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Abstract— Recent work has shown the importance of consid- AG%e SMeX Ergri)she;iseema ] [4/2959] Sex Erglsheiseema
ering the adversary’s background knowledge when reasoning 5—5 = Cancer 3 [45’69] . C‘;nycer
about privacy in data publishing. However, it is very difficult I 57 | F Flu 4 [45.69] | * Flu
for the data publisher to know exactly the adversary’s back- 443 | F Gasuiis 4 @& F Gastritis
ground knowledge. Existing work cannot satisfactorily mocel q 42 E Flu 5 [42,47] | F Flu
background knowledge and reason about privacy in the presere d 47 E Cancer q [42,47] F Cancer
of such knowledge. 71 50 M Flu 7 [B056] | M Flu
This paper presents a general framework for modeling the g 56 M | Emphysema] § [50,56] | M | Emphysema
adversary’s background knowledge using kernel estimatiometh- g 52 [ M Gastritis 9_[50,56] | M Gastritis

ods. This framework subsumes different types of knowledge (a) Original tableT (b) Generalized tabla™
(e.g., negative association rules) that can be mined from ¢h
data. Under this framework, we reason about privacy using TABLE |

Bayesian inference techniques and propose the skylinéB, t)- ORIGINAL TABLE AND ITS GENERALIZED TABLE

privacy model, which allows the data publisher to enforce pivacy  aytarnal knowledge, the adversary can infer that Bob has a

requirements to protect the data against adversaries with fer- - .
ent levels of background knowledge. Through an extensive e much larger probability of havingmphysemahan the other

of experiments, we show the effects of probabilistic backgund two tuples in the first group.
knowledge in data anonymization and the effectiveness of ou  In the above example, the adversary knows the correlations

approach in both privacy protection and utility preservation. betweenEmphysemand the attributeAge and the correla-

tions betweerEmphysemand the attributeSex We call this

) correlational knowledgeln general, correlational knowledge
A number of privacy models have been proposed for dgiscripes the relationships between the sensitive atritad

anonymization, e.g.k-anonymity [1], [2], £-diversity [3], I~ he non-sensitive attributes, e.g., male does not fuaregian

closeness [4], and so on. A key limitation of these models iShcer Correlational knowledge is one kind of adversarial

that they cannot guarantee that the sensitive attributeesal background knowledge.

of individuals are protected when the adversary has add"Recent research [5], [6] shows the importance of consid-
tional knowledge (called background knowledge). Backgtbu oring hackground knowledge in data anonymization. These
knowledge can come from diverse sources, such as Wellygies propose a language for expressing background know
known facts, demographic information, public records, angye and analyze the disclosure risk when the adversary has
information about specific individuals. a certain amount of knowledge in the language. The analysis,

As an example, consider that a hospital has the originghyever, is unaware of the exact background knowledge
patient tableT” in Table I(a), which contains three att”b”te%ossessed by the adversary.

Age Sex and Disease The hospital releases a generalized | ihis paper, we try to remedy this drawback by propos-

table 7* in Table I(b) which sgtlsfles}dlversny. Assume ing a framework for systematically modeling background
that an adversary knows Bob is a 69-year-old male Whoggqyjedge and reasoning about privacy in the presence of
record is in the table, the adversary can only find out thgt o\ ground knowledge. This is a challenging task since it
Bob is one of the first thfee r(_acords. Without any_addmon?g very difficult to know exactly the adversary’s background
knowledge, the adversary’s estimate of the probability B |, jedge and the adversary’s background knowledge can be
has Emphysemas 1/3. However, the adversary may Knowy hiwary” In this paper, we reduce our scope to background
the correlations betweeBmphysemaand the non-sensitive |, jedge that is consistent with the data itself. We discus
attributesAge and Sex e.g., “the prevalence of emphysema; rationale for this reduction and present a general frame
was appreciably higher for th and older age group than the, ¢ for modeling consistent background knowledge. This

45-64 age group for each race-sex group” and “the prevalenge o\ork subsumes different types of background knowl-

was higher in males than females and in whites than blaéks”edge including correlational knowledge.

Because Bob is a 69-year-old male, then based on the above
A. Motivation

I. INTRODUCTION

1From a data fact sheet published by National Heart, Lung, Blodd Back d k led inifi hall .
Institute @ttp :  //www.nhlbi.nih.gov/health/public/lung/other/ ackground knowledge poses significant challenges In

copd_fact.pdf). defining privacy for the anonymized data [5], [6]. For exaeypl



when background knowledge is present, we cannot simply desrnel regression estimation to this problem. The bandwidt
that no adversary knows any individual’'s sensitive attebuof the kernel function provides a good parameter of how much
value after seeing the released data, because there may ddskground knowledge an adversary has, enabling us to model
an adversary who already knows the sensitive value of an inddversaries with different levels of background knowledge
vidual. While the adversary still knows the value after sgei Second, we propose a general formula for computing the
the anonymized data, we cannot say that the anonymized datsterior belief based on the background knowledge and the
violates privacy. Intuitively, privacy should mean “no riest anonymized data. However, this computation turns out to be a
what background knowledge an adversary has, the adverdaayd problem and even known estimation algorithms have too
cannot learn too mucimew about the sensitive attribute ofhigh a complexity to be practical. To overcome the compjexit
any individual’. This, however, cannot be achieved wheof exact inference, we generalize the approximation tephei
an adversary has background knowledge that is inconsisteaed by Lakshmanan et al. [9] and propose an approximate
with the dataset to be released. Consider an adversary vihierence method. We show that the approximate inference
incorrectly believes tha80% of the population has a particularmethod is practical and accurate through experiments o som
disease and has no other more specific information. In yealiteal dataset.
only 30% of the population has the disease and this is reflectedThirdly, we propose a novel privacy metric. We describe our
in the dataset. In this case, even when one releases omggiderata for quantifying information disclosure (idistance
the distribution of the sensitive attribute of the table as measures between two probabilistic distributions), anawsh
whole (without any potentially identifying informationjhe that several existing measures do not satisfy them. We then
adversary would have a significant knowledge gain aboptopose a novel distance measure that can satisfy all the
every individual. Such knowledge gain cannot be preventgdoperties.
by data anonymization, and one can argue that releasing suchourthly, we empirically show that the worst-case disciesu
information is precisely the most important utility of raléng risk changes continuously with the background knowledge
data, namely, to correct widely-held wrong beliefs. parameteB. In other words, slight changes of ti param-
Thus, we have to limit ourselves to consider only bacleter do not cause a large change of the worst-case disclosure
ground knowledge that is consistent with the data to Wisk. Therefore, while it is difficult to know the adversay’

released. We come to the following definition: background knowledge when releasing the data, the data
Given a datasef, we say that an anonymized publisher only needs to use a set of well-chosen parameters
version of T preserves privacy if and only if, for for B to protect the data against all adversaries. _
any adversary that has sorbackground knowledge Finally, through an extensive set of experiments using real
that is consistent with", and for any individual ir", data}sets, we de.mo_nstrate that our approach is .eff|C|emtaqmso
the adversary'knowledge gairabout the sensitive against probabilistic background knowledge inferencesl a
attribute of the individual is limited. preserves data utility in terms of both general utility meas

and workload experiments.
B. Contributions & Organization The rest of this paper is organized as follows. We present

In this paper, we formalize the above intuitive definitionthe general framework for modeling domain knowledge and
First, we model all background knowledge that is consistefipecific knowledge using kernel estimation techniques  Se
with the original data. We build on our previous work [7]fion Il. We describe how to compute posterior beliefs using
namely, mining background knowledge from the data to H&ayesian inference techniques in Section Ill. In Sectiopwe
released. Our rationale is that if certain facts or knoweedglefine the skylingB, t)-privacy model, describe the desiderata
exist in the data (e.g., males cannot hamarian cance), for quantifying sensitive information disclosure, and geet
they should manifest themselves in the data and we sho@lf distance measure. Experimental results are presented i
be able to discover them using data mining techniques. Thection V and related work is discussed in Section VI. In
approach [7], however, considers only negative assoaiatigection VII, we conclude the paper and discuss avenues for
rules that hold with 100% confidence. It does not considéfture research.
probabilistic knowledge or knowledge such as positive eisso I1. M ODELING BACKGROUND KNOWLEDGE

ation rules, summary statistics, and knowledge from cfirge In this section, we present a general framework for modeling

Our novel approach in this paper is to apply kernel estio o4y arsary's background knowledge using kernel reigress

mation _techniqges [8] to model background knowledge thPetchniques [8]. This framework is able to incorporate dédfe
IS qonsnstent W'.th _a_dataset. we mod_e_l the adve_rsarys prt%es of background knowledge that exists in the data. At the
belief on each individual as a probability distribution, iatn end of this section, we analyze the scope of our approach by

: L _aﬁlustrating the types of background knowledge that can be
The dataset can be viewed as samples from such distributio scribed in our framework.

Our problem of inferring background knowledge from the

dataset to be released is similar to the problem of infersimg A- Knowledge Representation

distribution from samples, a problem well studied in statss Let T = {t1,ts,...,t,} be a microdata table maintained by
and machine learning. We apply the widely used technique thie data publisher where each tupjél < i < n) corresponds



to an individual.T" containsd quasi-identifier (QI) attributes  The adversary’s prior belief functiaR,,; can be considered
A1, As, ..., Ay and a single sensitive attributg. Let D[A4;] as the underlying probability distribution of the senstiv
(1 < ¢ < d) denote the attribute domain of; and D[S] attribute in tableT. And the data in the original table
denote the attribute domain sf(let D[S] = {s1, 52, ..., 8m}).  {(t1[QI], P(t1)), (t2[QI],P(t2)), ..., (t.[QI],P(tn))} can be
For each tuple € T, lett[A;] denote its value on attributé; considered as a data sample that is consistent with the un-
andt[QI] denote its value on the QI attributes, i.§QI] = known prior belief functionP,,;. Our goal is to find the
(t[A1], t[As], ..., t[A4]). underlying prior belief functior,,; that fits the original data.

For simplicity of discussion, we consider only one sensitiv. One way of constructing an estimate of thg,.; function
attribute in our framework. If the data contains multiplés to use the maximum likelihood estimator (MLE), where
sensitive attributes, one can either consider them segharathe prior belief for each tuple is estimated as the distiilout
or consider their joint distribution. Our framework can b@among tuples with that QI value. There are several problems
extended to consider multiple sensitive attributes using awith this approach: (1) the number of distinct QI values can b
of the above two approaches. very large, in which case the MLE estimator is of high varenc

i , , ) and does not provide a reliable estimate; (2) the MLE estimat

Representation of the Adversary's Prior Belief. Let 4405 ot have parameters to allow estimation of diffefnt
D[QI] = D[A:]x D[Az] x... x D[Aq] be the set of all possible ntions; and (3) the MLE estimator models each QI value

Q! values and = {(p1,p2, s Pm )| 2 1<, i = 1} b€ the nqenandently and does not consider the semantic meanings
set of all possible probability distributions on the seusit among the QI values.

attributeS. We model the adversary’s prior belief as a function This leads us to the kernel regression estimation method

Ppri : D[QI] — X. Therefore, for an individual whose Qlrpe 1ernel regression method is a non-parametrical tegkniq

value isq € D[Q1], the adversary's prior belief of the sensitivg, iagistics to estimate the conditional expectation afraom
attribute values is modeled as a probability distribution;(¢) - yariaple. Specifically, given a dataset, the kernel regpass

over D[5]. _ . _ method tries to find the underlying function that is best-fit
An example of prior belief on a tupleis P(HIV|t) = 0.05  match 1o the data at those data points. The kernel regression
and P(nonelt) = 0.95. In other words, the probability that egtimator belongs to the smoothing method family. Kernel
has HIV is 0.05 and the probability that has some non- ethods have been extensively studied in the statistics, ma
sensitive disease such &8 is 0.95. In our representation, chine |earning, and data mining communities. Existing work
Bpri(t[Q1]) = (0.05,0.95). has shown that kernel methods have a number of desirable
Representation of the Original DatasetEach tuplet in table Properties: (1) they can estimate the underlying functieryv
T can be represented as a paiQI], P(t)) whereP(t) € 3, effectively and (2) they are S|mple and efficient to co_mpute.
all components of the distributioR () is 0 except thei-th We cho_qse tp use lfernel regression method to approximate the
component where[S] = s;. Formally, P(t) = (p1(£), pa(t), probability distribution function?,,;.

.., Pm(t)) is defined as follows: for all = 1,2, ..., m, C. Kernel Regression Estimator

pi(t) = { 1 if $[S] = s Kernel estimation includes two components: (1) the kernel
0 otherwise function K and (2) the bandwidthB. The kernel function
Therefore, the tabld can be represented as a setrof K describes the form of the weight distribution, generally
airs: {(t [Q’I] P(t)), (t2[QI], P(ts)) (tn[QI], P (1))} distributing most of its weight to points that are close td’tie
pairs: 1(1162], Fiin)), (al&l], &t2)), ooy Uin o bandwidthB determines the size of the impact ranges of the
Each pair in our representation is a tuple in the originahsiit ¢ int. The probability distribution at it is estied
Thus, we can view each pair in our representation as a po?rﬂa point. The probability dIStrbution at a point IS € .
describing the sensitive valtR(t) that a tuplet takes. as thg sum qf the smoo_the_d distributions of kernel functions
Finally, our goal of modeling background knowledge is tgsligf:s;e"d V:::]oiae?ziﬁch:;i?ng]edg?;a(isz'— 1), the kernel
calculate estimations of the adversary’s prior belief fiorc regressioril,estimation is defined as fO"O'WS’_ J D[A4]
Fpri, which is defined over all possible QI values Q1. DI[QI], using Nadaraya-Watson kernel weighted average [10],

B. Estimating the Prior Belief Function the probability distribution ag is estimated as:

We build on the work of [7] and generate background ~ Dorer Pty)K(q —tj[A1])
knowledge by mining the data to be released. The general Pyri(q) = 72 Klq— A 1)
rationale is that the adversary’s background knowledgeitabo tieT I
the data should be consistent with the datalirand should Note that the denominator is used to normalize the prolbili
manifest themselves ifi. For example, if the adversary knowddistribution.
that male cannot have ovarian cancer, this piece of knowledg Thus, the probability distributiorP(¢;) of the sensitive
should exist in tabl&” and we should be able to discover itttribute for tuplet; is smoothed by the functiof&'(.) which
by mining the data iff’. We now present a general frameworlpeaks att;[A;]. This allows for tailoring the estimation
for modeling background knowledge. problem to thelocal characteristics of the data.




For d-dimensional data, the kernel function is chosen to be Given parameterB, let Adv(B) denote the parameterized
the product ofd kernel functionsK;(.)(i = 1,2,...,d). More adversary whose background knowledge can be modeled by
formally, given a QI valueg = (q1, g2, ...,qa) € D[QI], the bandwidthB. In the following, we denoteP,,;(B, ¢) as the
approximate underlying prior belief functia®,,; is estimated prior belief of the parameterized adversatylv(B) on the
as: sensitive attribute of an individual whose quasi-identi¥iglue

is ¢ € D[QI].

@ D. Scope of the Framework

theT ngigd Ki(qi —t[Ai]) We demonstrate the scope of the kernel estimation frame-
work (i.e., the amount of background knowledge that can
modeled in the framework). Our framework has three
aracteristics: (1) we focus on background knowledgeithat
consistent with the data; (2) we model background knowledge
the choice of the bandwidti. It has been shown by [11], as a probab_ility dis_tribution for each tuple; and (3) we use k
nel regression estimator to compute background knowledge.

[12] that using different kernel functions causes only small e now analvze the scobe of our framework based on these
effects on the accuracy of the estimator as compared wmé yze ! P
ree characteristics.

varying the bandwidthB. So preferences are given to the
kernels with low computational complexity. We thus choosgeneral Privacy Models. Several existing privacy models,
to use theEpanechnikov kernel functiopwhich is widely used such as/-diversity (which requires the sensitive attribute val-

By ta) = Ztuer PO Thcisa Kila ~ 14

where K; is the kernel function for the-th attribute A;.

Again, note that the denominator is used to normalized trt?§

distribution. c
The choice of the kernel functioA is not as important as

in kernel estimation: ues in each group to be “well-represented”), do not spetiifica
. , consider the prior belief that an adversary has. This igmora
31— (2)?) if [&]<1 . ) . :
Ki(z) = { 1B, B; Bl adversary can be viewed as an adversary with a prior belief
0 otherwise that every sensitive attribute value is equally possibteefe@ry
indivi i i (1 1 1
where B = (B, Bo, ..., By) is the bandwidth of the kernel individualin the table, i.e.P,i(q) = (5, 7 -, ;) for every
function. g € QI. This knowledge is inconsistent with the data, when

the sensitive attribute is not uniformly distributed in thata.

The bandwidth provides a good measurement of how mu ! ,
background knowledge an adversary can have. Specificaffjven this background knowledge, the adversary’s knovéedg

a large B; implies that the adversary does not have mudin is unavoidable. Our framework does not model such an
knowledge about the relationship between the sensitive GfVersary. Equation (1) and Equation (2) show that adviessar
tribute S and thei-th quasi-identifierd;. On the contrary, with modeled in our framework always have the correct belief abou
a smallB;, the adversary is assumed to have more fine-graintf overall distribution of the sensitive attribute in thetal
knowledge on the distribution of the sensitive attributghwi  féW €xisting privacy models consider the prior belief an
respect t04;. Therefore, we are able to tune the bandwiddversary has. Thecloseness model requires the distribution

parametersB to model adversaries with different levels off Of €ach group to be analogous to the distributi@rof the
background knowledge. whole table with respect to the sensitive attribute. Toifyst
Finally, we define the distance between two values of éne rationale of the-closeness model, the authors argued that
attribute. Assume the attribute domain df is D[A;] = Q §hould be public information a_nd the adversary’s prior
{011, ..., vir  wherer = | D[4,]|. The attributed; is associated belief for every tuple in the table is modeled @ The ¢-
with a r >< r distance matrixM; where the (j,k)-th celld,, closeness model considers the adversary who does not have
7 ’ IR

(1 < j,k <) indicates the semantic distance betwegrand access to any additional data other than the released daia (f

vir. The distance matrid/; is specified by the data publisherVhich she obtain®). The prior belief of such an adversary

One way of defining the distance matrix is as followsAlfis is consistent with the data itself. Our framework can model

a continuous attribute, the distance matrix can be defined 4 Packground knowledge of this adversary as follows. For
each tuplet; € T, t; distributes its probability distribution

dip = |vij — vik| P(t;) equally to all tuples in the table and therefore, every
- R; tuple in the table receives the same shéﬂé(tj). This type
where R; is the range of the attributed;, i.e., R = Of adversary is a special adversary modeled by Equation (2).

max;{v;;} — min;{v;;}. If A; is a categorical attribute, the!n Equation (2), theB;(1 < i < d) is defined as the range
distance matrix can be defined based on the domain hierar@hythe domainD;(1 < i < d) and theK;(1 < i < d) is

of attribute A, defined as the uniform function. In other words;(z) =
h(vij, vik) 1/B; for all 0 < = < B,;. Then, Equation (2) reduces to
djr = — Ppri(q) = %EtjeTP(tj)v which is the distribution of the

. . sensitive attribute in the whole table.
whereh(v;;, v ) is the height of the lowest common ancestor

of v;; andv;,, and H; is the height of the domain hierarchyKnowledge about Specific Individuals and Relationships
of attribute 4;. among Individuals. We note that our framework does not



model all types of background knowledge that an adversamth values that are less-specific but semantically coesist
may have. In [6], Chen et al. described an approach Bucketization, on the other hand, first partitions tuplet® in
quantify adversarial knowledge which includes three typies group and then separates the sensitive attribute from the QI
knowledge: (1) knowledge about the target individual whichttributes by randomly permuting the sensitive attributigs
are negative associations, e.g., Tom does not kareer (2) in each bucket.
knowledge about others which are positive associatios, e. The main differences between the two anonymization tech-
Gary has flu; (3) knowledge about same-value families, e.giques lie in that bucketization does not generalize the QI
{Alice, Bob, Caro} could belong to the same-value familyattributes. When the adversary knows who are in the table
(i.e., if one of them has a sensitive value, all others tesd aland their QI attribute values, the two anonymization tech-
to have the same sensitive value). nigues become equivalent. When these techniques are used
Our framework models background knowledge as a prot» anonymize the data, the adversary always knows that a
ability distribution for each tuple and does not conside¥ thgroup of individuals have sensitive attribute values in g se
third type of adversarial knowledge, i.e., knowledge aldtbat but does not know the exact mapping. For example, in the
relationship between individuals [5], [6]. In other wordge generalized table in Table I(b), the first three tugles t2, ¢35}
make thetuple-independerdassumption: the sensitive attributform a group and take valudEmphysema, Cancer, Flu}.
values of the tuples in the table are independent of each.otti&ut the exact mapping, e.g., which one of the three tuples has
The first two types of knowledge can be represented usiBgnphysemais unknown. In this paper, we assume that the
prior belief functions. For example, if tuple; does not adversary knows who are in the table and their QI values. In
have the sensitive valug;, then thei-th component of the this case, the adversary’s goal is to infer the exact mapping
probability distributionP,,; (¢;[Q1]) is 0. However, our kernel between the set of individuals and the set of sensitive galue
estimation approach does not directly model adversarias wh Most existing works consider every mapping between these
have very accurate information about a few individuals artdio sets to be equally probable. For example, in the first
very little information about others. The space of suchdieligroup of Table I(b), each of the three tuplgs ¢2, and ¢
functions is too large to be considered. Our approach cam, has assumed to have a probability bf3 to take Emphysema
ever, model adversaries who have very accurate backgrottavever, armed with background knowledge, an adversary
knowledge about all individuals, by using small bandwidth€an make more precise inference, etg.will have a much
We use such adversaries to approximate those with véayger probability thanl /3 to take EmphysemaThis section
specific knowledge about individuals. provides a study on how to compute these probabilities based

. o ) on the adversary’s background knowledge.
Knowledge about Algorithms and Optimization Objec-

tives. Knowledge about the algorithms and optimization obg. An Example
jectives for anonymizing data can be used to help advessarie . .
infer the original data, as shown recently by Wong et al. [13 Consider the example shown in Tablg ll(a) y\{here we have
This kind of knowledge cannot be modeled using prior bé& 9"UP of three tuplefts, 5, 5} and their sensitive attribute
lief function about individuals. It is an interesting resgm V2/Ue€S a;?{gone’ﬁone’fil XI} SrL]Jpposke thﬁt tE:aVe:jc_iversary
direction to study this and other kinds of knowledge that méQ/'ams to find out the probability thag takes t (_a .|sease.
enable an adversary to breach individuals’ privacy. Assume that the adversary has some prior beliefs on the
sensitive attribute of tuples in the table as shown in Taljkg).|
I1l. COMPUTING POSTERIORBELIEF For example, she knows that bathand¢, have a probability
S . of 5% to take HIV and a probability 065% to have some
When we have modeled the adversary’s prior belief abol%n-sensitive disease such fas

the sen5|t!ve attribute of all individuals in the_ table, we From Table Ii(a), the adversary knows that exactly one of
now explain how an adversary change_s her belu_af when Strﬂlee three tuplegt,to, t3} takes HIV. With this in mind, the
?eishnail;ﬁizs to the released table using Bayesian mfereg&\%rsary lists the three possible cases of which tuplestake

_ HIV as shown in Table II(b). In the following, we uderob(E)
Before we present our approach for computing the pOSter&%rdenote the probability the evert occurs

belief, we describe how the data can be anonymized. We theq{n casel, t; takes HIV whilet; andt» take the non-sensitive
u

give an example showing how an adversary changes her be\l/lg es. Therefore, the probability that caseccurs is equal

when she sees the released table and describe the gqu_ral
formula for computing posterior belief. As exact inference

is hard to compute, we propose the approximation inferengg op(Case 1) o p; = P(nonelt,) x P(nonelty) x P(HIV|t3)
method called2-estimate. —0.95 % 0.95 x 0.3 = 0.271

A. Anonymization Techniques Similarly, we obtain:

Two widely studied data anonymization techniques are
generalization [1], [14], [2], [15] and bucketization [16B], Frob(Case 2) o pa = P(nonelt1) x P(HIV |tz) x P(nonelts)
[17]. In generalization, quasi-identifier values are repth = 0.95 x 0.05 x 0.7 =0.033



t”t‘j'e df;?:e Based on Bayes' rule, the posterior beli€f(s|t;) is
to none proportional to the product of the prior belig?(s;|¢;) and
t3 HIV the normalized likelihood that the— 1 tuples inE\{¢,} take
(@) A group of three tuples the k — 1 sensitive attribute values i6\{s;}:
‘ P(silt;) x P(S\{si}|E\{t;})
t1 to t3 *(o |4, . i [ J
PHIV]G) = .05 | P(HIV]i:) = .05 | P(HIV|iz) =3 P (silt;) oc ni x P(S|E) ©)
P(nonelt1) = .95 | P(nonelt2) = .95 | P(nonelt3) =.7 g
Psit,- x P S; E\{t;
(b) The adversary’s prior belief table =n; X —3 (silty) (S\{si} B\t D) 4)
: : . >y Plsiltyr) x P(S\{si}|E\{t; })
1 2 3
Case 1| none | none | HIV wheren; is the frequency ok; in the multisets.
gase g Eﬁ\r}e HIV_| none We can compute the likelihooB(S|E) by enumerating all
ase fione | none possible assignments betwe&hand S. In general, assume
(c) The three possible cases that in the multi-setS, the values;(1 < ¢ < m) appearsy;
TABLE II times, the total number of possible assignmentsﬁé’?
i=1 "
AN EXAMPLE whered>™ " n; = k.
and This shows that computing the exact formula requires expo-

nential computation time. We note that the likelihaBdS|E)

Prob(Case 3) o< p3 = P(HIV|t1) x P(noneltz) x P(nonelts)s exactly thepermanendf the matrix where théi, j)-th cell
=0.95 x 0.05 x 0.7 = 0.033 is the prior probabilityP(s;|t;) (note that each sensitive value

in the multisetS holds a column and it will be & x &

We are then able to compuférob(Case 1) as: matrix). The problem of computing the permanent is known

Prob(Case 1) = p1 — 08 to be a# P-complete problem. A number of approximation
DP1+p2+p3 algorithms have been proposed to compute the permanent of a
Thus, the posterior probability thag takes HIV is equal matrix. The state of the art is the polynomial-time randcediz
to: approximation algorithm presented in [18]. However, timeeti

complexity is of order oD (k?2). It is thus not feasible for the
Prob(Case 1) x 1+ Prob(Case 2) x 0+ Prob(Case 3) X0 ganeral formula to work for a large. In the following, we
= Prob(Case 1) = 0.8 turn to approximation algorithms for computing the posteri

, ) belief. The approximation algorithm allows us to compute th
In summary, the adversary’s belief thgthas HIV changes posterior belief accurately enough while in time linear he t
from 0.3 to 0.8, which is a significant increase. This showg,e of the group.

that inferences using probabilistic background knowleciae
breach individuals’ privacy. D. Approximate Inferences$2-estimate

In the following, we consider a heuristic to estimate the
) ) posterior probabilityP*(s;|¢;). We represent the prior beliefs
~We derive the general formula for computing the postey g pipartite graph where one set of nodes consists of tuples
rior belief using Bayesian inference techniques (the id®a jj, the group and the other set of nodes consists of sensitive
illustrated in the example above). We consider a grélpf \4jyes in the group. Each edge from tupjeio sensitive value
k tuples (name]yE = {tl,tg, .., tr}). Let the multi-setS s; is associated with the probabilit(s;|;).
denote all sensitive attribute values in Our approach is a generalized version of thesstimate

In the following, we usel(s;|t;) and P*(s;[t;) to denote geq py Lakshmanan et al. [9], where they estimate the number
the prior belief and the posterior belief that tupl(l <  f correct mappings between original items and anonymized
j < k) takes the sensitive attribute valug(l < i < m), jiems. In that context, a item either can be linked to an

respectively. . _anonymized item or cannot be linked to the anonymized item.
We denoteP(S|E) as the likelihood that the tuples iny oyr context, a tuple can be linked to a sensitive attribute
E take the sensitive attribute value ifi, which can be \5ue with a certain probability.

computed as the sum of the likelihood of every possible gased on the prior belief;; can be linked tos; with a
as&gnments betweer and S. For example, conglder theprobability of P(s;|t;) and t; can be linked tos; with a
tuples in Table ll(a), there are three possible ass'gnmtsprobability of P(s;|t;)) for all 1 < j/ < k. Therefore, the

shown in Table 1i(c): probability thatt; takess; is given by
P({nonenone, HIV}|{t1,t2,t3}) P(silt;)

=P(nonelt1) x P(nonelty) x P(HIV|t3) Z?’:l P(silt;r)

+ P(nonelt1) x P(HIV|ty) x P(nonelts)

+ P(HIV|t1) x P(nonel|ts) x P(none|ts)

C. General Formula

We call this heuristic the2-estimate (denoted ad)(s;|t;)).
s; appearsq; times inS and by summing up this probability



P(Hl\ﬁltl) _— P(Hn?m) —5 P(Hl‘f3t3) — IV. PRIVACY MODEL WITH BACKGROUND KNOWLEDGE
P(nonelt1) =1 | P(nonelts) =1 | P(nonelts) = .7 The next step is to extend privacy definitions for data
TABLE IlI publishing to consider background knowledge. We define our
ANOTHER ADVERSARY S PRIOR BELIEF TABLE (B, t)-privacy model and describe our definition of distance

measure between two probability distribution, which qifeest

across all these; values, we get an estimation of the posterio . . .
! 9 P t'he amount of information disclosed by the released table.

probability:
A. Privacy Model
P(silt;) Y

Qsilty) o< i X ————="— Given the background knowledge paramdBeand a target
> =1 Psilty)

=1 individual » whose quasi-identifier value ig € D[QI],
By normalizing the probability ditribution for each;, we the adversaryAdu(B) has a prior belieff,.i(B, ) on r's
obtain sensitive attribute. When she sees the released f&hleshe
" x P(silt;) has a posterior belieP,.s (B, ¢, T*) onr’s sensitive attribute.
Osilt;) = L PGsilty) ) The distance of the two probabilistic beliefs measures the
I S n, % _ Plselty) amount of sensitive information about individualthat the
r=1"%" Z_’;,Zl P(sr|t;r)

adversaryddv(B) learns from the released data. Based on this

The above estimation technique makes the random wofffionale, we define theB, ¢)-privacy principle as follows:
assumption [19], where every reasonable mapping betweerP€finition 1 (the(B, ¢)-privacy principle): Given two pa-
individuals and sensitive attribute values is equally pidb. @metersB and¢, an anonymized tablé™ is said to have
Specifically, Equation (5) can be directly derived from th&€B»?)-privacy iff the worst-case disclosure risk for all tuples
formula shown in Equation (4) by assumi(s — {s;}|E — (With QI value beingg) in T" is at mostt:
{t;}) = P(S = {si}|E — {t;}) forall 1 <j" < k. max D[Bypri(B, q), Ppos (B, ¢, T*)] < t

In [3], Machanavajjhala et al. studied the problem of calcu- a
lating the posterior belief under the frameworkgeneraliza- whereD[P, Q] is the distance betwedR and Q.
tion by employing the random world theory. Not surprisingly, The parameteB determines the profile of the adversary
the results they obtained fgeneralizatiorare consistent with (i.e., how much background knowledge she haB). =
our results forbucketization {By, By, ..., B4} is ad-dimensional vector, which allows the

We note that theQ-estimate is not exact. Consider thejata publisher to specify values for different componehte®
example shown in Table li(a) again where we have a groupaéctor. For example, an adversary may know more information
three tuples{t1, 2,73} and their sensitive attribute values areibout attribute4; than about attributed; of the table. In
{none,none, HIV}. Now, assume the adversary has differenhis case, we would set a smaller value 8y than for B,
prior beliefs as shown in Table Ill and she wants to find o accurately model the knowledge of the adversary. On the
the sensitive value tha takes. Using the general formula forother hand, the parameterdefines the amount of sensitive
exact inference, the probability can be calculated as\alo information that is allowed to be learned by this adversary.
First, we haveP({none,none}|{t1,t2}) = 1 x 1 = 1 and  The above privacy model only protects the data against
P({none, HIV}|{t1,t2}) = 1 x 0+ 0 x 1 = 0. Therefore we adversaries with a particular amount of background knogéed

have: B. While this model gives the data publisher the flexibility to
P(HIV|ts) x 1 specify the parametds, the main challenge is how to protect
P*(HIV|t3) = =1 the data against all kinds of adversaries with differentlev

P(HIV|ts) x 1+ P(nonelts) x 0 of background knowledge. Of course, the data publisher can

It is intuitive that¢; must take the HIV disease becaus€numerate all possibl® parameters and enforce the above
none oft, andt, can take the HIV disease. However, baserivacy model for all thesd parameters.

on theQ-estimate, the probability is calculated as: In Section V, we empirically show the continuity of the
worst-case disclosure risk with respect to the background

1x % 0.6 knowledge parameters, i.e., slight changes ofBhgarameter
1x 23 4 2% 0T - do not cause a large change of the worst-case disclosure risk
’ ’ Therefore, the data publisher needs to only define the privac
Here, the inexactness of theestimate results from the factmodel for a set of well-choseB parameters.
that Q-estimate assigns a uniform likelihood to the following The data publisher can define a set of background knowl-
two events: (1)¢1,t2} take{none,nong and (2){t1, -} take edge parameter®,,B.,,..., B, and enforce the following
{none,HIV}. However, these two events have very differergkyline (B,¢)-privacy principle to protect the data against
likelihoods. In fact, the second event cannot occur under thdversaries with all levels of background knowledge.
prior beliefs shown in Table Ill. In general, tif&-estimate is  Definition 2 (the skylinéB, ¢)-privacy principle): Given a
accurate enough for use in practice. In Section V, the acgurakyline { (B, t1), (B2, t2), ..., (B, t-)}, an anonymized table
of the Q-estimate is empirically evaluated with real datasets* satisfies the skylin€B, ¢)-privacy requirement iff for = 1

QHIV|t3) =




to r, the worst-case disclosure risk for all tuples (with QI walusymmetric and does not satisfy the triangle inequality prop

beingq) in T is at mostt;: The Kullback-Leibler (KL) divergence [20] is defined as:
max D[P;mv (Bi7 Q)a P;Ims (Bi7 q, T*)] <t d Di
q , . KL[P,Q] =) pilog=
In practice, the data publisher specifies a set of background —~ ¢

knowledge parameteiB;, together with the:; parameter for

eachB;. This allows the data publisher to specify and enforce The KL divergence measure is undefined wien> 0 but
privacy requirements for different adversaries simultarsty. ¢; = 0 for somei € {1,2,...,d} and thus does not satisfy
As we point out above, the worst-case disclosure risk dithe zero-probability definabilityproperty. To fix this problem,
tributes continuously with respect to the background kaowd variation of KL divergence called the Jensen-Shannon (JS)
edge parameter. This allows the data publisher to use a daergence [21], [22] has been proposed. The JS divergence
of well-chosen background knowledge parameters to protegeasure is defined as:

the data against adversaries with all levels of background 1

knowledge. Also, the data publisher can set default paramet  /S[P; Q] = 5 [D[P, avg(P, Q)] + D[Q, avg(P, Q)]]  (6)

and has the flexibility to define their own parameters for . o
special cases. whereavg(P, Q) is the average distributioP + Q)/2 and

KL],] is the KL divergence measure.
B. Distance Measure: Quantifying Information Disclosure However, none of the above distance measures satisfy

We study the problem of measuring the distai®, Q] the semantic awarenessroperty. One distance measure that
between two probabilistic distributio® andQ. The distance takes value semantics into consideration is the Earth Mover

measure quantifies the information revealed to an advers&¥gtance (EMD) [23], [4]. The EMD is based on the min-
whose prior belief iSP and posterior belief i€. imal amount of work needed to transform one distribution

In this section, we first identify our desiderata for the dasi t0 another by moving distribution mass between each other.
of the distance measure and show that existing distance méafortunately, EMD does not have therobability scaling
sures cannot satisfy some of these properties. We then defif@perty. For example, the EMD distance between the two
our distance measure that satisfies all of these properties. distributions(0.01,0.99) and(0.11,0.89) is 0.1, and the EMD

1) Desiderata: From our perspective, a useful distancéistance between the two distributiofts4, 0.6) and(0.5,0.5)
measure should display the following properties: is aI;oO.l. quever, one may argue that the belief change in

1) Identity of indiscernibles: An adversary has no infor- the first pair is much more significant than that between the

mation gain if her belief does not change. Mathemat'i;-econd pair. In the first pair, the probability of taking thrstfi
cally, D[P, P] = 0, for any P value increases from.01 to 0.11, a 1000% increase. While

2) Non-negativity: When the released data is available, thd! the s_econd pair, the probability mcre:_;lse is opdys.
adversary has a non-negative information gain. Mathe—z) Distance MeasureWe propose a distance measure that

matically, D[P, Q] > 0, for any P and Q. can satisfy all the five properties. The idea is to apply Kerne
3) Probability scaling:_The belief change from probability smoothing [12] before using JS divergence. Kernel smogthin

a 10 a4+~ is more signification than that from to 3+~ is a standard statistical tool for filtering out high-frequg
whena < g anda is small. D[P, Q] should consider

noise from signals with a lower frequency variation. Here, w
reflect the difference. use the technique across the domain of the sensitive d@#ribu
4) Zero-probability definability: D[P, Q] should be well- value to smooth Ol..lt. the distribution. F_or computin_g diseanc

defined when there are zero probabilitiestrand Q. P€tween two sensitive values, we definerax m distance
5) Semantic awareness\When the values iP and Q matrix for S using the same method as described in Section II-

have semantic meaning®[P, Q] should reflect the C. The (i, j)-th cell d;; of the matrix indicates the distance

semantic distance among different values. For exampRtWeens; ands;. _ _
for the “Salary” attribute, the valus0K is closer to We use the Nadaraya-Watson kernel weighted average:

50K than to80K. A semantic-aware distance measure S pi K (dij)
. . . . ~ j=1F7 ij

should consider this semantics, e.g., the distance be- TS K (dy)

tween {30K,40K} and {50K,60K} should be smaller J=1 Y

than the distance betwegB0K,40K} and {80K,90K}.  where K(.) is the kernel function, which is chosen to be

Note that we do not requir@[P, Q] to be a distance metric the Epanechnikov kernel as described in Section Il. The
(the symmetry property and the triangle-inequality proyer bandwidth is determined based on the sensitive attribute. |
First, D[P, Q] does not always have to be the sam®83, P]. the experiments, we use “Occupation” as the sensitivéatgi
Intuitively, the information gain fronf0.5,0.5) to (0.9,0.1) is  with a domain hierarchy of heigi®, the bandwidth is chosen
larger than that fron{0.9,0.1) to (0.5,0.5). SecondD[P, Q] to be at leasd.5 so that kernel smoothing can be applied.
can be larger thab[P, R]+ D[R, Q] whereR is also a prob- ~ We then have a smoothed probability distributi®h =
abilistic distribution. In fact, the well-known Kullbackeibler (p1, p2, ..., D) for P. The distributionP reflects the semantic
(KL) divergence [20] is not a distance metric since it is nadistance among different sensitive values.



Attribute Type # of values Number of vulnerable tuples Number of vulnerable tuples
1 Age Numeric 74 oo distinct-I-diversity mm— oo distinct:-diversity mm—

2 Workclass Categorical 8 45000 probabilstic--diversity mmmm | 45000 probabilstic--diversity mmmm |

° . 40000 tcloseness === | 40000 t-closeness =1 |

3 Education Categorical 16 35000 (B.)-pivacy =11 35000 (B.)privacy == |

4 | Marital_Status | Categorical 7 Zgggg 1 zgggg 1
5 Race Categor@cal 5 20000 20000
6 Gender Categorical 2 15000 15000
- — 10000 10000
7 Occupation Sensitive 14 5000 5000
0 0

TABLE IV 02 03 04 05 paral  para2  para3  parad

b’ value privacy parameter

(a) Variedd’ values (b) Varied privacy parameters

DESCRIPTION OF THEAdult DATASET USED IN THE EXPERIMENT

k|7 t b Fig. 1. Probabilistic Background Knowledge Attack
paral|| 3 | 3 | 0.25 | 0.3
para2 || 4 | 4 0.2 0.3 Aggregate distance error
para3|| 5 | 5 | 0.15 | 0.3 03
para4 | 6 | 6 | 0.1 | 0.3 ol ey
TABLE V ol s

PRIVACY PARAMETERS USED IN THE EXPERIMENTS 015 b

To incorport semantics into the distance betw&eandQ, s x
we compute the distance betwePnand Q as an estimate '

instead: D[P, Q] ~ D[P,Q]. The distanceD[P,Q] can s : ” 0 5
be computed using JS-divergence measure (in Equation (6)) Nvalue
which is well-defined even when there are zero probabilities Fig. 2. Accuracy of the2-estimate

in the two distributions. We can see that our distance measur
has all of the five properties described in Section IV-B.1. anonymity (each group contains at ledstecords) together
with each of the above privacy models.
V. EXPERIMENTS For each experiment, we evaluate the performance with

The main goals of the experiments are: (1) to demonstrdgspect to four sets of privacy parameters in Table V. To
the effects of probabilistic background knowledge on dataake the comparisons easier, we use the séamalue for
anonymization, (2) to evaluate the accuracy of hestimate, distinct/-diversity and probabilisti¢-diversity, the same for
(3) to illustrate the continuity of the worst-case disclestisk ¢-closeness andB, ¢), the sameb value, andk = ¢ for all
with respect to the background knowledge param#g4) cases as shown in Figure V.
to show the efficiency of computind, ¢)-private tables , and
(5) to show the effectiveness of th#, ¢)-privacy model in - A Effects of Probabilistic Background Knowledge
utility preservation.

The dataset used in the experiments is the adult datase{Ve assume that adversary’s background knowledge is mod-
from the UC Irvine machine learning repository, which igled by theb’ parameter, i.e B’ = (', 0', ..., V). To illustrate
comprised of data collected from the US census. We use seliéd effects of probabilistic background knowledge, we gppl
attributes of the dataset, as shown in Table IV, where tHee prior belief function computed frof8’ on each of the four
sensitive attribute i©ccupation Tuples with missing values @ahonymized tables, compute the posterior beliefs of egull tu
are eliminated and there are ab®ti valid tuples in total. and report the number of tuples whose privacy is breached
All algorithms are implemented in Java and the experimeri§der that privacy requirement. These tuples are viewed as
are performed on 8.4GHZ Pentium4 machine with2.0GB Vulnerable to the probabilistic background knowledgecitia
of RAM. Our first set of experiments investigates the effectbof

Given the dataset, we use the variations of Mondrian mularameter on the number of vulnerable tuples. Figure 1(a)
dimensional algorithm [24] to compute the anonymized tbléhows the number of vulnerable tuples in the four anonymized
using different privacy requirements: (1) distinetiversity; tables with respect to differen’ values. The number of
(2) probabilistic¢-diversity; (3) t-closeness; and (4)B,t)- Vvulnerable tuples decreases lsincreases because a larger
privacy. b’ value corresponds to a less-knowledgeable adversary.

The variations of Mondrian use the original dimension The second set of experiment investigates the effect of
selection and median split heuristics, and check if theifipec privacy parameters shown in Table V on the number of
privacy requirement is satisfied. Note that we can genehate vulnerable tuples. We fix the adversary’s paramétet 0.3.
¢-diverse table using the anatomizing algorithm [16]. Homrev Figure 1(b) shows the experimental result.

Anatomy does not generalize the quasi-identifiers and ildvou As we can see from these figures, I, t)-private table
be unfair to compare Mondrian with Anatomy. contains much fewer vulnerable tuples in all cases. Thisisho

The four privacy models protect the data against attributieat the (B, ¢)-privacy model better protects the data against
disclosure. To protect identity disclosure, we also erddr¢ probabilistic-background-knowledge attacks.



Worst-case disclosure risk Efficiency (sec) Efficiency (min
Worst-case disclosure risk Y (sec) Y (min)

distinct-I-diversity mm— 14+ input-size=10K ——

probabilistic--diversity | input-size=15K -~
t-closeness == | input-size=20K
(B.t)-privacy === 10}k input-size=25K

R N Y

0.20.2250.250.2750.30.3250.350.375 0.4 0.4250.450.475 0.5 paral para2 para3 para4 0.2 03 04 05
b value privacy parameter b value
(a) Variedb values (b) Variedb,,b2) values (a) Varied privacy models (b) Varield values
Fig. 3. Continuity of worst-case disclosure risk Fig. 4. Efficiency Comparisons
B. Accuracy of the)-estimate These experiments show that slight changes of the back-

To evaluate the accuracy of the-estimate, we randomly ground knowledge parameter§ will not cause a large change
f the worst-case disclosure risk, the conjecture we made in

ick fN tuples f h I I h
pick a group OfN tuples from the table and apply bot exacgection IV. This validates our approach of using a set of-well

inference and th@-estimate on théV tuples. Each tuple has a
b P chosen background knowledge parameters to protect the data

prior distributionP,,.;, the exact inference distributidR., inst ad . ith all levels of back d knovded
and theQ-estimate distributiorP,,,,.. We then compute the against adversaries with all levels o background kno 9

average distance erromvhich is the estimation error average(b Efficienc

over all of the NV tuples: ' y
We compare the efficiency of computing the four

anonymized tables. We compare the efficiency with regard to

different privacy parameters. Figure 4(a) shows the resal

we can see from Figure 4(a), the running time decreases with
We run the experiment00 times and the average isincreasingly stringent privacy requirements becausadrian

reported. Figure 2 depicts thaverage distance errowith IS a top-down algorithm.

respect to differenfV values. In all cases, th@-estimate is Here, the time to compute th@B,t)-private table does

within 0.1-distance with the exact inference. The experimen®t include the time to run the kernel estimation method to

show that theQ)-estimate is accurate enough to be used gompute the background knowledge. As we can see from

N
1
P = N E |D[Pema7 Ppm] - D[Pome; P;m’i”
i=1

practice. Figure 4(a), without considering the time for estimatinglsa
ground knowledge, the running time to compute tii ¢)-
C. Continuity of Disclosure Risk private table is roughly the same as the time to compute the

ther tables, usually within seconds.
We then evaluate the efficiency of computing background
owledge using the kernel estimation method, which is the

The goal of this experiment is to show the continuity of
the worst-case disclosure risk with regard to the backgiouEn

knowledge parametdB. We first fix the adversary with the ™ ™ e . . .
background knowledge parametér which can be one of main efficiency issue of théB, ¢)-privacy model. Figure 4(b)

the four values{0.2,0.3,0.4,0.5}. We then generate a setShOWs the rte;sullis. As (\jNi canl Zee f_ro:n the fir?urei, th_e time
of (B, t)-private tables with different parameters. For each!® compute background knowledge Is larger than the time to

anonymized table, we compute the worst-case disclosuke onymize the data, partially bfecamnd“a_” runs much
by the adversary. The worst-case disclosure risk is corapuf@Ste" than many other anonymization algorithms. Morgover

as the maximum knowledge gain for all tuples in the tabl omputing background knowledge is still fast enough for

max, {D[Pyrs(B’, q), Pos(B', ¢, T*)]}. Figure 3(a) shows the arge-enough datasets, usually within several minutes.
results. As we can see from the figure, the worst-case disclL_P—
sure risk increases/decreases continuously with respebet —
b parameter. To compare data utility of the four anonymized tables, we
We then evaluate the continuity of the disclosure riskvaluate the anonymized data both in terms of generalyutilit
with respect to the background knowledge paramelRerss measures and accuracy in aggregate query answering.
(b1, b1,b1,b2,b2,b2), i.€., the adversary's background knowl- 1) General Utility MeasuresWe first compare data utility
edge on the first three attributes is modeledthyand her based on two general utility measuréiscernibility Metric
background knowledge on the last three attributes is mddel®M) [25] and Global Certainty Penalty (GCP[26].
by bs. Here, we fix the adversary’'s parametér= 0.3 and Figure 5(a) shows the DM cost while Figure 5(b) shows the
compute the worst-case disclosure risk by the adversaty wieCP cost for the four anonymized tables. In both experiments
respect to different(by,bs) values. Figure 3(b) shows thewe evaluate the utility measure as a function of the privacy
results. As we can see the figures, the worst-case disclospaeameters shown in Table V. In both figures, tt®,¢)-
risks increases/decreases continuously among the dorhairprivate table shows comparable utility with the other four
(b1, b2). anonymized tables.

Data Utility
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Giobal Certainty Penaly (GOP) st None of these general privacy models consider the kinds
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Background Knowledge Integration. In [5], Martin et al.
presented the first formal analysis of the effects of badkigdo
knowledge. They proposed a formal language to express
background knowledge about the data and quantified back-
ground knowledge as the number of implications in their
language. They defined the, k)-safety model to protect the

0
paral  para2  para3  parad paral  para2  para3  parad
privacy parameter privacy parameter

(a) Varied privacy models (b) Varied privacy models
Fig. 5. General Utility Measures

Aggregate relative error(%) Aggregate relative error(%)

30

distinct-I-diversity mm—
probabilistic--diversity mmm
t-closeness =21
(Bt)-privacy ===

distinct-I-diversity mm—

25 probabilistic--diversity mm
t-closeness =21

20 (Bt)-privacy ===

15
10

data in the worst-case when the adversary has knowledge of
k implications.

Chen et al. [6] extended the framework of [5] and proposed
a multidimensional approach to quantifying an adversary’s

background knowledge. They broke down the adversary’s
background knowledge into three components which are more
intuitive and defined a privacy skyline to protect the data
against adversaries with these three types of background
knowledge.
While these work provided a framework for defining and
2) Workload ExperimentsiWe evaluate data utility in terms analyzing background knowledge, they do not provide an
of performance in aggregate query answering [27], [16]].[28pproach to allow the data publisher to specify the exact
Figure 6(a) shows the average relative error as a functibackground knowledge that an adversary may have. In [7], we
of the query dimension. As the query dimension increasgepposed to mine negative association rules from the data as
average relative error decreases and therefore, the amoeymknowledge of the adversary. However, as we have pointed out,
data performs better for queries with a larger query dimmmsi this approach is limited in modeling background knowledge.
Figure 6(b) shows that as the query selectivity increasesRecently, Du et al. [32] proposed an approach to integrate
average relative error also decreases. This shows that biaekground knowledge in privacy quantification. They don't
anonymized data can answer more accurately on queries witbvide an approach for modeling background knowledge, but
a larger selectivity. compute the unknown conditional probabilities based on the
In all figures, we can see that th{é3, t)-private table can maximum entropy principle. On the other hand, we explicitly
answer queries as accurately as all other anonymized tablggopose an approach for modeling background knowledge and
present a framework for protecting privacy in the preserfce o

V1. RELATED WORK
i . . ) o such background knowledge.
We first review existing work in data anonymization and

explain how our technique differs from them. We classifAnonymization Techniques. Most anonymization solutions
these works into three categories: (1) general privacy spdeadopt generalization [1], [14], [15], [33], [25], [34], [BH36],
(2) background knowledge integration, and (3) anonymizati [24] and bucketization [16], [17], [5], [37]. Other anonyzat
techniques. We then examine several research works that htan techniques include clustering [38], space mappind,[39
studied background knowledge in other contexts. spatial indexing [40], data perturbation [41], [42], [48]n the

_ . theoretical side, optimal k-anonymity has been proved to be
General Privacy Models. The k-anonymity model [1], [2], NP-hard fork > 3 in [44], [45], and approximation algorithms

[15] assumes that the adversary has access to some publily+inging the anonymization that suppresses the fewet cel
available databases (e.g., a vote registration list) amed . o peen proposed in [44], [45], [46].
adversary knows who is and who is not in the table. A few ’ '

subsequent works [3], [29], [30] recognize that the adwgrsaBackground Knowledge in Other Contexts. The above
also has knowledge of the distribution of the sensitivalatte works focus on data anonymization in the context of privacy-
in each group. Thé-closeness model [4] further observed thatreserving data publishing. A number of research works have
the distribution of the sensitive attribute in the overalble examined background knowledge in other contexts. Yang and
should also be public information. Li [47] studied the problem of information disclosure in XML

Recently, thes-presence measure [31] observed that knowublishing when the adversary has knowledge of functional
ing an individual is in the database poses privacy risks. Thependencies about the XML data. In [9], Lakshmanan et al.
m-confidentiality model [13] recognized that knowledge af thstudied the problem of protecting the true identities ofadat
mechanism or algorithm of anonymization for data publighinobjects in the context of frequent set mining when an adversa
can leak extra sensitive information. has partial information of the items in the domain.

003 005 007 01 012
qd value sel value

(a) Variedqd values (b) Varietsel values

Fig. 6. Aggregate Query Answering Error
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