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�e response model of podded propulsion unmanned surface vehicle (USV) is established and identi	ed; then considering the
USV has characteristic of high speed, the course controller with fast convergence speed is proposed. �e idea of MMG separate
modeling is used to establish three-DOF planar motion model of the podded propulsion USV, and then the model is simpli	ed as
a response model. �en based on 	eld experiments, the parameters of the response model are obtained by the method of system
identi	cation. Unlike ordinary ships, USV has the advantages of fast speed and small size, so the controller needs fast convergence
speed and strong robustness. Based on the theory of multimode control, a fast nonsingular terminal sliding mode (FNTSM) course
controller is proposed. In order to reduce the chattering of system, disturbance observer is used to compensate the disturbance to
reduce the control gain and RBF neural network is applied to approximate the symbolic function. At the same time, fuzzy algorithm
is employed to realize the mode so
 switching, which avoids the unnecessary chattering when the mode is switched. Finally the
rapidity and robustness of the proposed control approach are demonstrated by simulations and comparison studies.

1. Introduction

With the development ofmarine technology, the USV has the
advantages of being fast, small volume, low cost, and so on. It
can work e�ciently in harsh environments and is widely used
in the 	eld of ocean surveillance, search, rescue, and military
[1]. In order to better accomplish the tasks in the complex
ocean, USV puts forward higher requirements for its propul-
sion system. Podded propulsor is a new type of propulsion
device, which can save space and improve ship propulsion
e�ciency. In the absence of rudder and side thruster [2],
ship can achieve rotation, reverse and horizontal movement,
and so forth. It is one of themost promising new technologies
in the 	eld of ship propulsion [3], so for USV, the use of POD
propeller can not only meet the basic needs of the operation,
but also improve the performance of navigation.

For now, the modeling and identi	cation of propeller-
rudder propulsion ship are very mature, but in contrast only
a few articles study podded propulsion ship. For a small POD
propeller USV, on the basis of studying the operating char-
acteristics under di�erent speeds, the model of three-DOF
is obtained by the method of system identi	cation, and

the identi	cation result is veri	ed [4]. Japanese scholars
Haraguchi and Nimura use the changing of course to study
the model of podded propulsion ship and evaluate its oper-
ating performance [5]. Aiming at a large podded propulsion
ship, [6] uses the idea of separate modeling to propose
the concept of equivalent rudder. For a podded propulsion
semisubmersible ship, normal velocity 	eld Kijima model
and low velocity 	eld Yoshimura model are combined to
establish a three-DOFmodel, but the accuracy of themodel is
not veri	ed [7]. Paper [8] uses regression formula to estimate
the thrust force generated by POD, and four-DOF model of
semisubmersible ship is established. Paper [9] establishes a
three-DOF model of podded propulsion ship by regression
formula method, and based on this model, ADRC control
theory is used to design the course controller. Generally, the
research on modeling of podded propulsion ship is mostly
limited toMMGmodel, but in fact in the design process of the
actual ship controller, themost widely application is response
model [10]. So the 	rst step of this paper is to establish the
USV responsemodel of podded propulsion; then themethod
of system identi	cation is employed to get the model param-
eters.
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�e design of course controller is an important research
topic of ship motion control, because it is related to not only
the economy and security of the ship’s operation, but also the
foundation of USV’s autonomous navigation. Sliding mode
control (SMC) is applied to design ship course controller in
[11], but the SMC high frequency chattering phenomenon is
di�cult to solve. In order to solve the chattering problem, [12]
uses fuzzy control to optimize control signal to design
the fuzzy sliding mode controller, and simulation results
show that the performance is better than conventional SMC
control. Paper [13] combines SMC and ADRC to design ship
course and track controller, and the sideslip angle caused
by wave current is solved by means of coordinate trans-
formation. In [14], backstepping and terminal sliding mode
are combined to design the course controller, and the fuzzy
approximation method is used to solve the model uncer-
tainty. In [15], the adaptive backstepping is adopted to design
course controller, but the backstepping’s “computation explo-
sion” problem has brought great di�culty to the controller
design. In view of this problem, in [16], technique of dynamic
surface is used to solve the problem of multiple derivation
function e�ectively. On the basis of considering the input
saturation, backstepping is used to design course controller
and neural network approximation is employed to solve the
problem of model uncertainty [17].

As previously mentioned, such as [5–9], there is little
research on the identi	cation of response model of podded
propulsion ship.Meanwhile, unlike ordinary ships,USVhas a
faster speed and smaller volume, so the controller needs faster
convergence speed andbetter anti-interference ability.�at is,
to a certain extent, the course controller of an ordinary ship is
no longer applicable to USV (such as the methods proposed
in [11–17]). So the contributions of this paper are that 	rstly,
by analyzing the force acting on the hull and the thrust force
of POD, the response model is derived; secondly, on the basis
of 	eld experiments, the response model of USV is identi	ed
by the method of system identi	cation; 	nally, according to
the characteristics of USV, based on the theory of multimode
control and fuzzy weighted idea, a fast convergent course
controller is proposed.

�e rest of the paper is organized as follows. Section 2
introduces the experimental subject of Dalian Maritime
University LanxinUSVanddescribes how theMMGmodel is
simpli	ed as a responsemodel. In Section 3, the parameters of
response model are identi	ed and the result of identi	cation
is veri	ed. Section 4 introduces the FNTSM course controller
design. In Section 5, numerical simulations are carried out to
show the rapidity and robustness of our design. Finally,
some conclusions aremade and future research directions are
introduced in Section 6.

2. USV Modeling

At present, there are two main types of hydrodynamic model
of the ship maneuvering: Abkowitz model and MMG model
[18]. From the practical experience, an overly complex or
simple model cannot better describe the characteristics of
system. Weighing the pros and cons of the two models,

Figure 1: Lanxin USV.

Figure 2: �e structure of POD propeller device.

MMG model is employed to study the mathematical model
of Lanxin USV.

2.1. Lanxin USV and Its POD. Lanxin USV is a small intel-
ligence equipment platform of Dalian Maritime University,
which has the function of water sampling, marine monitor-
ing, maritime rescue, and so forth. It is shown in Figure 1.

Its POD propeller device is shown in Figure 2.

It can be seen from Figure 2 that its propeller and rudder
are integrated. When the propulsor changes its propulsion
angle, the vector thrust produced by the propeller can be
decomposed into two directions: keep the forward thrust of
the ship and produce lateral thrust to achieve steering. In the
application process, the actual propulsion angle range is |�| ≤35∘ and its rate of change is limited to | ̇�| ≤ 10∘/s.
2.2. PlanarMotionModel. Conventionally, the attached body
coordinate system and the inertial coordinate system are
adopted to study the model of USV. As shown in Figure 3,�-�0�0�0 is the inertial coordinate system and 	-
�� is the
attached body coordinate system.USVhas sixDOF including
the surge velocity
, sway velocity V, heave velocity�, yaw rate�, rolling rate�, and pitching angle �.� is course angle and� is
propulsion angle.
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Figure 3:�e inertial coordinate system and the coordinate system.

Based on [18], heave velocity, rolling rate, and heave
velocity can be ignored.Meanwhile, we can premise that USV
is symmetrical and the origin of the attached coordinate
system and the barycenter of the USV are coincident. So six-
DOF MMG model can be simpli	ed to a three-DOF planar
motion model.

(� + ��) 
̇ − (� + ��) V� = �,
(� + ��) V̇ + (� + ��) 
� = �,

(��� + ���) ̇� = �,
(1)

where � is the mass of the USV, �� is the additional mass in
the 
-axis direction, �� is the additional mass in the �-axis
direction, ��� is the moment of inertia of the 	� axis, ��� is the
additional moment of inertia in the direction of the �-axis,�,�, and � are the hydrodynamic forces and moments acting
on the hull. According to [18], �, �, and � can be divided as

� = �� + ��,
� = �� + ��,
� = �� + ��,

(2)

where � is the hydrodynamic force acting on the bare hull
and � is the propulsor force. �e plane motion variables of
USV are shown in Figure 4.� is the speed of USV. According to paper [18], the
hydrodynamic forces are

�� = � (
) + ��VVV2 + ��V�V� + �����2,
�� = ��VV + ���� + �NL,
�� = ��VV + ���� + �NL,

(3)

where�NL and�NL are nonlinear �uid dynamics and they can
be ignored if considered as high order small quantity. Accord-
ing to [4], the propulsor thrust can be expressed as

�� = ���	 + �     �	    �	, (4)
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Figure 4: Planar motion variable description.

where �� is propulsor thrust, �	 is the rotation speed of
propeller, and � and � are the coe�cients that are greater than
zero. When the propulsion angle is �, the vector thrust in
di�erent directions is�
 = (���	 + �     �	    �	) cos �,

�
 = (���	 + �     �	    �	) sin �,
�
 = 
� (���	 + �     �	    �	) sin �,

(5)

where 
� is the length from the center of rotation to the
fulcrum of the propulsor.

2.3. Derivation and Simpli�cation. Assume that the outside
interference is small; at this point the linear hydrodynamic
force acting on USV occupies a dominant position, and the
higher order terms can be ignored. In the 	eld of ship model
research, the linear motion of the ship is regarded as the
balance state. Assume 
 = 
0, V = 0, � = 0, and � = 0, where
0 is the longitudinal initial velocity of USV. When the USV
is disturbed by interference, 
 = 
0 + Δ
, ΔV = V, Δ� = �, andΔ� = �. On the basis of this, formula (1) can be simpli	ed as

(� + ��) Δ
̇ = �,
(� + ��) V̇ + (� + ��) 
0� = �,

(��� + ���) ̇� = �.
(6)

Keep 	rst-order small quantities Δ
, V, �, � and ignore
high order small quantities. So

�� = � (
0 + Δ
) ,
�� = ��VV + ����,
�� = ��V + ����,

(7)

where �� is the direct resistance of USV.
� (
0 + Δ
) = −12"#$� (
0 + Δ
)2 , (8)
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where # is the area of wet, " is water density, $� is the total
drag coe�cient, and its essence is a function of speed.

� (
0 + Δ
)
= −12"# [$�0 + ( '$�'Δ
)

�0
Δ
] (
0 + Δ
)2 . (9)

When the speed is 
0, its total resistance coe�cient is $�0. Δ

of formula (8) is linearized as

�� = −12"#$�0
20
− 12"# [2$�0
0 + ( '$�'Δ
)

�0

20] Δ
. (10)

De	ne

�0 = −12"#$�0
20
��� = −12"# [2$�0
0 + ( '$�'Δ
)

�0

20] , (11)

where �0 is the straight line resistance of the unmanned
vehicle in the initial state.

�en �� = �0 + ���Δ
.
So formula (7) can be simpli	ed as

�� = �0 + ���Δ
,
�� = ��VV + ����,
�� = ��V + ����.

(12)

Considering that � is small, so sin � ≈ � and cos � ≈ 1.
�erefore formula (5) can be changed as

�
 = ���	 + �     �	    �	,
�
 = (���	 + �     �	    �	) �,
�
 = 

� (���	 + �     �	    �	) �.

(13)

Substituting (12) and (13) into (2) results in

� = �0 + ���Δ
 + ��,
� = �� + �� = ��VV + ���� + ���,
� = �� + 6� = ��VV + ���� + 

����.

(14)

Under the initial condition, the resistance of the USV is
equal to the thrust of propulsor. �at means �0 + �� = 0, so
we can draw that

� = ��Δ
,
� = ��VV + ���� + ���,
� = ��VV + ���� + 

����.

(15)

Substituting (15) into (6) results in

(� + ��) Δ
̇ = ��Δ
,
(� + ��) V̇ + (� + ��) 
0� = ��VV + ���� + ���,
(��� + ���) ̇� = ��VV + ���� + 

����.

(16)

We can assume that USV is disturbed by small distur-
bances and the longitudinal velocity is constant. Formula (16)
can be divided as (17) and (18).

(� + ��) Δ
̇ = ��Δ
, (17)

(� + ��) V̇ + (� + ��) 
0� = ��VV + ���� + ���,
(��� + ���) ̇� = ��VV + ���� + 

����. (18)

De	ne ��V = �
V
, ��� = ��, �� = �
, ��V = �

V
, ��� =��, and 

��� = �
. �en formula (18) can be simpli	ed as

(� + ��) V̇ = �
V
V + (�� − (� + ��) 
0�) + �
�,

(��� + ���) ̇� = �
V
V + ��� + �
�. (19)

In order to simplify the problem, assuming that the initial
state is uniform motion, and all the motion variables have
zero initial value, thenΔ
(0) = 0, V(0) = 0, �(0) = 0, V̇(0) = 0,̇�(0) = 0, �(0) = 0, and ̇�(0) = 0. A
er Laplace transforma-
tion, formula (19) is converted to (20) and (21).

(� + ��) 7V (7) = �
V
V (7) + (�� − (� + ��) 
0) � (7)

+ �
� (7) , (20)

(��� + ���) 7� (7) = �
V
V (7) + ��� (7) + �
� (7) . (21)

For ship control, we paymore attention to the relationship
between the course and the propulsion angle, so we only ana-
lyze formula (21). By Laplace inverse transform, formula (21)
can be transformed into a linear response equation in time
domain.

�1�2 ̈� + (�1 + �2) ̇� + � = 9 (� + �3 ̇�) . (22)

�e relationships between �1, �2, �3, and 9 are shown
in formulas (22)∼(27). �eir speci	c signi	cance can refer to
[18].

�1�2 = ( <�) (�� + ���) (���� + ����)$� , (23)

�1 + �2 = ( <�) − (�� + ���) ��� − (���� + ����) ��
V$� , (24)

9 = (�< ) ��
V
��
 − ��
��V$� , (25)

9�3 = (�� + ���) ��
$� , (26)

$� = ��
V
��� − [��� − (�� + ���)] ��

V
, (27)
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where �� is the normalization of �. Similarly ���, ���, and���� and so on with superscript express their normalization.
In this state, the �uid force derivative is no longer the slope
when V and � are zero. So in the nonlinear case, various linear
hydrodynamic derivatives will depend on the changing of �.
When � is changed, formulas (23)∼(27) are bound to change.$� is known as the stability index, when $� > 0 the ship has
the stability of the course; when $� < 0 the ship does not
have the stability of the course; when $� ≅ 0 the ship shows
a very strong nonlinear characteristic. So Saku [19] proposes
formula (27).

$� = $�0 + D�2. (28)

When � = 0, $� = $�0. Taking into account that $� has
the symmetry of �, so D as a new constant is introduced.
Substituting (28) into (22) results in

( <�)2 (�� + ���) (���� + ����) ̈�
+ ( <�) [(�� + ���) ��� − (���� + ����) ��

V
] ̇�

+ ($�0 + D�2) �
= ( <�) (��

V
��
 − ��
��V) � + (�� + ���) ��
 ̇�.

(29)

�e le
 and right sides of formula (29) are divided by $�0
at the same time.

( <�)2 (�� + ���) (���� + ����)$�0 ̈�
+ ( <�) (�� + ���) ��� − (���� + ����) ��

V$�0 ̇�
+ $�0 + D�2$�0 �

= ( <�) ��
V
��
 − ��
��V$�0 � + (�� + ���) ��
$�0 ̇�.

(30)

De	ne E = D/$�0; then formula (30) is simpli	ed as

�1�2 ̈� + (�1 + �2) ̇� + � + E�3 = 9� + 9�3 ̇�, (31)

where E is a newly introduced constant. Formula (31) is
simpli	ed as a 	rst-order system.

� ̈� + � + E�3 = 9�. (32)

It can be seen that the response model of podded
propulsion USV still conforms to the classic Norrbin model
structure and it can be extended to ordinary vector propul-
sion ship.
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Figure 5: Identi	cation curves.

3. Model Identification

3.1. Parameter Identi�cation. In order to identify the response
model, 	eld experiments need to be done 	rst. Field exper-
iments include 5∘, 8∘, 12∘, 15∘, 17∘, 18∘, and 20∘ turning test
and 15∘/15∘ zig-zag test. It is noteworthy that 	eld experiments
need to be carried out in a relatively stable sea surface. �e
essence of Norrbin model is a linear Nomoto model with a
nonlinear term E, so 9 and � can be obtained by identifying
the Nomoto model. Formula (33) is Nomoto model.

� ̈� + � = 9�. (33)

Based on 15∘/15∘ zig-zag test data, Nomoto model is iden-
ti	ed by recursive least squares. �e curves of identi	cation
are displayed in Figure 5.F1∼F3 and G1∼G3 are the coe�cients of discrete transfer
function. �e transfer function is

0.2743�2 + 0.2122� − 0.118�3 − 0.9537�2 − 0.5476� + 0.007182 . (34)

�en formula (34) is converted to a continuous transfer
function (35).

1.6573 − 10.6372 + 88.197 + 225.974 + 14.2673 + 106.872 + 3227 − 0.7904 . (35)

Because the coe�cients of higher order and low order
di�er greatly, formula (35) can be simpli	ed as

225.9106.872 + 3327 . (36)

Formula (33) is changed to a transfer function and then
compared with formula (36). We can get that 9 = 0.707 and� = 0.332. E is 	tted by turning test data, and during the
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turning test, ̇�, ̈�, and ̈� are equal to zero, so formula (32) can
be simpli	ed as

E�3 + � = 9�. (37)

It can be seen from formula (37) that if 9 and E are
constants, � and � are one by one. So according to the
multigroup turning tests, � and the corresponding average �
can be obtained; then E can be 	tted out. �e 	tting curve is
shown in Figure 6 and the 	nal result is E = 0.001.
3.2.Model Validation. In order to verify the correctness of the
identi	cation results, the simulation 5∘ turning test is carried
out and compared with the actual data. �e actual turning
test curve is shown in Figure 7 and the simulation turning
test curve is shown in Figure 8.

As can be seen from Figures 7 and 8, the actual radius of
gyration is 85.25m and the simulation is 86.11m.�e error of
numerical simulation and 	eld experiment is small.�is is to
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Figure 8: Simulation turning test curve.

say, the results of modeling and identi	cation are correct and
credible.

4. Course Controller

4.1. Problem Formulation. Select state variables 
1 = �, 
2 =�̇ = �, and 
 = �, so formula (32) can be simpli	ed as


̇1 = 
2,

̇2 = M (
) + G (
) 
 + N (
) ,
� = 
1,

(38)

where M(
) = −(1/�)
2 − (E/�)
32, G(
) = 9/�, 
 ∈ P, and� ∈ P are the input and output of the system, respectively;N(
) is the uncertainty of model and environmental interfer-
ence, and it can be seen as a total disturbance; ‖N(
)‖ < R�,R� > 0.
Control Objective. In the presence of model uncertainties and
external disturbances, design control input 
 to make the
course � follow the target course 
�.
4.2. Course Controller Design. Slidingmode control has good
adaptability and high robustness for system disturbances and
parameter perturbation. It had been successfully applied to
industrial control [20, 21].

De	ne tracking error

S1 = 
1 − 
�,
S2 = 
̇1 − 
̇�. (39)

For system (38), a linear sliding mode (LSM) control
method and its proof of stability are proposed in [22]. �e
switching function of LSM is de	ned as

7 = �1S1 + S2, (40)

where �1 is a constant and �1 > 0.
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�e control law is designed as


 = −G (
)−1 [M (
) + �1S2 + (R� + T1) sgn (7) − 
̈�] , (41)

where T1 is constant and T1 > 0.
�e shortcoming of LSM is that the system state cannot

converge to zero in a limited time. In order to improve the
performance of the system, the control method of terminal
sliding mode is proposed and the better convergence per-
formance than LAM control is obtained. According to [23],
under certain circumstances, the terminal sliding mode has
a singular problem which can cause the system to be out of
control. So [24] proposes nonsingular terminal sliding mode
(NTSM), which can overcome the singularity problem of
terminal sliding mode and it has a wide range of applications
in the 	eld of mechanical arm, motor control [25].

For system (38), the NTSM control method and its proof
of stability are proposed in the paper [26]. �e switching
function of NTSM is de	ned as

7 = S1 + 1U1 S�1/�12 , (42)

where U1 > 0 is the sliding mode surface parameter to be
designed, �1 and �1 are odd numbers, �1 > �1, and 1 <�1/�1 < 2.

�e control law is designed as


 = −G (
)−1 [M (
) + U1 �1�1 S2−(�1/�1)2

+ (R� + T2) sgn (7) − 
̈�] . (43)

Remark 1. In order to solve the uncertainty of the model and
the in�uence of external disturbance, (41) and (43) must have

a larger T1 and T2. However, there is a fatal weakness that it
will produce strong chattering, which is not allowed by the
mechanical mechanism. So wemust adopt the corresponding
solutions to ensure the convergence speed and robustness
based on the weakening of the chattering.

When 7 = 0, formula (40) can be simpli	ed as

S2 = −�1S1. (44)

Formula (42) can be simpli	ed as

S2 = (−U1S1)�1/�1 . (45)

Contrasting formulas (44) and (45), due to 0.5 <�1/�1 < 1, when the system is near the equilibrium point, the
convergence rate of NTSM is higher than LSM; when the
system is far away from the equilibrium state, the convergence
rate of NTSM is lower than LSM [27]. In the light of these
characteristics, FNTSM control method is proposed in [28],
and it is proved that FNTSM can converge in 	nite time.

�e switching function of FNTSM is de	ned as

7 = {{{{{
�2S1 + S2     S1    > Z
S1 + 1U2 S�2/�22     S1    ≤ Z, (46)

where �2 and U2 are constants and �2 > 0 and U2 > 0; �2
and �2 are odd numbers; �2 > �2 and 1 < �2/�2 < 2. It
can be seen from formula (46) that the switching function of
FNTSM is connected by the switching function of LSM and
NTSM. According to the preceding derivation, the control
law of FNTSM is shown in formula (47).


 = {{{{{
−G (
)−1 [M (
) + �2S2 + (R� + T3) sgn (7) − 
̈�]     S1    > Z
−G (
)−1 [M (
) + U2 �2�2 S2−(�2/�2)2 + (R� + T4) sgn (7) − 
̈�]     S1    ≤ Z. (47)

�eorem 2. For system (38), under the control law of FNTSM,
the system will reach the sliding surface in a limited time, and
the tracking error on the sliding surface will converge to zero in
a limited time.

According to 
eorem 2, an important condition for the
stability of Lyapunov is that N(
) meets ‖N(
)‖ < R�. R� is the
gain of sliding mode control switching, and it directly deter-
mines the severity of the chattering phenomenon. In order
to eliminate the in�uence of N(
) on the control system, dis-
turbance observer is designed to solve this problem.

Remark 3. Environmental interference is caused by the wind,
�ow, and two-order wave, and the frequency of these distur-
bances with respect to the dynamics of the ship is very low
[29], so we can assume that the derivative of the uncertainty
ofmodel and environmental interference is equal to zero [30].

4.3. DisturbanceObserver. �edisturbance observer is designed
as ̇̂
2 = M (
) + N̂ (
) + G (
) 
 + \1�
̃2,

̇̂N� (
) = \2�
̃2, (48)

where \1�, \2� > 0, ^ = 1, 2, are the parameters to be designed.
When |S1| > Z, ^ = 1; when |S1| < Z, ^ = 2. N̂(
) is the estimated
value ofN(
) and 
̂2 is the estimated value of
2. Ñ(
) = N(
)−N̂(
) and 
̃2 = 
2−
̂2; Ñ(
) and 
̃2 are, respectively, estimated
error.

Remark 4. In practical engineering, the same disturbance
observer can be used to compensate the disturbance. �at
means \11 = \12, \21 = \22, so N̂1(
) = N̂2(
) = N̂(
).
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So control law (47) becomes


 = {{{{{
−G (
)−1 [M (
) + �2S2 + N̂ (
) + T3sgn (7) − 
̈�]     S1    > Z
−G (
)−1 [M (
) + U2 �2�2 S2−�2/�22 + N̂ (
) + T4sgn (7) − 
̈�]     S1    ≤ Z. (49)

When the control law is (49), the stability of the system is
proved.

When |S1| > Z, formula (46) is derivative.

̇7 = �2S2 + M (
) + G (
) 
 + N (
) − 
̈�. (50)

De	ne the 	rst Lyapunov function.

�1 = 1272 + 12\21 Ñ (
)2 + 12 
̃22. (51)

�en the time derivation of �1 along the solution of (48),
(49), and (50) is

�̇1 = 7 ̇7 + 1\21 Ñ (
) ̇̃N (
) + 
̃2 ̇̃
2
= 7 [N (
) − N̂ (
) − T3sgn (7)]

+ 1\21 Ñ (
) ( ̇N (
) − ̇̂N (
)) + 
̃2 (
̇2 − ̇̂
2)
= 7 [Ñ (
) − T3sgn (7)] − Ñ (
) 
̃2

+ 
̃2 (Ñ (
) − \11
̃2)
= 7 [Ñ (
) − T3sgn (7)] − \11
̃22
≤ − (T3 − Ñ (
)) |7| − \11
̃22.

(52)

De	ne T3 = |Ñ(
)| + a1 (a1 > 0).
�en �̇1 ≤ −a1|7| − \11
̃22 ≤ 0.
So it is asymptotically stable in the sense of Lyapunov.
When |S1| ≤ Z, formula (46) is derivative.

̇7 = S2 + 1U2 �2�2 S�2/�2−12 (M (
) + G (
) 
 + N (
) − 
̈�) . (53)

De	ne b(S2) = (1/U2)(�2/�2)S�2/�2−12 .

̇7 = S2 + b1 (S2) (M (
) + G (
) 
 + N (
) − 
̈�) . (54)

De	ne the second Lyapunov functions.

�2 = 1272 + 12\22 Ñ (
)2 + 12 
̃22. (55)

�en the time derivation of �2 along the solution of (48),
(49), and (54) is

�̇2 = 7 ̇7 + 1\22 Ñ (
) ̇̃N (
) + 
̃2 ̇̃
2
= 7b (S2) [N (
) − N̂ (
) − T4sgn (7)]

+ 1\22 Ñ (
) ( ̇N (
) − ̇̂N (
)) + 
̃2 (
̇2 − ̇̂
2)
= 7b (S2) [Ñ (
) − T4sgn (7)] − Ñ (
) 
̃2

+ 
̃2 (Ñ (
) − \11
̃2)
= 7b (S2) [Ñ (
) − T4sgn (7)] − \11
̃22
≤ −b (S2) (T4 − Ñ (
)) |7| − \11
̃22.

(56)

De	ne T4 = |Ñ(
)| + a2 (a2 > 0) and b(S2) > 0. �en�̇2 ≤ −b(S2)a2|7| − \12
̃22 ≤ 0, so it is asymptotically stable in
the sense of Lyapunov.

4.4.WeakenedChattering. Although the disturbance observer
can reduce the control gain, because of the discontinuity of
the switching function, the chattering is generated in the
vicinity of the sliding mode.

Because the rapidity is mainly re�ected in the LSM phase
and the robustness is mainly embodied in the sliding mode
of NTSM, when |S1| > Z, symbolic function T3sgn(7) is still
being used; when |S1| ≤ Z, RBF neural network [31] is used to
approximate sign function T4sgn(7). De	ne �� = T4sgn(7).

�e algorithm principle of RBF network algorithm is
shown as follows:

ℎ� = exp(−eeeee� − ��eeeee22	2� ) , g = 1, 2, . . . , �,
�� = h�ℎ (
) + i,

(57)

where � is the input signal of the network; g is the num-
ber of nodes in the hidden layer of the network; ℎ =[ℎ1, ℎ2, . . . , ℎ�]� is the output of the Gauss basis function; 	�
is the base width parameter for the node g, 	� > 0; h is the
ideal weights of neural network; i is the approximation error
of neural network, |i| ≤ imax, and imax > 0. In this paper,
de	ne � = 7, g = 20, and 	� = 5.

�e output of RBF neural network is

�̂� = ĥ�ℎ (
) , (58)
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where �̂� is the estimated value of �� and ĥ is the estimated

value of h. �en �̃� = �� − �̂� and h̃ = h − ĥ. De	ne

̇̂h = n7b(S2)ℎ(
), where n is a design parameter and it is
greater than zero. So the control law is


 = {{{{{
−G (
)−1 [M (
) + �2S2 + N̂ (
) + T3sgn (7) − 
̈�]     S1    > Z
−G (
)−1 [M (
) + U2 �2�2 S2−�2/�22 + N̂ (
) + �̂� − 
̈�]     S1    ≤ Z. (59)

When the control law is (59), the stability of the system is
proved.

When |S1| ≤ Z
̇7 = S2 + b (S2) (M (
) + G (
) 
 + N (
) − 
̈�) = S2

+ b (S2) (−U2 �2�2 S2−�2/�22 − �̂� + N (
) − N̂ (
))
= S2 − S2 + b (S2) (−�̂� + N (
) − N̂ (
)) = b (S2)
⋅ (−�̂� + N (
) − N̂ (
)) = b (S2)
⋅ (−�̂� + �� − �� + N (
) − N̂ (
)) = b (S2)
⋅ (−ĥ�ℎ (
) + h�ℎ (
) − �� + N (
) − N̂ (
) + i)
= b (S2) (h̃�ℎ (
) − �� + N (
) − N̂ (
) + i) .

(60)

De	ne the third Lyapunov function.

�3 = 1272 + 12nh̃�h̃ + 12\22 Ñ (
)2 + 12 
̃22. (61)

�en the time derivation of �3 along the solution of (48),
(59), and (60) is

�̇3 = 7 ̇7 − 1nh̃� ̇̂h + 1\22 Ñ (
) ̇̃N (
) + 
̃2 ̇̃
2
= 7b (S2) (h̃�ℎ (
) − �� + N (
) − N̂ (
) + i)

− 1nh̃� ̇̂h + 1\22 Ñ (
) ̇̃N (
) + 
̃2 ̇̃
2
= 7b (S2) h̃�ℎ (
) − 1nh̃� ̇̂h

+ 7b (S2) (−�� + N (
) − N̂ (
) + i)
+ 1\22 Ñ (
) ̇̃N (
) + 
̃2 ̇̃
2

≤ 7b (S2) (i − T4sgn (7) + Ñ (
))
+ 1\22 Ñ (
) ( ̇N (
) − ̇̂N (
)) + 
̃2 (
̇2 − ̇̂
2)

≤ b (S2) (7i + 7Ñ (
) − T4 |7|) − Ñ (
) 
̃2

+ 
̃2 (N (
) − N̂ (
) − \12
̃2)
≤ −b (S2) |7| (T4 − Ñ (
) − i) − \12
̃22.

(62)

Considering b(S2) > 0 and \12 > 0 and de	ning T4 =|Ñ(
)| + |imax| + p (p > 0), then
�̇3 ≤ −b (S2) p |7| − \12
̃22 ≤ 0. (63)

So it is asymptotically stable in the sense of Lyapunov.

De	ne Ω(r) = b(S2)p|7| + \12
̃22 = −�̇4
Seeking the time integral of Ω(r)
∫�
0

Ω (t) �t = �4 (7 (0) , 
̃2 (0)) − �4 (7 (r) , 
̃2 (r)) . (64)

Because �̇4 ≤ 0, it can be concluded that �4(r) is a
nonincreasing function; then �4(7(0), 
̃2(0)) is bounded. So�4(7(r), 
̃2(r)) ≥ 0 and 0 ≤ �4(7(r), 
̃2(r)) ≤ ∞. We can draw
that

∫�
0

Ω (t) �t < ∞. (65)

Obviously, Ω̇(t) is bounded. By Barbalat lemma

lim
�→0

Ω (r) = 0. (66)

�is shows that when r → ∞, 7(r) → 0 and 
̃2(r) → 0,
and then S1(r) → 0, S2(r) → 0. In total, the system can be
globally asymptotically stable.

4.5. Fuzzy Weight. When the system error is Z, the control
mode will change. If the option of Z is not appropriate,
the controller will produce chattering. In this paper, fuzzy
weighting method is used to design the controller gain
vector in the mode switching process, which can improve
the transient response of the system. �e basic idea is that,
according to the system state error, the control gain V of LSM
controller is obtained by using the fuzzy inference method;
then the control gain of NTSM is 1 − V.(1)�e fuzzy controller is a single input and single output
system.�e input is the system error S1, and the output is the
control gain V of the LSM controller. Firstly, the systematic
error S1 is normalized as [−6 6], and the domain of V is [0 1].
�eir membership functions are shown in Figures 9 and 10,
respectively.
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Figure 9: �e membership function of S1.
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Figure 10: �e membership function of V.

(2) �e control rules are that if |S1| decreases, V is also
reduced. �e control rules are shown in Figure 11.(3) Zadeh and Max-min method are used in fuzzy
reasoning, and the centroid area of gravity method is used
in the inverse model.

At this point, the 	nal control law is


 = [−G (
)−1 [M (
) + �2S2 + N̂ (
) + T3sgn (7) − 
̈�]]
⋅ V + [−G (
)−1
⋅ [M (
) + U2 �2�2 S2−�2/�22 + N̂ (
) + �̂ (�) − 
̈�]] (1
− V) .

(67)
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Figure 11: Control rules.
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Figure 12: Course keeping curves under weak disturbance.

5. Numerical Simulations

In order to verify the performance of the FNTSM controller,
numerical simulations of course keeping and course tracking
for Lanxin USV are carried out. �e control parameters of
(67) are selected as �2 = 0.55, T3 = 10.9, U2 = 0.45, �2 = 11,�2 = 9, \11 = 2, \21 = 15, \12 = 2, \22 = 15, and n = 0.1.

To show the rapidity and robustness of the proposed
algorithm, control laws (41) and (43) are compared with
FNTSM. �e parameters of (41) are �1 = 0.55, T1 = 8.44 and
the parameters of (43) areU1 = 1.2,�1 = 11, �1 = 9, T2 = 7.58.
Case 1 (numerical simulation of course keeping under weak
disturbance). �e purpose of this numerical simulation is to
verify the rapidity of FNTSM controller.

When N(
) = 2.5 sin(0.6r), course keeping simulation
results are shown in Figures 12–14.
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Figure 13: Propulsion angle curves under weak disturbance.
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Figure 12 shows comparison results of course keeping
performance among the control laws of LSM, NTSM, and
FNTSM. It is observed that the proposed FNTSM control law
has the fastest convergence rate than LSM and NTSM.

Figure 13 shows the control inputs of FNTSM, LSM, and
NTSM. It is observed that in order to o�set disturbance, the
propulsion angle of all the control laws has certain chattering,
but it can be clearly seen that the chattering of FNTSM is the
smallest.

Figure 14 shows the estimated value of disturbance. It is
observed that the error of the two curves is very small, and
this can be proved that disturbance observer works well.

Case 2 (numerical simulation of course keeping under strong
disturbance). �e purpose of this numerical simulation is to
verify the robustness of FNTSM controller.
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Figure 15: Course keeping curves under strong disturbance.
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Figure 16: Propulsion angle curves under strong disturbance.

In the case of all control parameters being not changed
and N(
) = 10 sin(0.6r), course keeping simulation results are
shown in Figures 15–17.

It can be seen from Figures 15–17 that, under the strong
disturbance, FNTSM still has a good control e�ect, and it can
keep course stability at target value, but LSM andNTSMhave
shown overshoot and oscillation.�e propulsion angle is still
in a reasonable range and the disturbance observer still has a
good performance.

Case 3 (numerical simulation of course tracking under strong
disturbance). In the case of all control parameters being not
changed and N(
) = 10 sin(0.6r), course tracking simulation
results are shown in Figures 18–20.
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Figure 18: Course tracking curves under strong disturbance.

It can be seen from Figures 18–20 that, under the strong
disturbance, FNTSM can make the course closely track
the target value and not overshoot, while NTSM and LSM
are obviously out of control. Meanwhile, the propulsion
angle �uctuation range of FNTSM is the smallest and the
disturbance observer can estimate the disturbance value very
well.

6. Conclusions

According to MMG separation model theory, the response
model of podded propulsion USV is proved to be still in
compliance with theNorrbinmodel, and then the parameters
of response model are obtained by the method of system
identi	cation. �rough the model validation we found that
the error between simulation result and 	eld experiment is
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Figure 19: Propulsion angle curves under strong disturbance.
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Figure 20: Estimation of disturbance.

very small, which proves the correctness of modeling and
identi	cation. In view of the characteristic of USV with high
speed, based on the multimodel control theory, FNTSM con-
troller is proposed. Meanwhile, disturbance observer, RBF
neural network, and fuzzy weighting are used to weaken the
chattering of the system. Finally, the rapidity and robustness
of FNTSM controller are demonstrated through numerical
simulations. Obviously, the results of this paper can be
extended for more general ship. In the next step, the FNTSM
control law will be applied to the real ship experiment for
veri	cation.
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