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ABSTRACT Amodeling and parameter identification method for rate dependent hysteresis of piezoelectric

actuated nano-stage is presented in this work. A system level quasi-static hysteresis model is employed to

construct a neural network. To better describe the rate dependent behavior of hysteresis in piezoelectric

actuated stage, a Nonlinear AutoRegressive Moving Average with eXogenous input (NARMAX) based

dynamic model is incorporated with the quasi-static hysteresis model, where the weights of specifically

designed neural network corresponds to the model parameters. To handle the multivalued problem of

hysteresis, generalized input gradient is proposed to convert multivalued mapping of hysteresis into one-

to-one mapping. The parameters of the nonlinear rate dependent hysteresis in piezoelectric actuated stage is

identified by neural network training, taking advantage of their universal function approximation capabilities.

The proposed scheme is also compared with conventional black box and particle swarm optimization

identification based methods, simulation and experimental results demonstrate significant performance

improvement with an error of 20.77nm for proposed method whereas 96.56nm and 31.46nm for black box

and particle swarm optimization respectively.

INDEX TERMS Extended input space, neural network, model identification, piezoelectric actuator.

I. INTRODUCTION

Piezoelectric (PZT) actuators have received a great deal

of attention over the last few decades in nano-positioning

applications due to their high speed, stiffness, and fast

response [1]. PZT actuators are widely used in applications

such as micro/nano positioners, micro grippers, robotic sys-

tems [2], [3], positioning of microscope stage [4] etc. But the

presence of nonlinear rate dependent hysteresis in PZT’s out-

put response, due to their ferromagnetic nature, deteriorates

their positioning accuracy. Thus the precise modelling of

PZT’s output response is very necessary in order to increase

its positioning accuracy.

Different models have been presented in the literature

to describe the hysteresis phenomenon. For PZT actuators,

phenomenological models are widely used, including the

The associate editor coordinating the review of this manuscript and

approving it for publication was Junxiu Liu .

Preisach [5]–[8], Maxwell-slip [9], [10], Prandtl-Ishlinskii

(PI) [11]–[13], and Krasnosel’skii-Pokrovskii (KP) [14].

Hysteresis compensation is complicated in these models due

to the difficulty they present in deriving the inverse hysteresis

model. On the other hand, physiological models, such as

the Bouc-Wen [15], [16] and Duhem [17] models, require

too many parameters to be identified [18], thereby making

the identification process a difficult task. Recently, a System

Level Model (SLM) was presented in [19], where hysteresis

behavior is described through a single function that links the

derivatives of the output and input quantities. As such, a sep-

arate expression is not required for describing the increasing

and decreasing curves of hysteresis. However, the curve-

fitting-based parameter identification approach presented

in [19] limits its performance.

Several works have been reported in the past on parameter

identification of hysteresis models for PZT actuators. Param-

eter identification using recursive least mean squares based
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algorithms is the prominent model identification technique

presented in literature [20]–[23]. Parameter identification

of NARMAX model by using least-squares support vector

machine is presented in [23]. In [22] a fuzzy least square

support vector machine technique which can overcome the

slow convergence problem of least-squares support vector

machine is presented. An adaptive least squares support vec-

tor regression based method is proposed in [21], where the

particle swarm optimization is used to optimize the hyper-

parameters. The support vector regressions based methods

usually suffer from slow training speed also hyperparameters

in such algorithms substantially affect the accuracy of regres-

sion. The swarm intelligence optimization based method has

also gain much importance for model identification recently,

due to their advantages of fast convergence and efficient

global optimization. Reference [24] presented an improved

partial swarm optimization (PSO) method to identify non-

linear dynamic hysteresis model. PSO and broad learning

system are used to identify nonlinear dynamical systems

in [25]. Generally, the optimization techniques suffer from

trapping within local optima which deteriorates the accuracy

of identified model.

Due to their universal approximation properties, intelligent

learning algorithms like neural networks have also received

attention recently for the modelling and identification of non-

linear systems [26]. To predict the response of nonlinear hys-

teric system a deep neural network based method is proposed

in [27]. NARMAXmodel based on the Pi-sigma fuzzy neural

network to describe the hysteresis in piezo-electric actuated

stage is presented in [28]. However, in most the of present

literature, the black box neural network model approximation

approach is adopted, where parameters of neural network

have no mathematical meaning. Since hysteresis corresponds

to a multivalued mapping function, it is not possible to

directly apply neural networks for the identification of PZT

models [29]. Generally gradient of hysteresis output w.r.t.

input gradient is used to transform the multivalued problem

into a one-to-one mapping problem [30]. But hysteresis in

piezoelectric actuators is a rate-dependent non-smooth non-

linearity, thus this gradient of hysteresis output w.r.t. input

gradient does not exist at non-smooth/extrema points.

This paper explores a feasibility of parameter identifica-

tion of the system level model [19] by transforming it into

a custom designed gray box neural network based model.

Unlike black box identification scheme, the weights of neu-

ral network in proposed scheme corresponds to the model

parameters which have clear mathematical meaning. In order

to deal with the multivalued nature of hysteresis a generalized

input gradient based mapping scheme is proposed which can

extract the moving tendency of hysteresis. An extended input

space was created using generalized input gradient to realize

the one-to-one mapping between input and output, which is

later used by custom design neural network for the identifica-

tion of model parameters. Finally, a NARMAX model based

dynamic model is added to the overall model to describe

the rate dependent properties of the PZT actuator. Series

FIGURE 1. The experimental setup.

of experiments were conducted to validate the performance

proposed modeling and identification scheme. The overall

contributions of this paper are, modeling of quasi static hys-

teresis model into a gray box neural network, development

of generalized input gradient model to convert multivalued

hysteresis into one-to-one mapping and finally introduction

NARMAX based dynamic model to describe the rate depen-

dent characteristics of pizo-driven nano stage.

The remainder of this paper is organized as follows.

Section II states the rate dependent hysteresis phenomenon

in PZT actuators. Concept of generalized input gradient is

described in Section III. Neural networks based modelling

approach is shown in section IV. Results of the experiments

with the proposed method are presented in Section V. Finally,

Section VI concludes the article.

II. EXPERIMENTAL SETUP AND HYSTERESIS

PHENOMENON IN PIEZOELECTRIC

ACTUATED NANO-STAGE

This section illustrates the rate-dependent hysteresis phe-

nomenon in piezoelectric actuated motion stage using an

experimental example. Figure 1 shows the experimental setup

to excite the PZT actuated motion stage and measure its out-

put response. Input signal, generated byMatlab Simulink/xPc

Target, is given to high bandwidth voltage amplifier by

16bit resolution DAC interface of NI-6259 for amplification.

The amplified voltage signal from high-bandwidth voltage

amplifier is fed to the X-Y PZT actuated nano stage. The

PZT actuated nano stage is excited in X-direction to record

input-output data of single DOF. MicroE systems Mercury II

6000 series linear encoder, with 1.2nm resolution and maxi-

mum speed of 61mm/sec, is employed to get the displacement

output data from actuator. Displacement data from linear

encoder is recorded via of NI-6259 data acquisition card at

a sampling rate of 20kHz. The motion system is mounted on

an air-floatation platform to reduce external disturbances.

The piezo-actuated nano-motion stage, with characteristic

natural frequency of 512Hz, is excited in single degree of

freedom with multiple input voltage signals, with amplitude

of 100V but different frequencies (i.e., 10hz, 25hz, 50hz

and 100hz), to observe the output displacement. The input

signal used here is sin (2π ft) + ρ, where ρ is the dc offset to

keep input amplitude positive. Output displacement curve is

VOLUME 9, 2021 65441



K. Ahmed, P. Yan: Modeling and Identification of Rate Dependent Hysteresis in PZT Actuated Nano-Stage

FIGURE 2. Rate-dependent hysteresis in piezoelectric actuated
nano-stage.

plotted against input excitation(voltage) is shown in Figure 2.

It is observed that with the increase of frequency, the width of

output (displacement) to the input(voltage) curve increases.

A clockwise twist can also be observed in input output curve

with the increase in frequency.

Figure 2 shows that, hysteresis in PZT actuated nano-stage

is amultivaluedmapping phenomenawhich is rate-dependent

in nature. Whereas the neural network based identification

method requires a one-to-one mapping between output and

input. Thus neural network based method cannot be directly

applied to identify the hysteresis functions. The following

section deals with the mapping of multivalued hysteresis into

one-to-one mapping.

III. GENERALIZED INPUT GRADIENT

Hysteresis is non-smooth multivalued mapping nonlinearity

which makes it difficult to directly apply conventional model

identification techniques. The neural networks based identifi-

cation method requires a continuous relation with one-to-one

mapping between input and output data. Usually a hysteresis

output gradient with respect to input, is introduced in input

space to handle multivalued problem of hysteresis [30]. How-

ever, at extrema points this so called gradient of hysteresis

with respect to input does not exist. To deal with this problem,

a generalized input gradient based method is proposed in this

section.

Since hysteresis is a locally Lipschitz function, the input

gradient f́ [u (t)] can be obtained in smooth segments:

f́ [u (t)] =
u (t + 1t) − u (t)

1t
(1)

where u (t) locally Lipschitz continuous input function such

that u (t) : Rn × R → R, |1t| < γ is a small change in time

and γ → 0 is an arbitrary small positive number.

Generalized input gradient can be defined as:

f [u (t)] =

{

f̃ [u (t)] , extrema

f́ [u (t)] , else
(2)

from [30] the input gradient at extrema points, f̃ [u (t)] can be

defined as:

f̃ [u (t)] , co{limf́ [u (ti)] |ti → t, u (ti) → u (t) ,

× u (ti) /∈ �V ∪ N } (3)

FIGURE 3. Multivalued nature of hysteresis.

where N represents an arbitrary set of zeros, �V is the set

containing Lebesgue measure zero where f́ [u (t)] does not

exist and co is the convex closure.

From (3) it is clear that at extrema points the generalized

input gradient is bounded. The generalized input gradient at

extrema points, from the properties of rate-dependent hys-

teresis, can be expressed as:

f̃ [u (t)] = f́ [u (t − ζ )] (4)

where ζ → 0 is a small positive number. Since at turning

points the conventional input gradient from (1) does not

exists, f̃ [u (t)] can be utilized as the input gradient to extract

the change tendency of hysteresis.

However, it is well established that neural networks based

identification can only be applied to a continuous systemwith

one-to-one mapping[31]–[34]. In the following it is shown

that f [u (t)] is a continuous mapping function.

Lemma 1: For time instants t1&t2 ∈ t , where t1 6= t2,

f [u (t)] is a continuous mapping function such that if u (t2)−

u (t1) → 0 then f [u (t2)] − f [u (t1)] → 0, where u (t) ∈

M (R+) for time ‘‘t’’,M (R+) is the set of continuous function

of R+ and R+ = {t|t ≥ 0}.

Proof: Consider t1 and t2 are not extrema points, t2 −

t1 → 0 and t2 > t1, also consider rising curve case of

hysteresis loop from Figure 3 i.e. u (t2) > u (t1). For input

u (t1) at time t1:

f [u (t1)] =
u (t1 + 1t) − u (t1)

1t
(5)

where 1t → 0 is a small change in time.

f [u (t2)] − f [u (t1)]

=
[u (t2 + 1t) − u (t1 + 1t)] − [u (t2) − u (t1)]

1t
(6)

For any periodic continuous input u (t), if u (t2)− u (t1) → 0

then u (t2 + 1t) − u (t1 + 1t) → 0. From (6) if u (t2) −

u (t1) → 0 then f [u (t2)] − f [u (t1)] → 0. Same can be

proven for descending curve of hysteresis loop i.e. that if

u
(

t
,
1

)

− u
(

t
,
2

)

→ 0 then f
[

u
(

t
,
1

)]

− f
[

u
(

t
,
2

)]

→ 0 shown
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in Figure 3. Since from (4) f̃ [u (t)] ⊂ f́ [u (t)], hence it

is clear that f [u (t)] is continuous mapping for a periodic

continues input u (t).

Theorem 1: For hysteresis space defined as R2 : U × F ,

where u (t) ∈ U is the input and f [u (t)] ∈ F is the mapping

defined in (2), dH (t) is the output of rate dependent hystere-

sis, and input u (t) satisfies the condition in Lemma 1 then

there exist a continuous one-to-one mapping Ŵ : R2 → R

such that:

dH (t) = Ŵ (f [u (t)] , u (t)) (7)

Proof: Taking the contradiction approach to prove

theorem 1, consider a time instant (t + 1t) and (t + 1t) >

t also (t + 1t) − t = δ where δ → 0 is an arbitrary

small positive number. Consider input u (t1) and u
(

t́1
)

are

the inputs at time instants t1 and t́1 respectively as shown

in Figure 3 where:

u (t1) = u
(

t́1
)

, t1 6= t́1 (8)

for time instants t1 and t́1 are not extrema points, proposed

genitalized input gradient is given as:

f [u (t1)] =
u (t1 + 1t) − u (t1)

1t
(9)

f
[

u
(

t́1
)]

=
u
(

t́1 + 1t
)

− u
(

t́1
)

1t
(10)

let’s assume for u (t1) = u
(

t́1
)

:

f [u (t1)] = f
[

u
(

t́1
)]

(11)

from (9) and (10):

u (t1) − u (t1 + 1t) = u
(

t́1
)

− u
(

t́1 + 1t
)

(12)

from (12):

u (t1 + 1t) = u
(

t́1 + 1t
)

(13)

from Figure 3, it is clear that (13) contradicts with the prop-

erty of hysteresis which means that assumption made in (11)

does not hold. Hence:

(f [u (t1)] , u (t1)) 6=
(

f
[

u
(

t́1
)]

, u
(

t́1
))

. (14)

Thus there exist a one-to-one mapping such that dH (t) =

Ŵ (f [u (t)] , u (t)), that can be used with conventional identi-

fication methods, such as neural networks, for the identifica-

tion multivalued hysteresis.

IV. NEURAL NETWORK MODEL OF HYSTERESIS

The hysteresis behavior of piezoelectric actuated stage is a

rate dependent phenomenon i.e. the overall output of the

actuator not only depends on the amplitude of input voltage

but also on input frequency. The output displacement due to

amplitude of input voltage is the quasi static behavior whereas

the change in output hysteresis with the change in input

frequency is the dynamic behavior of piezoelectric actuated

stage. The overall displacement output y(t) of the actuator

is sum of its static and dynamic response. Here the system

level model [19] is used to describe the quasi static behavior

of piezoelectric actuated nano-stage and NARMAX model

based dynamic model is proposed to describe its rate depen-

dent properties. Quasi static and dynamic sub-models of

piezoelectric actuated nano-stage are presented in Section IV-

A and B respectively.

A. NEURAL NETWORK QUASI STATIC SUB-MODEL

1) QUASI STATIC RELATION BETWEEN INPUT AND OUTPUT
For a piezoelectric actuated stage in quasi static state relation

between input voltag u (t) : Rn × R → R and output

displacement dH (t) [19] is given as:

dH (t) =

∫

d (u (t))
du (t)

dt
dt (15)

d (u (t)) = do + g
(

u (t) − Vshift (t)
)

(16)

where do and d (u (t)) are the initial conditions and pre-

exponential coefficient, u (t) is the input voltage, Vc is the

voltage constant. The exponential model fit g
(

u (t) − Vshift
)

is given by:

g
(

u (t) − Vshift
)

= 1d

(

1 − γ e
−

|u(t)−Vshift (t)|
Vc

)

(17)

where 1d, γ and Vc are the loop shaping parameters,

Vshift (t) ⊂ u (t) is the value of input voltage at last zero value

of input derivative:

VShift (t) =
∑∞

k=0
u (t)

∏

(

t − tk

tk+1 − tk
−

1

2

)

(18)

where tk ∈ t is the time instant when input voltage derivative

attains its last zero value, such that

∀τ ∈ IR :
du (τ )

dt
= 0 ⇒ ∃k ∈ IN : τ = tk , tk < tk+1

(19)

and rectangular function 5 (x) is defined as:

∏

(x) =











0 if |x| >
1

2

1 if |x| ≤
1

2

(20)

2) CONSTRUCTION OF NEURAL NETWORK BASED ON

QUASI STATIC MODEL
This section demonstrates the approximation of quasi static

sub-model presented in previous section by converting it

into a custom design neural network. Displacement of PZT

actuator can be given as [19]

dH (t) = do + 1d

(

1 − γ e
−|u(t)−Vshift (t)|

Vc

)

u (t) (21)

1d , γ , andVc are the parameters to be identified. Considering

the universal approximation properties of neural network,

the generalized input gradient is introduced in (21) to convert

multi valued mapping of hysteresis into one to one mapping.

Rewriting (21) in discrete form:

dH (k + 1) = do + 1doT

(

1 − γoe
−|u(k)−Vshift (k)|

Vco

)

× u (k) + hsf [u (k)] (22)
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FIGURE 4. Static sub-model neural network structure.

where T is the sampling time, 1do, γo and Vco are the

model parameter with the one-to-one mapping introduced

in the model and hs is hysteresis mapping coefficient. The

topological architecture of proposed neural network can be

designed by utilizing the interconnections and relationships

among the variables in (22). Figure 4 shows the struc-

ture of neural network where symbols ⊕ and ⊗ represent

addition and multiplication node respectively. σ1do,σγo , σhs
and σVco are the activation functions of the training nodes

of neural network for the identification of the parameters

hs, 1do, γo and Vco. Specially designed inputs C1do,Cγo ,Chs
and CVco are used to train the weights w1do ,wγo ,whs
and wVco [18].

Adjustment of weights during training process can set an

optimized value of model parameters. Activation function for

the identification of parameters are defined as:

σ1do (x) = ea1dox (23)

σγo (x) = eaγox (24)

σhs (x) = eahsx (25)

σVco (x) = eaVcox (26)

activation function parameters a1do , aγo , ahs and aVco values

are the stepping stair height in order to achieve optimized

vales of neural network parameters.

Quasi static sub-model is trained by using a low frequency

data set according to the rules defined in Figure 4. Levenberg-

Marquardt training algorithm is used to train neural network.

Weight updating during training of static sub-model is done

by following:

1wst (k) =
JTst est (k)

(JTst Jst − µI )
(27)

wher

est (k) = yL(k) − dH (k) (28)

Jst =

[[

∂est (k)

∂hs

] [

∂est (k)

∂1do

] [

∂est (k)

∂γo

] [

∂est (k)

∂Vco

]]

(29)

where est (k) is the error matrix, yL is the output from training

data set, dH (k) is the output of static sub-model. Neural

network is custom designed such that the error function est (k)

can only be tuned by changing weights w1do ,wγo ,whs,wVco.

This implies that most of the entities in JTst will be zero

because they are not effecting the training process, thus the

overall training time will be less than the conventional black

box neural network identification technique.

B. NARMAX DYNAMIC SUB MODEL

In order to describe the rate dependent behavior of PZT

actuator, a dynamic sub-model is introduced. Since lin-

ear model cannot approximate the dynamical properties of

piezoelectric actuated stage properly, thus NARMAX model

based dynamic sub-model is proposed here. Output yD of

NARMAX based dynamic sub-model is defined as:

yD (t) =
(

u (t) , u (t − 1) . . . u
(

t − nf
)

, . . . y (t − 1) ,

y (t − 2) . . . y
(

t − ny
))

(30)

yD (t) =
(

x1, x2, . . . xp
)

(31)

where u (t) is the input signal, nf > 0, ny > 0 are the input

and output lags, p = nf +ny, xp represents the entities of vec-

tor yD (t) and is the mapping between entities of NARMAX

model inputs. (30) & (31) can be written in discrete form as:

yD (k) =
(

u (k − 1) , u (k − 2) . . . u
(

k − nf
)

, y (k − 1) ,

y (k − 2) . . . y
(

k − ny
))

(32)

yD (k) =
(

x1, x2, . . . xp
)

(33)

The corresponding NARMAX model can be described as:

yD (k) =
∑p

i1=1
θi1xi1 +

∑p

i1=1

∑p

i2=1
θi1i2xi1i2 . . .

+
∑p

i1=1
. . .
∑p

iq=1
θi1...iqxi1...iq (34)

where q is the order and θT is the vector comprising coeffi-

cients of NARMAX model. Dynamic model of PZT actuator

can be approximated accurately as two order system [17].

(34) can be modified in two order form as:

yD (k) =
∑p

i=1
θixi +

∑p

i=1

∑p

j=1
θijxij (35)

the parameter matrices θi and θij can be defined as:

θTi =
[

θ1, θ2, . . . , θp
]

(36)

θij =







θ11 · · · θ1p
...

. . .
...

θp1 · · · θpp






(37)

x =
[

x1, x2 . . . , xp
]

(38)

Figure 5 shows the neural network approximation of the

NARMAX model. The activation functions, σθi and σθij are
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FIGURE 5. Dynamic sub-model neural network structure.

given as:

σθi (x) =
1

1 + ewθi
x (39)

σθij (x) =
1

1 + ewθij
x (40)

training rule for dynamic sub-model is given as:

eD (k) = yH − (dH (k) + yD (k)) (41)

eD (k) is the error matrix for dynamic sub-model, yH is

the output of high frequency training set. For Jacobean JD,

parameters for optimized dynamic sub-model can be calcu-

lated by

1wD (k) =
JTD eD (k)

(JTD JD − µI )
(42)

JD =

[[

∂eD (k)

∂θi

] [

∂eD (k)

∂θij

]]

(43)

V. EXPERIMENTAL RESULTS AND DISCUESSION

A. IDENTIFICATION OF HYSTERESIS IN PIEZOELECTRIC

ACTUATED NANO-STAGE

This section illustrates the identification of quasi static sub-

model. First the training data was obtained by exciting piezo-

electric actuated nano-stage by appropriate input signal. For

the identification of quasi static model, arousing the actuator

dynamics, was avoided by selecting a very low frequency

signal as shown in Figure 6(a). Piezoelectric actuated nano-

stage was excited at input frequency as low as 0.5Hz with

an amplitude of 100V, and input/output data was recorded.

Initial condition, do, was calculated from a low voltage dc

input signal where piezoelectric actuated nano-stage show

almost no hysteresis i.e. 5VDC. After required training data

was obtained next step was initialization and training of

neural network. Training goal was set to 1e-12 mean square

error. Train data partition was set to (75:15:15) for training,

validation and testing respectively. Max epoch was set to

1000. Levenberg-Marquardt algorithm was used for training

purposes and best performance was obtained at 03 epochs.

Optimal parameter values can be calculated by evaluating

the values of weights and activation function of the neurons

of trained neural network as hs = 1967, 1do = 0.4783,

γo = −370.47 and Vco = 24629 with the identified

parameters hysteresis nonlinearity in piezoelectric actuated

nano-stage can be predicted. Figure 6(b) and 6(c) shows

the measured and predicted results of piezoelectric actuated

nano-stage for output displacement and hysteresis respec-

tively. Error betweenmeasured and predicted results is shown

in Figure 6(d) where maximum peak to valley error is

20.77nm. The results show that predicted output curve is very

much in consistent with the experimentally obtained data.

Note that, grey box neural network based model iden-

tification is computationally inexpensive, i.e. it takes very

few epochs to train. This unique feature makes it suitable

for real-time reference tracking applications using predictive

control. The quasi static system level model can be dynam-

ically linearized on each control cycle of predictive control

by updating its parameters using grey box neural network to

achieve fast tracking control of nonlinear plants using linear

predictive controller [26].

B. IDENTIFICATION OF DYNAMICS OF PIEZOELECTRIC

ACTUATED NANO-STAGE

Dynamic model was identified after obtaining training data at

different input frequencies. Neural network based NARMAX

model, shown in Figure 5 was trained by Levenberg-

Marquardt algorithm according to the rules in (42) & (43).

Overall system performances (both static and dynamic mod-

els) was tested at input excitations of different frequencies i.e.

5Hz,10Hz and 25Hz as shown in Figure 7(a), 8(a) and 9(a)

respectively. Figure 7(b), 8(b) and 9(b) shows the exper-

imentally obtained output curve along with the predicted

output from the proposed method. It is clear that predicted

output at different frequencies is following the experimental

data with high precision. The maximum error ranges from

24.62 nm ∼ 30.47nm for different frequencies as shown in

Figure 7(d), 8(d) and 9(d). Predicted and measured hystere-

sis responses are shown in Figure 7(c), 8(c) and 9(c). These

experimental results show that the proposedmodel identifica-

tion method can predict the output dynamics of piezoelectric

actuated nano-stage with high accuracy.

To compare the performance proposed modeling scheme

with existing black box neural network based modeling

method, the input/output data set obtained from piezoelectric

actuated nano-stage in section V-A was used to train black

box neural network. Back propagation training technique

with Levenberg–Marquardt training algorithm was used.

Table 1 shows comparison between performance of proposed

method and different variants of black box identification

method, i.e. 17, 25 and 35 neurons. Maximum error compar-

ison between proposed scheme and black box identification

method is shown in Figure 10. The proposed method outper-

forms the conventional black box identification scheme, with

maximum error of 20.77nm as compared with best perfor-

mance of black boxmodel at 35 neurons, i.e. 96.56nm.Which

shows the proposed method has obtained more accurate mod-

eling results with less training time as compared to existing

black box identification scheme. Furthermore, the proposed
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FIGURE 6. Static model identification a) input signal, b) predicted and measured output values, c) predicted and measured
static hysteresis, d) error.

FIGURE 7. Over all model response at 5Hz a) input signal b) output displacement c) hysteresis output d) error.

FIGURE 8. Over all model response at 10Hz a) input signal b) output displacement c) hysteresis output d) error.

gray box neural network based identification method is

compared with conventional PSO based identification. The

parameters of quasi static model were identified by PSO,

the output curve generated is shown in Figure 10. PSO was
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FIGURE 9. Over all model response at 25Hz a) input signal b) output displacement c) hysteresis output d) error.

FIGURE 10. Comparison of proposed method with the existing model identification techniques.

TABLE 1. Comparison between proposed and existing model
identification techniques.

run for 500 iterations, from Table 1 it is clear that proposed

gray box identificationmethod can identifymodel parameters

in less time with more precision.

VI. CONCLUSION

This paper presented a scheme for the modeling and identifi-

cation of rate-dependent hysteresis in piezoelectric actuated

nano-stage. First step was to convert the System level quasi

static hysteresis model into a custom design neural network.

To handle themulti-valued problem of hysteresis, generalized

input gradient was introduced in the input space to extract

the moving tendency of hysteresis. Finally, neural network

based NARMAX model was introduced to describe the rate-

dependent performance of the PZT. Main features of pro-

posed approach are, the entire model was composed of gray

box neural network, where weights of neural network corre-

spond to the unknownmodel parameters, unlike conventional

black box identification it has clear mathematical meaning.

Moreover, proposed generalized input gradient based map-

ping is more effective on non-smooth extrema points than

the conventional gradient of hysteresis output with respect

to input method. The simulation and experiment validation

results demonstrate that the proposed scheme can identify the

rate dependent hysteresis more precisely withmaximum error

of 20.77nm than the black box (96.56nm) and PSO (31.46nm)

based model identification methods.
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