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Abstract 

A dynamic model of a robot with 3 rotational degrees of freedom 
is derived in closed form. A systematic procedure for estimation of 
model dynamic parameters is suggested. It consists of the fall- 
wing steps: (i) identification of friction model parameters for each 
joint; (ii) calculation of optimal exciting trajectories, required for 
estimation of the remaining dynamic model parameters; (iii) esti- 
mation of these parameters using a least-squares method. The esti- 
mated model satisfactory reconstructs experimental control 
signals, justifying its use in model-based nonlinear control. 

Keywords: Robotics, Modeling, Identification 

1. Introduction 

I. i.Modeling of robor dynamics and fricrion effects 

An industrial-like direct-drive RRR robot, designed and installed 
in the Dynamics & Control Laboratory at TU/e, is used for evalu- 
ation of robot controllers [1,2]. It is especially convenient for te- 
sting a variety of advanced nonlinear control strategies, contri- 
buting to faster and more accurate robot motions. Among others, 
model-based control strategies are considered. They use an already 
known model of the robot dynamics 13) to compensate for non- 
linear dynamic effects (e.g.. Coriolis/centripetal, gravitational, and 
friction forces). To facilitate the use of a model-based control 
approach, the robot has been described with a detailed dynamic 
model, derived using the Lagrange-Euler formulation. The model 
is expressed in closed-form, such that each aspect of the dynamics 
(inertial, Coriolislcentripetal and gravitational effects) is available 
for analysis and manipulation. 

For practical implementation of model-based control, friction 
in the joints should he taken into account, as it affects the quality 
of motion control 141. To compensate for the friction, its dynamics 
can he modeled and estimated [4-7] and the resulting model is 
used for on-line compensation. There exists static and dynamic 
friction models [4]. Static models primarily describe friction eff- 
ects in the sliding regime: Coulomb and viscous friction, Striheck 
effect, frictional lag, position dependency. They are implemented 
using mathematical functions and/or look-up tables. Relevant 
models are usually complex. since diverse friction effects are desG 
ribed by different functions and switching between them is requ- 
ired at time instances when some effect becomes dominant 141. 
This complicates their practical use. Dynamic friction models can 
describe friction dynamics in both pre-sliding and sliding regimes. 
not requiring additional switching logic. They are formed of diffe- 
rential equations, allowing more flexibility in “shaping” the fri- 
ction behavior during the different regimes of motion. In this 
paper the LuGre friction model [5] is used. It suitably describes 
various friction effects with moderate mathematical complexity. 

1.2. Estimation of dynamic paramerers andmodel volidarion 

Satisfactory results of model-based control depend not only o n  the 
relevancy of the implemented models, hut also on the accuracy of 
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parameters in the models. In this paper we conceptually suggest a 
systematic procedure for parameter estimation. Parameters 
describing kinematics [SI of the RRR robot - twist angles between 
each pair of adjacent joint axes and links lengths, are known from 
manufacturer data with sufficient accuracy. Inertial parameters of 
each link: mass, Cartesian cwrdinates of the center of mass, ine- 
rtia tensor, and a moment of inertia of the motor shaft with addi- 
tional equipment mounted (e.g.. slip rings and bearings), are not 
known and should be estimated from the reference link motions 
and joint torques. It is well-known that it is not possible to esti- 
mate all individual parameters, but rather their nonlinearcomhina- 
tions 191. These combinations establish a set of uniquely identi- 
fiable parameters, called the base parameter set (BPS). The dyna- 
mic model is linear in these parameters which enables estimation 
of the BPS elements using the least-squares (U) methods [10.1 I]. 
Basic friction models can also be represented linearly in their para- 
meters, enabling simultaneous estimation of BPS elements and 
friction parameters [10,1 I]. Considered Lucre friction model does 
not admit a linear parameterization. hut requires independent esti- 
mation. Therefore, the estimation of the robot dynamics is done in 
two steps: first, the parameters of the Lucre friction model are 
estimated for each joint separately, and then all BPS elements are 
simultaneously estimated. The LuGre model has a dynamic and a 
static part, each demanding individual estimation. Parameters of 
both parts are commonly estimated using time-consuming proce- 
dures in time-domain [4]. A frequency-domain method for esti- 
mation of the dynamic part is suggested in (71. It is shown that this 
gives valid estimates, and much faster than in the timedomain 
approach. As such, it is used in our estimation concept. For esti- 
mation of the static part we compare the standard procedure [4] 
with a method using the augmented state Extended Kalman Filter 
(EKF) 16,121. It cccurs that the EKF method gives relevant esti- 
mates with less efforts involved, qualifying to he incorporated in 
our estimation concept. To estimate elements of the BPS, the mbot 
actuators should he excited by control inputs enabling reliable and 
fast parameter estimation in the presence of disturbances (e.g., 
measurement noise). Guidelines to determine such excitations are 
available in [10,111. and are used in our estimation procedure. 
Excitations and resulting joint motions (positions, velocities and 
accelerations) are used in the LS estimation of the parameters of 
the symbolic dynamic model. To  that model we add the LuGre fri- 
ction models of all joints. Thus we establish a complete model 
applicable for model-based control. Experimental validation of the 
model is done as suggested in [10,1 I]. It satbfactorilyreconstructs 
experimentally generated control signals, justifying its use in 
model-based control. 

The paper is organized as follows. In the Section 2 kinematic 
and dynamic models of the RRR robot are given. Section3 
describes a methodology for friction identification, considering 
both pre-sliding and sliding regimes of the friction. In the Section 
4 we present calculation of an optimal exciting trajectory, and 
estimation of the robot dynamic parameters. Final remarks are 
given in the last section. 



2. Kinematics and dynamics of an RRR robot 

An RRR robot has an anthropomorphic svucture featuring the 
mmt dexterous and versatile motions, which is paid by highly 
nonlinear kinematic and dynamic behavior [3]. Direct drive 
actuation makes the control problem even harder. since there are 
no gear-heads to reduce the effects of nonlinear dynamics [2]. A 
kinematic diagram and a picture of the robot are shown in Fig. 1. 

Fig. 1. Kinematic diagram and picture of the RRR robot 

A coordinate frame is assigned to each joint according to the 
Denavit-Hartenberg (DH) notation [SI, enabling a systematic 
description of the kinematics with minimal parameterization 
(Table 1). The joint angles qj (i=1,2,3) are indicated in Fig. 1. 

Table 1. DH parameters of the RRR robot 

'd.0.f. stands for "degree of freedom" 

A dynamic model of the robot is derived using the Lagrange- 
Euler formulation (81. The standard form of the model is: 

where q , q and q are 3x1 vectors of joint positions, velocities 
and accelerations, respectively, D is a 3x3 inertia matrix, c and 
g are 3x1 vectors of Coriolislcentripetal respectively gravitati- 
onal effects, and T is a 3x1 vector ofjoint torques (excitations). 

To provide a complete description of the robot dynamics, the 
behavior of joint actuators should be also taken into account. 
Joints of the RRR robot are actuated by brushless DC motors. 
Control signals U ;  (k1.2.3) from a DSP controller are amplified 
using a controlled current invertor [I], which provides a linear 
relation within the nominal operating range: 

k,,;ui = T; + Jm,iqi (i = 1,2,3). (2) 

k,,; denotes torque constant. Combining ( I )  and (2) gives: 

~ 
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i = 1.2.3. f m , j  denotes the inertia moment of the motor shaft. 
The dynamic model was first derived in the form (3). Then it 

was rewritten to be linear in the BPS elements. This required 
determination of the minimum set of identifiable dynamic 
parameters. For the RRR robot there exists 15 such parameters. 
However, if the inertia moments f,, , , j  are also unknown, then 
dimension of the BPS increases to 16. The minimal set of 
identifiable parameters is thus defined by: 

and the complete robot dynamics can be represented as: 

The validity of the symbolic model is confirmedby comparing 
its inverse-dynamics solutions [SI with the solutions obtained 
using the Robotics Twlhox for Matlab [13]. Discrepancies are 
within numerical round-off. 

In the real system friction affects the robot dynamics and can 
not be disregarded if high-performance motion control is required. 
Hence, we must introduce friction into the model (5) :  

where U is definedhy (6). uf represents friction effects and U" 
total excitations that should be applied. 

Friction phenomena are modeled using the LuGre friction 
model. The model has the form: 

where U /  is the voltage due to the friction, zi is a pre-sliding 
deflection of materials in contact, and y(q ; )  is the Stribeck curve 
for steady-state velocities ( i  = 1.2.3 ). Dynamic (pre-sliding 
regime) model parameters are ao,i and o,,;, denoting the 
stiffness of pre-sliding deflections and viscous damping of the 
deflections, respectively. The sliding regime corresponds to the 
static (steady-state) behavior of the model. The corresponding 
model is obtained from (9) hy assuming constant velocity motion: 

and features the following (static) parameters: vY,; is the Stribeck 

velocity, while ao,j ,  a,,i and a*,; are Coulomb, static and 
viscous friction coefficients. 

3. Identification of the friction 

3. I. Time-domain idenrifcarion of static friction parameters 

Static friction parameters are estimated for each joint inde- 
pendently. Time domain identification based on constant velocity 
experiments was applied in the case of the first two joints, 
following the guidelines presented in [4]. It consists of a sequence 
of individual experiments, each providing some of the static 
friction parameters. The estimates are presented in Table 2. 
Although straightforward and reliable, this procedure is not time 



efficient. In order to make the estimation quicker, we prefer a 
simultaneous identification of all static friction parameters using 
an augmented state EKF [6,12]. Such procedure is successfully 
implemented for estimation of the third joint's static friction 
parameters. As motion control of the RRR robot is performed by 
means of a DSP-based digital controller [1,2] with a sampling 
period of I ms, the EKF for nonlinear continuous-time processes 
with discrete-time measurements was considered. The EKF 
algorithm is a recursive formulation that updates the estimates at 
discrete-time instants, i.e., when the outputs of the system are 
measured. The algorithm is given in [12], and has been already 
used for friction identification in [6]. 

Table 2. Estimated static fiction armden 
aai [VI al.i [VI vS,; b u s 1  aZi [Vs/radl 

0.3561 4.1736 0.003 0.1252 

Identification of the third joint's friction parameters is done 
with the first two joints standing still in some preferred position. 
by means of PD control feedback. The resulting dynamics of the 
robot is in fact dynamics of the third joint considered separately: 

$3 =[k,g(u; - u { ) - ~ , s i n ( q g ) l / ~ , ,  (11) 

where U; and U{ are the joint excitation and the friction, J 3  is 

the equivalent moment of inertia of the load on the motor shaft, 
and 1, is a coefficient. The torque constant k,., is assumed 

known from the manufacturer data [1,21. In the slidingregime, fri- 

ction is described by (IO), and we replace ud in (1 1) by ui,, . 
This gives a nonlinear system with unknown parameters a0,,, 
a,,3 , v ~ , , ,  a2,3, J ,  and 1, . However. for a suitable excitation 

U: ( 1 )  , we may measure the system response ( q,(t) and q 3 ( f ) )  

and use it for Kalman filtering.The EKF simultaneouslycalculates 
estimates of the state cmrdinates (position and velocity) and 
unknown model parameters. To  sufficiently excite all unknown 
parameters. we use a manually generated control sequence 
presented in Fig. 2, which has been successfully applied in [6].  
The excitation was open loop, and the system responded as shown 
in Fig. 3. The response has slow and fast phases, to acquire 
enough information about the static friction parameters. The 
excitation and the response are then fed into an EKF. Filtering is 
done off-line. The filter is tuned, like explained in [6], and its trm- 
sient dynamics required ten filter runs for all parameters to conve- 
rge. Before each run. the estimated parameters are initialized by 
their final estimates from the previous run. The final esimates are 
presented in Table 2, except estimates of J ,  and 1, which are 
equal to 0.070s kgm2, and 1.9688 Nm. 

3.2. Frequency-domoin identification of dynamic friction 
parameters 

Dynamic friction parameters are identified according to the pro- 
cedure suggested in [7]. This procedure is time efficient, requring 
just a few experiments where the system is excited with random 
noise and the corresponding frequency response function (FRF) is 
measured. However, it requires position sensors of high resolution, 
since very small displacements have to be detected. Our 
experimental set-up has incremental encoders producing 655360 

pulses per revolution, which is sufficient. Knowledge of the 
parameters obtained in the previous section is necessary 

If we linearize the Lucre friction model (9) around zero 
velocity and zero pre-sliding displacement. we can use (11) to 
obtain the following F R F  

Q . ( s )  - H , ( s ) = L -  
I 

.(12) 

FRF describes robot dynamics in some predefined configu- 
ration where the i-th joint  is excited with a random noise. 
while the other two  joints are kept fixed using a PD control. 

U ; @ )  ( J i / k , , i ) s 2  +azi)5+uO,; + l i / k , , i  

n , ' ' ' ,  - I 

Fig. 2. Control sequence exciting actuator of the third joint 
8 . . . ,  1 

-6 i 

0 2 4 6 8 IO 
T i e  [SI 

Fig. 3. Response of the third joint to excitation shown in Fig. 2 

Estimating the parameters in (12). using the already estimated 
and 4 ,  gives the dynamic friction parameters ao,j and 

, Each joint is excited with random noise of a bandwidth up to 
200 Hz, with RMS below the static friction level to prevent lea- 
ving the pre-sliding region. H i ( j o )  is obtained by averaging 50 
time series of 4096 samples at the sampling frequency of 1 kHz, 
with a Hanning window and 50 % overlap. In 171 it is explained 
that because the FRF (12) is valid only Ircally, we shculd consider 
the FRF obtained for the lowest noise level for which the pre- 
sliding behavior is observed. In case of the third joint, that 
corresponds to a RMS noise level of 2.5 mV. Experimental results 
for H,( jo)  are presented in Fig. 4 with a solid line. The titled 
curve is shown in Fig. 4 with a dashed line. The estimates for all 
three joints are presented in Table3, which completes the 
estimation of the friction parameters. 

3.3. Validarion of the esrimated fricrion model 

The friction model is needed for identification of the BPS, and 
therefore it should be validated. For that purpose we do two tests. 
The first one should show bow accurate the friction models 
reconstmct experimental system responses qi ( 1 ) .  For illustration, 
we present validation results for the third joint. Similar results are 

J i  , 
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obtained for the other joints. The dynamics ( I I ) ,  combined with 
the estimated friction model (9),(IO), is solved for the excitation 
presented in Fig. 2. The simulated motion of the joint is shown in  
Fig. 5 by a dotted line, while the experimentally measured one is 
given by a solid line. We observe a perfect agreement. 

F ~ e o m y R ~ a n r u e F u n a m d P i ~ ~ ~ ~ S - c I ~ 2 . 5 m V )  

i a0,; [V/rad] 

1 1170.6 
2 196 
3 221.2 

ol,; [Vs/radl 

3.6743 
6.32 

1.4832 

1.5 

I .o 
0.5 

7 O.O 
-0.5 

-1.0 

-1.5 

-2.0 

2 4 6 8 IO -2.4 
0 

Time [SI 

Fig. 5.  Validation of the estimated friction parameters 

For the second test, the third joint is oriented vertically and 
downwards. Then, it was excited by a sinusoidal input. just to 
enable a gravity force to have effect on joint motion. The friction 
compensation using the identified model was active from the very 
beginning of the experiment. After some time, the sinusoidal 
excitation is switched-off, hut the friction compensation remains 
active. Motion of the joint is governed by the equivalent dynamics 

(11). with U; equal to the actual friction compensation. Since 

effects of the term uf in ( I  1) are compensated, and the joint 
features stable oscillations around the equilibrium, we obtain 
compensation adequate. The friction is also position dependent 
with a repetitive behavior during consecutive joint revolutions. 
The estimation of the BPS elements does not take the friction 
position dependency into account. 

4. Identification of the robot dynamic model 

In this section we work out the procedure which provides 
estimates of the minimum number of identifiable dynamic 
parameters. First, a brief description of the least-squares (LS) 
method for parameter estimation is given. The reason for this is 
twofold: (i) the theory underlying LS estimation is used for 
generation of excitations for identification experiments; 
(ii) estimates of dynamic parameters are obtained using the LS 
estimation method. 

4.1. 1s method 

Consider the robot dynamic model (5 ) .  Let us excite joint 
actuators by some ~ ( 1 ) .  and then record the resulting q(1). q(1) 

and @ ( r )  . Assume we have collected ( samples of each element 
of U ,  q .  4 and 4 ,  corresponding to time instants 
to,r, ,... , r5-, . Since ( 5 )  holds for each 1, 6 [to,tl ,..., t 5 - 1 )  , we 
may form the following system of equations: 

4 . p = y .  (13) 
where 

k . R(q(~o)A(to).@(to)) @=I k;' .R(q(ti),q(ti),@(It)) 1. (14) 

k;' .R(q(tg) , i l ( t~ ),q(ri)) 

(15) r~ Y = [ U ~ ( t o ) . U ~ ( f l )  ,..., U (t5)l 

The control sequence U(I) is appropriate if it sufficiently excites 
the robot dynamics. With such excitation, the vector of identifiable 
parameters p can be found using some generalized inverse of 4 : 

p = 4  'Y. (16) 

where '*' denotes generalized matrix inverse [14]. 
To verify if the excitation used in the estimation of the 

unknown p is appropriate, one considers the cardinal number J ,  
of 4.  This is the ratio between maximal and minimal singular 
values of 0 [14]. If J ,  is small, then 4' is less sensitive to 
disturbances, and estimates of p are more reliable. In the 
literature other criteria are also suggested [10,1 I], but here we use 
the cardinal number only. It is because choice of other criterion 
does not influence estimation concept we suggest. 

4.2. Design of optimal excitation 

The design of actuators' excitations yielding a small value of J k  

is done as in [10,11]. The motionof each joint is postulated in the 
form of a five terms Fourier series to ensure cyclic motions during 
the estimation experiment. Cyclic motions are preferable, since 
they enable averaging of the measured data in order to reduce the 
influence of noise. A period of motions should be long enough to 
prevent a minimal singular value of IM to be close to zero. We use 
a period of 10 s. which agrees with the choices reported in [12,13]. 
Now, we search for coefficients of the terms in the Fourier series 
that give a small J, , within the allowable range ofjoint velocities 

< 2n rad/s, 1i21 S 3n. rad/s, and 1 i 3 1  i 3n rad/s. It can be 
noticed that norestrictions were put on the joint positions. The use 
of slip rings for transfer of power and sensor signals via the robot 
joints enables an infinite range of motions in each d.0.f. [1,2]. 
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The coefficients are found using a constrained optimization 
algorithm and substituted into the Fourier series to give the 
excitation trajectories presented in Fig. 6. 

To implement optimal motions on the real system, we apply a 
PD controller to each d.0.f. separately 

= k,.i(q;,,</ -4 ; )  +k,r.;(4;,,</ -4i)  ( i  = L2.3 ). 

where yi,,<, corresponds to the trajectories shown in Fig. 6. The 
gains in (17) were tuned using 'trial and error', to ensure reaso  
nable tracking with a low level of noise in the control inputs 

u"(t) (excitations), as shown in Fig. 7. 

(17) 

0 IO 
Tim-e li] 

Fig. 6. Joint trajectories optimizing cardinal number of IM 

-4 

0 2 4 6 8 10 
T i m  151 .. 

Fig. 7. Control inputs from the identification experiment 

During the identification experiment, we recorded U"(t) and 
q(r) . As LS estimation procedure is performed off-line, q(r)  and 
q ( r )  are reconstructed using digital filtering (Euler differentiation 
+ 'fillfill' Matlah routine implementing 4Ih order Butterworth 
filtering). The velocities were then fed into the estimated friction 
models. The reconstructed friction effects are shown in Fig. 8. As 
demonstrated in the previous section, quality of reconstructed 

d ( r )  is sufficient to enable correction of experimental U"@), 

which gives the control voltage U(I) exciting the robot dynamics 
(5). Finally, u(r) ,  q(r), q ( r )  and i ( r )  are used in estimation of 
p , which is presented next. 

4.3. Esrimarion o f h e  BPS elements 

The sequences of u(r), q ( r ) ,  q(r)  and q(r)  are processed 
according to the procedure explained in Section 4.1. We used data 
measured at 10 ms intervals. In total, each signal contained 1094 
samples. The cardinal number of 0 was 8.06, which was more 
than expected from the design phase. With more data samples we 
could achieve a lower J ,  , however, with a higher computational 
burden due to an increased size of 8 

Torque constants are assumed to be known, and are assigned 
according to the manufacturer data [1,2]: 

k, = diag[l2 6.3 31 [NmN] . (18) 

The applied LS estimation results in the convergence of all ele- 
ments of p , see the diagrams in Fig. 9. 

I 
0 2 4 6 8 1 0  

T i m  [SI 
Fig. 8. Reconstruction of the friction effects 

1.5 1 

-0.5 / 
PI L 

Numbm of samples 
Z M  4W 600 8W 1wO 

0.20$ ' .1 

,- 
0.10 

0.05 

0.W 

a.os 

Numberoframplei 

Fig. 9. Convergence of estimated parameters 

The final set of parameters is given by: 

pI =0.3654, p 1 = - 0 . 0 2 3 5 , p 3 = 0 . 2 0 0 7 , p 4 = 0 ,  
P ~ = O . I O ~ ~ , ~ ~  =o.n077,p, =o.7762,p8=n.oios, 

pl, = n . o 7 1 4 , ~ ~ ,  =o.osi4,p15 = 1 . 6 ~ 9 8 , p ~ ~ = o .  

(19) pg = -0.0415, plo = 0.0148, p11 = -0.3713, p12 = 0.4738, 

Parameters (19) together with those given in Tables 2 and 3, 
accurately describe the robot dynamics including friction (8). 

To evaluate whether the model has sufficient prediction 
capability, it is tested in experiments of the following kind [10,1 I]. 
The motion task was defined by: 

~ ~ / , ~ ( r )  = y,cf,i(0)+rrsin(21u/5)/2 ( i =  1,2,3), (20) 

with the initial location 

[Y,e/,i(0) Y r 4 , 2 ( 0 )  Sre/ .3(o)1=[X'2  - n / 2  01. (21) 

The desired motions are implemented using the PD controllers 
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(17), and the resulting control sequences are measured. During the 
experiments we achieved small tracking errors between desired 
and executed joint trajectories. Hence, in order to prevent addi- 
tional filtering of the acceleration signal, that was considerably 
corrupted by noise, we fed the estimated model (8) with the 
reference sequences qrrf (t) , q a  ( 1 )  and q,</ (t) . In this way we 
uy to reconstruct the actual voltages (17). The greatest 
discrepancy is ohserved in the first joint, and we present it in Fig. 
10 as the worst case. Almost perfect reconstruction is obtained in 
the second joint, and a very good one in the third. Observed 
differences may be due to inaccurate values of adopted torque 
constants, unmodeled dynamics of DC actuators, unmodeled 
position dependency of the friction, or because of other unmodeled 
effects (e.g., coggmg). It is also influenced by position errors 
between desired and actual experimental motions. Houever it can 
be disputed whether the purely deterministic identification, as 
applied, is appropriate for the given estimation problem where 
noise is prevalent. Nevertheless, the results are surprisingly gccd. 

0.8, . - 
5 0.6 

< 0.2 

.o n o  .- 1 
2 -0.2 

-0.4 

- 
E 

‘5 0.4 .- 

E 

Y 

-0.6 

-0.8 ’ I 
5 i n  I5 20 

Time Is1 

Fig. IO. Experimental (solid) and reconstructed (dotted) excitation 
of the first joint 

Although it is possible to improve the accuracy in rewn- 
struction of the control voltages, it is already good enough for 
implementation in model-based control algorithms. The identified 
model can adequately compensate for nonlinear dynamic effects, 
such as Coriolislcentripetal, gravitational and friction forces, and 
in turn relax demands on the controllers in the feedback loops. In 
the case of the available laboratory set-up (Fig. l),  motion 
controllers are implemented in Simulink [Z]. This means that, for 
example, identical Simulink block diagram used for simulation of 
the LuGre friction model (9) is alsoused for real-time application. 
Integration of (9) is performed using Matlah routine ‘ode45’. 

Our current efforts are dedicated towards overcoming the 
problems of position dependent friction, cogging, and dynamics of 
the actuators. Under consideration is also an extension of the 
dynamic model that takes into account interaction of robot’s tip 
with the environment (impact of outer forcesltorques, as well as 
influence of dynamic load). 

5. Conclusion 

In this paper we present a systematic procedure for identification 
of the RRR robot dynamic model. The procedure hegins with a d e  
rivation of the model in symbolic form, which is then represented 
in a liner form with respect to the minimum numberof identifiable 
dynamic parameters. To improve a realistic behavior of the model, 
friction effects are described using the Lucre model. However. 
this model does not have a linear parameterization and can not he 
combined with the dynamic model for simultaneous estimation of 
both dynamic and friction coefficients. We show that it is possible 

to estimate parameters of the friction model for each joint prior to 
estimation of the dynamic parameters. To improve the procedures 
for estimation of the friction parameters, we suggest an elegant 
and efficient algorithm in two steps. First, instead of a time 
demanding sequence of experiments that estimate the pre-sliding 
friction parameters. we suggest the use of an augmented state 
extended Kalman filter. Then, a frequency-domain method is used 
for identification of sliding friction parameters. The estimated 
friction models (for each joint individually) give an adequate ECW 

nstruction of friction effects, which is verified in simulations and 
in experiments. These models are used to extract friction effects 
from experimental excitations. in order to determine the part of the 
control signals corresponding to the robot dynamics with 
actuators. That part is used to estimate elements of the minimum 
set of identifiable parameters, which can be performed using the 
least-squares method. The estimated model satisfactorily covers 
experimental results. It can be used in model-based control laws. 
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