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Modeling and Interpolation of the Ambient

Magnetic Field by Gaussian Processes
Arno Solin, Manon Kok, Member, IEEE, Niklas Wahlström, Thomas B. Schön, Senior Member, IEEE,

and Simo Särkkä, Senior Member, IEEE

Abstract—Anomalies in the ambient magnetic field can be
used as features in indoor positioning and navigation. By using
Maxwell’s equations, we derive and present a Bayesian non-
parametric probabilistic modeling approach for interpolation and
extrapolation of the magnetic field. We model the magnetic field
components jointly by imposing a Gaussian process (GP) prior
on the latent scalar potential of the magnetic field. By rewriting
the GP model in terms of a Hilbert space representation,
we circumvent the computational pitfalls associated with GP
modeling and provide a computationally efficient and physically
justified modeling tool for the ambient magnetic field. The model
allows for sequential updating of the estimate and time-dependent
changes in the magnetic field. The model is shown to work well in
practice in different applications: we demonstrate mapping of the
magnetic field both with an inexpensive Raspberry Pi powered
robot and on foot using a standard smartphone.

Index Terms—Gaussian process, magnetic field, Maxwell’s
equations, mapping, online representation

I. INTRODUCTION

Magnetic material causes anomalies in the ambient mag-

netic field. In indoor environments, large amounts of such

magnetic material are present in the structure of buildings

and in furniture. Our focus is on building maps of the indoor

magnetic field these structures are inducing. These maps are

constructed by interpolating three-dimensional magnetic field

measurements obtained using magnetometers. An illustration

of a map obtained using our proposed method is available in

Figure 1.

Magnetic maps of indoor environments can be used in

indoor positioning and navigation applications (see, e.g., [1]).

In these applications, sensors providing position information

that is accurate on a short time-scale—but drifts on longer

time-horizons—are typically combined with absolute position

measurements. For example, data from wheel encoders and

inertial sensors—which give accurate position information

only on a short time-scale—can be combined with ultra-

wideband, Wi-Fi, or optical measurement equipment such as

cameras (see, e.g., [2, 3]). The downside of these sources

of absolute position is that they typically rely on additional
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Fig. 1: Interpolated magnetic field of the lobby of a building

at the Aalto University campus. The marginal variance (un-

certainty) is visualized by the degree of transparency.

infrastructure or require certain conditions to be fulfilled

such as line-of-sight. The advantage of using the magnetic

field for positioning is that it can be measured by a small

device, without additional infrastructure and without line-of-

sight requirements. Furthermore, magnetometers are nowadays

present in (almost) any inertial measurement unit (IMU) or

smartphone. A requirement for localization using the ambient

magnetic field as a source of position information is that

accurate maps of the magnetic field can be constructed within

reasonable computational complexity which is the focus of this

work. This can also be regarded as a step towards simultaneous

localization and mapping (SLAM) using magnetic fields in

which localization is done while building the map (see, e.g.,

[4, 5]).
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We interpolate the magnetic field using a Bayesian non-

parametric approach where prior knowledge about the proper-

ties of magnetic fields is incorporated in a Gaussian process

(GP) prior. GPs (see, e.g., [6, 7]) are powerful tools for

Bayesian non-parametric inference and learning, and they pro-

vide a framework for fusing first-principles prior knowledge

with quantities of noisy data. This has made them popular

tools in signal processing, machine learning, robotics and

control [8–10].

The contributions of this paper are three-fold. First, we

model the ambient magnetic field using a Gaussian process

prior in which we incorporate physical knowledge about the

magnetic field. This extends the work by Wahlström et al. [11]

by presenting an approach where the GP prior is a latent

(unobservable) magnetic potential function. Second, we use a

computationally efficient GP implementation that allows us to

use the large amounts of data provided by the magnetometer.

To circumvent the well-known computational challenges with

GPs (see, e.g., [7]), we rewrite the model in terms of a Hilbert

space representation introduced by Solin and Särkkä [12]. We

extend the approach to allow for modeling of the bias caused

by the Earth magnetic field. Third, we use this method in

combination with the sequential approach introduced in Särkkä

et al. [13]. This allows for online updating of the magnetic

field estimate. It also opens up the possibility to focus on

the spatio-temporal problem in which the magnetic field can

change over time, for instance due to furniture being moved

around. An extensive evaluation of the proposed method is

done using both simulated and empirical data. The simulation

study and a small-scale experiment illustrate the feasibility

and accuracy of the approach and allow for comparison with

other methods. Experiments with a mobile robot and with

a hand-held smartphone show the applicability to real-world

scenarios.

This paper is structured as follows. The next section covers

a survey of existing work, which also provides additional

motivation for the approach. Section III provides a brief

background of the properties of magnetic fields relevant to this

work. The Gaussian process regression model is constructed in

Section IV, which is then extended to explicit algorithms for

batch and sequential estimation in the next section. Section VI

covers the experiments. The experimental results and some

additional comments regarding the methodology are discussed

at the end of the paper.

II. RELATED WORK

Spatial properties of the magnetic field have been of interest

in a large variety of research domains. For instance, the

magnetic field has been extensively studied in geology (see,

e.g., [14]) but also in magnetospheric physics, geophysics,

and astrophysics. In all of these domains, interpolation of the

magnetic field is of interest (see, e.g., [15–19] for examples

of magnetic field interpolation in the respective areas).

In recent years interest has emerged in using the magnetic

field as a source of position information for indoor positioning

[20]. Feasibility studies have been conducted, focusing both

on the time-varying nature of the magnetic field and on

the amount of spatial variation in the magnetic field. Li

et al. [21] report experiments showing that the magnetic field

in a building typically shows large spatial variations and small

time variations. This is also supported by the experimental

study reported by Angermann et al. [22] in which significant

anomalies of the ambient magnetic field are reported. These

experiments give confidence that the magnetic field provides

sufficient information for localization purposes. However, Li

et al. [21] also report significant temporal changes in the

magnetic field in the vicinity of mobile magnetic structures,

in their case an elevator.

A number of approaches have been reported on building

a map of the ambient magnetic field for indoor localization

purposes. Le Grand and Thrun [23] propose a method to build

a map of the magnetic field by collecting magnetometer data

in a grid and linearly interpolating between these points. This

map is subsequently used for localization with a particle filter

combining magnetometer and accelerometer measurements

from a smartphone. Robertson et al. [24] present a SLAM

approach for pedestrian localization using a foot-mounted

IMU. They use the magnetic field intensity which they model

using spatial binning. Frassl et al. [25] discuss the possibility

of using more components of the magnetic field (for instance

the full three-dimensional measurement vector) in the SLAM

approach instead. Vallivaara et al. [26, 27] present a SLAM

approach for robot localization. They model the ambient mag-

netic field using a squared exponential GP prior for each of the

magnetic field components. Wahlström et al. [11] incorporate

additional physical knowledge by making use of Maxwell’s

equations resulting in the use of curl- and divergence-free GP

priors instead.

As can be concluded, there exists a wide range of existing

literature when it comes to modeling the ambient magnetic

field. The amount of information that is used differs between

the approaches. For instance, some approaches use full three-

dimensional magnetic field vectors while others only use a

one-dimensional magnetic field intensity. Furthermore, the

amount of physical information that is included differs. In this

paper, we build on the approach by Wahlström et al. [11] and

use the full three-dimensional magnetometer measurements.

We include physical knowledge in terms of the magnetic field

potential.

As discussed above, GPs have frequently been used in mod-

eling and interpolation of magnetic fields. GP regression has

also successfully been applied to a wide range of applications

(see, e.g., [28–33]). Furthermore, it has previously been used

for SLAM (see, e.g., [34–38]). One of the challenges in using

GPs is the computational complexity (see, e.g., [7]), which

scales cubically with the number of training data points. Con-

sidering the high sampling rate of the magnetometer and the

fact that each observation contains three values, a large number

of measurements is typically available for mapping. Because

of these computational challenges, the data in Wahlström

et al. [11] was downsampled.

Attempts to speed up GP inference have spawned a wide

range of methods which aimed at bringing GP regression to

data-intensive application fields. These methods (see [39] for

a review) typically build upon reducing the rank of the Gram
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Fig. 2: A ferromagnetic object deflects the Earth’s magnetic

field and introduces distortions in the field.

(covariance) matrix and using the matrix inversion lemma to

speed up matrix inversion. For stationary covariance functions,

the spectral Monte Carlo approximation by Lázaro-Gredilla

et al. [40], the Fourier features by Hensman et al. [41], or

the Laplace operator eigenbasis based method introduced by

Solin and Särkkä [12] can be employed. For uniformly spaced

observations, fast Fourier transforms can provide computa-

tional benefits [42, 43]. As will be shown later on in this

paper, the Laplace operator approach by Solin and Särkkä [12]

falls natural to modeling of the magnetic field in terms of a

magnetic field potential.

All approaches on mapping of magnetic fields discussed

above assume that the magnetic field is constant over time.

However, as shown by Li et al. [21] significant temporal

changes in the magnetic field occur in the vicinity of mobile

magnetic structures. For GP models evolving in time, spatio-

temporal GP models (see, e.g., [9]) can be solved efficiently

using Kalman filtering methods [13, 44–47]. In this paper,

we will take the approach of Särkkä et al. [13] to compose a

spatio-temporal GP prior for the model and solve the inference

problem by a sequential Kalman filtering setup. This allows

for online estimation of the magnetic field estimate and can

be used to allow for time variations in the magnetic field.

Combining models from physics with GPs has also been

studied under the name Latent force models by Álvarez et al.

[48, 49]. The connection of these models with spatio-temporal

Kalman filtering was studied, for example, in the work by

Hartikainen and Särkkä (see also [13, 50, 51]). However,

the Kalman filtering approach itself dates back to Curtain

and Pritchard [52] in the same way that GPs date back to

O’Hagan [6].

III. THE AMBIENT MAGNETIC FIELD

On a macroscopic scale, magnetic fields are vector fields,

meaning that at any given location, they have a direction and a

strength (magnitude). These properties are familiar from every-

day life: the force created by permanent magnets attracting and

repelling ferromagnetic materials is used in various utensils,

and the compass aligning itself with the direction of the Earth’s

magnetic field has proved invaluable for mankind during the

past centuries. The Earth’s magnetic field sets a background

for the ambient magnetic field, but deviations caused by the

bedrock and anomalies induced by man-built structures deflect

the Earth’s magnetic field. This makes the magnetic field vary

from point to point, see Figure 2.

We describe the magnetic field with a function H(x), where

H : R3 → R
3. For each point in space x, there will be an

associated magnetic field H(x). Such a vector field can be

Ω

Fig. 3: Illustration of a vector field with non-zero curl. The

vortex point makes it non-curl-free as the vector field curls

around it. However, the subset Ω excludes the vortex point

and the vector field is curl-free in this region. To this region

a scalar potential ϕ can be associated, here illustrated with

shading.

visualized with field lines, where points in space are associated

with arrows. The principles under which the magnetic field

is affected by structures of buildings are well known and

governed by the very basic laws of physics (see, e.g., [53–

55]).

In this work, we make use of the fact that the magnetic field

H is curl-free

∇×H = 0 (1)

provided that there is no free current (current in wires for

example) in the region of interest (see [56] for more details).

This assumption is valid in most indoor environments where

the major source for variations in the ambient field is caused

by metallic structures rather than free currents in wires.

One property of curl-free vector fields is that the line

integral along a path P only depends on its starting point

A and end point B, and not on the route taken
∫

P

H(x) · dx = ϕ(A)− ϕ(B), (2)

where ϕ : R3 → R. This can be rewritten by interpreting ϕ
as a scalar potential

H = −∇ϕ. (3)

Figure 3 illustrates the curl-free property and the scalar po-

tential. Domain Ω is curl-free and has an associated scalar

potential, while the entire domain is not curl-free due to the

vortex point. Note that in a non-curl-free vector field no such

scalar potential exists since a line integral around the swirl is

non-zero. For the magnetic field H, the swirl corresponds to a

wire of free current pointing perpendicular to the plane, which

we assume is not included in the region of interest.

The relation (3) is the key equation that we will exploit in

our probabilistic model of the ambient magnetic field. We will

choose to model the scalar potential ϕ instead of the magnetic

field H directly. This implicitly imposes the constraints on the

magnetic field that the physics is providing. This model will

be explained in the next section.
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IV. MODELING THE MAGNETIC FIELD USING GAUSSIAN

PROCESS PRIORS

In this section, we introduce our approach to modeling and

interpolation of the ambient magnetic field. We use a Bayesian

non-parametric model in which we use knowledge about the

physical properties of the magnetic field as prior information.

We tackle the problem of interpolating the magnetic field using

Gaussian process (GP) regression. In Section IV-A we first

give a brief background on GPs. After this, we introduce the

problem of modeling the magnetic field in Section IV-B. A

commonly used GP model of the magnetic field is introduced

in Section IV-C. In Section IV-D, we subsequently introduce

our proposed method for modeling the magnetic field in which

we encode the physical properties that were presented in the

previous section.

A. Gaussian process regression

In GP regression [7] the model functions f(x) are assumed

to be realizations from a Gaussian random process prior

with a given covariance function κ(x,x′). Learning amounts

to computing the posterior process at some test inputs x∗

given a set of noisy measurements y1, y2, . . . , yn observed at

x1,x2, . . . ,xn, respectively. This model is often written in the

form

f(x) ∼ GP(0, κ(x,x′)),

yi = f(xi) + εi,
(4)

where the observations yi are corrupted by Gaussian noise

εi ∼ N(0, σ2
noise), for i = 1, 2, . . . , n. Because both the

prior and the measurement model are Gaussian, the posterior

process will also be Gaussian. Hence, the learning problem

amounts to computing the conditional means and covariances

of the process evaluated at the test inputs.

Prediction of yet unseen process outputs at an input location

x∗ amounts to the following in GP regression: p(f(x∗) | D) =
N(f(x∗) | E[f(x∗)],V[f(x∗)]). The conditional mean and

variance can be computed in closed-form as (see [7])

E[f(x∗)] = kT

∗
(K+ σ2

noiseIn)
−1y,

V[f(x∗)] = κ(x∗,x∗)− kT

∗
(K+ σ2

noise In)
−1k∗,

(5)

where Ki,j = κ(xi,xj), k∗ is an n-dimensional vector with

the ith entry being κ(x∗,xi), and y is a vector of the n
observations. Furthermore, due to Gaussianity, the marginal

likelihood (evidence) of the covariance function and noise

parameters can also easily be computed, allowing for Bayesian

inference of the parameters as well [7].

The choice of a specific covariance function encodes the

a priori knowledge about the underlying process. One of the

most commonly used covariance functions, which will also

frequently be used in the next sections, is the stationary and

isotropic squared exponential (also known as exponentiated

quadratic, radial basis function, or Gaussian). Following the

standard notation from Rasmussen and Williams [7] it is

parametrized as

κSE(x,x
′) = σ2

SE exp

(

− ‖x− x′‖2
2 ℓ2SE

)

, (6)

where the hyperparameters σ2
SE and ℓSE represent the mag-

nitude scale and the characteristic length-scale, respectively.

These can be learned from data, for instance by maximizing

the marginal likelihood.

B. Interpolation of magnetic fields

In this work we tackle the problem of interpolating the

magnetic field to spatial locations from where we do not have

any measurements. In other words, we will tackle the problem

of predicting the latent (unobservable noise-free) magnetic

field f(x∗) (such that f : R3 → R
3) at some arbitrary location

x∗ given a set of measurements D = {(xi,yi)}ni=1 of the

magnetic field. Here, the measurements y correspond to the

H-field corrupted by i.i.d. Gaussian noise.

Two important things need to be noted with regard to the

interpolation of the magnetic field. First, note that the mea-

surements of the magnetic field are vector-valued (contrary to

the scalar observations in (4)). This raises the question of how

to deal with the different magnetic field components. They can

either be treated separately as will be done in Section IV-C, or

a relation between the different components can be assumed,

as is the case in the method we propose in Section IV-D.

Secondly, note that the function describing the magnetic field

is not zero-mean, contrary to the GP model in (4). Instead, its

mean lies around a local Earth magnetic field. This depends

on the location on the Earth but can also deviate from the

Earth’s magnetic field in indoor environments due to magnetic

material in the structure of the building. The unknown mean

can be modeled as an additional part of the covariance function

κ(x,x′) [7].

An illustration of GP regression for magnetic fields is

provided in Figure 4, where noisy readings of a magnetic field

have been collected along route A–D (comprising D), and the

magnetic field along route D–E (comprising the prediction

locations x∗) needs to be inferred from the measurements.

Each component varies around a local magnetic field due

to magnetic material in the vicinity of the sensor. Different

interpolation techniques can be used based on different prior

knowledge that can be incorporated in the GP. Two different

interpolation results are shown: one based on independent

modeling of each vector field components (with shared hy-

perparameters) and another based on associating the GP prior

with the scalar potential of the (curl-free) vector field. These

are based on the models we will introduce in the coming two

sections.

C. Separate modeling of the magnetic field components

The most straightforward approach to GP modeling of

vector-valued quantities is to model each of the field com-

ponents as an independent GP. This approach has been widely

applied in existing literature (see, e.g., [26, 27, 57–59]). For

each of the three magnetic field components d ∈ {1, 2, 3}, this

model can be written as

fd(x) ∼ GP(0, κconst.(x,x
′) + κSE(x,x

′)),

yd,i = fd(xi) + εi,d,
(7)

where the observations yd,i, i = 1, 2, . . . , n, are corrupted by

independent Gaussian noise with variance σ2
noise. The non-zero
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Fig. 4: A simulated example of the interpolation problem. (a) Training data has been collected along the route A–D, but the

magnetic field between D–E is unknown. (b) The noisy observations of the magnetic field between A–D, and GP predictions

with 95% credibility intervals. Both the independent GP modeling approach (with shared hyperparameters) and the scalar

potential based curl-free GP approach are visualized. The simulated ground truth is shown by the solid lines.

mean of the magnetic field is handled by a constant covariance

function (see [7])

κconst.(x,x
′) = σ2

const., (8)

where σ2
const. is a magnitude scale hyperparameter. The small-

scale variation in the field is modeled by a squared exponential

covariance function (6). Hence, the model (7) encodes the

knowledge that the realizations are expected to be smooth

functions in space with a constant shift from zero mean.

The model has four hyperparameters: two magnitude scale

parameters (σ2
const. and σ2

SE), a length-scale parameter (ℓSE),

and a noise scale parameter (σ2
noise). Assuming that the com-

ponents are completely separate, each component has four

hyperparameters to learn. The resulting model is flexible,

as it does not encode any relation between the vector field

components. In practice, this might lead to problems in hy-

perparameter estimation, with parameter estimates converging

to local optima and magnetic field components behaving

very differently with respect to each other. Therefore, the

hyperparameters are often fixed to reasonable values—instead

of learned from data (see, e.g., [57]).

A more sensible approach for separate, but not completely

independent, modeling of the magnetic field measurements,

models them as realizations of three independent GP priors

with joint learning of the shared hyperparameters (see also

[57]). Note that for this model, the covariance in the GP

posterior is independent of the outputs y and only depends on

the input locations x (which are shared for all components in

y). Hence, calculating the marginal likelihood only requires

inverting a matrix of size n (not 3n). For this model, the

expression for evaluating the log marginal likelihood function

for hyperparameter optimization can be written as

L(θ) = − log p(y | θ,D) =
3

2
log |Kθ + σ2

noise In|

+
1

2
tr
[

y(Kθ + σ2
noise In)

−1yT
]

+
3n

2
log(2π), (9)

where y ∈ R
3×n and Kθ ∈ R

n×n.

Figure 4b shows the results of predicting the magnetic field

behavior along the route D–E for the GP prior modeling

the three magnetic field components separately but with joint

learning of the shared hyperparameters. The colored patches

show the 95% credibility intervals for the prediction with the

mean estimate visualized by the white line. The simulated

ground-truth (solid colored line) falls within the shown inter-

val, and the model captures the general shape of the magnetic

field variation along the path. The strengths of this model are

that it is flexible and that the assumptions are conservative.

The weaknesses on the other hand are evident: The model

does not incorporate physical knowledge of the magnetic field

characteristics. In the next section we will instead explore

this knowledge by modeling the magnetic field as derivative

measurements of a scalar potential.

D. Modeling the magnetic field as the gradient of a scalar

potential

Following our choices in Section III, we assume that the

magnetic field H can be written as the gradient of a scalar

potential ϕ(x) according to (3). Here, ϕ : R3 → R and x ∈ R
3

is the spatial coordinate. We assume ϕ(x) to be a realization

of a GP prior and the magnetic field measurements yi ∈ R
3

to be its gradients corrupted by Gaussian noise. This leads to

the following model

ϕ(x) ∼ GP(0, κlin.(x,x
′) + κSE(x,x

′)),

yi = −∇ϕ(x)
∣

∣

x=xi

+ εi,
(10)

where εi ∼ N(0, σ2
noise I3), for each observation i =

1, 2, . . . , n. The squared exponential covariance function (6)

in (10) allows us to model the magnetic field anomalies

induced by small-scale variations and building structures. The

local Earth’s magnetic field contributes linearly to the scalar

potential as

κlin.(x,x
′) = σ2

lin. x
Tx′, (11)
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where σ2
lin. is the magnitude scale hyperparameter. To simplify

the notation in the next sections, we introduce the notation

f(x) for the gradient field evaluated at x.

Derivative measurements can straightforwardly be used in

Gaussian process regression because nabla (∇) is a linear

operator and Gaussianity is preserved under linear opera-

tions [7]. Hence, the model (10) allows us to learn a map of

the magnetic field and make predictions at unseen locations

using the methods described in Section IV-A. We learn the four

hyperparameters of the model—the magnitude scale parame-

ters (σ2
lin. and σ2

SE), the length-scale parameter (ℓSE), and the

noise scale parameter (σ2
noise)—by maximizing the marginal

likelihood.

The model (10)—where we place a GP prior on the

scalar potential ϕ(x) and the magnetometer measurements are

derivative measurements—can in fact equivalently be written

as a GP prior on the magnetic field H(x) as

H(x) ∼ GP(0, σ2
const. I3 +Kcurl(x,x

′)), (12)

and magnometer measurements being of the standard form (4).

Here, Kcurl(x,x
′) is the so-called curl-free kernel (see, e.g.,

[60–62]). This kernel ensures that any sample drawn from this

GP prior obeys the curl-free constraints (1). The equivalence

of (10) and (12) is shown in Wahlström [56]. In Jidling

et al. [63] a more general approach to force GP priors to

obey linear constraints is presented. For our work, however,

the model formulation through the scalar potential is crucial, as

it will enable us to easily extend the model to an approximate

form for efficient GP inference in the next section.

The second set of predictions for the route D–E in Figure 4b

shows the interpolation outcome from the model (10). In

comparison to the independent GP model, the scalar potential

based GP prior provides additional information to the model

by tying the vector field components to each other. This

improves the estimates in terms of accuracy and makes the

95% credibility interval more narrow.

V. EFFICIENT GP MODELING OF THE MAGNETIC FIELD

Gaussian processes are convenient tools for assigning flexi-

ble priors to data—as we saw in the previous section. However,

the main problem with the model in the previous section is

its high computational cost. The approach scales as O(n3)
(recall that each observation is three-dimensional, meaning 3n
becomes large very quickly). This computational complexity

renders the approach more or less useless in practice, when

the number of observations becomes large (say n > 1000).

This is a fundamental restriction associated with the naive

formulation of GP models involving the inversion of the

covariance matrix. Using special structure of the problem

and/or approximative methods, this high computational cost

can often be circumvented. In this section we present an

approach which both uses the special differential operator

structure and projects the model on a set of basis functions

characteristic to the covariance function. We first present the

method for spatial batch estimation, and then extend it to a

temporal dimension as well.

Existing GP methods for mapping and interpolation of the

magnetic field have been considering only batch estimation,

where the data is first acquired and then processed as a batch.

In this section, we aim to extend this to an online method,

enabling the GP regression estimate of the magnetic field to

be updated when new data is acquired. We denote such a data

set as Dn = {(xi,yi) | i = 1, 2, . . . , n}, and thus Di denotes

all the data that has been observed up to time instance ti.
Considering time as part of the data stream enables us to

think of three distinctive setups for estimation of the magnetic

field:

• Batch estimation of the magnetic field, where the data

is first acquired and then the field is estimated at once.

• Sequential updating of the field estimate, where we

assume all the measurements to be of the same static

magnetic field.

• Spatio-temporal estimation of the time-dependent mag-

netic field, where we assume the field to change over

time.

In the next sections we will present how these scenarios can be

combined with the scalar potential based GP scheme without

requiring to repeat the batch computations after each sample.

A. Reduced-rank GP modeling

A recent paper by Solin and Särkkä [12] presents an

approach that is based on a series expansion of stationary

covariance functions. The approximation is based on the

following truncated series:

κ(x,x′) ≈
m
∑

j=1

S(λj)φj(x)φj(x
′), (13)

where S(·) is the spectral density of the covariance func-

tion κ(·, ·), φj(x) is the jth eigenfunction of the negative

Laplace operator and λ2
j is the corresponding eigenvalue.

The efficiency of this approach is based on two properties:

(i) the eigenfunctions are independent of the hyperparameters

of the covariance function, and (ii) for many domains the

eigenfunctions and eigenvalues can be solved beforehand in

closed-form. Truncating this expansion at degree m ≪ n
allows the GP regression problem to be solved with a O(nm2)
and the hyperparameters to be learned with a O(m3) time

complexity. The memory requirements scale as O(nm).
Our interest lies in modeling the magnetic field in compact

subsets of R
3, allowing us to restrict our interest to domains

Ω comprising three-dimensional cuboids (rectangular boxes)

such that x ∈ [−L1, L1]× [−L2, L2]× [−L3, L3] ⊂ R
3 (recall

that a stationary covariance function is translation invariant).

In this domain, we can solve the eigendecomposition of the

Laplace operator subject to Dirichlet boundary conditions
{

−∇2φj(x) = λ2
jφj(x), x ∈ Ω,

φj(x) = 0, x ∈ ∂Ω.
(14)

The choice of the domain and boundary conditions is arbi-

trary, but for regression problems with a stationary covariance

function the model reverts back to the prior outside the

region of observed data, so the Dirichlet boundary condition
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does not restrict the modeling if Ω is chosen suitably. This

particular choice of domain and boundary conditions yields

the following analytic expression for the basis functions and

the corresponding eigenvalues:

φj(x) =

3
∏

d=1

1√
Ld

sin

(

πnj,d(xd + Ld)

2Ld

)

, (15)

λ2
j =

3
∑

d=1

(

πnj,d

2Ld

)2

, (16)

where the matrix n ∈ R
m×3 consists of an in-

dex set of permutations of integers {1, 2, . . . ,m} (i.e.,

{(1, 1, 1), (1, 1, 2), . . . , (1, 2, 1), . . . , (2, 1, 1), . . .}) . The basis

functions are independent of the hyperparameters, and thus

only need to be evaluated once.

The Laplace operator eigenbasis approximation method

can be combined with the independent GP approach, the

independent GPs with shared hyperparameters, and the scalar

potential GP approach. Our presentation will be specific to

the scalar potential model presented in Section IV-D, but a

similar setup can be constructed for the other methods as well.

The approximation method is even better suited for the scalar

potential model because the approximation is based on the

eigendecomposition of the Laplace operator. This eigenbasis

falls naturally to the problem formulation in which the latent

potential field is observed through gradients.

The covariance in our model (10) consists of a squared

exponential and a linear covariance function. The former is

stationary and the approach from [12] can straightforwardly be

applied. The latter is not stationary, but there is also no need to

approximate it. Consequently, we consider the approximation

κ(x,x′) = κlin.(x,x
′) + κSE(x,x

′)

≈ σ2
lin.x

Tx+

m
∑

j=1

SSE(λj)φj(x)φj(x
′). (17)

Note that adding the linear covariance function, the approxi-

mation will no longer revert to zero on the domain boundary,

but will instead revert to the scalar potential of the local Earth

magnetic field.

The computational benefits come from the approximate

eigendecomposition of the Gram (covariance) matrix, Ki,j =
κ(xi,xj) (see [12] for derivations and discussion). It can now

be written out in terms of the basis functions and spectral

densities: K ≈ ΦΛΦT. The basis functions, which span the

solution, are collected in the matrix Φ ∈ R
n×(3+m), with the

following rows

Φi =
(

xT

i , φ1(xi), φ2(xi), . . . , φm(xi)
)

, (18)

for i = 1, 2, . . . , n. Accordingly, we define the corresponding

measurement model matrix projecting the derivative obser-

vations onto the basis functions. Analogously, we define the

matrix ∇Φ ∈ R
3n×(3+m) as the following block-row matrix:

∇Φi =
(

∇xT

i ,∇φ1(xi),∇φ2(xi), . . . ,∇φm(xi)
)

, (19)

for i = 1, 2, . . . , n. Similarly we define Φ∗ and ∇Φ∗ as

vectors evaluated at the prediction input location x∗ defined

analogously to Equations (18) and (19), respectively. The

matrix Λ is defined by

Λ = diag(σ2
lin., σ

2
lin., σ

2
lin., SSE(λ1), SSE(λ2), . . . , SSE(λm)).

(20)

For three-dimensional inputs, the spectral density function of

the squared exponential covariance function (6) is given by

SSE(ω) = σ2
SE (2πℓ

2
SE)

3/2 exp

(

−ω2ℓ2SE

2

)

, (21)

where the hyperparameters σ2
SE and ℓSE characterize the spec-

trum.

B. Batch estimation

We first tackle the batch estimation problem which provides

the approximative solution to the GP regression problem in

Equation (5) for the scalar potential GP.

Following the derivations of Solin and Särkkä [12], predic-

tions for interpolation and extrapolation of the magnetic field

at yet unseen input locations x∗ are given by:

E[f(x∗)] ≈ ∇Φ∗([∇Φ]T∇Φ+ σ2
noiseΛ

−1)−1[∇Φ]Tvec(y),

V[f(x∗)] ≈ σ2
noise ∇Φ∗([∇Φ]T∇Φ+ σ2

noiseΛ
−1)−1[∇Φ∗]

T,
(22)

where vec(·) is the vectorization operator which converts a

matrix to a column vector by stacking its columns on top of

each other, such that the 3 × n matrix is converted into a

vector of size 3n. The basis functions ∇Φ and ∇Φ∗ need to

be evaluated by Equation (19), and Λ by (20).

For this model, the expression for evaluating the log

marginal likelihood function for hyperparameter optimization

can be written as

L(θ) = 1

2
log |Kθ + σ2

noise I3n|+
1

2
vec(y)T(Kθ + σ2

noise I3n)
−1vec(y) +

3n

2
log(2π), (23)

where the quantities can be approximated by

log |Kθ + σ2
noise I3n| ≈ (3n−m) log σ2

noise

+

m
∑

j=1

[Λθ]j,j + log |σ2
noiseΛ

−1
θ

+ [∇Φ]T∇Φ|, (24)

vec(y)T(Kθ + σ2
noise I3n)

−1vec(y)

≈ 1

σ2
noise

[

vec(y)Tvec(y)− vec(y)T∇Φ(σ2
noiseΛ

−1
θ

+ [∇Φ]T∇Φ)−1[∇Φ]Tvec(y)
]

, (25)

where the only remaining dependency on the covariance

function hyperparameters is in the diagonal matrix Λ defined

through the spectral density in Equation (20). In a software

implementation, Cholesky decompositions can be employed

for numerical stability in the calculation of determinants and

matrix inverses. For optimizing the hyperparameters, gradient

based optimizers can be employed (see [12] for details on

deriving the partial derivatives).

Algorithm 1 describes the step-by-step workflow for apply-

ing these equations in practice. The inputs for the method are
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Algorithm 1: Algorithm for batch estimation of the scalar

potential GP magnetic field with the reduced-rank ap-

proach.

Input: D = {(xi,yi)}ni=1, x∗, Ω, m.

Output: E[f(x∗)],V[f(x∗)].
1: Use Eq. (19) to evaluate the basis functions ∇Φ from

xis and Ω.

2: Use Eq. (23) to optimize hyperparameters

θ = {σ2
lin., σ

2
SE, ℓSE, σ

2
noise}.

3: Use Eq. (19) to evaluate the basis functions ∇Φ∗ from

x∗s and Ω.

4: Solve the GP regression problem by Eq. (22).

the data D (spatial points and the magnetic field readings),

the test points x∗ to predict at, the domain boundaries Ω,

and the approximation degree parameter m (controlling the

accuracy of the Hilbert space approximation, see Eq. (13)).

The algorithm returns the marginal mean and variance of the

predicted magnetic field at x∗. The scalar potential could be

returned instead by using Equation (18) in step three.

The computational complexity of this method scales as

O(nm2) for prediction and O(m3) for evaluating the marginal

likelihood during optimization, which makes it computation-

ally appealing in comparison to the computational complexity

of the naive full GP solution which is O(n3). The memory

requirements scale as O(nm).

C. Sequential estimation

Many applications require online (sequential) estimates of

the magnetic field. The following formulation provides the

same (within numerical precision) solution as the batch esti-

mation solution (22) in the previous section. The inference

scheme in the previous section is in practice the solution

of a linear Gaussian estimation problem. Sequential solutions

for this type of problems have been extensively studied, and

this mathematical formulation is widely known as the Kalman

filter. The connection between Kalman filtering and Gaussian

process regression has recently been studied, for example, in

[13, 46, 47].

Reformulation of a batch problem to a sequential algorithm

is discussed (with examples) in the book by Särkkä [64].

Following this formulation (and notation to large extent) we

may write the following recursion: Initialize µ0 = 0 and

Σ0 = Λθ (from the GP prior). For each new observation

i = 1, 2, . . . , n update the estimate according to

Si = ∇ΦiΣi−1[∇Φi]
T + σ2

noise I3,

Ki = Σi−1[∇Φi]
TS−1

i ,

µi = µi−1 +Ki(yi −∇Φiµi−1),

Σi = Σi−1 −KiSiK
T

i .

(26)

This means that for a test input location x∗ we get predictions

for the mean and the variance of the magnetic field which are

given by

E[f(x∗) | Di] ≈ ∇Φ∗ µi,

V[f(x∗) | Di] ≈ ∇Φ∗ Σi [∇Φ∗]
T,

(27)

Algorithm 2: Algorithm for sequential modeling of the

scalar potential GP magnetic field estimate. Alternative (a)

corresponds to the sequential model, and (b) to the spatio-

temporal modeling approach.

Input: Dn, x∗, Ω, m, θ.

Output: E[f(x∗)],V[f(x∗)].
1: Initialize µ0 = 0 and Σ0 = Λθ from Eq. (20).

2: for i = 1, 2, . . . , n do

3: Evaluate ∇Φi by Eq. (19) from xi.

4: (a) Perform an update by Eq. (26).

(b) Perform an update by Eqs. (31–32).

5: Evaluate the current prediction at x∗ by Eq. (27).

6: end for

and conditional on the data observed up to observation i.
Writing out the conditioning on D was stripped in the earlier

sections for brevity.

Here we do not consider optimization of the hyperparam-

eters θ. The marginal likelihood can be evaluated through

the recursion, but in an online setting we suggest optimizing

the hyperparameters with some initial batch early in the data

collection and then re-optimizing them later on if necessary.

Algorithm 2 presents the scheme of how to apply the

equations in practice. The inputs are virtually the same as

for the batch algorithm, but now the hyperparameters θ are

considered known. The current estimate can be returned after

each iteration loop. The computational complexity of the

sequential modeling approach scales as O(m3) per update

and thus has a total computational complexity of O(nm3),
but a memory scaling (if intermediate results are not stored)

of O(m2).

D. Spatio-temporal modeling

The sequential model allows for extending the modeling

to also track dynamic changes in the magnetic field without

virtually any additional computational burden. Let the data

Dn = {(ti,xi,yi)}ni=1 now also comprise a temporal vari-

able t which indicates the time when each observation was

acquired.

We present the following spatio-temporal model for tracking

changes in the ambient magnetic field. The spatio-temporal

GP prior assigned to the scalar potential ϕ(x, t), depending

on both location and time, is defined as follows:

ϕ(x, t) ∼ GP(0, κlin.(x,x
′) + κSE(x,x

′)κexp(t, t
′)), (28)

where the additional covariance function κexp(t, t
′) defines the

prior assumptions of the temporal behavior. This covariance

function is defined through

κexp(t, t
′) = exp

(

− |t− t′|
ℓtime

)

, (29)

where ℓtime is a hyperparameter controlling the length-scale

of the temporal effects. In the temporal domain, this model

is also known as the Ornstein–Uhlenbeck process (see, e.g.,

[7]). The assumption encoded into it is that the phenomenon is
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continuous but not necessarily differentiable. Therefore it pro-

vides a very flexible means of modeling the changing ambient

magnetic field. Also note that in Equation (28) the temporal

effects are only associated with the anomaly component, the

bias being tracked as a static component.

Following the derivations in Hartikainen and Särkkä [44],

we can write down the dynamic state space model associated

with the time evolution of the spatio-temporal GP prior model

(28)

Ai = blkdiag(I3, Im exp(−∆ti/ℓtime)),

Qi = blkdiag(03, Im[1− exp(−2∆ti/ℓtime)]),
(30)

where ∆ti = ti+1 − ti is the time difference between two

consecutive samples and 03 denotes a 3× 3 zero matrix.

For the time update (Kalman prediction step) we may thus

write

µ̃i = Ai−1µi−1,

Σ̃i = Ai−1Σi−1A
T

i−1 +Qi−1,
(31)

and the modified measurement update (Kalman update step)

Si = ∇ΦiΣ̃i[∇Φi]
T + σ2

noise I3,

Ki = Σ̃i[∇Φi]
TS−1

i ,

µi = µ̃i +Ki(yi −∇Φiµ̃i),

Σi = Σ̃i −KiSiK
T

i .

(32)

Algorithm 2 features the workflow of applying the method

(option (b)). In practice the only additional input is including

the temporal length-scale in θ. The computational costs are

the same as for the sequential model.

VI. EXPERIMENTS

The experiments in this paper are split into four parts. We

first demonstrate the feasibility of the scalar potential approach

with simulated data, where comparison to known ground truth

is possible. After this we present a small-scale proof-of-

concept demonstration of the approach. The third experiment

is concerned with mapping the magnetic field in a building

using a handheld smartphone. The final experiment uses an

inexpensive mobile robot for online mapping and real-time

tracking of the changing magnetic field. The methods were

implemented in Matworks MATLAB
R© on an Apple MacBook

Pro (3.1 GHz Intel Core i7, 16 GB RAM).

A. Simulated experiment

As a first part of our experimental validation of the model,

we present a simulation study. This will be used to illustrate

our method and to quantify its performance through Monte

Carlo simulations. In the simulations, we assume that the

magnetic field measurements can indeed be modeled using

a scalar potential as argued in Section III. Hence, we simulate

the magnetometer data from the GP that models the magne-

tometer measurements as gradients of a scalar potential field

as discussed in Section IV-D. Because we are interested in

simulating a large number of data points, simulating this data

using a full GP approach is computationally very expensive.

We therefore simulate the data using the computationally

efficient approach described in Section V-B. We use a large

number of basis functions (m = 4096). This has been shown

to be a good approximation of the true model in [12]. We will

also show that this is a good approximation in Section VI-B

based on experimental data.

The magnetometer is assumed to move in a three-

dimensional volume with x, y, z ∈ [−0.4, 0.4] such that

x = (x, y, z). The training data used for training the GP is

randomly uniformly distributed over this volume. A validation

data set is used to assess the predictive power of the trained

GP. This validation data is a three-dimensional meshgrid over

the same volume and consists of nval. = 9261 positions xval.

with a true magnetic field ftrue(xval.). The magnetic field is

predicted at these points using the trained GP, leading to

ftrain.(xval.), after which the quality of the GP solution can be

assessed in terms of the root mean square error (RMSE). We

set the domain Ω in the GP model to L1 = L2 = L3 = 0.5
and simulate using the following hyperparameters σ2

const. =
0.3, σ2

SE = 1, ℓSE = 0.1, and σ2
noise = 0.04 (see Sec. V-B

and IV-D for more details on the notation).

We compare our proposed method with two other ap-

proaches. The first is the approach by Vallivaara et al. [26, 27],

where the magnetic field is modeled using independent GPs

for all three components. Each GP consists of a constant and a

squared exponential kernel and has its own hyperparameters.

The second approach, considered in Kemppainen et al. [57],

models the magnetic field similarly but with shared hyperpa-

rameters. For details, see also Section IV-C.

In a first set of Monte Carlo simulations, we analyze the

performance of the three different approaches depending on

the number of (randomly distributed) training data points, that

is in terms of the sparseness of the magnetometer data and

the amount of interpolation that is needed for prediction. For

all three approaches we use a large number of basis functions

(m = 4096). They are hence expected to approach the perfor-

mance of the full GP solution. To exclude problems with local

minima in the hyperparameter optimization—which will be

the topic of a second set of simulations—the hyperparameter

optimization is started in the values used for simulating the

data. The results from 30 Monte Carlo simulations are shown

in Figure 5a. Naturally, the more data is used for training the

GP, the smaller the RMSE becomes. The GP that models the

magnetic field measurements as gradients of a scalar potential

field, outperforms the other two approaches, independent of

the amount of training data used. This can be understood

from the fact that this approach incorporates most physical

knowledge.

In a second set of Monte Carlo simulations, the sensitivity

to the initialization of the hyperparameter optimization is

analyzed for the three different methods. Only one simulated

data set is used but the hyperparameter optimization is started

in 30 randomly selected sets of hyperparameters θa
0 for a

varying length of the training data. The hyperparameters

are assumed to lie around the estimates that are obtained

using the same optimization strategy as above for 8000 data

points. Hence, these sets of hyperparameters θa
true are known

to results in small RMSE values as depicted in Figure 5a.

The superscript ‘a’ on θa
true is used to explicitly denote that
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Fig. 5: The average RMSE (with standard deviations) from 30 Monte Carlo simulations as a function of the number of simulated

data points used for training the GP. The constantly lower error for the Hilbert space scalar potential GP in comparison to the

separate GP models and shared hyperparameter GP model is explained by the additional prior physical knowledge encoded

into the model. In (b), the shared hyperparameter GP shows a slight advantage over the fully independent models.

Optical marker Xsens IMU Magnets

Fig. 6: Setup of the experiment: On left the sensor board that

was used for collecting the data. The right side figure shows

the magnetic environment used in the experiment shown from

below comprising small magnets to ensure sufficient excitation

of the magnetic field.

these sets of hyperparameters actually differ between the three

different approaches. For the approach where the magnetic

field components are modeled using independent GPs, each

component results in a set of hyperparameters θa
true. For

simplicity, in this approach, θa
true is chosen to be the mean

of these three sets of hyperparameters.

For each of the three approaches, the initial parameters θ0
are then assumed to deviate from θa

true by at most 70% as

θ0 = θa
true [1 + 0.7U(−1, 1)] . (33)

The Monte Carlo simulation results are depicted in Figure 5b.

As can be seen, the approach which models the three magnetic

field components using separate GPs suffers most from local

minima. Our proposed model using a scalar potential still

outperforms the other two.

B. Empirical proof-of-concept data

To illustrate our approach using real data, we have per-

formed an experiment where a number of sensors have

been moved around in a magnetic environment. The sen-

sor board used is shown in Figure 6. We use the magne-

tometer data from an Xsens MTi (Xsens Technologies B.V.,

http://www.xsens.com). Accurate position and orientation in-

formation is obtained using an optical system. These high-

accuracy measurements were provided through the use of a

Vicon real-time tracking system (Vicon Motion Systems Ltd.,

UK, http://www.vicon.com).

We obtain measurements while sliding the sensor board over

a configuration of small tables. To ensure sufficient excitation,

magnets have been placed in an irregular pattern underneath

these tables as shown in Figure 6. Two different data sets have

been collected. Both consist of approximately three minutes

of data sampled at 100 Hz. One data set is used for training,

while the second is for validation. The data of both the training

and validation data sets are displayed in Figure 7a. To give an

impression of the spatial variation of the magnetic field, the

magnetic field intensity has been visualized through the colors

of the data. Note that the magnetometer is calibrated such that

it has a magnitude of one in a local undisturbed magnetic field.

The magnetometer inside the IMU measures the magnetic

field at the different locations. The optical measurements are

used for two purposes. First, the positions from the optical

system are used as known locations in the GP approach. This is

a fairly reasonable assumption due to the high accuracy of the

measurements of the optical system. Second, the orientations

estimated by the optical system are used to rotate the magne-

tometer measurements from the magnetometer sensor frame

to the lab frame. This rotation of the magnetic field measure-

ments is needed for any of the GP methods discussed in this

work. To use the optical and magnetometer data together, they

need to be time synchronized. This synchronization is done in

post-processing by correlating the angular velocities measured

by the optical system and by the gyroscope in the IMU.

We run Algorithm 1 for the training data set. The domain Ω
in the GP model is set as L1 = L2 = 0.6 and L3 = 0.1. The

actual two-dimensional movement is performed in a rectangle

of 80 cm×100 cm and is hence well within the domain Ω. The

learned scalar potential and its marginal variance (uncertainty)

are shown in Figure 7b. Because the training data covers

http://www.xsens.com
http://www.vicon.com
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Fig. 7: Illustration of the magnetic field data and the results from the GP approach from Algorithm 1 for the experiment

discussed in Section VI-B. In all figures, the y-axis is −0.5, . . . , 0.5 m. The x-axis is −0.4, . . . , 0.4 m. The units in the field

surface plots are arbitrary due to normalization.

almost the whole displayed area, the learned scalar potential

has very low uncertainty. It is also possible to compute the

predicted magnetic field which is shown in Figure 7c. For

completeness, the intensity of these predicted magnetic field

measurements are shown in Figure 7d. Although this quantity

is only indirectly related to the outcome of the GP approach,

it is frequently used in the remaining sections because of its

easy and intuitive visualization.

By predicting the measurements at the locations of the

validation data set, it is also possible to compute the RMSE

on the validation data. In Figure 8 we visualize the RMSE as a

function of the number of basis functions used in Algorithm 1.

We also compare to the RMSE from a full GP approach,

that is using the same GP prior but without the Hilbert space

approximation scheme to speed up the inference. To allow for

comparison with a full GP approach—which suffers from a

high computational complexity for large data sets—the data

has been downsampled to 5 Hz. As can be seen, already for

around m = 1000 basis functions, the quality of the estimates

from Algorithm 1 approaches that of the full GP approach.

C. Mapping the magnetic field in a building

The third experiment was concerned with estimating a map

of the magnetic environment inside a building by only using

a smartphone for the data collection. The mapped venue is

located on the Aalto University campus, and a floor plan sketch

is shown in Figure 9. For practical reasons, we limited our

interest to the lobby which is approximately 600 m2 in size.

For the measurements, we used an Apple iPhone 4 and its

built-in 9-dof IMU (3-axis AKM AK8975 magnetometer). All

sensors were sampled at 50 Hz, and the data was streamed

online to a laptop computer for processing and storing. The

phone was held at waist-height and pointed towards the

heading direction.

0 500 1000 1500 2000
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Fig. 8: RMSE as a function of the number of basis functions

used in Algorithm 1 as compared to a validation data set. The

approximative model approaches the full GP approach.

For reconstructing the walking path and phone orien-

tation, we used a pedestrian dead-reckoning (PDR) ap-

proach developed at IndoorAtlas (IndoorAtlas Ltd., Finland,

http://www.indooratlas.com), where only accelerometer and

gyroscope readings were used—the path reconstruction thus

being fully independent of the magnetometer readings. The

alignment to the map and drift correction were inferred from a

set of fixed points along the path during acquisition. Two sam-

ple paths are shown in Figure 9: one of the three training paths

with similar routes and the validation path. The reconstructed

paths were visually checked to match the ‘true’ walking paths.

We covered the walkable area in the lobby with three walk-

ing paths following the same route in each of them (see Fig. 9).

The reconstructed paths were approximately 242, 253, and

http://www.indooratlas.com
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Fig. 9: A training (black) and validation (colored) free-

walking path that was used in the experiment. Trajectories

were collected by a mobile phone, and the magnetometer data

was corrected for gravitation direction and heading using the

inertial sensors in the device. The domain boundaries for the

reduced-rank method are shown by the dashed line.

302 meters long, respectively. The number of magnetometer

data samples acquired along the paths were 9868, 10500, and

12335. Prior to each acquisition, the phone magnetometer was

calibrated by a standard spherical calibration approach. The

combined size of the training data set was n = 32703. For

validation, we collected a walking path passing through the

venue (length 54 m, n = 2340).

We considered a batch interpolation problem of creating a

magnetic map of the lobby. The map was assumed static over

time, and we applied Algorithm 1 to the training data with

m = 1024 basis functions. The optimized hyperparameters

were σ2
lin. ≈ 575 (µT)2, σ2

SE/ℓ
2
SE ≈ 373 (µT)2, ℓSE ≈ 1.87m,

and σ2
noise ≈ 5.53 (µT)2. The coefficients of the inferred linear

(bias) model corresponding to the linear covariance function

was (−1.095, 12.995,−41.119).
Figure 1 shows the interpolated magnetic field magnitude

(‖f‖) and the vector field components. The component-wise

maximum of the associated marginal standard deviation fields

is visualized by the degree of transparency (with a standard

deviation of 5µT being fully transparent). The overall shape

of the estimate agreed even when the model was trained

separately with each of the training paths. To most part, the

strong fluctuations in the magnetic field are located near walls

or other structures in the building. The strong magnetic field

in the open area in the lower right part of the floorplan was

identified to most likely be due to a large supporting structure

on the lower floor-level. We also used the model for predicting

the measurements along the validation path (see Fig. 9). The

component-wise RMSEs were (2.35µT, 3.05µT, 2.71µT) and

mean absolute errors (1.72µT, 2.42µT, 2.03µT). Figure 9

shows the norm of the error along the validation path. The

measurement noise level of the magnetometer is in the mag-

nitude of 1µT and the uncertainty in the PDR estimate

contributes to the remaining variance.

Optical marker
Smartphone

Trivisio IMUInvensense IMU

DiddyBorg robot board

Fig. 10: The robot was built on a DiddyBorg robotics board

and controlled by a Raspberry Pi single-board computer. The

three sensors (Invensense, Trivisio, and smartphone) providing

magnetometer readings were mounted on the top. The ref-

erence locations were provided by a Vicon optical tracking

system.

D. Online mapping

Finally, we demonstrate the power of sequential updating

and time-dependent magnetic field estimation. The mapping

was performed by a lightweight and inexpensive mobile robot

equipped with a magnetometer, and the task was to obtain an

estimate of the magnetic environment of an indoor space by

re-calculating the estimate in an online fashion. In the second

part of the experiment the magnetic environment was abruptly

changed during the experiment, and the aim was to catch this

phenomenon by spatio-temporal modeling.

We used a robot for collecting the data (see Fig. 10).

The robot was built on a DiddyBorg (PiBorg Inc., UK,

http://www.piborg.org) robotics board, controlled by a Rasp-

berry Pi 2 (model B) single-board computer (Raspberry Pi

Foundation, UK, http://www.raspberrypi.org). For this exam-

ple, we controlled the robot over Bluetooth with a joystick.

The robot was equipped with a 9-dof MPU-9150 Invensense

IMU unit that was sampled at 50 Hz. The data were collected

and stored internally on the Raspberry Pi. For additional

validation, a Trivisio Colibri wireless IMU (TRIVISIO Proto-

typing GmbH, http://www.trivisio.com), sampled at 100 Hz,

and a Google Nexus 5 smartphone (AKM AK8963 3-axis

magnetometer), sampled at 50 Hz, were also mounted on

the robot for checking the quality of the Invensense IMU

data and ensure the repeatability of the experiment. To reduce

disturbances caused by the robot, the sensors were mounted

on an approximately 20 cm thick layer of Styrofoam. During

post-processing the data, the sensor positions and alignments

on the robot were corrected for.

High-accuracy location and orientation reference measure-

ments were provided through the use of a Vicon real-time

tracking system. The location measurements could alterna-

tively be recovered by odometry and heading information

http://www.piborg.org
http://www.raspberrypi.org
http://www.trivisio.com
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Fig. 11: The GP interpolation task the robot was faced with. The final interpolation outcome of the magnitude field is shown

in (a), and the different vector field components are shown in (b). Snapshots along the temporally updating field estimate are

shown in (c–g) together with the path travelled since the previous update. The marginal variance (uncertainty) is visualized by

the degree of transparency.

provided by the robot, but the interest in this experiment was

rather to focus on the interpolation of the magnetic field, not

the path estimation.

The task was to map the magnetic field inside a marked

region roughly 6 m × 6 m in size. The size of the region

was limited by the field of view of the Vicon system. The

magnetometers were calibrated in the beginning of the mea-

surement session by rotating the robot around all of its axes.

A standard spherical calibration approach was used. Due to

limits in acquisition length of the Vicon system, we captured

the data in parts, each roughly three minutes in length. The

magnetic environment remained unchanged for the first five

data sets (paths shown in Figs. 11c–11g), and later on changes

in the field were initiated by bringing in large metallic toolbox

shelves.

In the first part of the experiment, for interpolating the

magnetic field we used the sequential reduced-rank scalar-

potential approach presented in Algorithm 2. We assumed

the magnetic environment to be stationary, and performed

sequential updates in an online fashion. For practical reasons

the calculations were done off-line, but the algorithm is fast

enough for running in real-time online estimation. The rank

of the approximation was fixed to m = 1024.

The length-scale, magnitude, and noise variance hyperpa-

rameters were learned from the first two data sets (n = 17980
vector valued observations) by maximizing with respect to

marginal likelihood (see Alg. 1). The obtained values were

ℓSE ≈ 0.32 m, σ2
SE/ℓ

2
SE ≈ 287 (µT)2 and σ2

noise ≈ 3.27 (µT)2.

The linear model magnitude scale parameter was fixed to

σ2
lin. = 500 (µT)2. The noise model is not only capturing the

sensor measurement noise, but the entire mismatch between

the data and the model. This explains the rather large noise

variance. We also checked, that the hyperparameter estimates

remained stable when optimized using the rest of the data.

Figure 11 shows the results for the static magnetic field

experiment. The estimate was updated continuously five times

a second, and we show five snapshots of the evolution of

the magnetic field estimate in Figures 11c–11g (vector field

magnitude shown in figures). These snapshots also show the

path travelled since the previous snapshot. The alpha channel

acts as a proxy for uncertainty; the marginal variance of

the estimate is giving the degree of transparency. The final

magnitude estimate—after iterating through all the n = 43029
observations—is shown in Figure 11a together with the vector

field components in Figure 11b.

The frontal part of the mapped region shows strong mag-

netic activity, whereas the parts further back do not show

as strong fields. Inspection of the venue suggested metallic

pipelines or structures in the floor to blame (or thank) for

these features. In this particular case most parts of the effect

is seen in the x-component. We repeated the reconstruction

with data collected from the Trivisio and smartphone sensors,

and the results and conclusions remained unchanged. As a sup-

plementary file to this paper, there is a video1 demonstrating

the online operation which has been sped-up 50×.

1The supplementary video is available on YouTube: https://www.youtube.
com/watch?v=enlMiUqPVJo

https://www.youtube.com/watch?v=enlMiUqPVJo
https://www.youtube.com/watch?v=enlMiUqPVJo
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The last part of the experiment was dedicated to dynamical

(time-dependent) modeling of the magnetic field. We used

all the data from the first part of the experiment to train

a sequential model and used that as the starting point for

changing the field (t = 0). During acquisition of data while the

robot was driving around, we brought in two metallic toolbox

shelves: first a larger toolbox shelf on wheels (Fig. 12c) and

then a smaller box (Fig. 12d). We acquired altogether some

300 s of data (n = 15513) of the changed environment.

For encoding the assumptions of a changing magnetic

field, we used Algorithm 2. The additional hyperparameter

controlling the temporal scale was fixed to ℓtime = 1 hour, thus

encoding an assumption of slow local changes. This choice is

not restrictive, because the data is very informative about the

abrupt changes.

Figure 12a shows the evolution of the magnetic field compo-

nents for one fixed location (indicated by a cross marker in the

figures). The two toolboxes induce clear changes in the local

anomaly field, but the effects are restricted to the immediate

vicinity of the boxes. Thus the spatio-temporal model only

gains information about the changed field, when the robot

passes by the location of interest. This effect is clearly visible

around t = 20 s, and later on around t = 70 s and t = 130 s.

After this the estimate stabilizes and only drifts around for

the remaining time. Even though the changes in the field

components appear clear in Figure 12a, they are only around

2µT and thus only account for a variation of about 2% in

the scale of the entire field visualized in Figure 11b. Inducing

more noticeable changes in the magnetic field would require

moving around larger structures (say an elevator). Yet, even

changes this small can be tracked by the modeling approach.

VII. DISCUSSION

In recent years, interest has emerged in mapping of the

magnetic field by Gaussian processes for robot and pedestrian

localization. This paper has aimed at presenting a new efficient

method for mapping, but also at providing a study of best

practices in using GPs in this context. Thus, we went through

three different approaches for formulating GP priors for the

magnetic field (independent, shared hyperparameters, and curl-

free/scalar potential). These three models differ in the amount

of prior knowledge encoded in the model, and the more

information available in the prior, the better the interpolation

and extrapolation capabilities in the model—as long as the

data agrees with the assumptions. This was also demonstrated

in Figure 4 and in Section VI-A.

The methods presented in this paper are related to the use of

Gaussian random field priors in inverse problems [65, 66]. This

connection has been explored from various points of views (cf.

[67]). However, the machine learning [7] way of interpreting

the GP priors indeed brings something new on the table—

we are explicitly modeling the uncertainty in the field by

using a stochastic model, which has interesting philosophical

implications. The formulation of the prior through a GP

covariance function provides both an intuitive and theoretically

justified way of encoding the information.

The scalar potential approach is not the only way to build

the model. It would also be possible to include disturbance
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Fig. 12: (a) Evolution of the magnetic field at one spatial loca-

tion over a time-course of 200 seconds. (b–d) The blue metallic

toolboxes are brought in at the beginning of the experiment.

The abrupt changes in the field estimate corresponds to time

instances when the robot has passed the toolboxes and gained

information about the changed environment.

in the model, which would model the effect of free currents

in the area or its boundaries. Furthermore, more complicated

assumptions of the temporal time-changing behavior of the

magnetic field could be included in the temporal covariance

function. For example, various degrees of smoothness or

periodicity could be included in the framework.

This paper has been considering the ‘M’ (mapping) part

in SLAM. The ‘L’ (localization) part based on these maps

is presented in Solin et al. [1]. The online mapping scheme

presented in Algorithm 2 opens up for possibilities for simul-

taneously building the map and localization within the map.

As seen in the experiments presented both in this work and in

Solin et al. [1], this appears feasible and provides an interesting

direction for further research.

VIII. CONCLUSION

Small variations in the magnetic field can be used as

inputs in various positioning and tracking applications. In

this paper, we introduced an effective and practically feasible

approach for mapping these anomalies. We encoded prior

knowledge from Maxwell’s equations for magnetostatics into a

Bayesian non-parametric probabilistic model for interpolation

and extrapolation of the magnetic field.

The magnetic vector field components were modeled jointly

by a Gaussian process model, where the prior was associated

directly with a latent scalar potential function. This ensures

the field to be curl-free—a justified assumption in free spaces.

This assumption couples the vector field components and
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additionally encodes the assumption of a baseline field with

smooth small-scale variations. We also presented connections

to existing formulations for vector-valued Gaussian process

models.

In addition to constructing the model, we also presented

a novel and computationally efficient inference scheme for

interpolation and extrapolation using it. We built upon a

Laplace operator eigenbasis approach, which falls natural to

the formulation of the model. The inference scheme ensures

a linear computational complexity with respect to the number

of observations of the magnetic field. We also extended the

method to an online approach with sequential updating of the

estimate and time-dependent changes in the magnetic field.

We presented four experiments demonstrating the feasibility

and practicality of the methods. A simulated experiment

showed the benefit of including additional knowledge from

physics into the model, and a simple proof-of-concept exam-

ple demonstrated the strength of the approximation scheme

in solving the model. Two real-world use cases were also

considered: we mapped the magnetic field in a building on

foot using a smartphone, and demonstrated online mapping

using a wheeled robot.
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