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Abstract— Recent work has shown the importance of consid-
ering the adversary’s background knowledge when reasoning
about privacy in data publishing. However, it is very difficult
for the data publisher to know exactly the adversary’s back-
ground knowledge. Existing work cannot satisfactorily model
background knowledge and reason about privacy in the presence
of such knowledge.

This paper presents a general framework for modeling the
adversary’s background knowledge using kernel estimationmeth-
ods. This framework subsumes different types of knowledge
(e.g., negative association rules) that can be mined from the
data. Under this framework, we reason about privacy using
Bayesian inference techniques and propose the skyline(B, t)-
privacy model, which allows the data publisher to enforce privacy
requirements to protect the data against adversaries with differ-
ent levels of background knowledge. Through an extensive set
of experiments, we show the effects of probabilistic background
knowledge in data anonymization and the effectiveness of our
approach in both privacy protection and utility preservati on.

I. I NTRODUCTION

A number of privacy models have been proposed for data
anonymization, e.g.,k-anonymity [1], [2], `-diversity [3], t-
closeness [4], and so on. A key limitation of these models is
that they cannot guarantee that the sensitive attribute values
of individuals are protected when the adversary has addi-
tional knowledge (called background knowledge). Background
knowledge can come from diverse sources, such as well-
known facts, demographic information, public records, and
information about specific individuals.

As an example, consider that a hospital has the original
patient tableT in Table I(a), which contains three attributes
Age, Sex, and Disease. The hospital releases a generalized
table T ∗ in Table I(b) which satisfies3-diversity. Assume
that an adversary knows Bob is a 69-year-old male whose
record is in the table, the adversary can only find out that
Bob is one of the first three records. Without any additional
knowledge, the adversary’s estimate of the probability that Bob
has Emphysemais 1/3. However, the adversary may know
the correlations betweenEmphysemaand the non-sensitive
attributesAge and Sex, e.g., “the prevalence of emphysema
was appreciably higher for the65 and older age group than the
45-64 age group for each race-sex group” and “the prevalence
was higher in males than females and in whites than blacks”.1

Because Bob is a 69-year-old male, then based on the above

1From a data fact sheet published by National Heart, Lung, andBlood
Institute (http : //www.nhlbi.nih.gov/health/public/lung/other/
copd fact.pdf ).

Age Sex Disease
1 69 M Emphysema
2 45 F Cancer
3 52 F Flu
4 43 F Gastritis
5 42 F Flu
6 47 F Cancer
7 50 M Flu
8 56 M Emphysema
9 52 M Gastritis

Age Sex Disease
1 [45,69] * Emphysema
2 [45,69] * Cancer
3 [45,69] * Flu
4 [42,47] F Gastritis
5 [42,47] F Flu
6 [42,47] F Cancer
7 [50,56] M Flu
8 [50,56] M Emphysema
9 [50,56] M Gastritis

(a) Original tableT (b) Generalized tableT ∗

TABLE I

ORIGINAL TABLE AND ITS GENERALIZED TABLE

external knowledge, the adversary can infer that Bob has a
much larger probability of havingEmphysemathan the other
two tuples in the first group.

In the above example, the adversary knows the correlations
betweenEmphysemaand the attributeAge and the correla-
tions betweenEmphysemaand the attributeSex. We call this
correlational knowledge. In general, correlational knowledge
describes the relationships between the sensitive attribute and
the non-sensitive attributes, e.g., male does not haveovarian
cancer. Correlational knowledge is one kind of adversarial
background knowledge.

Recent research [5], [6] shows the importance of consid-
ering background knowledge in data anonymization. These
studies propose a language for expressing background knowl-
edge and analyze the disclosure risk when the adversary has
a certain amount of knowledge in the language. The analysis,
however, is unaware of the exact background knowledge
possessed by the adversary.

In this paper, we try to remedy this drawback by propos-
ing a framework for systematically modeling background
knowledge and reasoning about privacy in the presence of
background knowledge. This is a challenging task since it
is very difficult to know exactly the adversary’s background
knowledge and the adversary’s background knowledge can be
arbitrary. In this paper, we reduce our scope to background
knowledge that is consistent with the data itself. We discuss
our rationale for this reduction and present a general frame-
work for modeling consistent background knowledge. This
framework subsumes different types of background knowl-
edge, including correlational knowledge.

A. Motivation

Background knowledge poses significant challenges in
defining privacy for the anonymized data [5], [6]. For example,



when background knowledge is present, we cannot simply say
that no adversary knows any individual’s sensitive attribute
value after seeing the released data, because there may exist
an adversary who already knows the sensitive value of an indi-
vidual. While the adversary still knows the value after seeing
the anonymized data, we cannot say that the anonymized data
violates privacy. Intuitively, privacy should mean “no matter
what background knowledge an adversary has, the adversary
cannot learn too muchnew about the sensitive attribute of
any individual”. This, however, cannot be achieved when
an adversary has background knowledge that is inconsistent
with the dataset to be released. Consider an adversary who
incorrectlybelieves that80% of the population has a particular
disease and has no other more specific information. In reality,
only 30% of the population has the disease and this is reflected
in the dataset. In this case, even when one releases only
the distribution of the sensitive attribute of the table as a
whole (without any potentially identifying information),the
adversary would have a significant knowledge gain about
every individual. Such knowledge gain cannot be prevented
by data anonymization, and one can argue that releasing such
information is precisely the most important utility of releasing
data, namely, to correct widely-held wrong beliefs.

Thus, we have to limit ourselves to consider only back-
ground knowledge that is consistent with the data to be
released. We come to the following definition:

Given a datasetT , we say that an anonymized
version of T preserves privacy if and only if, for
any adversary that has somebackground knowledge
that is consistent withT , and for any individual inT ,
the adversary’sknowledge gainabout the sensitive
attribute of the individual is limited.

B. Contributions & Organization

In this paper, we formalize the above intuitive definition.
First, we model all background knowledge that is consistent
with the original data. We build on our previous work [7],
namely, mining background knowledge from the data to be
released. Our rationale is that if certain facts or knowledge
exist in the data (e.g., males cannot haveovarian cancer),
they should manifest themselves in the data and we should
be able to discover them using data mining techniques. The
approach [7], however, considers only negative association
rules that hold with 100% confidence. It does not consider
probabilistic knowledge or knowledge such as positive associ-
ation rules, summary statistics, and knowledge from clustering.

Our novel approach in this paper is to apply kernel esti-
mation techniques [8] to model background knowledge that
is consistent with a dataset. We model the adversary’s prior
belief on each individual as a probability distribution, which
subsumes different types of knowledge that exists in the data.
The dataset can be viewed as samples from such distributions.
Our problem of inferring background knowledge from the
dataset to be released is similar to the problem of inferringan
distribution from samples, a problem well studied in statistics
and machine learning. We apply the widely used technique of

kernel regression estimation to this problem. The bandwidth
of the kernel function provides a good parameter of how much
background knowledge an adversary has, enabling us to model
adversaries with different levels of background knowledge.

Second, we propose a general formula for computing the
posterior belief based on the background knowledge and the
anonymized data. However, this computation turns out to be a
hard problem and even known estimation algorithms have too
high a complexity to be practical. To overcome the complexity
of exact inference, we generalize the approximation technique
used by Lakshmanan et al. [9] and propose an approximate
inference method. We show that the approximate inference
method is practical and accurate through experiments on some
real dataset.

Thirdly, we propose a novel privacy metric. We describe our
desiderata for quantifying information disclosure (i.e.,distance
measures between two probabilistic distributions), and show
that several existing measures do not satisfy them. We then
propose a novel distance measure that can satisfy all the
properties.

Fourthly, we empirically show that the worst-case disclosure
risk changes continuously with the background knowledge
parameterB. In other words, slight changes of theB param-
eter do not cause a large change of the worst-case disclosure
risk. Therefore, while it is difficult to know the adversary’s
background knowledge when releasing the data, the data
publisher only needs to use a set of well-chosen parameters
for B to protect the data against all adversaries.

Finally, through an extensive set of experiments using real
datasets, we demonstrate that our approach is efficient, protects
against probabilistic background knowledge inferences, and
preserves data utility in terms of both general utility measures
and workload experiments.

The rest of this paper is organized as follows. We present
the general framework for modeling domain knowledge and
specific knowledge using kernel estimation techniques in Sec-
tion II. We describe how to compute posterior beliefs using
Bayesian inference techniques in Section III. In Section IV, we
define the skyline(B, t)-privacy model, describe the desiderata
for quantifying sensitive information disclosure, and present
our distance measure. Experimental results are presented in
Section V and related work is discussed in Section VI. In
Section VII, we conclude the paper and discuss avenues for
future research.

II. M ODELING BACKGROUND KNOWLEDGE

In this section, we present a general framework for modeling
the adversary’s background knowledge using kernel regression
techniques [8]. This framework is able to incorporate different
types of background knowledge that exists in the data. At the
end of this section, we analyze the scope of our approach by
illustrating the types of background knowledge that can be
described in our framework.

A. Knowledge Representation

Let T = {t1, t2, ..., tn} be a microdata table maintained by
the data publisher where each tupleti(1 ≤ i ≤ n) corresponds



to an individual.T containsd quasi-identifier (QI) attributes
A1, A2, ..., Ad and a single sensitive attributeS. Let D[Ai]
(1 ≤ i ≤ d) denote the attribute domain ofAi and D[S]
denote the attribute domain ofS (let D[S] = {s1, s2, ..., sm}).
For each tuplet ∈ T , let t[Ai] denote its value on attributeAi

and t[QI] denote its value on the QI attributes, i.e.,t[QI] =
(t[A1], t[A2], ..., t[Ad]).

For simplicity of discussion, we consider only one sensitive
attribute in our framework. If the data contains multiple
sensitive attributes, one can either consider them separately
or consider their joint distribution. Our framework can be
extended to consider multiple sensitive attributes using any
of the above two approaches.

Representation of the Adversary’s Prior Belief. Let
D[QI] = D[A1]×D[A2]×...×D[Ad] be the set of all possible
QI values andΣ = {(p1, p2, ..., pm)|

∑
1≤i≤m pi = 1} be the

set of all possible probability distributions on the sensitive
attributeS. We model the adversary’s prior belief as a function
Ppri : D[QI] → Σ. Therefore, for an individual whose QI
value isq ∈ D[QI], the adversary’s prior belief of the sensitive
attribute values is modeled as a probability distributionPpri(q)
over D[S].

An example of prior belief on a tuplet is P (HIV |t) = 0.05
andP (none|t) = 0.95. In other words, the probability thatt
has HIV is 0.05 and the probability thatt has some non-
sensitive disease such asflu is 0.95. In our representation,
Ppri(t[QI]) = (0.05, 0.95).

Representation of the Original Dataset.Each tuplet in table
T can be represented as a pair(t[QI],P(t)) whereP(t) ∈ Σ,
all components of the distributionP(t) is 0 except thei-th
component wheret[S] = si. Formally,P(t) = (p1(t), p2(t),
..., pm(t)) is defined as follows: for alli = 1, 2, ..., m,

pi(t) =

{
1 if t[S] = si

0 otherwise

Therefore, the tableT can be represented as a set ofn
pairs: {(t1[QI],P(t1)), (t2[QI],P(t2)), ..., (tn[QI],P(tn))}.
Each pair in our representation is a tuple in the original dataset.
Thus, we can view each pair in our representation as a point
describing the sensitive valueP(t) that a tuplet takes.

Finally, our goal of modeling background knowledge is to
calculate estimations of the adversary’s prior belief function
Ppri, which is defined over all possible QI values inD[QI].

B. Estimating the Prior Belief Function

We build on the work of [7] and generate background
knowledge by mining the data to be released. The general
rationale is that the adversary’s background knowledge about
the data should be consistent with the data inT and should
manifest themselves inT . For example, if the adversary knows
that male cannot have ovarian cancer, this piece of knowledge
should exist in tableT and we should be able to discover it
by mining the data inT . We now present a general framework
for modeling background knowledge.

The adversary’s prior belief functionPpri can be considered
as the underlying probability distribution of the sensitive
attribute in tableT . And the data in the original table
{(t1[QI],P(t1)), (t2[QI],P(t2)), ..., (tn[QI],P(tn))} can be
considered as a data sample that is consistent with the un-
known prior belief functionPpri. Our goal is to find the
underlying prior belief functionPpri that fits the original data.

One way of constructing an estimate of thePpri function
is to use the maximum likelihood estimator (MLE), where
the prior belief for each tuple is estimated as the distribution
among tuples with that QI value. There are several problems
with this approach: (1) the number of distinct QI values can be
very large, in which case the MLE estimator is of high variance
and does not provide a reliable estimate; (2) the MLE estimator
does not have parameters to allow estimation of differentPpri

functions; and (3) the MLE estimator models each QI value
independently and does not consider the semantic meanings
among the QI values.

This leads us to the kernel regression estimation method.
The kernel regression method is a non-parametrical technique
in statistics to estimate the conditional expectation of a random
variable. Specifically, given a dataset, the kernel regression
method tries to find the underlying function that is best-fit
match to the data at those data points. The kernel regression
estimator belongs to the smoothing method family. Kernel
methods have been extensively studied in the statistics, ma-
chine learning, and data mining communities. Existing work
has shown that kernel methods have a number of desirable
properties: (1) they can estimate the underlying function very
effectively and (2) they are simple and efficient to compute.
We choose to use kernel regression method to approximate the
probability distribution functionPpri.

C. Kernel Regression Estimator

Kernel estimation includes two components: (1) the kernel
function K and (2) the bandwidthB. The kernel function
K describes the form of the weight distribution, generally
distributing most of its weight to points that are close to it. The
bandwidthB determines the size of the impact ranges of the
data point. The probability distribution at a point is estimated
as the sum of the smoothed distributions of kernel functions
associated with each point in the dataset.

Formally, for one-dimensional data (i.e.,d = 1), the kernel
regression estimation is defined as follows. Giveq ∈ D[A1] =
D[QI], using Nadaraya-Watson kernel weighted average [10],
the probability distribution atq is estimated as:

P̂pri(q) =

∑
tj∈T P(tj)K(q − tj [A1])∑

tj∈T K(q − tj [A1])
(1)

Note that the denominator is used to normalize the probability
distribution.

Thus, the probability distributionP(tj) of the sensitive
attribute for tupletj is smoothed by the functionK(.) which
peaks at tj [A1]. This allows for tailoring the estimation
problem to thelocal characteristics of the data.



For d-dimensional data, the kernel function is chosen to be
the product ofd kernel functionsKi(.)(i = 1, 2, ..., d). More
formally, given a QI valueq = (q1, q2, ..., qd) ∈ D[QI], the
approximate underlying prior belief functionPpri is estimated
as:

P̂pri(q) =

∑
tj∈T P(tj)

∏
1≤i≤d Ki(qi − tj [Ai])∑

tj∈T

∏
1≤i≤d Ki(qi − tj [Ai])

(2)

where Ki is the kernel function for thei-th attribute Ai.
Again, note that the denominator is used to normalized the
distribution.

The choice of the kernel functionK is not as important as
the choice of the bandwidthB. It has been shown by [11],
[12] that using different kernel functionsK causes only small
effects on the accuracy of the estimator as compared with
varying the bandwidthB. So preferences are given to the
kernels with low computational complexity. We thus choose
to use theEpanechnikov kernel function, which is widely used
in kernel estimation:

Ki(x) =

{
3

4Bi
(1 − ( x

Bi
)2) if | x

Bi
| < 1

0 otherwise

whereB = (B1, B2, ..., Bd) is the bandwidth of the kernel
function.

The bandwidth provides a good measurement of how much
background knowledge an adversary can have. Specifically,
a largeBi implies that the adversary does not have much
knowledge about the relationship between the sensitive at-
tributeS and thei-th quasi-identifierAi. On the contrary, with
a smallBi, the adversary is assumed to have more fine-grained
knowledge on the distribution of the sensitive attribute with
respect toAi. Therefore, we are able to tune the bandwidth
parametersB to model adversaries with different levels of
background knowledge.

Finally, we define the distance between two values of an
attribute. Assume the attribute domain ofAi is D[Ai] =
{vi1, ..., vir} wherer = |D[Ai]|. The attributeAi is associated
with a r × r distance matrixMi where the (j,k)-th celldjk

(1 ≤ j, k ≤ r) indicates the semantic distance betweenvij and
vik. The distance matrixMi is specified by the data publisher.
One way of defining the distance matrix is as follows. IfAi is
a continuous attribute, the distance matrix can be defined as:

djk =
|vij − vik|

Ri

where Ri is the range of the attributeAi, i.e., R =
maxj{vij} − minj{vij}. If Ai is a categorical attribute, the
distance matrix can be defined based on the domain hierarchy
of attributeAi:

djk =
h(vij , vik)

Hi

whereh(vij , vik) is the height of the lowest common ancestor
of vij andvik, andHi is the height of the domain hierarchy
of attributeAi.

Given parametersB, let Adv(B) denote the parameterized
adversary whose background knowledge can be modeled by
bandwidthB. In the following, we denotePpri(B, q) as the
prior belief of the parameterized adversaryAdv(B) on the
sensitive attribute of an individual whose quasi-identifier value
is q ∈ D[QI].

D. Scope of the Framework

We demonstrate the scope of the kernel estimation frame-
work (i.e., the amount of background knowledge that can
be modeled in the framework). Our framework has three
characteristics: (1) we focus on background knowledge thatis
consistent with the data; (2) we model background knowledge
as a probability distribution for each tuple; and (3) we use ker-
nel regression estimator to compute background knowledge.
We now analyze the scope of our framework based on these
three characteristics.

General Privacy Models. Several existing privacy models,
such as̀ -diversity (which requires the sensitive attribute val-
ues in each group to be “well-represented”), do not specifically
consider the prior belief that an adversary has. This ignorant
adversary can be viewed as an adversary with a prior belief
that every sensitive attribute value is equally possible for every
individual in the table, i.e.,Ppri(q) = ( 1

m
, 1

m
, ..., 1

m
) for every

q ∈ QI. This knowledge is inconsistent with the data, when
the sensitive attribute is not uniformly distributed in thedata.
Given this background knowledge, the adversary’s knowledge
gain is unavoidable. Our framework does not model such an
adversary. Equation (1) and Equation (2) show that adversaries
modeled in our framework always have the correct belief about
the overall distribution of the sensitive attribute in the data.

A few existing privacy models consider the prior belief an
adversary has. Thet-closeness model requires the distribution
P of each group to be analogous to the distributionQ of the
whole table with respect to the sensitive attribute. To justify
the rationale of thet-closeness model, the authors argued that
Q should be public information and the adversary’s prior
belief for every tuple in the table is modeled asQ. The t-
closeness model considers the adversary who does not have
access to any additional data other than the released data (from
which she obtainsQ). The prior belief of such an adversary
is consistent with the data itself. Our framework can model
the background knowledge of this adversary as follows. For
each tupletj ∈ T , tj distributes its probability distribution
P(tj) equally to all tuples in the table and therefore, every
tuple in the table receives the same share1

n
P(tj). This type

of adversary is a special adversary modeled by Equation (2).
In Equation (2), theBi(1 ≤ i ≤ d) is defined as the range
of the domainDi(1 ≤ i ≤ d) and theKi(1 ≤ i ≤ d) is
defined as the uniform function. In other words,Ki(x) =
1/Bi for all 0 ≤ x ≤ Bi. Then, Equation (2) reduces to
P̂pri(q) = 1

n

∑
tj∈T P(tj), which is the distribution of the

sensitive attribute in the whole table.

Knowledge about Specific Individuals and Relationships
among Individuals. We note that our framework does not



model all types of background knowledge that an adversary
may have. In [6], Chen et al. described an approach to
quantify adversarial knowledge which includes three typesof
knowledge: (1) knowledge about the target individual which
are negative associations, e.g., Tom does not haveCancer; (2)
knowledge about others which are positive associations, e.g.,
Gary has flu; (3) knowledge about same-value families, e.g.,
{Alice, Bob, Carol} could belong to the same-value family
(i.e., if one of them has a sensitive value, all others tend also
to have the same sensitive value).

Our framework models background knowledge as a prob-
ability distribution for each tuple and does not consider the
third type of adversarial knowledge, i.e., knowledge aboutthe
relationship between individuals [5], [6]. In other words,we
make thetuple-independentassumption: the sensitive attribute
values of the tuples in the table are independent of each other.

The first two types of knowledge can be represented using
prior belief functions. For example, if tupletj does not
have the sensitive valuesi, then thei-th component of the
probability distributionPpri(tj [QI]) is 0. However, our kernel
estimation approach does not directly model adversaries who
have very accurate information about a few individuals and
very little information about others. The space of such belief
functions is too large to be considered. Our approach can, how-
ever, model adversaries who have very accurate background
knowledge about all individuals, by using small bandwidths.
We use such adversaries to approximate those with very
specific knowledge about individuals.

Knowledge about Algorithms and Optimization Objec-
tives. Knowledge about the algorithms and optimization ob-
jectives for anonymizing data can be used to help adversaries
infer the original data, as shown recently by Wong et al. [13].
This kind of knowledge cannot be modeled using prior be-
lief function about individuals. It is an interesting research
direction to study this and other kinds of knowledge that may
enable an adversary to breach individuals’ privacy.

III. C OMPUTING POSTERIORBELIEF

When we have modeled the adversary’s prior belief about
the sensitive attribute of all individuals in the table, we
now explain how an adversary changes her belief when she
has access to the released table using Bayesian inference
techniques.

Before we present our approach for computing the posterior
belief, we describe how the data can be anonymized. We then
give an example showing how an adversary changes her belief
when she sees the released table and describe the general
formula for computing posterior belief. As exact inference
is hard to compute, we propose the approximation inference
method calledΩ-estimate.

A. Anonymization Techniques

Two widely studied data anonymization techniques are
generalization [1], [14], [2], [15] and bucketization [16], [5],
[17]. In generalization, quasi-identifier values are replaced

with values that are less-specific but semantically consistent.
Bucketization, on the other hand, first partitions tuples into
group and then separates the sensitive attribute from the QI
attributes by randomly permuting the sensitive attribute values
in each bucket.

The main differences between the two anonymization tech-
niques lie in that bucketization does not generalize the QI
attributes. When the adversary knows who are in the table
and their QI attribute values, the two anonymization tech-
niques become equivalent. When these techniques are used
to anonymize the data, the adversary always knows that a
group of individuals have sensitive attribute values in a set,
but does not know the exact mapping. For example, in the
generalized table in Table I(b), the first three tuples{t1, t2, t3}
form a group and take values{Emphysema, Cancer, F lu}.
But the exact mapping, e.g., which one of the three tuples has
Emphysema, is unknown. In this paper, we assume that the
adversary knows who are in the table and their QI values. In
this case, the adversary’s goal is to infer the exact mapping
between the set of individuals and the set of sensitive values.

Most existing works consider every mapping between these
two sets to be equally probable. For example, in the first
group of Table I(b), each of the three tuplest1, t2, and t3
is assumed to have a probability of1/3 to takeEmphysema.
However, armed with background knowledge, an adversary
can make more precise inference, e.g.,t1 will have a much
larger probability than1/3 to takeEmphysema. This section
provides a study on how to compute these probabilities based
on the adversary’s background knowledge.

B. An Example

Consider the example shown in Table II(a) where we have
a group of three tuples{t1, t2, t3} and their sensitive attribute
values are{none, none, HIV }. Suppose that the adversary
wants to find out the probability thatt3 takes the HIV disease.

Assume that the adversary has some prior beliefs on the
sensitive attribute of tuples in the table as shown in Table II(b).
For example, she knows that botht1 andt2 have a probability
of 5% to take HIV and a probability of95% to have some
non-sensitive disease such asflu.

From Table II(a), the adversary knows that exactly one of
the three tuples{t1, t2, t3} takes HIV. With this in mind, the
adversary lists the three possible cases of which tuple takes
HIV as shown in Table II(b). In the following, we useProb(E)
to denote the probability the eventE occurs.

In case1, t3 takes HIV whilet1 andt2 take the non-sensitive
values. Therefore, the probability that case1 occurs is equal
to:

Prob(Case 1) ∝ p1 = P (none|t1) × P (none|t2) × P (HIV |t3)

= 0.95 × 0.95 × 0.3 = 0.271

Similarly, we obtain:

Prob(Case 2) ∝ p2 = P (none|t1) × P (HIV |t2) × P (none|t3)

= 0.95 × 0.05 × 0.7 = 0.033



tuple
t1
t2
t3

disease
none
none
HIV

(a) A group of three tuples

t1 t2 t3
P (HIV |t1) = .05 P (HIV |t2) = .05 P (HIV |t3) = .3
P (none|t1) = .95 P (none|t2) = .95 P (none|t3) = .7

(b) The adversary’s prior belief table

t1 t2 t3
Case 1 none none HIV
Case 2 none HIV none
Case 3 HIV none none

(c) The three possible cases

TABLE II

AN EXAMPLE

and

Prob(Case 3) ∝ p3 = P (HIV |t1) × P (none|t2) × P (none|t3)

= 0.95 × 0.05 × 0.7 = 0.033

We are then able to computeProb(Case 1) as:

Prob(Case 1) =
p1

p1 + p2 + p3
= 0.8

Thus, the posterior probability thatt3 takes HIV is equal
to:

Prob(Case 1)× 1 + Prob(Case 2)× 0 + Prob(Case 3)× 0

= Prob(Case 1) = 0.8

In summary, the adversary’s belief thatt3 has HIV changes
from 0.3 to 0.8, which is a significant increase. This shows
that inferences using probabilistic background knowledgecan
breach individuals’ privacy.

C. General Formula

We derive the general formula for computing the poste-
rior belief using Bayesian inference techniques (the idea is
illustrated in the example above). We consider a groupE of
k tuples (namely,E = {t1, t2, ..., tk}). Let the multi-setS
denote all sensitive attribute values inE.

In the following, we useP (si|tj) andP ∗(si|tj) to denote
the prior belief and the posterior belief that tupletj(1 ≤
j ≤ k) takes the sensitive attribute valuesi(1 ≤ i ≤ m),
respectively.

We denoteP (S|E) as the likelihood that the tuples in
E take the sensitive attribute value inS, which can be
computed as the sum of the likelihood of every possible
assignments betweenE and S. For example, consider the
tuples in Table II(a), there are three possible assignmentsas
shown in Table II(c):

P ({none,none, HIV }|{t1, t2, t3})

=P (none|t1) × P (none|t2) × P (HIV |t3)

+ P (none|t1) × P (HIV |t2) × P (none|t3)

+ P (HIV |t1) × P (none|t2) × P (none|t3)

Based on Bayes’ rule, the posterior beliefP ∗(si|tj) is
proportional to the product of the prior beliefP (si|tj) and
the normalized likelihood that thek−1 tuples inE\{tj} take
the k − 1 sensitive attribute values inS\{si}:

P ∗(si|tj) ∝ ni ×
P (si|tj) × P (S\{si}|E\{tj})

P (S|E)
(3)

= ni ×
P (si|tj) × P (S\{si}|E\{tj})∑k

j′=1 P (si|tj′) × P (S\{si}|E\{tj′})
(4)

whereni is the frequency ofsi in the multisetS.
We can compute the likelihoodP (S|E) by enumerating all

possible assignments betweenE and S. In general, assume
that in the multi-setS, the valuesi(1 ≤ i ≤ m) appearsni

times, the total number of possible assignments isk!∏
m
i=1

ni!

where
∑m

i=1 ni = k.
This shows that computing the exact formula requires expo-

nential computation time. We note that the likelihoodP (S|E)
is exactly thepermanentof the matrix where the(i, j)-th cell
is the prior probabilityP (si|tj) (note that each sensitive value
in the multisetS holds a column and it will be ak × k
matrix). The problem of computing the permanent is known
to be a#P -complete problem. A number of approximation
algorithms have been proposed to compute the permanent of a
matrix. The state of the art is the polynomial-time randomized
approximation algorithm presented in [18]. However, the time
complexity is of order ofO(k22). It is thus not feasible for the
general formula to work for a largek. In the following, we
turn to approximation algorithms for computing the posterior
belief. The approximation algorithm allows us to compute the
posterior belief accurately enough while in time linear to the
size of the group.

D. Approximate Inferences:Ω-estimate

In the following, we consider a heuristic to estimate the
posterior probabilityP ∗(si|tj). We represent the prior beliefs
as a bipartite graph where one set of nodes consists of tuples
in the group and the other set of nodes consists of sensitive
values in the group. Each edge from tupletj to sensitive value
si is associated with the probabilityP (si|tj).

Our approach is a generalized version of theO-estimate
used by Lakshmanan et al. [9], where they estimate the number
of correct mappings between original items and anonymized
items. In that context, a item either can be linked to an
anonymized item or cannot be linked to the anonymized item.
In our context, a tuple can be linked to a sensitive attribute
value with a certain probability.

Based on the prior belief,tj can be linked tosi with a
probability of P (si|tj) and tj′ can be linked tosi with a
probability of P (si|tj′) for all 1 ≤ j′ ≤ k. Therefore, the
probability thattj takessi is given by

P (si|tj)∑k

j′=1 P (si|tj′)

We call this heuristic theΩ-estimate (denoted asΩ(si|tj)).
si appearsni times inS and by summing up this probability



t1 t2 t3
P (HIV |t1) = 0 P (HIV |t2) = 0 P (HIV |t3) = .3
P (none|t1) = 1 P (none|t2) = 1 P (none|t3) = .7

TABLE III

ANOTHER ADVERSARY’ S PRIOR BELIEF TABLE

across all theseni values, we get an estimation of the posterior
probability:

Ω(si|tj) ∝ ni ×
P (si|tj)∑k

j′=1 P (si|tj′ )

By normalizing the probability ditribution for eachtj , we
obtain

Ω(si|tj) =
ni ×

P (si|tj)∑
k

j′=1
P (si|tj′ )

∑m

r=1 nr ×
P (sr |tj)∑

k

j′=1
P (sr |tj′ )

(5)

The above estimation technique makes the random world
assumption [19], where every reasonable mapping between
individuals and sensitive attribute values is equally probable.
Specifically, Equation (5) can be directly derived from the
formula shown in Equation (4) by assumingP (S −{si}|E −
{tj}) = P (S − {si}|E − {tj′}) for all 1 ≤ j′ ≤ k.

In [3], Machanavajjhala et al. studied the problem of calcu-
lating the posterior belief under the framework ofgeneraliza-
tion by employing the random world theory. Not surprisingly,
the results they obtained forgeneralizationare consistent with
our results forbucketization.

We note that theΩ-estimate is not exact. Consider the
example shown in Table II(a) again where we have a group of
three tuples{t1, t2, t3} and their sensitive attribute values are
{none, none, HIV }. Now, assume the adversary has different
prior beliefs as shown in Table III and she wants to find out
the sensitive value thatt3 takes. Using the general formula for
exact inference, the probability can be calculated as follows.
First, we haveP ({none, none}|{t1, t2}) = 1 × 1 = 1 and
P ({none, HIV }|{t1, t2}) = 1× 0+0× 1 = 0. Therefore we
have:

P ∗(HIV |t3) =
P (HIV |t3) × 1

P (HIV |t3) × 1 + P (none|t3) × 0
= 1

It is intuitive that t3 must take the HIV disease because
none oft1 and t2 can take the HIV disease. However, based
on theΩ-estimate, the probability is calculated as:

Ω(HIV |t3) =
1 × 0.3

0.3

1 × 0.3
0.3 + 2 × 0.7

2.7

= 0.66

Here, the inexactness of theΩ-estimate results from the fact
that Ω-estimate assigns a uniform likelihood to the following
two events: (1){t1, t2} take{none,none} and (2){t1, t2} take
{none,HIV}. However, these two events have very different
likelihoods. In fact, the second event cannot occur under the
prior beliefs shown in Table III. In general, theΩ-estimate is
accurate enough for use in practice. In Section V, the accuracy
of the Ω-estimate is empirically evaluated with real datasets.

IV. PRIVACY MODEL WITH BACKGROUND KNOWLEDGE

The next step is to extend privacy definitions for data
publishing to consider background knowledge. We define our
(B, t)-privacy model and describe our definition of distance
measure between two probability distribution, which quantifies
the amount of information disclosed by the released table.

A. Privacy Model

Given the background knowledge parameterB and a target
individual r whose quasi-identifier value isq ∈ D[QI],
the adversaryAdv(B) has a prior beliefPpri(B, q) on r’s
sensitive attribute. When she sees the released tableT ∗, she
has a posterior beliefPpos(B, q, T ∗) on r’s sensitive attribute.
The distance of the two probabilistic beliefs measures the
amount of sensitive information about individualr that the
adversaryAdv(B) learns from the released data. Based on this
rationale, we define the(B, t)-privacy principle as follows:

Definition 1 (the(B, t)-privacy principle): Given two pa-
rametersB and t, an anonymized tableT ∗ is said to have
(B, t)-privacy iff the worst-case disclosure risk for all tuples
(with QI value beingq) in T is at mostt:

max
q

D[Ppri(B, q), Ppos(B, q, T ∗)] ≤ t

whereD[P,Q] is the distance betweenP andQ.
The parameterB determines the profile of the adversary

(i.e., how much background knowledge she has).B =
{B1, B2, ..., Bd} is a d-dimensional vector, which allows the
data publisher to specify values for different components of the
vector. For example, an adversary may know more information
about attributeAi than about attributeAj of the table. In
this case, we would set a smaller value forBi than for Bj

to accurately model the knowledge of the adversary. On the
other hand, the parametert defines the amount of sensitive
information that is allowed to be learned by this adversary.

The above privacy model only protects the data against
adversaries with a particular amount of background knowledge
B. While this model gives the data publisher the flexibility to
specify the parameterB, the main challenge is how to protect
the data against all kinds of adversaries with different levels
of background knowledge. Of course, the data publisher can
enumerate all possibleB parameters and enforce the above
privacy model for all theseB parameters.

In Section V, we empirically show the continuity of the
worst-case disclosure risk with respect to the background
knowledge parameters, i.e., slight changes of theB parameter
do not cause a large change of the worst-case disclosure risk.
Therefore, the data publisher needs to only define the privacy
model for a set of well-chosenB parameters.

The data publisher can define a set of background knowl-
edge parametersB1,B2, ...,Br and enforce the following
skyline (B, t)-privacy principle to protect the data against
adversaries with all levels of background knowledge.

Definition 2 (the skyline(B, t)-privacy principle): Given a
skyline{(B1, t1), (B2, t2), ..., (Br , tr)}, an anonymized table
T ∗ satisfies the skyline(B, t)-privacy requirement iff fori = 1



to r, the worst-case disclosure risk for all tuples (with QI value
beingq) in T is at mostti:

max
q

D[Ppri(Bi, q), Ppos(Bi, q, T
∗)] ≤ ti

In practice, the data publisher specifies a set of background
knowledge parametersBi, together with theti parameter for
eachBi. This allows the data publisher to specify and enforce
privacy requirements for different adversaries simultaneously.
As we point out above, the worst-case disclosure risk dis-
tributes continuously with respect to the background knowl-
edge parameter. This allows the data publisher to use a set
of well-chosen background knowledge parameters to protect
the data against adversaries with all levels of background
knowledge. Also, the data publisher can set default parameters
and has the flexibility to define their own parameters for
special cases.

B. Distance Measure: Quantifying Information Disclosure

We study the problem of measuring the distanceD[P,Q]
between two probabilistic distributionsP andQ. The distance
measure quantifies the information revealed to an adversary
whose prior belief isP and posterior belief isQ.

In this section, we first identify our desiderata for the design
of the distance measure and show that existing distance mea-
sures cannot satisfy some of these properties. We then define
our distance measure that satisfies all of these properties.

1) Desiderata: From our perspective, a useful distance
measure should display the following properties:

1) Identity of indiscernibles: An adversary has no infor-
mation gain if her belief does not change. Mathemati-
cally, D[P,P] = 0, for anyP.

2) Non-negativity: When the released data is available, the
adversary has a non-negative information gain. Mathe-
matically,D[P,Q] ≥ 0, for anyP andQ.

3) Probability scaling: The belief change from probability
α to α+γ is more signification than that fromβ to β+γ
when α < β and α is small.D[P,Q] should consider
reflect the difference.

4) Zero-probability definability: D[P,Q] should be well-
defined when there are zero probabilities inP andQ.

5) Semantic awareness:When the values inP and Q

have semantic meanings,D[P,Q] should reflect the
semantic distance among different values. For example,
for the “Salary” attribute, the value30K is closer to
50K than to80K. A semantic-aware distance measure
should consider this semantics, e.g., the distance be-
tween {30K,40K} and {50K,60K} should be smaller
than the distance between{30K,40K} and{80K,90K}.

Note that we do not requireD[P,Q] to be a distance metric
(the symmetry property and the triangle-inequality property).
First,D[P,Q] does not always have to be the same asD[Q,P].
Intuitively, the information gain from(0.5, 0.5) to (0.9, 0.1) is
larger than that from(0.9, 0.1) to (0.5, 0.5). Second,D[P,Q]
can be larger thanD[P,R]+D[R,Q] whereR is also a prob-
abilistic distribution. In fact, the well-known Kullback-Leibler
(KL) divergence [20] is not a distance metric since it is not

symmetric and does not satisfy the triangle inequality property.
The Kullback-Leibler (KL) divergence [20] is defined as:

KL[P,Q] =

d∑

i=1

pi log
pi

qi

The KL divergence measure is undefined whenpi > 0 but
qi = 0 for somei ∈ {1, 2, ..., d} and thus does not satisfy
the zero-probability definabilityproperty. To fix this problem,
a variation of KL divergence called the Jensen-Shannon (JS)
divergence [21], [22] has been proposed. The JS divergence
measure is defined as:

JS[P,Q] =
1

2
[D[P, avg(P,Q)] + D[Q, avg(P,Q)]] (6)

whereavg(P,Q) is the average distribution(P + Q)/2 and
KL[, ] is the KL divergence measure.

However, none of the above distance measures satisfy
the semantic awarenessproperty. One distance measure that
takes value semantics into consideration is the Earth Mover’s
Distance (EMD) [23], [4]. The EMD is based on the min-
imal amount of work needed to transform one distribution
to another by moving distribution mass between each other.
Unfortunately, EMD does not have theprobability scaling
property. For example, the EMD distance between the two
distributions(0.01, 0.99) and(0.11, 0.89) is 0.1, and the EMD
distance between the two distributions(0.4, 0.6) and(0.5, 0.5)
is also0.1. However, one may argue that the belief change in
the first pair is much more significant than that between the
second pair. In the first pair, the probability of taking the first
value increases from0.01 to 0.11, a 1000% increase. While
in the second pair, the probability increase is only25%.

2) Distance Measure:We propose a distance measure that
can satisfy all the five properties. The idea is to apply kernel
smoothing [12] before using JS divergence. Kernel smoothing
is a standard statistical tool for filtering out high-frequency
noise from signals with a lower frequency variation. Here, we
use the technique across the domain of the sensitive attribute
value to smooth out the distribution. For computing distance
between two sensitive values, we define am × m distance
matrix forS using the same method as described in Section II-
C. The (i, j)-th cell dij of the matrix indicates the distance
betweensi andsj .

We use the Nadaraya-Watson kernel weighted average:

p̂i =

∑m

j=1 pjK(dij)∑m

j=1 K(dij)

where K(.) is the kernel function, which is chosen to be
the Epanechnikov kernel as described in Section II. The
bandwidth is determined based on the sensitive attribute. In
the experiments, we use “Occupation” as the sensitive attribute
with a domain hierarchy of height2, the bandwidth is chosen
to be at least0.5 so that kernel smoothing can be applied.

We then have a smoothed probability distribution̂P =
(p̂1, p̂2, ..., p̂m) for P. The distributionP̂ reflects the semantic
distance among different sensitive values.



Attribute Type # of values
1 Age Numeric 74
2 Workclass Categorical 8
3 Education Categorical 16
4 Marital Status Categorical 7
5 Race Categorical 5
6 Gender Categorical 2
7 Occupation Sensitive 14

TABLE IV

DESCRIPTION OF THEAdult DATASET USED IN THE EXPERIMENT

k ` t b
para1 3 3 0.25 0.3
para2 4 4 0.2 0.3
para3 5 5 0.15 0.3
para4 6 6 0.1 0.3

TABLE V

PRIVACY PARAMETERS USED IN THE EXPERIMENTS

To incorport semantics into the distance betweenP andQ,
we compute the distance between̂P and Q̂ as an estimate
instead: D[P,Q] ≈ D[P̂, Q̂]. The distanceD[P̂, Q̂] can
be computed using JS-divergence measure (in Equation (6))
which is well-defined even when there are zero probabilities
in the two distributions. We can see that our distance measure
has all of the five properties described in Section IV-B.1.

V. EXPERIMENTS

The main goals of the experiments are: (1) to demonstrate
the effects of probabilistic background knowledge on data
anonymization, (2) to evaluate the accuracy of theΩ-estimate,
(3) to illustrate the continuity of the worst-case disclosure risk
with respect to the background knowledge parameterB, (4)
to show the efficiency of computing(B, t)-private tables , and
(5) to show the effectiveness of the(B, t)-privacy model in
utility preservation.

The dataset used in the experiments is the adult dataset
from the UC Irvine machine learning repository, which is
comprised of data collected from the US census. We use seven
attributes of the dataset, as shown in Table IV, where the
sensitive attribute isOccupation. Tuples with missing values
are eliminated and there are about30K valid tuples in total.
All algorithms are implemented in Java and the experiments
are performed on a3.4GHZ Pentium4 machine with2.0GB
of RAM.

Given the dataset, we use the variations of Mondrian multi-
dimensional algorithm [24] to compute the anonymized tables
using different privacy requirements: (1) distinct`-diversity;
(2) probabilistic`-diversity; (3) t-closeness; and (4)(B, t)-
privacy.

The variations of Mondrian use the original dimension
selection and median split heuristics, and check if the specific
privacy requirement is satisfied. Note that we can generate the
`-diverse table using the anatomizing algorithm [16]. However,
Anatomy does not generalize the quasi-identifiers and it would
be unfair to compare Mondrian with Anatomy.

The four privacy models protect the data against attribute
disclosure. To protect identity disclosure, we also enforce k-
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anonymity (each group contains at leastk records) together
with each of the above privacy models.

For each experiment, we evaluate the performance with
respect to four sets of privacy parameters in Table V. To
make the comparisons easier, we use the same` value for
distinct`-diversity and probabilistic̀-diversity, the samet for
t-closeness and(B, t), the sameb value, andk = ` for all
cases as shown in Figure V.

A. Effects of Probabilistic Background Knowledge

We assume that adversary’s background knowledge is mod-
eled by theb′ parameter, i.e.,B′ = (b′, b′, ..., b′). To illustrate
the effects of probabilistic background knowledge, we apply
the prior belief function computed fromB′ on each of the four
anonymized tables, compute the posterior beliefs of each tuple,
and report the number of tuples whose privacy is breached
under that privacy requirement. These tuples are viewed as
vulnerable to the probabilistic background knowledge attacks.

Our first set of experiments investigates the effect ofb′

parameter on the number of vulnerable tuples. Figure 1(a)
shows the number of vulnerable tuples in the four anonymized
tables with respect to differentb′ values. The number of
vulnerable tuples decreases asb′ increases because a larger
b′ value corresponds to a less-knowledgeable adversary.

The second set of experiment investigates the effect of
privacy parameters shown in Table V on the number of
vulnerable tuples. We fix the adversary’s parameterb′ = 0.3.
Figure 1(b) shows the experimental result.

As we can see from these figures, the(B, t)-private table
contains much fewer vulnerable tuples in all cases. This shows
that the(B, t)-privacy model better protects the data against
probabilistic-background-knowledge attacks.
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B. Accuracy of theΩ-estimate

To evaluate the accuracy of theΩ-estimate, we randomly
pick a group ofN tuples from the table and apply both exact
inference and theΩ-estimate on theN tuples. Each tuple has a
prior distributionPpri, the exact inference distributionPexa,
and theΩ-estimate distributionPome. We then compute the
average distance error, which is the estimation error averaged
over all of theN tuples:

ρ =
1

N

N∑

j=1

|D[Pexa,Ppri] − D[Pome,Ppri]|

We run the experiment100 times and the average is
reported. Figure 2 depicts theaverage distance errorwith
respect to differentN values. In all cases, theΩ-estimate is
within 0.1-distance with the exact inference. The experiments
show that theΩ-estimate is accurate enough to be used in
practice.

C. Continuity of Disclosure Risk

The goal of this experiment is to show the continuity of
the worst-case disclosure risk with regard to the background
knowledge parameterB. We first fix the adversary with the
background knowledge parameterb′ which can be one of
the four values{0.2, 0.3, 0.4, 0.5}. We then generate a set
of (B, t)-private tables with differentb parameters. For each
anonymized table, we compute the worst-case disclosure risk
by the adversary. The worst-case disclosure risk is computed
as the maximum knowledge gain for all tuples in the table:
maxq{D[Ppri(B

′, q), Ppos(B
′, q, T ∗)]}. Figure 3(a) shows the

results. As we can see from the figure, the worst-case disclo-
sure risk increases/decreases continuously with respect to the
b parameter.

We then evaluate the continuity of the disclosure risk
with respect to the background knowledge parametersB =
(b1, b1, b1, b2, b2, b2), i.e., the adversary’s background knowl-
edge on the first three attributes is modeled byb1 and her
background knowledge on the last three attributes is modeled
by b2. Here, we fix the adversary’s parameterb′ = 0.3 and
compute the worst-case disclosure risk by the adversary with
respect to different(b1, b2) values. Figure 3(b) shows the
results. As we can see the figures, the worst-case disclosure
risks increases/decreases continuously among the domain of
(b1, b2).
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These experiments show that slight changes of the back-
ground knowledge parameters will not cause a large change
of the worst-case disclosure risk, the conjecture we made in
Section IV. This validates our approach of using a set of well-
chosen background knowledge parameters to protect the data
against adversaries with all levels of background knowledge.

D. Efficiency

We compare the efficiency of computing the four
anonymized tables. We compare the efficiency with regard to
different privacy parameters. Figure 4(a) shows the results. As
we can see from Figure 4(a), the running time decreases with
increasingly stringent privacy requirements becauseMondrian
is a top-down algorithm.

Here, the time to compute the(B, t)-private table does
not include the time to run the kernel estimation method to
compute the background knowledge. As we can see from
Figure 4(a), without considering the time for estimating back-
ground knowledge, the running time to compute the(B, t)-
private table is roughly the same as the time to compute the
other tables, usually within seconds.

We then evaluate the efficiency of computing background
knowledge using the kernel estimation method, which is the
main efficiency issue of the(B, t)-privacy model. Figure 4(b)
shows the results. As we can see from the figures, the time
to compute background knowledge is larger than the time to
anonymize the data, partially becauseMondrian runs much
faster than many other anonymization algorithms. Moreover,
computing background knowledge is still fast enough for
large-enough datasets, usually within several minutes.

E. Data Utility

To compare data utility of the four anonymized tables, we
evaluate the anonymized data both in terms of general utility
measures and accuracy in aggregate query answering.

1) General Utility Measures:We first compare data utility
based on two general utility measures:Discernibility Metric
(DM) [25] andGlobal Certainty Penalty (GCP)[26].

Figure 5(a) shows the DM cost while Figure 5(b) shows the
GCP cost for the four anonymized tables. In both experiments,
we evaluate the utility measure as a function of the privacy
parameters shown in Table V. In both figures, the(B, t)-
private table shows comparable utility with the other four
anonymized tables.
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2) Workload Experiments:We evaluate data utility in terms
of performance in aggregate query answering [27], [16], [28].

Figure 6(a) shows the average relative error as a function
of the query dimension. As the query dimension increases,
average relative error decreases and therefore, the anonymized
data performs better for queries with a larger query dimension.
Figure 6(b) shows that as the query selectivity increases,
average relative error also decreases. This shows that the
anonymized data can answer more accurately on queries with
a larger selectivity.

In all figures, we can see that the(B, t)-private table can
answer queries as accurately as all other anonymized tables.

VI. RELATED WORK

We first review existing work in data anonymization and
explain how our technique differs from them. We classify
these works into three categories: (1) general privacy models,
(2) background knowledge integration, and (3) anonymization
techniques. We then examine several research works that have
studied background knowledge in other contexts.

General Privacy Models. The k-anonymity model [1], [2],
[15] assumes that the adversary has access to some publicly-
available databases (e.g., a vote registration list) and the
adversary knows who is and who is not in the table. A few
subsequent works [3], [29], [30] recognize that the adversary
also has knowledge of the distribution of the sensitive attribute
in each group. Thet-closeness model [4] further observed that
the distribution of the sensitive attribute in the overall table
should also be public information.

Recently, theσ-presence measure [31] observed that know-
ing an individual is in the database poses privacy risks. The
m-confidentiality model [13] recognized that knowledge of the
mechanism or algorithm of anonymization for data publishing
can leak extra sensitive information.

None of these general privacy models consider the kinds
of background knowledge we consider in this paper. As we
show in the experiments in Section V-A, general privacy
models (e.g.,̀ -diversity andt-closeness) are vulnerable to
probabilistic background knowledge attacks.

Background Knowledge Integration. In [5], Martin et al.
presented the first formal analysis of the effects of background
knowledge. They proposed a formal language to express
background knowledge about the data and quantified back-
ground knowledge as the number of implications in their
language. They defined the(c, k)-safety model to protect the
data in the worst-case when the adversary has knowledge of
k implications.

Chen et al. [6] extended the framework of [5] and proposed
a multidimensional approach to quantifying an adversary’s
background knowledge. They broke down the adversary’s
background knowledge into three components which are more
intuitive and defined a privacy skyline to protect the data
against adversaries with these three types of background
knowledge.

While these work provided a framework for defining and
analyzing background knowledge, they do not provide an
approach to allow the data publisher to specify the exact
background knowledge that an adversary may have. In [7], we
proposed to mine negative association rules from the data as
knowledge of the adversary. However, as we have pointed out,
this approach is limited in modeling background knowledge.

Recently, Du et al. [32] proposed an approach to integrate
background knowledge in privacy quantification. They don’t
provide an approach for modeling background knowledge, but
compute the unknown conditional probabilities based on the
maximum entropy principle. On the other hand, we explicitly
propose an approach for modeling background knowledge and
present a framework for protecting privacy in the presence of
such background knowledge.

Anonymization Techniques. Most anonymization solutions
adopt generalization [1], [14], [15], [33], [25], [34], [35], [36],
[24] and bucketization [16], [17], [5], [37]. Other anonymiza-
tion techniques include clustering [38], space mapping [39],
spatial indexing [40], data perturbation [41], [42], [43].On the
theoretical side, optimal k-anonymity has been proved to be
NP-hard fork ≥ 3 in [44], [45], and approximation algorithms
for finding the anonymization that suppresses the fewest cells
have been proposed in [44], [45], [46].

Background Knowledge in Other Contexts. The above
works focus on data anonymization in the context of privacy-
preserving data publishing. A number of research works have
examined background knowledge in other contexts. Yang and
Li [47] studied the problem of information disclosure in XML
publishing when the adversary has knowledge of functional
dependencies about the XML data. In [9], Lakshmanan et al.
studied the problem of protecting the true identities of data
objects in the context of frequent set mining when an adversary
has partial information of the items in the domain.



VII. C ONCLUSION AND FUTURE WORK

In this paper, we present a general framework for modeling
and computing background knowledge using kernel methods.
We provide efficient techniques to estimate posterior distribu-
tion based on the anonymized table and the prior distribution.
We present a design of the(B, t)-privacy model, which
protects privacy in the presence of adversarial background
knowledge. Finally, we show that probabilistic background
knowledge is a real concern and we demonstrate the effective-
ness of our approach through experiments on a real dataset.
Here are several future research directions on this topic.

Relational background knowledge.Our knowledge represen-
tation assumes thetuple-independentproperty and does not
model the relationship among individuals. One example of
such kinds of knowledge may be “either Alice or Bob has flu
but not both”. One approach is to use graphs, where nodes
represent individuals and edges represent relationships.How
to discover such knowledge and how the data publisher can
make use of such knowledge in the data anonymization process
are interesting problems for future research.

Dealing with other background knowledge.This paper con-
siders background knowledge that can be mined from the data
to be released. In practice, the adversary may have access to
additional background knowledge. Wong et al. [13] initiated a
study on how to protect the data against an adversary who has
knowledge of the mechanism or algorithm of anonymization. It
is interesting to examine other kinds of adversarial knowledge.
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