
- 4295 -

Modeling and Implementation of Automatic System for Garage Control

Valery Sklyarov, Iouliia Skliarova, Abílio Neves

Department of Electronics, Telecommunications and Informatics,

University of Aveiro/IEETA, Portugal (Tel : +351-234-401-539;

E-mail: skl@ua.pt, iouliia@ua.pt, a31168@ua.pt)

Abstract: The paper describes a system for garage control providing for automatic parking of arriving cars and driving

them to the garage exit on requests. The system is composed of two sub-systems that are directly linked for simulation

purposes and communicate through a wireless interface needed for physical implementation. One of the basic modules

providing for management and priority-driven selection of parking slots is considered in detail. The complete system

prototype was designed, implemented in FPGA, validated, and tested. Functional simulation of the designed system is

presented in a virtual mode enabling the relevant results to be evaluated visually on a monitor screen without the need

for an expensive physical environment.

Keywords: Embedded system, automatic parking, FPGA, remote control, visual simulation

1. INTRODUCTION

The paper is dedicated to the design, implementation

in field-programmable gate arrays (FPGA), and

modeling of a distributed embedded system for garage

control. It is known that the majority of developed

digital systems are embedded [1] and they are organized

on the basis of one or more computational units that

perform all necessary processing work using built-in

processors (processing elements – PE). A typical PE

receives instructions and data from memory, executes

the instructions in accordance with a predefined control

sequence (a micro-program) generated by control

circuits, and writes the results to memory [2]. The latter

can be considered as an external RAM or internal

registers.

The approach considered here, instead of mapping a

given problem onto a set of PEs with classical

organization [2], relies on incremental decomposition of

the proposed system architecture and a top-down

technique allowing to implement all primarily

architectural components in hardware from specification

in a hardware description language (HDL) according to

predefined models and HDL skeletal fragments called

templates.

As mentioned above the system is distributed in a

sense that it is organized as a composition of

sub-systems communicating through established

interfaces. One sub-system is responsible for the garage

control, i.e. for the set of such operations as: processing

and indication of the most preferable slot for parking

any new car on the entrance; opening/closing the gates,

providing instructions for parked cars that have to be

retrieved, etc. Other sub-systems are installed inside

cars and they instruct cars how to drive to the slots

indicated by the first sub-system.

Informally the basic functionality of the entire system

can be described as follows: any incoming car is

stopped in front of the entrance gate where there is an

eventual queue in case if there are no free parking slots

in the garage. A driver leaves the car and then the

automatic system is responsible for further steps of

parking. As soon as there appears a free parking slot, the

entrance door is opened and the central sub-system

instructs the car how to drive to the designated parking

slot. In other words, if there exists more than one

parking slot, the system selects such one that is more

preferable for parking, i.e. which has the highest priority.

Requests for retrieving cars from the garage are formed

by car owners. The selected car drives automatically to

the exit gate (according to the instructions given by the

central sub-system) and then is parked in a place where

the car owner waits. The entrance/exit gates are opened

and closed automatically, which is controlled by the

central sub-system.

Thus, the central sub-system is responsible for the

following basic operations:

 Opening/closing the garage entrance/exit gates;

 Receiving and processing information about free

parking slots;

 Instructing sub-systems installed in cars through an

established interface.

A car sub-system is responsible for the following

basic operations:

 Automatic driving to the garage (to the indicated

parking slot) and from the garage (from the

requested parking slot);

 Avoiding any obstacle (e.g. walls and other cars)

and, thus, implementing intelligent parking control;

 Avoiding any deadlock, for example, arriving cars

cannot block cars leaving the parking slots.

This paper focuses on the particular proposed

architecture of the entire system, its subsystems and

basic architectural components. It does not describe any

method for evaluation and comparison of alternative

design ideas and models. Although the considered

technique is based on HDL skeletal fragments, the most

important of which are design templates for advanced

finite state machines (FSM), the models and design

methodologies for such FSM are also not a target of the

paper.

The remainder of this paper is organized in five

sections. Section 2 describes problem specification and

basic system functionality. Section 3 outlines the design

and implementation of the central sub-system. Section 4

ICROS-SICE International Joint Conference 2009
August 18-21, 2009, Fukuoka International Congress Center, Japan

PR0002/09/0000-4295 ¥400 © 2009 SICE

- 4296 -

is dedicated to sub-systems for controlling individual

cars. Section 5 summarizes the implementation details

and presents the results of experiments. The conclusion

is given in Section 6.

2. PROBLEM SPECIFICATION AND BASIC

SYSTEM FUNCTIONALITY

Fig. 1 presents interactions between the two

sub-systems introduced in section 1.

Automatic system for garage control

Central sub system

Car sub system Car sub system

Fig. 1 General structure of automatic system for

garage control.

Gray highlighted area indicates the sub-systems that

have been designed, implemented and tested. In

particular, for the case of wireless communications only

interactions between the central sub-system and the

sub-system for just one car have been examined and

validated. Virtual simulation has been done for a system

with many cars (see section 5).

Fig. 2 depicts the proposed architecture of the central

sub-system.

Gate control

Priority buffer (PB)

Managing parking

slots and priorities

Processing requests

from arriving (new) cars

from exiting cars

Central sub system

In
te
rf
a
ce

a
n
d
in
p
u
t/
o
u
tp
u
t
ci
rc
u
it
s

Fig. 2 General architecture of the central sub-system.

There are four architectural components that are

responsible for the following operations:

 Managing parking slots and priorities based on

accumulation of data about free parking slots with

their priorities for potential parking of (new)

arriving cars. The accumulation is done in a

priority buffer (PB), which takes input data items

about released slots and outputs items with the

highest priority. The PB is organized in such a way

that the established priorities might be dynamically

rearranged as well as some items can be removed

on external requests (for example, when some

parking slots are reserved for special purposes);

 Processing requests enable the system to output a

sequence of instructions for arriving and exiting

cars. The sequence of instructions is presented like

the following: wait for opening the entrance gate;

drive straight to a position A (until getting a signal

from the sensor A), turn right; drive straight to a

position B, turn left; drive until the slot with the

number i, turn left and park the car to the slot i;

 Control of gates enables entrance and exit gates

(doors) to be opened and closed;

 Interface and input/output circuits provide for

wireless communication with car sub-systems and

interaction with sensors and actuators.

Let us discuss now how to manage priorities of the

slots. In the simplest case any slot has a fixed priority

based on the proximity to the entrance gate. One

possibility for a garage with a fixed number of such

slots would be an array of bits with each element

corresponding to a slot and recording the slot state (e.g.

0 – the slot is empty and 1 – the slot is occupied). To

allocate a slot would just require searching the array

sequentially from the beginning for the first vacant

position (see Fig. 3, a). Creating a list of vacant slots in

priority sequence can be seen as another possible

alternative (see Fig. 3, b, c).

Parking slots

increasing prioritydecreasing priority

0 0 1 . . . 0 1 1

a)

Parking slotsb)

increasing prioritydecreasing priority

123n n 1 n 2

sl
o
t
n
u
m
b
e
r

Parking slotsc)

pp pn

n n 1 n 2 … 3 2 1

pn 1 p p

b
e
g
in

pp pn

n n 1 n 2 … 3 2 1

pn 1 p p3

b
e
g
in

array

linked

list

linked

list

Fig. 3 Using arrays (a) and linked lists (b,c) for a

priority buffer.

The number of elements in the list for a garage with a

fixed number of slots can be equal to the number of

slots (see Fig. 3, b). The initial address of the list is

stored in the «begin» register. An address field allocated

for each element indicates the next most priority-driven

vacant slot. Since the number of elements is fixed and

- 4297 -

they are associated with the relevant slots, each element

might contain just a field addressing the next slot. Fig. 3,

c shows simple changes that have to be done in the list

as soon as the car from the slot 1 is retrieved.

The PB considered here allows more complex

management to be provided in such a way that:

 Dynamic changes in priorities of the slots are

supported;

 The number of slots is not fixed.

Dynamic changes are useful for many practical

situations. Indeed, the considered above priority

allocation rule is very simple and in practice it might be

significantly more complicated. For example, the

necessary location could be determined based on the

expected duration of using the garage. The car for

someone parking for an hour or two might be allocated

a slot close to the entrance (or possibly close to the exit

to minimize retrieval time). Someone parking for a

week might be allocated a slot as far away as possible

from the entrance/exit. It is also possible that a business

might book space and pay extra for faster retrieval.

There are obviously also many questions about

deadlock avoidance that depend on the physical layout

and possible routings for cars within the garage. Thus,

in general case the priorities cannot be assigned

statically. We assume that a dynamic priority

management has been implemented in the central

sub-system and the PB has to be able to indicate the

most priority-driven slots taking into account any

dynamic change. A non fixed number of slots might

require dynamic memory allocation and de-allocation. If

this is not desirable in hardware we can fix the

maximum possible number n of slots and provide for

management of only actually available slots (their

number cannot exceed the fixed maximum n).

We found that the best data structures allowing

dynamic priority changes to be rapidly implemented are

linked lists (see Fig. 3) and binary trees [3]. This is

because all necessary changes can easily be done

through modifications of pointers that address items

associated with parking slots. Arrays shown in Fig. 3, a,

can also be used. Suppose there are n cells of memory

available with a priority indicated for each cell. When

the number of slots is less than the maximum n, all slots

not in the garage can be set as "unavailable". Sequential

search for a free slot with the highest priority would be

a loop with n iterations at maximum, which is

appropriate for the considered problem. Implementation

of linked lists and binary trees requires more

sophisticated circuits but the search over these

structures is faster.

 Fig. 4 gives an example of linked lists. Let us

consider a garage in Fig. 4, a, in which all parking slots

are numbered (1,2,3,…,28). The priority of a slot with

the number i is written inside the relevant rectangle i

and B indicates «blocked» or «unavailable». Gray

rectangles mark occupied slots. The begin pointer (see

also Fig. 3, b,c) addresses the slot with the highest

priority (the smaller the number in rectangle i, the

higher is the priority of the slot i). Suppose some

dynamic priority changes have taken place (see bold

numbers inside the rectangles in Fig. 4, b). In this case

some addresses in the linked list have to be altered and

this is indicated by bold numbers on the right-hand part

of Fig. 4, b.

BB4511B22

2323611224

19171571013B

201816891421

7 6 5 4 3 2 1

14 13 12 11 10 9 8

21 20 19 18 17 16 15

28 27 26 25 24 23 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28

Begin���19

24 4 17 0 18 13

7 9 5 12 15 1 8 3 26 10 21

End

BB26529B22

2322527281230

19171571013B

201816891421

7 6 5 4 3 2 1

14 13 12 11 10 9 8

21 20 19 18 17 16 15

28 27 26 25 24 23 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28

Begin���4

24 19 26 0 18 21

7 9 5 12 15 1 8 3 13 10 17

End

a)

b)

Garage

Garage

Linked list

Linked list

Fig. 4 Using linked lists to manage priorities.

Fig. 5 shows how binary trees can be used for the

same example. Let us examine Fig. 5, a. Any node of

the tree has a slot number written near the relevant

circle and a priority written inside the circle. The tree is

built in accordance with [4] in such a way that at any

node, the left sub-tree contains only values that have

higher priority than the value at the node, and the right

sub-tree contains values that have lower priority. The

number of iterations enabling the most priority-driven

value to be found cannot exceed the longest way from

the root to leaves and it is equal to the depth of the

leftmost sub-tree (for example, 4 iterations are required

in Fig. 5,a: 20-16-8-3-1). This is significantly faster than

for arrays but slower than for linked lists.

BB4511B22

2323611224

19171571013B

201816891421

7 6 5 4 3 2 1

14 13 12 11 10 9 8

21 20 19 18 17 16 15

28 27 26 25 24 23 22

BB26529B22

2322527281230

19171571013B

201816891421

7 6 5 4 3 2 1

14 13 12 11 10 9 8

21 20 19 18 17 16 15

28 27 26 25 24 23 22

a)

b)

20

16

8

9

21

19

17

15

10 13

23

3

61

24

4

11

1
3

4

5

7

8

9

10

12 13

15

17

1819

21

24

26

19

20

16

8

9

21

19

17

15

10 13

23

3

61

24

4

11

1
3

4

5

7

8

9

10

12 13

15

17

18

21

24

26

25

17

27

18

28

19

30

21

26
24

29
26

Fig. 5 Using binary trees to manage priorities.

Assuming some priority changes shown in Fig. 5, b,

the tree has to be rebuilt as shown on the right-hand part

of Fig. 5, b. Gray nodes correspond to the slots whose

priorities have been altered. They have to be replaced

(see new nodes in Fig. 5, b, with the same numbers as

the numbers of the deleted gray nodes). The final new

- 4298 -

tree is depicted in Fig. 6. All necessary operations can

easily be performed applying the technique [3]. Indeed,

the nodes representing slots with altered priorities have

to be removed from the tree, and the same nodes have to

be inserted again to the tree with new priorities. These

operations can easily be executed applying modules

from [3] that remove nodes with indicated numbers and

add designated nodes.

20

16

8

9

21

19

17

15

10 13

23

1
3

4

5

7

8

9

10

12 13

15

25

17

27

18

28

19

30

21

26
24

29
26

Fig. 6 New tree after dynamic changes.

The PB for the central sub-system can be constructed

using any data structure considered above. Binary trees

and methods [3] have been chosen because we would

like to develop a reusable PB that can be applied not

only to the considered problem, but might also be

adapted for high performance computational systems

processing tasks (from a supplied input queue) with

dynamically changeable priorities.

Note that reassignment of priorities might be done at

any step, i.e. before and after entering a car to the

garage. Thus, the originally supplied to a car sequence

of instructions can be substituted after the car enters to

the garage.

3. CENTRAL SUB-SYSTEM

The central sub-system (as well as the car

sub-systems) is described using hierarchical

specifications (hierarchical graph-schemes – HGS) [5,6]

and models, such as hierarchical [5,6] and parallel [7]

FSMs. All the project components have been

synthesized from VHDL code using predefined

templates for advanced FSMs. All the necessary

operations, like count and shift, are executed directly in

FSM processes and the proper synchronization is

provided in a way very similar to [8].

Fig. 2 indicates four primary components of the

central sub-system. Managing parking slots and

priorities is the most complicated task. As we mentioned

in the previous section, the PB implements a data

structure representing binary tree and it is coded in

memory as shown in Fig. 7 for the tree from Fig. 6.

Each cell at address i, i=1,2,…,28, represents slot i

(see Fig. 4, 5) and contains four fields: priority value

(written at the top of cells); address in the memory of

the left sub-tree; address in the memory of the right

sub-tree; and the state of the slot, such as «occupied» -

O, «blocked or unavailable» - B, etc. (the first and the

last fields are joined in Fig. 7 for simplicity). Number N

indicates an absence of the relevant sub-tree (any

unused for addresses value might be selected for such

purposes). It is assumed that all garage slots have

different priorities. If this constraint is not desirable then

nodes with the same priority can be repeated in the tree.

Priority manager allows to change priorities of the

slots and subsequently to rebuild the tree. It is done in

three following steps: changing the priority value for the

slot with the selected number i; removing the node i;

and inserting the node i with the changed priority. The

latter two steps are executed by hierarchical FSM

implementing modules [3]. The first step is trivial.

20

3

7

18

N

N

16

4

8

8

N

9

9

N

10

14

N

N

21

N

15

19

9

N

17

N

N

15

12

13

7

N

N

10

N

N

13

N

N

B

N

N

23

N

17

2

N

N

25

N

N

27

N

19

28

26

21

12

N

N

30

N

N

B

N

N

B

N

N

26

N

N

5

N

N

29

N

N

B

N

N

22

N

N

1 2 3 4 5 6 7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28

a)

Priority manager

Automatic Manual

1. Change value2. Remove relevant node3. Insert new node

Fig. 7 Binary tree from Fig. 6 coded in memory.

Processing requests (see Fig. 2) are received from

arriving and exiting cars. In the first case the following

steps are carried out:

 The upper block in Fig. 2 verifies if there are free

parking slots available and indicates the most

preferable slot;

 The way to the slot from the entrance gate is

computed and sent to the car sub-system;

 An instruction is sent to the bottom block in Fig. 2

and the entrance gate is opened;

 As soon as the car passes through the entrance, an

instruction is sent to the bottom block in Fig. 2 and

the entrance gate is closed;

 Location of the car is periodically (at the positions

of sensors installed at crossroads) reported to the

central sub-system and thus, the most preferable

slot might dynamically be updated;

 As soon as the car is parked the data about the car

ID and the occupied slot are reported to the central

sub-system. This information is needed for

retrieving the car when required.

Retrieving a car is requested by the car owner from

outside of the garage through supplying the car ID.

Then the following steps are carried out:

 The slot is determined through the car ID;

 The way from the slot to the exit gate is computed

and sent to the car sub-system. Much like to the

indicated above steps for parking cars the original

way might be updated dynamically;

 As soon as the car approaches the exit gate the

bottom block of Fig. 2 is informed and provides for

- 4299 -

opening and closing the exit gate much like as it is

done for the entrance gate;

 After passing the exit gate the car continues driving

to a position where the owner is waiting for.

4. CAR SUB-SYSTEMS

Car sub-systems are responsible for driving cars from

their current positions to the indicated destinations and

for communications with the central sub-system. The

control is based on typical scenarios such as that are

demonstrated in Fig. 8:

 Direct motion (driving) between crossroads

recognized by the signals from sensors S (a);

 Intelligent cruise control that permits to keep

necessary distances between the car and a car in

front (b);

 Parking to a slot (c, d);

 Turning (e);

 U-turn (f);

 Keeping distances (g);

 Exit from slots (h, i), etc.

S

S

a)
b) c)

d)

S

e) f)

g)

h) i)

Fig. 8 Typical scenarios of car control.

The scenarios are implemented in an extendable set

of predefined modules for hierarchical FSMs. Each

module generates a sequence of steps needed for

carrying out the relevant operation, i.e. it analyzes the

signals from sensors and sends signals to actuators that

set speed of the car, provide steering control, etc. As

soon as the car passes crossroad sensors the relevant

information is sent to the central sub-system indicating

the exact location of the car.

5. IMPLEMENTATION DETAILS AND

EXPERIMENTS

The considered automatic system for garage control

was suggested as a work for M.Sc. thesis in 2008/2009

and has been completed successfully. The primary

objective was to design all necessary electronic circuits

including those that provide support for wireless

interface, implement all the circuits in an FPGA and

validate the intended functionality of the entire system

(see Fig. 1) in a simulation environment (such as that

was described in [9]).

Two modes of the system functionality are

implemented. The first one permits to integrate all the

hardware resources for the two sub-systems within the

same FPGA (see Fig. 9). The second mode enables

wireless (RF) interface between the two sub-systems

implemented in different FPGA-based prototyping

boards to be established.

Automatic system for garage control

C
e
n
tr
a
l
su
b
sy
st
e
m

Wireless

interface is

replaced

with wired

interface

Wireless

interface is

replaced

with wired

interface

C
a
r
su
b
sy
st
e
m

C
a
r
su
b
sy
st
e
m

C
a
rs
su
b
sy
st
e
m
s

Interface with simulation environment

Simulation environment

FPGA:

xc3s1500

Keyboard Monitor VGA

Fig. 9 Simulation of FPGA-based circuits for the

system.

Simulation environment displays projection of the

garage to a VGA screen in a way shown in Fig. 10.

Entrance�gate

Exit�gate

p
=
6

p
=
8

p
=
2
3

p
=
2
2

p
=
1
1

p
=
4

p
=
2
4

p
=
3

p
=
1
3

p
=
1
0

p
=
1
5

p
=
1
7

p
=
1
9

p
=
2
1

p
=
9

p
=
1
6

p
=
2
0

A

B

C

D

E

p=1

Fig. 10 An example of simulation.

Let us examine how the simulation can be used for

different experiments. Positions and priorities of the

slots in Fig. 10 are the same as in Fig. 4, a. Blocked

slots are explicitly indicated by crossed symbols P.

Allowed directions are shown by symbols . Strings

like p=10 indicate priorities. Suppose three cars A, B

and C have already entered to the garage and the car D

is entering through the opened entrance gate. The first

car A is parking to the slot p=1 with the highest priority.

According to the assigned priorities the subsequent cars

B, C and D have to be parked in slots with the priorities

p=3, p=4 and p=6 accordingly. However, such parking

might create delay in the upper horizontal road. Thus, it

is better reassign some priorities. For example, priorities

- 4300 -

p=6 and p=8 might be swapped, which would allow to

park the car D to the middle bottom slot. If the priorities

p=23 and p=4 could also be swapped then the car C

could be parked to the first slot (marked with p=23) on

the left-hand side. This would obviously avoid any delay.

If the priority p=23 cannot be altered then another

eventual solution would be to park the car B to the

middle slot in the second line (original priority is p=6)

and the car C to the slot with the priority p=3. Thus,

different potential scenarios could be examined

permitting to evaluate effectiveness of the designed

system. For example, the car E is requested and

retrieved from the slot p=22. The motion of this car (see

dashed arrow line) is shown in dynamic on the screen.

The simulation technique [9] enables to work with the

models much similar to the physically implemented

system, i.e. we can see all motions of the cars, opening

and closing the gates, etc. Functionality can be adjusted

by defining the following parameters from an attached

keyboard (see Fig. 9):

 The number of arriving (new) cars per time slot;

 Generating a new car on the entrance by a user (by

pressing a designated key on a keyboard);

 Speed of cars inside the garage;

 Requesting to retrieve cars by either users or

signals from a random generator.

The complete automatic system has been designed (in

Xilinx ISE from specification in VHDL), verified,

implemented (in FPGA xc3s1500-4fg320) and tested in

Celoxica RC10 prototyping board with a VGA monitor

and a keyboard connected. The project can be adjusted

(through generic VHDL statements) for different

capacities of the garage and number of cars taking part

in the simulation. At the moment not all the considered

above capabilities of the automatic system have been

implemented in hardware. For example, automatic

changes of priorities (see Fig. 7) were modeled just in

software, control of cars (see Fig. 8) does not deal with

physical actuators and it is applied just to car models.

Besides, this work does not provide a contribution in the

scope of electrical interfaces with sensors and actuators.

The results of experiments and analysis can be

summarized as follows:

 All basic circuits have been implemented and

verified in hardware, which allows to conclude that

from the logical point of view the intended

functionality is correct;

 To validate methods, data structures and models a

simulation in software based on a general-purpose

language (namely C/C++) has been used. The

results permit to conclude that such type of

simulation is very helpful for eliminating potential

errors at initial stages.

 Implementation of all basic circuits (see Fig. 1 and

Fig. 9) including wireless communication has been

done in FPGA and this confirms the correctness of

the design;

 A number of improvements and experiments might

be provided in future on the basis of the obtained

results, such as comparison and analysis of

different PB architectures and the relevant data

structures, exploring alternative strategies for the

priority manager, investigation of new useful

scenarios, comparing processor-based and

FSM-based implementations, etc.

 The visual tools that have been developed are very

effective for experiments with alternative design

techniques in an environment close to real world

problems.

6. CONCLUSION

The paper describes functionality, structure, design

and implementation in hardware (in FPGA) of an

automatic system for garage control. The system is

decomposed into two parts: a central sub-system

providing top-level management of the garage; and a car

sub-system providing signals to drive the car from

pre-assigned positions to indicated destinations. The

most important functional component of the central

sub-system provides for management of parking slots

and priorities. All topics relevant to this component

were considered in detail. The implemented system was

verified in a simulation environment, which permits to

conclude that the desired functionality is correct. The

results of simulation might be very helpful for

exploration of advanced parking facilities, evaluation of

critical situations and the required resources.

REFERENCES

[1] P.J. Ashenden, Digital Design. An Embedded

System Approach Using VHDL, Morgan Kaufmann,

2008.

[2] D.A. Patterson, J.L. Hennessy, Computer

Organization and Design, Elsevier, 2005.

[3] V. Sklyarov, I. Skliarova, “Modeling, Design and

Implementation of a Priority Buffer for Embedded

Systems”, Proc. 7th Asian Control Conference

(ASCC09), Hong Kong, August, 2009.

[4] B.W. Kernighan, D.M. Ritchie, The C

Programming Language, Prentice Hall, 1988.

[5] V. Sklyarov, Synthesis of Finite State Machines

Based on Matrix LSI, Minsk, Science and

Techniques, 1984.

[6] V. Sklyarov, “Hierarchical Finite-State Machines

and Their Use for Digital Control”, IEEE Trans. on

VLSI Systems, 1999, vol. 7, no. 2, pp. 222-228.

[7] V. Sklyarov, I. Skliarova, "Design and

Implementation of Parallel Hierarchical Finite

State Machines", Proc. 2nd Int. Conf. on

Communications and Electronics – HUT-ICCE,

Hoi An, Vietnam, June 2008, pp. 33-38.

[8] P.P. Chu, FPGA prototyping by VHDL examples,

Jonh Willey & Sons, Inc, 2008.

[9] V. Sklyarov, I. Skliarova, "Virtual Environment for

Prototyping and Experiments”, Proc. ICCAS-SICE,

Fukuoka, Japan, August 2009.

