to the next are often relatively small, so this approac
gives somewhat reasonable predictions in many cases. As touch
on in the introduction, traffic management and control actions o
decisions made in response to currently sensed conditions car
an implicit assumption that random walk forecasts are reasonabl

One way of looking at the random walk forecast is that it is
fully informed by the current conditions but completely unin-
formed by historical patterns. If the modeled process were truly a
random walk, there would be no historical patterns, only uncor
related fluctuations. However, we know, as illustrated by Fig. 1
that traffic condition data follow dependable weekly patterns.
This leads to the second heuristic forecasting approach, historic
average forecasts.

Historical Average Forecast
The phenomenon that traffic conditions follow nominally consis-
tent daily and weekly patterns leads to an expectation that histor
cal averages of the conditions at a particular time and day of th
week will provide a reasonable forecast of future conditions at the
same time of day and day of the week. A straight historical aver
age forecast is the antithesis of the random walk forecast; in th
historical average forecast, predictions are informed solely by
previously observed patterns, but completely uninformed by the
current conditions.

A straight historical average prediction method was used in th
AUTOGUIDE ATIS demonstration project in London~Jeffrey
et al. 1987!. However, intuition holds that averaging that applies
greater weight to more recent observations would provide consis
tently better forecasts than straight averages, either of all pa
observations or of a fixed moving window of past observations
This would allow the historically based estimates to track with the
yearly ebb and flow of traffic levels, as well as general long-term
traffic level trends.

Simple exponential smoothing of traffic condition observa-
tions at each time of day and day of week provides a convenien
method of computing such a weighted average. Let our traffic
condition data series be$Vt%. If the discrete data interval is 15
JOURNAL OF TRANSPORT
t
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min, there will be a lag of 672 intervals between each successi
observation at the same time of day and day of week. In this cas
the exponentially smoothed forecast would be calculated wi
smoothing parametera by the equation

V̂t16725aVt1~12a!V̂t (7)

To be considered a heuristic approach, the smoothing para
eter a must be based on expert judgment rather than estimat
from representative data. Ifa is estimated from the data, the result
is essentially a fitted ARIMA~0,1,1! model, and each time of day
and day of week could have its own smoothing parameter.

The smoothing parametera in general should fall between
zero and one. Asa approaches zero, the forecast approaches
straight average of past observations, and asa approaches one,
the forecast approaches the random walk forecast. Gardner~1985!
found that smoothing parameters smaller than 0.3 were usua
recommended by practitioners. Intuitively it seems reasonab
that the smoothing parameter for traffic condition data should b
relatively small because it is desirable for the estimates to follo
the modest cycles and trends while not being thrown off by ab
normally high or low observations. Therefore, a smoothing pa
rametera of 0.2 is used for historical average estimation in this
study.

If the current conditions are normal, historical average fore
casts can outperform random walk forecasts, especially durin

Fig. 6. Autocorrelation function for seasonally differenced I-75 tes
data
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times when traffic levels are routinely increasing or decreasin
However, historical average forecasts cannot respond to dyna
conditions that differ from the norm, such as increased traf
levels related to a special event or decreased traffic levels dur
a general holiday. The final forecasting heuristic seeks to reme
this weakness by combining the dynamic responsiveness of
random walk forecast with the process memory of the historic
average forecast.

Deviation from Historical Average Forecasts
The final heuristic prediction method is a straightforward comb
nation of the random walk and historical average forecasts. In t
method, exponentially weighted historical averages are compu
for each time of the day and day of the week. To compute t
forecast for the next interval, the ratio of the most recent obs
vation to its corresponding historical average is multiplied by th
current historical average for the forecast interval. In equati
form, let $Vt% be a 15-min discrete interval traffic data series an
$St% be the corresponding series of smoothed historical avera
calculated by

St5aVt1~12a!St2672 (8)

The one-step prediction is calculated by

V̂t115
Vt

St
* St2671 (9)

Once again, if the smoothing parameter is based on expert ju
ment rather than derived from the data, this method can be c
sidered a heuristic approach. The underlying assumption is t
the most recently observed ratio of existing to historical cond
tions will persist into the near future.

A similar approach is used in the Leitund Information Syste
Berlin ~LISB! to forecast link travel time~Kaysi et al. 1993!.
LISB was a full-scale commercial route-guidance system trial
West Berlin. This system, now referred to as ALI-SCOUT, us
infrared communications to transmit traveler information to th
drivers of equipped vehicles.

It is worth noting that the deviation from the historical averag
forecast is quite similar to the seasonal ARIMA (1,0,1
3(0,1,1)672 model that emerged from systematic time serie
analysis of the development data sets. The seasonal compone
the selected ARIMA model produces exponentially weighted a
erages at each 15-min time period. Therefore the multiplicati

Table 3. Fitted Models with Lowest SBC Values

ARIMA model SBC

M25 models
(1,0,1)(0,1,1)672 58,092
(1,0,2)(0,1,1)672 58,100
(2,0,1)(0,1,1)672 58,100

I-75 models
(1,0,1)(0,1,1)672 146,807
(3,0,0)(0,1,1)672 146,811
(1,0,2)(0,1,1)672 146,812

Table 4. ARIMA (1,0,1)(0,1,1)672 Model Parameters

Data series f1 u1 Q1

M25 station 4762A 0.88 0.54 0.85
I-75 station 10048 0.95 0.15 0.85
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model is essentially an ARMA~1,1! model fitted to the deviations
from the current smoothed time period averages. The intuition
that the ratio of current conditions to historical conditions will
persist into the near-term future is supported by the fact that both
fitted models have a high estimate for the autoregressive param
eterf1 , 0.88 and 0.95, respectively, for M25 and I-75.

Predictive Performance

The seasonal ARIMA predictions were compared to the three heu
ristic approaches described above. The one-step predictions we
generated for the second partition of each of the data sets a
presented in Table 1 and Table 2. These data were not used in th
model identification or parameter estimation phases.

Three statistics are used to compare predictive performance
root mean square error of prediction~RMSEP!, mean absolute
deviation~MAD !, and mean absolute percentage error~MAPE!.
The MAPE statistic is the most useful and illustrative because the
nominal level of traffic flow measurements varies by an order of
magnitude between the daily peaks and troughs. Furthermore, th
MAPE statistic allows for some degree of comparison of general
predictive performance among processes that have differen
nominal levels. For example, the M25 and I-75 data series used in
this study differ by a factor that largely results from the fact that
the M25 flow rates are aggregate rates across all travel lane
while the I-75 flow rates are average per lane rates. This facto
carries over to the RMSEP and MAD statistics but not to the
MAPE statistic.

Table 5 presents the predictive performance of each forecast
ing method for the test data sets. In addition to the goodness of fi
statistics described in the previous paragraph, Table 5 also in
cludes the standard deviation~STDEV! of each method’s forecast
errors. The error standard deviations are provided to give a sens
of the one-step forecast confidence intervals.

The Table 5 results support the theoretical applicability of sea-
sonal ARIMA for univariate traffic condition modeling and fore-
casting. The seasonal ARIMA models provide the best forecast
based on all the prediction performance statistics. As expected
the deviation from the historical average heuristic prediction
method provided the second best forecast performance. The pe
formance of the random walk and historical average predictions is
reversed for the two data sets. As discussed above, the historic
average prediction would be expected to achieve its best result
during times when traffic levels are closely following normal con-
ditions, and the random walk prediction would be expected to

Table 5. Forecast Performance Comparison

Data series/model RMSEP MAD
MAPE

~%!
STDEV

error

M25 station 4762A
Seasonal ARIMA 332.22 204.89 8.74 324.68
Random walk 466.29 288.60 12.53 463.75
Historical average 400.99 258.00 11.43 400.64
Deviation from

historical average
378.89 228.47 9.78 378.92

I-75 station 10048
Seasonal ARIMA 141.73 75.02 8.97 138.15
Random walk 180.02 95.05 10.10 205.95
Historical average 192.63 123.56 12.85 180.01
Deviation from

historical average
153.54 81.19 9.54 153.54
BER/DECEMBER 2003
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outperform the historical average forecasts at times when curr
traffic levels are exhibiting significant deviation from normal con
ditions. Therefore, it is likely that close inspection of the test da
sets for the two locations would reveal that traffic conditions
the M25 detector station are more closely following normal pa
terns during the time period of the test data than are traffic co
ditions at the I-75 detector station.

A visual example of the comparative forecast performance
given in Fig. 7. The plots show the observed 15-min traffic vo
umes from 5:00 a.m. to noon for an arbitrarily selected weekd
morning from the test data for each site. The plots also show t
corresponding seasonal ARIMA, exponentially weighted histor
cal average, and deviation from the historical average predictio
In the interest of clarity, the random walk forecasts are not show
but would simply be the observed traffic volumes shifted on
15-min interval to the right.

The I-75 plot in Fig. 7 illustrates that the seasonal ARIMA an
deviation from historical average forecasts are nearly identic
when observed values are tracking closely to historical norm
The M25 plot, on the other hand, shows how the response of
seasonal ARIMA and deviation from historical average forecas
differs when observations go through an extended departure fr
normal levels. The M25 plot indicates that observations were no
mal through 7:30 a.m., but the 7:45 a.m. observation was ab
1,500 vehicles per hour above normal, and the 8:00 a.m. throu
10:45 a.m. observations were approximately 2,000 vehicles p
hour below normal. In this extended period of below-normal tra
fic volumes, the deviation from the historical average foreca
tracks well with the observations. This is as expected because
deviation from historical average forecasts assume that each r
of observed to historical traffic volume will fully persist into the
next interval.

In contrast, the M25 seasonal ARIMA forecasts continue
give a measure of deference to the historical levels, adapting m

Fig. 7. Representative plots of observed and predicted flow rate
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slowly to the lower than normal observations as they persist. Al
though its immediate adaptation to the observed to historical rati
allows the deviation from the historical average forecast to per
form quite well during the period from 8:15 a.m. to 9:45 a.m., this
characteristic also results in model instability in the face of rapid
shifts. The clearest example of this is the greater than 100% for
cast error at 8:00 a.m. caused by the deviation from historica
average forecast fully applying the higher than average observ
tion at 7:45 a.m in its one-step prediction.

Comparison to Other Research

The M25 data set used in this study has been the subject
considerable traffic flow prediction research performed at ITS
Leeds@including Clark et al. 1998 and Chen and Grant-Mueller
~2001!#. Clark et al.~1998! presented a layered forecast approach
consisting of a Kohonen map neural network used to classif
traffic flow data streams into one of four categories, each catego
in turn having an independent fitted ARIMA forecast model. The
Clark et al.~1998! research used the same data location and tim
frame as the seasonal ARIMA modeling presented in this pape
but forecast performance statistics were presented only for th
hours of 6:00 a.m. to 9:00 p.m. on the weekdays of October 2
and 28 to 31, 1996. Table 6 provides a comparison of the season
ARIMA forecasts to the Kohonen map/ARIMA forecasts over
this same time period, along with the corresponding random wal
forecasts. It is noteworthy that the Kohonen map/ARIMA fore-
casts were outperformed by the random walk forecasts in terms
both MAD and MAPE.

Chen and Grant-Mueller~2001! present the findings of further
ITS-Leeds research to develop and test a ‘‘sequential learning
neural network forecasting approach. The data are the same M
traffic volumes used in this paper and in the earlier ITS-Leed
research. As with the Kohonen map modeling discussed abov
the researchers used the final five weekdays in October 1996 f
forecast model testing. However, for the sequential learning neu
ral network effort, the 1-min flows were aggregated into running
15-min averages; in other words, 15-min averages were comput
at each 1-min interval rather than only at the quarter-hour points

As a quick comparison, the seasonal ARIMA model presente
in this study was applied to the series of running 15-min average
This process was straightforward in that the series of 1-min run
ning 15-min averages can be treated as 15 interleaved discre
interval time series. No parameter reestimation was done, an
therefore the seasonal ARIMA forecasts were computed usin
parameters estimated only on the original quarter-hour interva
development series. From the graphs and discussion in Chen a
Grant-Mueller ~2001!, the best-performing sequential learning
neural network achieved a MAPE of approximately 9 to 9.5% for
the five test days. The seasonal ARIMA model applied as de
scribed above achieved a MAPE of 8.9% over the same perio
This is only slightly higher than the 8.6% MAPE for the original
15-min discrete interval series over the same five days. It is likel
that the seasonal ARIMA MAPE for the 1-min running 15-min

Table 6. M25 Forecast Performance Comparison to Clark et al
~1998!

Model MAD MAPE ~%!

Seasonal ARIMA 384 8.6
Kohonen map/ARIMA 514 11.5
Random walk 488 10.4
ATION ENGINEERING © ASCE / NOVEMBER/DECEMBER 2003 / 671
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average series would improve slightly if the parameters were
timized for running averages in the development data.

Discussion of Findings

Experimental analysis of two representative freeway data
supports the theoretical basis for modeling and forecas
univariate traffic condition data as a seasonal ARIMA proce
One-step seasonal ARIMA predictions consistently outperform
heuristic forecast benchmarks. It is necessary to point out that
assertions and findings presented in this paper directly contra
a statement in Kirby et al.~1997!, namely that extending simple
ARIMA models ‘‘to include seasonal and other effects, in pra
tice... did not have a substantial impact on the results.’’ On
contrary, a first seasonal difference taken at a one-week lag is
key to proper application of ARIMA modeling to time-indexe
traffic volumes.

The statement in Kirby et al.~1997! may have been the prod
uct of the data used in the underlying research. The Willia
~1999! research also included the Beaune, France, data used i
Kirby et al. ~1997! research, which consist of southbound flows
the peak summer holiday season on the route from Paris to
French Riviera. Traffic flow levels over this period are extreme
heavy, deviate significantly from normal weekly patterns, and
not settle down to a consistent weekly pattern. Therefore it is t
that the strengths of seasonal ARIMA modeling are not as cle
demonstrated in relation to these data. However, this data s
atypical and not appropriate for supporting general asserti
relative to traffic condition forecasting.

Furthermore, the theoretical foundation for seasonal ARIM
modeling negates any theoretical motivation to investigate hi
level nonlinear mapping approaches, such as neural netwo
This assertion is supported by comparison to actual neural
work forecasting results with a common data set.

Recommendations

Neural network and nonparametric approaches such as nea
neighbor regression provide a desirable feature in their ability
adapt to or ‘‘learn’’ the process being modeled. This adapt
learning feature would certainly be valuable for advanced tra
management systems by automating the task of maintain
model accuracy. An ideal forecasting method would be plug-a
play with little or no off-line, human intensive model training o
retraining necessary. However, the seasonal ARIMA model p
sented in this paper can be represented in state space form
can therefore be implemented using adaptive Kalman filter
techniques to update the parameter estimates. Follow-on rese
is needed to develop and test the validity and efficiency of suc
seasonal ARIMA-based adaptive Kalman filtering approach.

At a minimum, future research on alternate univariate forec
approaches should include comparisons to seasonal ARIMA
heuristic forecasting performance. The ARIMA (1,0,1)(0,1,1)S
model provides a simple three-parameter linear recursive est
tor. Therefore, an appropriately applied seasonal ARIMA mo
should be considered the parametric model benchmark
univariate traffic condition forecasting. Likewise, the deviatio
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from the historical average prediction method described in th
paper provides good forecasts and should be considered a k
heuristic forecast benchmark.
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