
G. Kappel, Z. Maamar, H.R. Motahari-Nezhad (Eds.): ICSOC 2011, LNCS 7084, pp. 404–420, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Modeling and Managing Variability
in Process-Based Service Compositions

Tuan Nguyen, Alan Colman, and Jun Han

Faculty of Information and Communication Technology,
Swinburne University of Technology, Melbourne, Australia

{tmnguyen,acolman,jhan}@swin.edu.au

Abstract. Variability in process-based service compositions needs to be
explicitly modeled and managed in order to facilitate service/process
customization and increase reuse in service/process development. While related
work has been able to capture variability and variability dependencies within a
composition, these approaches fail to capture variability dependencies between
the composition and partner services. Consequently, these approaches cannot
address the situation when a composite service is orchestrated from partner
services some of which are customizable. In this paper, we propose a feature-
based approach that is able to effectively model variability within and across
compositions. The approach is supported by a process development
methodology that enables the systematic reuse and management of variability.
We develop a prototype system supporting extended BPMN 2.0 to demonstrate
the feasibility of our approach.

Keywords: Process variability, service variability, variability management,
service composition, feature modeling, model mapping, Software Product Line
(SPL), Model Driven Engineering (MDE).

1 Introduction

Process-based service compositions are efficient approaches for developing
composite services and applications using process modeling techniques. The two de
facto standards for this purpose are BPMN (Business Process Modeling Notation) for
modeling purposes and BPEL (Business Process Execution Language) for execution
purposes. Generally, in both techniques, each composite service is described by a
process model which specifies the flow of activities (i.e. control flow), the interaction
between the process and partner services (i.e. message flow), and the way data is
moved throughout the process (i.e. data flow).

Due to the diversification and the personalization of service consumption, service
variability has become an important factor in the lifecycle of service development [1,
2]. Service variability is defined as the ability of a service/process to be efficiently
extended, changed, customized or configured for use in a particular context [3]. Such
variability can originate from a service provider wishing to provide different versions
of the same service for different market segments or with different pricing models, or

Modeling and Managing Variability in Process-Based Service Compositions 405

from service consumers wishing to customize a service to match their particular
business requirements.

Service variability brings about a new type of service, namely customizable
service, in service ecosystems [4]. A customizable service is a service whose runtime
customization by a consumer will result in a particular service variant matching the
consumer’s requirements [5-7]. For services with a large number of service variants,
the deployment of customizable services, instead of conventional services, will much
benefit service consumers. This is because there is disadvantage with either deploying
an all-in-one non-customizable service or deploying all service variants separately. In
the first case, the resulting non-customizable service has a large service description
most of which is not relevant to one particular consumer. In the second case, it is
difficult for service consumers to recognize the similarity and difference among those
service variants in order to select the most appropriate one [2].

Modeling and managing variability in customizable composite services are
challenging. There are two key concerns that need to be addressed [8]. Firstly, how to
model variation points and variants? Secondly, how to capture dependencies among
variabilities? Variability dependencies describe such relationships as the binding of
variants at one or several variation points requires or excludes the binding of variants
at other variation point(s). We identified in our previous work that, in the service
computing context, besides variability intra-dependencies which represent
dependencies within a service composition, there are variability inter-dependencies
which represent dependencies between the composition and its customizable partner
services [9]. Variability inter-dependencies reflect the situation when the runtime
resolution of variability in the composition requires the runtime resolution of
variability at partner services. And this process may also cause a ripple effect in the
service ecosystem since service composition is recursive.

In terms of variability management, Software Product Line (SPL) is a successful
paradigm that builds upon techniques for systematic identification and management
of variability [10]. Many related efforts have exploited concepts and techniques from
SPL in addressing variability in process-based service compositions, e.g. [11-14].
These approaches are able to capture variability and variability dependencies within
the control flow and the data flow of a process model. However, all these efforts fail
to capture variability inter-dependencies. Consequently, these approaches are not
capable of managing variability in such service compositions that are aggregated from
customizable partner services.

To address this problem, we propose a comprehensive approach to modeling and
managing variability in process-based service compositions. In particular, we extend
the BPMN 2.0 metamodel to incorporate variation points and variants with respect to
not only control flow and data flow but also message flow. We then extend a feature
modeling technique from SPL to capture variability dependencies within and across
service compositions. We also specify a process development methodology that
elaborates how to systematically model and manage variability at design time, as well
as instantiating variability at runtime. The methodology builds upon Model Driven
Engineering (MDE) techniques to automate large parts of its operations.

406 T. Nguyen, A. Colman, and J. Han

The structure of the paper is as follows. Section 2 presents a discussion of related
work. In section 3, we describe a motivating scenario, followed by the explanation of
techniques underpinning our research in section 4. Section 5 presents our approach to
modeling variability and variability dependencies. We describe an approach to
developing service compositions with managed variability in section 6. The prototype
system is described in section 7 before our conclusion of the paper in section 8.

2 Related Work

A number of works has been proposed for modeling and managing variability in
process-based service compositions [1, 2, 11-16]. In general, they can be classified
into two categories.

The first category consists of work that aims to extend BPEL [12, 13, 15]. In
particular, Chang [15] and VxBPEL [12] extend the XML schema for BPEL in order
to incorporate information about variation points and variants into the business
process definition. In contrast, Mietzner [13] uses a separate variability descriptor to
define the location of variation points in the business process definition and possible
variants. In general, the advantage of extending BPEL is that an executable process
variant can be automatically derived by resolving all variation points. However,
VxBPEL and Chang's work suffer from tangled and scattered business process
definitions. Mietzner's work overcomes this problem by using a separate variability
description. Nevertheless, since variability is modeled at the implementation level,
these approaches become very complex due to the large number of variation points.

Work in the second category focuses on extending process models described using
BPMN or UML Activity diagrams [1, 2, 11, 14, 16]. The general approach for these
efforts is to extend the process metamodel so that variation points and variants can be
explicitly introduced. Since variability is modeled at the architectural level, the
number of variation points is much smaller than the ones at the process definition
level. Therefore, these approaches overcome the complexity issue of the ones in the
first category. However, except [14, 16], all other works only focus on variation
points and variants with respect to the control flow of process models. Works in [14,
16] takes a step further to consider the data flow as well. Consequently, only these
works can support the derivation of executable process variants.

Although variability intra-dependencies have been considered in most of the
related work, e.g. [2, 12], the major issue with work in both categories is that they are
not able to capture variability inter-dependencies. All work builds on an assumption
that all partner services are not customizable. Consequently, those approaches are not
applicable to composite services orchestrated from partner services some of which are
customizable.

3 Motivating Scenario

A Content Management System (CMS) Provider wants to develop a composite
service which allows various Content Providers to post news entries (cf. Figure 1).

Modeling and Managing Variability in Process-Based Service Compositions 407

Content
Provider

CMS
Provider

Content
Retriever

Content
Checker

Content
Approver

Submit Content Retrieve
Content

Check Content

Approve
Content

Notify Status

Submission Result

Service Client Customizable Service Non-customizable Service

Fig. 1. A news posting composite service

Due to different requirements from Content Providers, the CMS Provider will support
the following variability in its business process:

• Content Providers may choose to directly send news entries or specify an
external URL resource as the content source.

• Content Providers may also opt to receive posting status update from the
CMS Provider.

There are many services available that the CMS Provider may reuse in implementing
its process. For example, there are services for checking the correctness of the news
entry (e.g. grammar check) and there are services for approving the news submission
(e.g. checking the publishing policies). In this case study, the CMS Provider will
utilize two of those services, namely ContentChecker service and ContentApprover
service. While the ContentApprover service is a non-customizable service accepting
the news content and returning the approving result, the ContentChecker service is a
customizable service. It has two service variants. The first service variant accepts the
news content, performs the checking and then returns the result. The second variant
accepts a URL and invokes the ContentRetriever service for retrieving the content
before performing the checking. The utilization of this ContentChecker service frees
the CMS Provider from the overhead of retrieving the content in a case a URL is
provided from a Content Provider. Consequently, variability in the CMS Provider will
depend on the variability in the ContentChecker.

4 Underpinnings of Our Approach

In this section, we explain the techniques that underpin our approach. In particular,
we briefly describe feature modeling techniques from SPL, our solution for describing
variability of customizable services based on the concept of features, and how the
service variability description is utilized to support runtime service customization.

408 T. Nguyen, A. Colman, and J. Han

4.1 Feature Modeling Technique

Feature modeling are techniques in SPL for capturing the commonalities and
differences among a family of software products [17]. Features are visible
characteristics that are used to differentiate one family member from others. A feature
model is represented as a hierarchically arranged set of features with composed-by
relationship between a parent feature and its child features. In addition, there are
cross-tree constraints that typically describe inclusion or mutual exclusion
relationships. A feature model is an efficient abstraction of variability and provides an
effective means for communicating variability between different stakeholders. In
addition, it helps to drive the design and the development of variability throughout all
stages of the product line development.

News Posting Web Service

Posting Resource Status Update

Direct External Resource

[1-1]

[1-1] [0-1]

[a-b]

Feature
Group

CardinalityComposed-of
relationship

Feature
Legend

ContentCheckingService

ContentBasedChecking URLBasedChecking

[1-1]

a) News posting composite service b) ContentChecker service

Fig. 2. Examples of feature model

While there are many manifestations of feature modeling techniques, e.g. [18-20],
in our work we exploit Czarnecki’s cardinality-based feature modeling technique
[21]. The main reason for this choice is that the concepts of feature cardinality and
group cardinality well suit the needs of service customization. A feature cardinality,
associated with a feature, determines the lower bound and the upper bound of the
number of the feature that can be part of a product. A group cardinality, associated
with a parent feature of a group of features, limits the number of child features that
can be part of a product when the parent feature is selected.

Figure 2a demonstrates a feature model representing variability of the news posting
composite service. Based on their cardinality, “Posting Resource” is a mandatory
feature, while “Status Update” is an optional feature. In addition, “Posting
Resource” is a group of alternative features. It means that, all consumers need
“Posting Resource” capability, which can be either “Direct” or “External
Resource”, while they can opt to have “Status Update” capability when consuming
the service. Similarly, Figure 2b demonstrates the feature model for the
ContentChecker service. Its variability is represented as a group of two alternative
features, “ContentBasedChecking” and “URLBasedChecking”.

Modeling and Managing Variability in Process-Based Service Compositions 409

4.2 Feature-Based Service Variability Description

In order to describe variability of a services and facilitate service customization, we
define a new language, namely WSVL (Web Service Variability description Language),
based on the concept of features. Due to space limitation, we briefly describe the
language through the example of the ContentChecker service without going into the
detail of motivations and requirements behind it. The language (cf. Figure 3) has three
parts. Firstly, the ServiceDescription part describes the capability of the service and
represents the superset of the capability of all service variants. In this scenario, the
service description consists of two operations, ContentBasedCheck and
URLBasedCheck, using different message formats for realizing two service variants.
The service description is only expressed at the abstract level for modeling purposes.
Once a service variant is derived, its complete service description, described in WSDL,
will be generated. Secondly, the FeatureDescription part describes the variability of the
service in term of features. It is actually the serialization of the feature model for the
corresponding service (cf. Figure 2b). And thirdly, the MappingDescription part
describes the mapping from variant features in the feature description part to variable
capability in the service description part as a set of links. For example, the first link
shows the mapping between the feature “ContentBasedChecking” and the
corresponding operation, “ContentBasedCheck”. In general, a link represents 1-to-m
mapping between a feature and service capabilities. The service variability description
provides information on what capability of the corresponding service is available in a
service variant given a feature configuration1.

<servicevariabilitydescription>
<serviceDescription>

<message name="ContentBasedCheckRequest"/>
<message name="ContentBasedCheckResponse"/>
………………
<interface name="ContentCheckingService">
<portType name="ContentCheckingPortType">
<operation name="ContentBasedCheck">

<input name="ContentBasedCheckRequest" message="//@serviceDescription/@message.0"/>
<output name="ContentBasedCheckResponse" message="//@serviceDescription/@message.1"/>

</operation>
<operation name="URLBasedCheck“/>

</portType>
</interface>

</serviceDescription>
<featureDescription>

<featureHierarchy>
<feature name="ContentCheckingService">
<featureGroup min="1" max="1">

<feature name="ContentBasedChecking"/>
<feature name="URLBasedChecking"/>

</featureGroup>
</feature>

</featureHierarchy>
</featureDescription>
<mappingInfo>

<link name="ContentBasedCheck">
<featureRef ref="//@featureDescription/@featureHierarchy/@feature.0/@featureGroup/@feature.0"

name="ContentBasedChecking"/>
<serviceElementRef ref="//@serviceDescription/@interface.0/@portType.0/@operation.0"

name="ContentBasedCheck"/>
</link>
<link name="URLBasedCheck“/>

</mappingInfo>
</serviceVariabilityDescription>

Service
Description

Feature
Description

Mapping
Description

Fig. 3. Service variability description for the ContentChecker service

1 A feature configuration is a specialized form of a feature model in which all variability is

resolved, i.e. all variant features are selected or removed.

410 T. Nguyen, A. Colman, and J. Han

4.3 Feature-Based Service Customization Framework

In previous work, we developed a feature-based service customization framework that
allows service consumers to customize a service at the business level [5]. In
particular, based on the service variability description, service consumers can select
features they need and unselect features they do not need. Feature selection has to
conform to feature cardinality, group cardinality and constraints described in the
feature model to generate a valid feature configuration. The feature configuration is
then communicated back to the service provider so that the service provider can
generate a service interface description and a service implementation bound to the
service interface description. This service variant is then dynamically deployed to an
endpoint so that the service consumer can invoke. In previous work, we have focused
on how to model, manage and instantiate variability at the service interface level. The
work in this paper complements that work in addressing the issues of how to model
and manage variability in the service implementation (i.e. business process), and then
generating a variant based on a particular feature configuration. In addition, the work
in this paper also exploits that technique for customizing partner services.

5 Modeling Variability in Process-Based Service Compositions

As explained, variation points and variants need to be explicitly introduced into
process models. To this end, there are two requirements for our approach. Firstly, the
complexity in modeling variability needs to be alleviated. Modeling variability in
business processes is challenging because of the existence of a large number of
variation points and variants. Therefore, it is important to reduce the number of
variation points and variants that need to be considered. Secondly, the approach needs
to support variability instantiation, i.e. the runtime derivation of executable process
variants for customization purposes.

a) Variation points and variants b) PartnerTask and ConsumerTask

Fig. 4. Process metamodel extension

Modeling and Managing Variability in Process-Based Service Compositions 411

In order to satisfy these two requirements, we have decided to model and manage
variability within process models described by BPMN. The advantage of using
BPMN or UML Activity diagram over BPEL is that the number of variation points
and variants within a BPEL definition is much more than the ones within a BPMN or
UML model. And we selected BPMN over UML Activity because of its wide
acceptance and well support. At the time we developed our approach, BPMN 2.0 has
been released and it provided a sufficient metamodel for modeling process-based
service compositions. However, there is no significant difference between the two.
One can easily apply the solution we present here over to UML Activity diagrams and
achieve similar results. In addition, we exploit MDE techniques in our approach to
automate large parts of the solution and facilitate not only variability management but
also variability instantiation.

5.1 Extending BPMN for Representing Variation Points and Variants

Our key idea for introducing variability modeling capability into process modeling is
to define a general metamodel for variation points and variants, then weave this
metamodel into the BPMN 2.0 process metamodel to make it capable of supporting
variability. The extension will focus on all three aspects of service compositions:
control flow, data flow, and message flow. In addition to modeling variability in the
control flow and data flow as done in related work, our approach takes a further step
to capture variability in the message flow as well. Hence, the approach is capable of
not only supporting executable process variant derivation, but also capturing
variability inter-dependencies. The result of this is shown in Figure 4.

The general variability metamodel is composed of two elements: VariationPoint
and Variant. A VariationPoint represents any place in the process model where
variability can occur. Each VariationPoint is associated with a set of Variants from
which one or several will be bound to VariationPoint when the variability is resolved.
The attributes minCardinality and maxCardinality define how many Variants should
be bound to one VariationPoint. These attributes have the same semantics as the
cardinality concept adopted in the feature modeling technique.

Variation point in the control flow can be interpreted as any location in the process
model at which different execution paths can take place. Therefore, we introduce new
FlowNode elements, namely ControlFlowVP, and its two direct inheritances, namely
ControlFlowVPStart and ControlFlowVPEnd, for representing starting point and end
point of each variability. Variants in the control flow can be arbitrary process
fragments. Therefore, ControlFlowVariant is inherited from FlowElementContainer.

Variability in data flow can be considered as different ways for storing data (i.e.
DataObject) or different ways for moving data around (i.e. DataAssociation). Since
variants in data flow are usually alternative variants, we model both variation points
and variants as inherited elements from the same element type. That is, for variability
of DataObject, we define both variation points, i.e. DataObjectVP, and variants, i.e.
DataObjectVariant, as inherited elements from DataObject. A similar approach
applies with DataAssociation, DataAssociationVP, and DataAssociationVariant.

412 T. Nguyen, A. Colman, and J. Han

Fig. 5. Mapping metamodel

Variability in message flow can be seen as alternative Conversations between two
parties, i.e. the process and a partner service (or a consumer). Therefore, in a similar
fashion to modeling variability in data flow, we model both variation points, i.e.
ConversationVP, and variants, i.e. ConversationVariant, as inherited elements from
Conversation. In addition, we introduce new elements, namely PartnerTask and
AbstractPartnerTask (cf. Figure 4b). A PartnerTask models a task performed by a
partner service. An AbstractPartnerTask models a set of alternative PartnerTasks and
it represents a variable capability provided by a partner service. The introduction of
PartnerTask and AbstractPartnerTask facilitates the modeling of variability inter-
dependencies since variability inter-dependencies will be the mapping between these
elements and variant features of partner services, namely variant partner features. In
a similar fashion, we introduce ConsumerTask and AbstractConsumerTask for the
interaction between the business process and its consumers. These extended elements
facilitate the generation of the service variability description for this service
composition.

5.2 Modeling Variability Intra-dependencies

Variability intra-dependencies represent dependencies among variation points and
variants within a process model. Therefore, the intuitive way for modeling variability
intra-dependencies is to model variability constraints as elements of the process
models. However, the disadvantage of this approach is twofold. Firstly, the resulting
process model will be swamped with dependencies information and become too
complex. Secondly, since variability intra-dependencies are embedded in process
model definitions, it becomes harder to identify conflicts in such dependencies [22].

In fact, variability in the process model is the realization of variability in the
feature model of the service composition. In other words, the identification and
modeling of variation points and variant in a process are driven by variant features in
the feature model. Variability intra-dependencies among different variants come from
the fact that those variants realize variant features. Therefore, we exploit the model
mapping technique for relating variation points and variants in the process model with
variant features in the feature model. We refer to this type of mapping model as
FeatureTask mapping model. Due to mentioned realization relationships, those

Modeling and Managing Variability in Process-Based Service Compositions 413

mappings along with feature constraints in the feature model account for all
variability intra-dependencies in the process model. In addition, this approach has the
following advantages in comparison with embedding constraints in the process
definition. On the one hand, it helps to separate variability constraint information
from the process model, thus simplifies the definition. On the other hand, the
validation of process configuration is led to the validation of a feature configuration,
which is well-studied in SPL [23].

The mapping metamodel for this purpose is shown in Figure 5. A MappingModel
relates variant features in a feature model, referenced by FeatureModelRef, with
variants in a process model, referenced by ProcessModelRef. It is composed of Links
and each Link consists of a Feature and at least one ProcessElement. Feature and
ProcessElement reference elements in the feature model and the process model
respectively. In this way, each Link enables a feature to be mapped to one or several
variant process elements in the process model.

5.3 Modeling Variability Inter-dependencies

Variability inter-dependencies represent dependencies between variability in the
process model and variability in partner services. Since variability of partner services
can be described using feature models (cf. Figure 3), in a similar fashion as modeling
variability intra-dependencies, we exploit the model mapping technique to model
these dependencies. The main difference between the mapping model for variability
intra-dependencies and the mapping model for variability inter-dependencies is the
origin of variant features. While variability intra-dependencies is modeled with
respect to variant features in the feature model of the service composition, variability
inter-dependencies is modeled with respect to variant partner features.

In particular, a mapping model for variability inter-dependencies captures the
correspondence between PartnerTasks within the process model and variant partner
features. We refer to this mapping model as PartnerTaskFeature mapping model. It
should be noted that between PartnerTasks and variant partner features, there does
not exist a “natural” realization relationship as the ones for variability intra-
dependencies. If the identification and modeling of PartnerTasks and
AbstractPartnerTasks are driven by the variant partner features, such realization
relationships establish. Otherwise, the identification and modeling of PartnerTasks
and AbstractPartnerTasks are independent of variant partner features, and realization
relationships may not exist. In this way, all variability inter-dependencies exist by
chance. Therefore, high inter-dependency between the service composition and
partner services represents high chance of reuse of service variability from partner
services toward the service composition. In later section, we describe a process
development methodology that systematically increases the chance of reuse of service
variability.

Since variability in the feature model of the business process is mapped to
variability in the process model, i.e. FeatureTask mapping model, and a part of
variability in the process model, i.e. PartnerTasks, is mapped to variability in partner
feature models, i.e. PartnerTaskFeature mapping model, it is possible to generate the

414 T. Nguyen, A. Colman, and J. Han

mapping from variant features in the feature model of the service composition to
variant partner features. This mapping model conforms to a similar mapping
metamodel as Figure 5 and allows us to capture variability inter-dependencies at the
highest level of abstraction, i.e. the feature level. We refer to this type of mapping
model as FeatureFeature mapping model. In summary, there are two types of feature
mapping models for representing variability inter-dependencies: PartnerTaskFeature
and FeatureFeature mapping models.

6 A Bottom-Up Process Development Methodology

In this section, we describe a methodology for developing service compositions with
systematic management and reuse of variability (cf. Figure 6). One key feature of the
methodology is that, it increases the chance of reusing service variability provided by
partner services. To this end, variability information from partner services is explicitly
utilized in driving the identification and modeling of variability within the business
process.

6.1 Overview

In the first activity, the capability of the service composition is modeled using the
feature modeling technique. The result of this activity is a feature model capturing
commonalities and variabilities of the composite service to be. Given a model of
desired features, the next activity will be the selection of partner services that can be
used for the service composition. There are two types of services that will be selected:
(conventional) non-customizable partner services and customizable partner services.
The explicit selection of customizable partner services helps to reduce overhead of
addressing variability within the service composition. Customizable partner services
come with service variability descriptions.

Feature
Modeling

Service
Selection

Process
Modeling

Dependency
Modeling

Variant
Derivation

Variability
Description
Generation

Feature
Model

PartnerTask
Repository

PartnerTask
Feature
Mapping

Model

Process
model with
variability

FeatureTask
Mapping

Model

FeatureFeature
Mapping

Model

Process
Variant

Service
Variability

Description

Activity Sequence Flow Data Flow Artifact

Fig. 6. A methodology for developing process-based service compositions

During the second activity, both non-customizable partner services and
customizable partner services are transformed into a set of partner tasks that will be
selectable for modeling the process. A partner task is an operation provided by a
partner service that is responsible for an atomic message flow between the partner

Modeling and Managing Variability in Process-Based Service Compositions 415

service and the service composition. While non-customizable partner services are
transformed to a set of non-customizable partner tasks, results of transforming
customizable partner services are sets of alternative partner tasks. For each set of
alternative partner tasks, we also generate an abstract partner task representing all
partner tasks in the set. Since the variability of customizable partner services are
expressed as feature models with mapping to customizable capabilities, we also
derive mapping models that represent the correspondence between alternative partner
tasks and variant partner features, i.e. PartnerTaskFeature mapping models.
Consequently, results of the service selection activity are a repository of (alternative)
partner tasks and PartnerTaskFeature mapping models. It should be noted that in this
methodology, the PartnerTaskFeature mapping model is intentionally generated
before modeling the process.

In the third activity, the business process for the service composition is modeled
using the extended metamodel. The identification of variation points and variants are
based on the feature model identified in the first activity. Tasks from the partner task
repository will be used to model the message flow between the service composition
and partner services. The selection of (alternative) partner tasks and abstract partner
tasks from the partner task repository will not only facilitate the reuse of variability
provided by partner services in the process modeling, but also enable the use of
already generated PartnerTaskFeature mapping model in capturing variability inter-
dependencies. The result of this activity is a process model with variability.

In the next activity, the model mapping technique is exploited to first model
variability intra-dependencies. That is, all variation points and variants in a process
model are mapped to variant features in the feature model of the business process.
The result is a FeatureTask mapping model. Since the PartnerTaskFeature mapping
model is already produced, model transformation techniques are utilized to
automatically generate FeatureFeature mapping model as mentioned.

The resulting software artifacts of the first four activities will be used in two
different ways. Firstly, they are used for the derivation of process variants given a
particular feature configuration as the result of a customization (i.e. Variant
Derivation activity). Secondly, those software artifacts are used to generate the
variability description of the resulting service composition (i.e. Variability
Description Generation activity) which can contribute to other service compositions.
Due to space limitation, we just describe the first usage in the following subsection.

6.2 Deriving Executable Process Variants

While the modeling of variability and variability dependencies is a design time
process, the derivation of an executable process variant usually happens at runtime.
This is triggered when the service composition is customized by consumers or the
service provider itself. As explained, the customization is performed using the feature
model of the service composition (cf. section 4.3) and generally requires the runtime
customization of respective partner services.

Given a feature configuration of the composition, we exploit model transformation
techniques as follows to derive a particular executable process variant:

416 T. Nguyen, A. Colman, and J. Han

1. The FeatureTask mapping model is referenced for specializing the process model.
The process model is actually a model template which is the superset of all
process variants. Therefore, those process elements, which are mapped to selected
features, are maintained while those process elements, which are mapped to
removed features, are purged from the process model. The result of this task is an
abstract process variant which does not have variability but still contains partner
tasks and consumer tasks. The detail of specializing a model template can be
found in our previous work [5].

2. The FeatureFeature mapping model is referenced for generating a feature
configuration for each customizable partner service. These feature configurations
are used to customize corresponding partner services and produce particular
partner service variants.

3. From the abstract process variant and partner service variants, an executable
process variant is generated. We presume the use of BPEL for the executable
process. It is important to note that the existence of partner tasks in the abstract
process variant will help to create partner links and accurate service invocation
between the process variant and partner service variants.

4. Finally, based on the information of consumer tasks in the abstract process variant,
the service interface description of this process variant is generated.

At the end of this activity, a fully executable process variant that matches the given
feature configuration is generated along with a service interface description. The
process variant will invoke a set of automatically customized partner service variants.

7 Prototype Implementation

We have developed a prototype system for validating the feasibility of our approach.
Key components are an Eclipse plugin for modeling business processes along with
their variability (cf. Figure 7) and a model mapping tool for capturing all types of

Fig. 7. A screenshot of modeling business processes with variability

Modeling and Managing Variability in Process-Based Service Compositions 417

variability dependencies (cf. Figure 8). Using our business process modeling tool,
we successfully modeled the case study with all possible variation points and
variants. This case study, despite of its simplicity, cannot be modeled by any
approach in related work because all those approaches do not cater for the
variability of partner services. In the following paragraphs, we introduce these key
components.

Figure 7 is a screenshot of our process modeling tool. From the BPMN 2.0
metamodel, we extracted a subset that contains all model elements relevant to service
compositions. We then introduced our process metamodel extension into the extracted
metamodel. Our Eclipse plugin enables the development of any business process
conforming to the extended metamodel. Modelers can select existing and new process
elements from the right Palette tool. The screenshot displays the process model for the
case study with three variation points: one variation point in the control flow, namely
VPS1 and VPE1 for ControlFlowVPStart and ControlFlowVPEnd, one variation point
in the data flow, namely DataObjectVP1, and one variation point in the message flow,
namely ConversationVP1. ConversationVP1 is associated with two alternative
variants, namely ConversationVariant1_1 and ConversationVariant1_2. While
ConversationVariant1_1 represents the message flow between the “CheckContent”
task and the “ContentBasedCheck” partner task, ConversationVariant1_2 represents
the message flow between the same “CheckContent” task and the “URLBasedCheck”
partner task. “ContentBasedCheck” and “URLBasedCheck” are alternative partner
tasks associated with the same AbstractPartnerTask, namely “ContentCheck”. These
PartnerTasks, AbstractPartnerTask, as well as the PartnerTaskFeature mapping
model are generated from the service variability description of the ContentChecker
service (cf. Figure 3). Modeling variability in this way enables the capturing of
variability inter-dependencies between the CMS Provider and the ContentChecker
service.

Figure 8 is a screenshot depicting how to capture variability intra-dependencies,
i.e. FeatureTask mapping model, using our model mapping tool. In the screenshot, the
feature model is presented in the left panel, while the process model is presented in
the right panel and the middle panel presents the mapping model. Three mapping
links are created in the screenshot. The first link associates the “Direct” feature with
one DataObjectVariant and one ConversationVariant. Similarly, the second link
associates the “External Resource” feature also with one DataObjectVariant and one
ConversationVariant. The third link associates the “Status Update” feature with one
ControlFlowVP. The creation of model elements is based on the context menus as
shown in Figure 8. This component is implemented as an extension to Atlas Model
Weaver (AMW) [24]. We then perform model transformations using Atlas
Tranformation Language (ATL) [25] to derive FeatureFeature mapping model. As
explained, PartnerTaskFeature mapping model and FeatureFeature mapping model
account for variability inter-dependencies.

418 T. Nguyen, A. Colman, and J. Han

FEATURE MODEL MAPPING MODEL PROCESS MODEL

Specify ElementRef

FeatureRef for
Feature

ProcessElementRef for
ProcessElement

Link

Fig. 8. A screenshot of a mapping model between a feature model and a process model

8 Conclusion

In this paper, we have proposed a feature-oriented approach to modeling and
managing variability in process-based service compositions. We have extended the
BPMN 2.0 metamodel for introducing variation points and variants in all three aspects
of service compositions, i.e. control flow, data flow, and message flow. These
extensions enable not only comprehensive modeling of variability, but also the
generation of executable process variants as the result of a service customization. In
addition, we have introduced a feature mapping technique for capturing not only
variability intra-dependencies among variants within a process model, but also
variability inter-dependencies between variants in a process model and variants in
partner services. Consequently, our approach is able to address the situation when a
customizable composition is orchestrated using partner services some of which are
customizable. This is not achievable using existing approaches.

We have also described a methodology that facilitates the development of business
processes conforming to the extended process metamodel with systematic variability
management. The key advantage of the methodology is the systematic exploitation of
variabilities provided by partner services to increase the chance of reusing variability.
The methodology exploits MDE techniques for automating most parts, especially the
generation of executable process variants. In addition, we present a prototype system
for demonstrating the feasibility of our approach.

As future work, we plan to develop techniques for the generation of service
variability description from the process model leading to a framework for the
recursive delivery of customizable services in service ecosystems.

Acknowledgments. This research was carried out as part of the activities of, and
funded by, the Smart Services Cooperative Research Centre (CRC) through the
Australian Government’s CRC Programme (Department of Innovation, Industry,
Science and Research).

Modeling and Managing Variability in Process-Based Service Compositions 419

References

1. Sun, C.-A., et al.: Modeling and managing the variability of Web service-based systems.
Syst. & Softw. 83(3), 502–516 (2009)

2. Hallerbach, A., et al.: Capturing variability in business process models: the Provop
approach. Softw. Maint. & Evol.: Res. & Pract. 22(6-7), 519–546 (2010)

3. Svahnberg, M., et al.: A taxonomy of variability realization techniques: Research Articles.
Softw. Pract. Exper. 35(8), 705–754 (2005)

4. Barros, A.P., et al.: The Rise of Web Service Ecosystems. IT Prof. 8(5), 31–37 (2006)
5. Nguyen, T., et al.: A Feature-Oriented Approach for Web Service Customization. In: IEEE

Int. Conf. on Web Services, pp. 393–400 (2010)
6. Stollberg, M., Muth, M.: Service Customization by Variability Modeling. In: Dan, A.,

Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 425–434.
Springer, Heidelberg (2010)

7. Liang, H., et al.: A Policy Framework for Collaborative Web Service Customization. In:
Proc. of the 2nd IEEE Int. Sym. on Service-Oriented System Engineering (2006)

8. Schmid, K., et al.: A customizable approach to full lifecycle variability management.
Science of Computer Programming 53(3), 259–284 (2004)

9. Nguyen, T., et al.: Managing service variability: state of the art and open issues. In: Proc.
of the 5th Int. Workshop on Variability Modeling of Software-Intensive Systems (2011)

10. Pohl, K., et al.: Software Product Line Engineering: Foundations, Principles and
Techniques. Springer-Verlag New York, Inc. (2005)

11. Hadaytullah, et al.: Using Model Customization for Variability Management in Service
Compositions. In: IEEE Int. Conf. on Web Services 2009 (2009)

12. Koning, M., et al.: VxBPEL: Supporting variability for Web services in BPEL.
Information and Software Technology 51(2), 258–269 (2009)

13. Mietzner, R., et al.: Generation of BPEL Customization Processes for SaaS Applications
from Variability Descriptors. In: IEEE Int. Conf. on Services Computing 2008 (2008)

14. Razavian, M., et al.: Modeling Variability in Business Process Models Using UML. In: 5th
Int. Conf. on Information Technology: New Generations 2008 (2008)

15. Chang, S.H., et al.: A Variability Modeling Method for Adaptable Services in Service-
Oriented Computing. In: Proc. of the 11th Int. Conf. on Software Product Line (2007)

16. Schnieders, A., et al.: Variability Mechanisms in E-Business Process Families. In: Proc. of
Int. Conf. on Business Information Systems, pp. 583–601 (2006)

17. Kang, K.C., et al.: Feature-Oriented Domain Analysis (FODA) Feasibility Study, in
Technical Report, Softw. Eng. Inst., CMU. p. 161 pages (November 1990)

18. Kang, K.C., et al.: FORM: A feature-oriented reuse method with domain-specific reference
architectures. Ann. Softw. Eng. 5, 143–168 (1998)

19. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink, H., Pohl,
K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

20. Griss, M.L., et al.: Integrating Feature Modeling with the RSEB. In: Proc. of the 5th Int.
Conf. on Software Reuse (1998)

21. Czarnecki, K., et al.: Formalizing cardinality-based feature models and their specialization.
Software Process: Improvement and Practice 10(1), 7–29 (2005)

22. Sinnema, M., Deelstra, S., Nijhuis, J., Dannenberg, R.B.: COVAMOF: A Framework for
Modeling Variability in Software Product Families. In: Nord, R.L. (ed.) SPLC 2004.
LNCS, vol. 3154, pp. 197–213. Springer, Heidelberg (2004)

420 T. Nguyen, A. Colman, and J. Han

23. Benavides, D., et al.: Automated analysis of feature models 20 years later: A literature
review. Information Systems 35(6), 615–636 (2010)

24. Didonet, M., et al.: Weaving Models with the Eclipse AMW plugin. In: Proceedings of
Eclipse Modeling Symposium, Eclipse Summit Europe (2006)

25. Jouault, F., et al.: ATL: A model transformation tool. Science of Computer
Programming 72(1-2), 31–39 (2008)

	Modeling and Managing Variability in Process-Based Service Compositions
	Introduction
	Related Work
	Motivating Scenario
	Underpinnings of Our Approach
	Feature Modeling Technique
	Feature-Based Service Variability Description
	Feature-Based Service Customization Framework

	Modeling Variability in Process-Based Service Compositions
	Extending BPMN for Representing Variation Points and Variants
	Modeling Variability Intra-dependencies
	Modeling Variability Inter-dependencies

	A Bottom-Up Process Development Methodology
	Overview
	Deriving Executable Process Variants

	Prototype Implementation
	Conclusion
	References

