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Our Model	
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Add	

[Mitchell and Lapata 08]	
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Grefenstette and 
Sadrzadeh 11	

Mathematical model based on	

abstract categorical framework	
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Baselines : Models compared to ours	
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Original neural vector [Blacoe and Lapata 12]	


	


	


Re-trained neural vector with our learning models	


Training data	

	
Extracted 5000 Verb-Obj pairs from ukWaC corpus	


	


Hyper-parameters	

	
Learning rate：0.01, Regularization：10^4	

	
20 iterations (One iteration is one run through the training data)	


vs.	
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Summary	

Co-Compositionality with Prototype Projection	

Compositional & Co-Compositional Neural Language Models	

Achieve state of the art on verb disambiguation task	

Conclusion	
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Examples	

Appendix	
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Results of the different compositionality models	
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The number of prototype words	
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Variations in model configuration	
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Composition operator and parameter	
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