Modeling and Learning Semantic Co-Compositionality through Prototype Projections and Neural Networks

Masashi Tsubaki, Kevin Duh, Masashi Shimbo, Yuji Matsumoto

Nara Institute of Science and Technology (NAIST), Japan

New model of compositionality in word vector space

Unsupervised word vector re-training algorithm considering compositionality

New model of compositionality in word vector space

Unsupervised word vector re-training algorithm considering compositionality

Modeling of compositionality in word vector space

From word to phrase representation with matrix-vector operation [Mitchell and Lapata 08], [Baroni and Zamparell I0], [Socher+ 12], [Van de Cruys+ 13]

Modeling of compositionality in word vector space

From word to phrase representation with matrix-vector operation [Mitchell and Lapata 08], [Baroni and Zamparell I0], [Socher+ 12], [Van de Cruys+ 13]

Modeling of compositionality in word vector space

From word to phrase representation with matrix-vector operation [Mitchell and Lapata 08], [Baroni and Zamparell I0], [Socher+ 12], [Van de Cruys+ 13]

Modeling of compositionality in word vector space

From word to phrase representation with matrix-vector operation [Mitchell and Lapata 08], [Baroni and Zamparell I0], [Socher+ 12], [Van de Cruys+ 13]

New model inspired by Co-Compositionality

Co-compositionality
Verb and object are allowed to modify each other's meanings and generate the overall semantics

Main Idea : Co-Compositionality [Pustejovsky I995]

Co-compositionality

Verb and object are allowed to modify each other's meanings and generate the overall semantics
$\mathrm{f}($ run , company $)=$ operate
0000000
$f($ run , marathon $)=$ race

Main Idea : Co-Compositionality [Pustejovsky I995]

Co-compositionality

Verb and object are allowed to modify each other's meanings and generate the overall semantics
$\mathrm{f}\left(\right.$ run $_{\text {company }}$, company $)=$ operate
000
$\mathrm{f}\left(\right.$ run $_{\text {marathon }}$, marathon $)=$ race

Main Idea : Co-Compositionality [Pustejovsky I995]

Co-compositionality

Verb and object are allowed to modify each other's meanings and generate the overall semantics
$\mathrm{f}\left(\right.$ run $_{\text {company }}$, company $\left._{\text {run }}\right)=$ operate 000

000
$f\left(\right.$ run $_{\text {marathon }}$, marathon $\left._{\text {run }}\right)=$ race 00000 000

Main Idea : Co-Compositionality [Pustejovsky I995]

Co-compositionality

Verb and object are allowed to modify each other's meanings and generate the overall semantics
$\mathrm{f}\left(\right.$ run $_{\text {company }}$, company $\left._{\text {run }}\right)=$ operate 000

00 000
$\mathrm{f}\left(\right.$ run $_{\text {marathon }}$, marathon $\left.{ }_{\text {run }}\right)=$ race 000

000 000

Main Idea : Co-Compositionality [Pustejovsky 1995]

Co-compositionality

Verb and object are allowed to modify each other's meanings and generate the overall semantics
$\mathrm{f}\left(\operatorname{run}_{\text {company }}\right.$, company $\left._{\text {run }}\right)=$ operate
$\mathrm{f}\left(\right.$ run $_{\text {marathon }}$, marathon $\left._{\text {run }}\right)=$ race 000000 000

Question

How do we implement co-compositionality in vector space?

Prototype Projection for Co-Compositionality

Prototype Projection

Matrix-vector operation as an implementation for Co-Compositionality

Co-Compositionality with Prototype Projections

company 000

Co-Compositionality with Prototype Projections

company 000

VerbOf

	\leftarrow
start	$\bigcirc \bigcirc \bigcirc$
build	$\bigcirc \bigcirc \bigcirc$
buy	$\bigcirc \bigcirc$

Prototype verbs
of "company"

Co-Compositionality with Prototype Projections

Co-Compositionality with Prototype Projections

Prototype verbs
of "company"

Co-Compositionality with Prototype Projections

Verbof

of "company"

Co-Compositionality with Prototype Projections

Prototype verbs
of "company"

Co-Compositionality with Prototype Projections

Co-Compositionality with Prototype Projections

Prototype verbs
of "company"

Co-Compositionality with Prototype Projections

Prototype verbs
of "company"

Prototype objects
 of "run"

Co-Compositionality with Prototype Projections

$\xrightarrow[+]{\text { operate }=} \xrightarrow{000}$

Prototype Projection

company $_{\text {run }}$

000
1- $\mathrm{P}_{\text {run }}=\mathrm{O}^{\top} \mathrm{O}$
run (Orthogonal projection
company
000

Prototype verbs
of "company"

Prototype objects
 of "run"

Intuitive image of prototype projection

Tease out the proper semantics from aggregate representation by projection to latent space

Evaluation : Verb disambiguation in subject-verb-object triples

Evaluation dataset [Grefenstette and Sadrzadeh II]

Subj-Verb-Obj	Landmark verb	Similarity of human judgment
People-run-company	operate	7
People-run-company	move	2

200 subject-verb-object triples judged by 25 participants

Evaluation : Verb disambiguation in subject-verb-object triples

Evaluation dataset [Grefenstette and Sadrzadeh II]

Subj-Verb-Obj	Landmark verb	Similarity of human judgment
People-run-company	operate	7
People-run-company	move	2

200 subject-verb-object triples judged by 25 participants

Final co-compositional vector for subject-verb-object

$$
\text { subj + cocompositioned }(v e r b, o b j)
$$

Evaluation : Verb disambiguation in subject-verb-object triples

Evaluation dataset [Grefenstette and Sadrzadeh II]

Subj-Verb-Obj	Landmark verb	Similarity of human judgment
People-run-company	operate	7
People-run-company	move	2

200 subject-verb-object triples judged by 25 participants

Final co-compositional vector for subject-verb-object

$$
\text { subj + cocompositioned }(\text { verb }, \text { obj })
$$

Models are evaluated by Spearman's rank correlation between vectors' computed similarity and human judgment

Implementation details

Extracted 20 prototype words from ukWaC corpus

Implementation details

high frequency

Extracted 20 prototype words from ukWaC corpus

Implementation details

Extracted 20 prototype words from ukWaC corpus

Implementation details

Extracted 20 prototype words from ukWaC corpus

Implementation details

Extracted 20 prototype words from ukWaC corpus
Word representation [Blacoe and Lapata 12]
(1)Distributional vector (2000 dim) (2)Neural vector (50 dim)

Baselines :Models compared to ours

Add [Mitchell and Lapata 08]	$s b j+$ verb + obj
Multiply [Mitchell and Lapata 08]	$s b j \times$ verb \times obj
Grefenstette and Sadrzadeh II	Mathematical model based on abstract categorical framework
Van de Cruys+I3	Multi-way interaction model based on non-negative matrix factorization

Correlation with human judgment (Distributional vector)

Achieves high performance ($\rho=0.4$ I)

Correlation with human judgment (Neural vector)

State of the art performance ($\rho=0.44$)

Correlation with human judgment (Neural vector)

State of the art performance ($\rho=0.44$)

Co-Compositionality is useful for word sense disambiguation Prototype projection is effective implementation for Co-Compositionality

New model of compositionality in word vector space

Unsupervised word vector re-training algorithm considering compositionality

New model of compositionality in word vector space

Unsupervised word vector re-training algorithm considering compositionality

Compositional Neural Language Model

Re-training word representation with decomposition of phrase vector

Compositional Neural Language Model

Re-training word representation with decomposition of phrase vector

(1)Compute the score s of correct phrase

Compositional Neural Language Model

Re-training word representation with decomposition of phrase vector

(1)Compute the score s of correct phrase
(2)Compute the score s_{c} of corrupted incorrect phrase

Compositional Neural Language Model

Re-training word representation with decomposition of phrase vector

(1)Compute the score s of correct phrase
(2)Compute the score s_{c} of corrupted incorrect phrase

Correct score $>$ Incorrect score

Compositional Neural Language Model

Re-training word representation with decomposition of phrase vector

$$
J=\max \left(0,1-s+S_{c}\right)
$$

(1)Compute the score s of correct phrase
(2)Compute the score s_{c} of corrupted incorrect phrase
(3) Minimize cost function by SGD, $\mathrm{u} \rightarrow \mathrm{u}_{\text {new }}, \mathrm{z} \rightarrow \mathrm{z}_{\text {new }}$

Correct score $>$ Incorrect score

Compositional Neural Language Model

Re-training word representation with decomposition of phrase vector

$$
J=\max \left(0,1-s+s_{c}\right)
$$

Correct score $>$ Incorrect score
(1)Compute the score s of correct phrase
(2)Compute the score s_{c} of corrupted incorrect phrase
(3) Minimize cost function

$$
\text { by SGD, } \mathrm{u} \rightarrow \mathrm{u}_{\mathrm{new}}, \mathrm{z} \rightarrow \mathrm{z}_{\mathrm{new}}
$$

Compositional Neural Language Model

Re-training word representation with decomposition of phrase vector

Correct score $>$ Incorrect score
(1)Compute the score s of correct phrase
(2)Compute the score s_{c} of corrupted incorrect phrase
(3) Minimize cost function by SGD, $u \rightarrow u_{\text {new }}, z \rightarrow \mathrm{z}_{\text {new }}$
(4)New verb vector is

$$
v_{\text {new }}=z_{\text {new }}-0
$$

Compositional Neural Language Model

Re-training word representation with decomposition of phrase vector

Correct score $>$ Incorrect score
(1)Compute the score s of correct phrase
(2) Compute the score s_{c} of corrupted incorrect phrase
(3) Minimize cost function by SGD, $u \rightarrow u_{\text {new }}, z \rightarrow z_{\text {new }}$
(4) New verb vector is

$$
v_{\text {new }}=z_{\text {new }}-0
$$

New word representations considering compositionality

Compositional Neural Language Model

Compositional Neural Language Model

Co-Compositionality with Prototype Projection

Compositional Neural Language Model

Co-Compositional Neural Language Model

Compositional Neural Language Model with Prototype Projection

Co-Compositional Neural Language Model

Compositional Neural Language Model with Prototype Projection

$\bigcirc \mathbf{z = x + y}$

000 x
$\mathbf{P}_{\text {obj }}$

company $\bigcirc_{0}^{\bigcirc 0}$
(1)Prototype projection for both verb and object
(2) Optimize parameters with same method as Compositional NLM
(3) Minimize

$$
\min _{v}\left(\left\|x_{\text {new }}-P_{o b j} v\right\|^{2}+\lambda\|v\|^{2}\right)
$$

Co-Compositional Neural Language Model

Compositional Neural Language Model with Prototype Projection

company $\bigcirc_{0}^{\bigcirc \bigcirc}$
(1)Prototype projection for both verb and object
(2) Optimize parameters with same method as Compositional NLM
(3) Minimize

$$
\min _{v}\left(\left\|x_{\text {new }}-P_{o b j} v\right\|^{2}+\lambda\|v\|^{2}\right)
$$

Co-Compositional Neural Language Model

Compositional Neural Language Model with Prototype Projection

run

company $\underset{0}{\bigcirc_{0}}$
(1)Prototype projection for both verb and object
(2) Optimize parameters with same method as Compositional NLM
(3)Minimize

$$
\min _{v}\left(\left\|x_{\text {new }}-P_{o b j} v\right\|^{2}+\lambda\|v\|^{2}\right)
$$

Co-Compositional Neural Language Model

Compositional Neural Language Model with Prototype Projection

(1)Prototype projection for both verb and object
(2) Optimize parameters with same method as Compositional NLM
$\mathbf{x}_{\text {new }}$

(3) Minimize

$$
\min _{v}\left(\left\|x_{\text {new }}-P_{o b j} v\right\|^{2}+\lambda\|v\|^{2}\right)
$$

New word representations considering co-compositionality

Evaluation : Verb disambiguation [Grefenstette and Sadrzadeh II]

Original neural vector [Blacoe and Lapata 12]

VS.
Re-trained neural vector with our learning models

Evaluation : Verb disambiguation [Grefenstette and Sadrzadeh II]

Original neural vector [Blacoe and Lapata 12]
VS.
Re-trained neural vector with our learning models

Training data
Extracted 5000 Verb-Obj pairs from ukWaC corpus
Hyper-parameters
Learning rate: 0.01 , Regularization: $10^{\wedge 4}$
20 iterations (One iteration is one run through the training data)

Correlation with human judgment (Re-trained neural vector)

New state of the art performance ($\rho=\mathbf{0 . 4 7}$)

Higher performance with re-trained word representation

Conclusion

New model of compositionality in word vector space

Co-Compositionality with Prototype Projection

Unsupervised word vector re-training algorithm considering compositionality

Compositional \& Co-Compositional Neural Language Models Achieve state of the art on verb disambiguation task

Examples

verb	object	landmark	similarity(verb, landmark)	similarity(projected verb, landmark)
run	company	operate	0.40	0.70
meet	criterion	satisfy	0.49	0.71
spell	name	write	0.04	0.50

Table 1: Examples of verb-object pairs. Original verb and landmark verb similarity, prototype projected verb and landmark verb similarity, as measure by cosine using Collobert and Weston's word embeddings. Meet has a abstract meaning itself, but after prototype projection with matrix constructed by word vectors of W (VerbOf, criterion), meet is more close to meaning of satisfy.

Results of the different compositionality models

Model	ρ
Grefenstette and Sadrzadeh (2011)	0.21
Add (SDS)	0.31
Add (NLM)	0.31
Multiply (SDS)	0.35
Multiply (NLM)	0.30
Van de Cruys et al. (2013)	0.37
Erk and Padó (SDS)	0.39
Erk and Padó (NLM)	0.03
Co-Comp with $f=$ Add (SDS)	0.41
Co-Comp with $f=$ Add (NLM)	$\mathbf{0 . 4 4}$
Co-Comp with $f=$ Multiply (SDS)	0.37
Co-Comp with $f=$ Multiply (NLM)	0.35
Upper bound	0.62

Table 3: Results of the different compositionality models on the similarity task. The number of prototype words $m=20$ in all our models. Our model ($f=$ Addition and NLM) achieves the new state-of-the-art performance for this task ($\rho=0.44$).

The number of prototype words

Figure 5: The relation between the number of prototype words and correlation of SDS or NLM. In general, NLM has higher correlation than SDS and is more robust across the m.

Variations in model configuration

Subj	Verb	Obj	NLM ρ	SDS ρ
prpj	prpj	prpj	0.39	0.37
+	prpj	prpj	0.44	0.41
	prpj	prpj	0.45	0.41
+	prpj	+	0.43	0.38
	prpj	+	0.43	0.38
+	+	+	0.31	0.31

Table 5: Variants of the full co-compositional model, based on how subject, verb, and object vector representations are included. prpj indicates that prototype projection is used. + indicates that the vector is added without projection first. Blank indicates that the vector is not used in the final compositional score.

Composition operator and parameter

Composition Operator	Parameter
Add: $w_{1} u+w_{2} v$	$w_{1}, w_{2} \in \mathbb{R}$
Multiply: $u^{w_{1}} \odot v^{w_{2}}$	$w_{1}, w_{2} \in \mathbb{R}$
FullAdd: $W_{1} u+W_{2} v$	$W_{1}, W_{2} \in \mathbb{R}^{n \times n}$
LexFunc: $A_{u} v$	$A_{u} \in \mathbb{R}^{n \times n}$
FullLex: $\sigma\left(\left[W_{1} A_{u} v, W_{2} A_{v} u\right]\right)$	$A_{u}, A_{v} \in \mathbb{R}^{n \times n}$
	$W_{1}, W_{2} \in \mathbb{R}^{n \times n}$
Ours (Add): $P_{(R, v)} u+P_{(R, u)} v$	SVD's (m, k)
Ours (Mult): $P_{(R, v)} u \odot P_{(R, u)} v$	SVD's (m, k)

Table 6: Comparison of composition operators that combine two word vector representations, $u, v \in \mathbb{R}^{n}$ and their learning parameters. Our model only needs two hyper-parameters: the number of prototype words m and dimensional reduction k in SVD

