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Introduction

Modeling of compositionality in word vector space

From word to phrase representation with matrix-vector operation
[Mitchell and Lapata 08], [Baroni and Zamparell 10], [Socher+ 12], [Van de Cruys+ |3]

A
run marathon run company
= race = operate
run
marathon
company
>
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Introduction

Modeling of compositionality in word vector space

From word to phrase representation with matrix-vector operation
[Mitchell and Lapata 08], [Baroni and Zamparell 10], [Socher+ 12], [Van de Cruys+ |3]

A
run marathon run company
= race = operate
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New model inspired by Co-Compositionality



Our Model

Main ldea : Co-Compositionality [Pustejovsky 1995]

Co-compositionality

Verb and object are allowed to modify each other’s
meanings and generate the overall semantics

Masashi Tsubaki 3



Our Model

Main ldea : Co-Compositionality [Pustejovsky 1995]

Co-compositionality

Verb and object are allowed to modify each other’s
meanings and generate the overall semantics

f( run , company ) = operate
eee @00 eee

f( run , marathon ) = race
eee (000 XX

Masashi Tsubaki 3



Our Model

Main ldea : Co-Compositionality [Pustejovsky 1995]

Co-compositionality

Verb and object are allowed to modify each other’s
meanings and generate the overall semantics

f( run gmpany » COMPpany ) = operate
XX ee0e 000

f( run_,...non » Marathon ) = race
000 00e XX

Masashi Tsubaki 3



Our Model

Main ldea : Co-Compositionality [Pustejovsky 1995]

Co-compositionality

Verb and object are allowed to modify each other’s
meanings and generate the overall semantics

f( run gmpany » COMPpany,,,, ) = operate
X0 00 o 000

f(run__.. . ,marathon_ ) = race
000 000 X0

Masashi Tsubaki 3



Our Model

Main ldea : Co-Compositionality [Pustejovsky 1995]

Co-compositionality

Verb and object are allowed to modify each other’s
meanings and generate the overall semantics

f( run mpany » COMpany,,, ) = operate
XX XX

f(run__....,marathon_ ) = race
000 @00 @00

Masashi Tsubaki 3



Our Model

Main ldea : Co-Compositionality [Pustejovsky 1995]

Co-compositionality

Verb and object are allowed to modify each other’s
meanings and generate the overall semantics

f( run gmpany » COMpany,,, ) = operate
XX XX

f(run__....,marathon_ ) = race
000 @00 @00

Question

How do we implement

co-compositionality in vector space ?




Our Model

Prototype Projection for Co-Compositionality

Prototype Projection

Matrix-vector operation as an
implementation for Co-Compositionality
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Our Model

Co-Compositionality with Prototype Projections
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Our Model
Intuitive image of prototype projection

N\ .
run  Assume various senses of “run”
®@0| j;re aggregated in one vector

buy Prototype verbs
/ of “company”

\ operate
{ > build

finish

start

Prototype verbs
of “marathon”

Tease out the proper semantics from
aggregate representation by projection to latent space
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Experiment

Evaluation : Verb disambiguation in subject-verb-object triples

Evaluation dataset [Grefenstette and Sadrzadeh | 1]

Subj-Verb-Obj Landmark verb Similarity of human judgment
People-run-company operate 7
People-run-company move 2

200 subject-verb-object triples judged by 25 participants
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Evaluation : Verb disambiguation in subject-verb-object triples

Evaluation dataset [Grefenstette and Sadrzadeh | 1]

Subj-Verb-Obj Landmark verb Similarity of human judgment
People-run-company operate 7
People-run-company move 2

200 subject-verb-object triples judged by 25 participants

Final co-compositional vector for subject-verb-object

subj + cocompositioned(verb,obj)

Models are evaluated by Spearman’s rank correlation
between vectors’ computed similarity and human judgment
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Experiment
Implementation details

run company
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VerbOf >ﬂ
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build |00 0|/ | OO 000 bank |©O O Ol | OO 000
by [@@@]| |00 \4 el @00 00| O
high frequency 80% of the both high frequency and high similarity

top singular values

Extracted 20 prototype words from ukVWaC corpus

Word representation [Blacoe and Lapata 12]
(DDistributional vector (2000 dim) @Neural vector (50 dim)
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Experiment
Baselines : Models compared to ours

Add : :
[Mitchell and Lapata 08] sbj +verb +obj
Multiply ! .
[Mitchell and Lapata 08] Sb] x verbx Ob]
Grefenstette and Mathematical model based on
Sadrzadeh || abstract categorical framework
Van de Cruys+13 Multi-way m'Feractlor? model o
based on non-negative matrix factorization
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Result and Discussion

Correlation with human judgment (Distributional vector)

Achieves high performance (0 =0.41)
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Result and Discussion

Correlation with human judgment (Neural vector)

State of the art performance (0 = 0.44)
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Co-Compositionality is useful for word sense disambiguation
Prototype projection is effective implementation for Co-Compositionality
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New word representations considering compositionality
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Our Model

Co-Compositional Neural Language Model

Compositional Neural Language Model with Prototype Projection
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Experiment

Evaluation : Verb disambiguation [Grefenstette and Sadrzadeh | 1]

Orriginal neural vector [Blacoe and Lapata 12]

VS.

Re-trained neural vector with our learning models

Training data
Extracted 5000 Verb-Obj pairs from ukWaC corpus

Hyper-parameters
Learning rate:0.01, Regularization: 104
20 iterations (One iteration is one run through the training data)
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Result and Discussion

Correlation with human judgment (Re-trained neural vector)

New state of the art performance (0 = 0.47)

0-5 0.47
0.44

B Original

B Re-trained

Correlation 0

Compositional NLM  Co-Compositional NLM
Higher performance with re-trained word representation
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Summary
Conclusion

New model of

compositionality
in word vector space

Co-Compositionality with Prototype Projection

Unsupervised word vector
re-training algorithm
considering compositionality

Compositional & Co-Compositional Neural Language Models
Achieve state of the art on verb disambiguation task
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Appendix

Examples

verb object | landmark || similarity(verb, landmark) | similarity(projected verb, landmark)
run | company | operate 0.40 0.70

meet | criterion satisfy 0.49 0.71

spell name write 0.04 0.50

Table 1: Examples of verb-object pairs. Original verb and landmark verb similarity, prototype projected verb and
landmark verb similarity, as measure by cosine using Collobert and Weston’s word embeddings. Meet has a abstract
meaning itself, but after prototype projection with matrix constructed by word vectors of W ( VerbOf, criterion), meet
is more close to meaning of satisfy.
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Appendix
Results of the different compositionality models

Model p
Grefenstette and Sadrzadeh (2011) 0.21
Add (SDS) 0.31
Add (NLM) 0.31
Multiply (SDS) 0.35
Multiply (NLM) 0.30
Van de Cruys et al. (2013) 0.37
Erk and Padé (SDS) 0.39
Erk and Pad6 (NLM) 0.03
Co-Comp with f=Add (SDS) 041
Co-Comp with f=Add (NLM) 0.44
Co-Comp with f=Multiply (SDS) 0.37
Co-Comp with f=Multiply (NLM) 0.35
Upper bound 0.62

Table 3: Results of the different compositionality models
on the similarity task. The number of prototype words
m = 20 in all our models. Our model (f=Addition and
NLM) achieves the new state-of-the-art performance for
this task (p = 0.44).
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Appendix

The number of prototype words

0.50

045} PO
5 i

Correlation

0.35

~~—4 SDS
o—e NLM

03Q6—35 20 25 30 35 40 45 50 55 60
The number of prototype words m

Figure 5: The relation between the number of prototype
words and correlation of SDS or NLM. In general, NLM
has higher correlation than SDS and is more robust across
the m.
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Appendix
Variations in model configuration

Subj | Verb | Oby || NLM p | SDS p

prpj | prpj | prpj | 0.39 0.37
+ prpj | prpj 0.44 041

pPrp] | prpj 0.45 0.41
+ prpj + 0.43 0.38

prpj + 0.43 0.38
+ + + 0.31 0.31

Table 5: Variants of the full co-compositional model,
based on how subject, verb, and object vector repre-
sentations are included. prpj indicates that prototype
projection is used. 4 indicates that the vector 1s added
without projection first. Blank indicates that the vector 1s
not used in the final compositional score.
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Appendix
Composition operator and parameter

Composition Operator Parameter
Add: wiu + wov wi,ws € R
Multiply: u*t © v%2 wi,ws € R
FullAdd: W7iu + Wsv Wi, Wy € R™X™
LexFunc: A, v A, € R*xm
FullLex: o([W1Ayv, WoAyu]) | Ay, A, € R?*?
Wi, Wy € R™X™
Ours (Add): P g, yu+ Pry)v | SVD’s (m, k)
Ours (Mult): P g, yu ® Pgpyv | SVD’s (m, k)

Table 6: Comparison of composition operators that com-
bine two word vector representations, u,v € R" and
their learning parameters. Our model only needs two
hyper-parameters: the number of prototype words m and
dimensional reduction k£ in SVD
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