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Abstract. Portugal has the highest density of wildfire ignitions among southern European countries. The ability to
predict the spatial patterns of ignitions constitutes an important tool for managers, helping to improve the effectiveness of
fire prevention, detection and firefighting resources allocation. In this study, we analyzed 127 490 ignitions that occurred in
Portugal during a 5-year period. We used logistic regression models to predict the likelihood of ignition occurrence, using
a set of potentially explanatory variables, and produced an ignition risk map for the Portuguese mainland. Results show
that population density, human accessibility, land cover and elevation are important determinants of spatial distribution
of fire ignitions. In this paper, we demonstrate that it is possible to predict the spatial patterns of ignitions at the national
level with good accuracy and using a small number of easily obtainable variables, which can be useful in decision-making
for wildfire management.
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Introduction

Wildfires constitute a serious concern in many regions of the
Mediterranean Basin, representing important social, environ-
mental and economic impacts. Statistics show that both the
burned area and number of fire ignitions increased in Portugal
during the last decades, and in the period 2000–05, the average
density of ignitions was three times higher in Portugal than in
Spain, France, Italy and Greece combined (ENOC 2007[AQ6]).
Since 2000, Portugal has registered an average of ∼28 500 fire
ignitions every year (DGRF 2006).The increasing number of fire
ignitions occurs despite more resources being allocated to vigi-
lance, firefighting and prevention, including management plans,
public education campaigns and the implementation of more
restrictive legislation concerning human activities susceptible
of causing wildfires.

The importance of knowing the spatial patterns of fire igni-
tion is widely recognized, and the ignition risk (i.e. the chance of
a fire starting as determined by the presence and activity of any
causative agent, also defined as ‘fire risk’; FAO 1986; NWCG
2006) is an essential element in analyzing and assessing fire dan-
ger (e.g. Johnson and Miyanishi 2001; Vasconcelos et al. 2001;
Chuvieco et al. 2003; Bonazountas et al. 2005; Finney 2005;
Roloff et al. 2005; Vasilakos et al. 2007). However, there are
still several fire prevention plans that only consider the factors
influencing fire spread and suppression difficulty (fuel, weather,
topography, etc.).Although the high number of wildfire ignitions
in Portugal can constitute a problem in terms of fire detection
and firefighting resources dispersion, very few studies have con-
centrated on trying to characterize and understand the factors
influencing their spatial occurrence and their causes. Until now,

the official fire danger estimation systems and cartography being
used gave little or no attention to specifically predicting the
likelihood of a fire starting (IGP 2004a; Carreiras and Pereira
2006), which could be an important contribution to improving
the predictive ability of these systems.

Although lightning is the primary cause of fire in several
regions of the world (e.g. Rorig and Ferguson 1999), in other
regions, including southern Europe, most contemporary wild-
fires are of human origin (e.g. Cardille et al. 2001; DGRF 2006;
MMA 2007). For example, in Portugal and Spain, ∼97% of all
investigated wildfires were human-caused (DGRF 2006; MMA
2007). A recent official report from the Portuguese Forest Ser-
vices (DGRF 2006) shows that among the fires with known
causes that occurred between 2000 and 2005 (∼3% of all fires),
49% were intentionally caused (arson), while 37% were due to
negligence and 11% were accidentally caused.

Previous studies identified numerous factors influencing
the spatial patterns of fire ignitions (Chou 1992; Vega-Garcia
et al. 1996; Cardille et al. 2001; Cardille and Ventura 2001;
Vasconcelos et al. 2001; Mercer and Prestemon 2005; Genton
et al. 2006; Nunes and Duarte 2006; Catry et al. 2007a; Loboda
and Csiszar 2007; Romero-Calcerrada et al. 2008). However, the
effects of different factors on fire occurrence can vary among
ecosystems and across spatial and temporal scales (e.g. Badia-
Perpinyã and Pallares-Barbera 2006; Yang et al. 2007). Based
on previous knowledge, we concentrated our analysis on factors
related to human presence and activity, selecting a small group
of easily obtainable variables that could potentially explain the
spatial patterns of fire ignition in Portugal, namely: population
density, distance to roads, land cover type and elevation. Our
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Fig. 1. General location of the Portuguese mainland (the study area) and country map (the darker the color, the higher the elevation[AQ2]).

general hypothesis was that the spatial distribution of ignitions
is mainly determined by these factors. More specifically, we
hypothesized that the areas with higher population density and
closer to roads should have a higher probability of ignition (e.g.
Cardille et al. 2001), because most fires in Portugal are human-
caused and roads are major determinants of human access. Land
cover was also hypothesized to be a determinant factor causing
ignitions because different kinds of human activities (land uses)
lead to different levels of risk, like those implicating a greater
use of fire (e.g. traditional burning to eliminate agricultural
residues), and because different land covers also have different
fuel characteristics (type, load, moisture, flammability), which
can also be a determinant for fire ignition (e.g.Yang et al. 2007).
We also hypothesized that elevation could be positively related
to ignitions because there are some human activities in moun-
tain regions, such as pastoralism, which are known to cause
frequent burns (renovation of pastures for livestock; DGF 2003),
and lightning-caused ignitions also seem to be more common at
higher elevations (e.g. Vazquez and Moreno 1998).

In the present paper, we aimed to build a parsimonious model
to predict the spatial occurrence of fire ignitions in Portugal. We
used a database including a layer with the location of 127 490
fire events that occurred during a 5-year period and a set of
layers corresponding to potentially explanatory variables. We
used a training subset to develop predictive models using logistic
regression methods, and used a validation subset to evaluate the
model’s performance. Finally, we used one selected model and
geographic information systems (GIS) techniques to produce an
ignition risk map for the entire Portuguese mainland.

Methods

Study area

The study area constitutes the entire Portuguese mainland, which
covers ∼90 000 km2 in southern Europe (Fig. 1). Most of the

country is included in the Mediterranean biogeographic region
and there is a transition to the Atlantic region in the north. Mean
annual temperatures range from ∼18◦C in the south to 7◦C at
higher elevations in the north, and annual precipitation ranges
from ∼400 to 2800 mm (IA 2003).The elevation ranges from sea
level to 2000 m. Approximately 48% of the country area is used
for agriculture, while forests and shrublands cover ∼27 and 19%
respectively (DGF 2001). The population is estimated to be ∼10
million inhabitants, more concentrated in the north and centre
coastal areas (INE 2003).

Model selection

Modeling fire occurrence has been carried out by several authors
in different countries, using different methods and complexity
levels, but logistic regression has been one of the most used
(Chou 1992; Vega-Garcia et al. 1995; Cardille et al. 2001;
Vasconcelos et al. 2001; Chuvieco et al. 2003; Preisler et al.
2004; Robin et al. 2006). Artificial neural networks (Vascon-
celos et al. 2001; Chuvieco et al. 2003; Vasilakos et al. 2007)
or classification and regression tree algorithms (Carreiras and
Pereira 2006) have also been used to model fire occurrence.
Neural networks are known to be more robust in modeling incon-
sistent or incomplete databases. However, as they are based on
the use of hidden layers, it is difficult to find out which are the
most significant variables affecting fire occurrence (Vasconcelos
et al. 2001; Chuvieco et al. 2003). In the present study, as
we were interested in determining the signs and significance
of the variables affecting fire occurrence, we opted to use the
logistic regression methods to model the ignition probability.
Logistic regression is a useful method to predict the presence or
absence of a given characteristic or event, based on the values
of a group of predictive or explaining variables (Hosmer and
Lemeshow 1989; Legendre and Legendre 1998). Additionally,
logistic regression is quite flexible, in the sense that it accepts a
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mixture of continuous and categorical variables, as well as non-
normally distributed ones (Hosmer and Lemeshow 1989; Leg-
endre and Legendre 1998). Its analysis is based on the following
function:

P = 1/(1 + e−z), (1)

where P is the probability of occurrence of the event, and z is
obtained from a linear combination of the independent variables
estimated from a maximum likelihood fitting:

z = b0 + b1x1 + b2x2 + . . . + bnxn,

where b0 is the constant and bn is the weighing factor of the
variable xn. The z values can be interpreted as a function of the
probability of occurrence, and P converts z values in a continuous
function (probability) that ranges from 0 to 1.

Fire ignition database

The dependent variable used in our analysis was the presence or
absence of wildfire ignitions. For presence, we used the official
wildfire database from the Portuguese Forest Services (DGRF),
which contained the geographical coordinates and other char-
acteristics (e.g. fire code, start and end date) of all fires that
occurred in Portugal between 2001 and 2005. This database
was then corrected, avoiding duplications, and removing all the
records with inconsistent data, which included ignitions with
erroneous coordinates or with missing dates. After these proce-
dures, from an initial number of 137 204 ignition points, 127 490
remained in the database for analysis. As we also needed to
account for non-ignition locations in order to model ignition risk,
191 235 points (1.5 times the number of ignition points) were
randomly generated within the whole country, and were consid-
ered as non-ignition points. Ignition and non-ignition points were
coded in a numeric binary format (1 – presence, 0 – absence),
constituting the fire ignition dependent variable.

Because an evaluation of model performance (predictive abil-
ity) based on the same dataset used to build the model will
probably result in an over-fit (Hosmer and Lemeshow 1989), we
prepared two separate datasets. From the fire ignition database,
we randomly selected 63 745 ignitions (50%) and 127 490 non-
ignition points to build the model, constituting the training
subset; we opted to use two times more non-ignition points
(average density 1.5 points km−2), to better represent the spatial
heterogeneity of the country, as it is expected that its variability
is larger than that found in the ignition sample. For the test-
ing phase, we reserved the remaining fire ignitions and an equal
number of non-ignition points, constituting the validation subset.

Geographic constraints

The majority of fire ignition coordinates in Portugal are asso-
ciated with the nearest toponymic location, meaning that they
do not have totally accurate coordinates, which is also a rela-
tively common problem in other countries (e.g. Amatulli et al.
2007). In order to have an idea of the geographic inaccuracies
associated with this location method, we used random points and
verified that 96% of them were located at less than 500 m from
the nearest toponimy; thus, we can estimate that 96% of fire igni-
tions would have a maximum error of 500 m, if they occurred
randomly in the territory. However, the real errors in the fire

database are probably considerably lower, because the majority
of ignitions occur in areas where the toponymic density is higher.
In fact, considering the seven districts with a higher number of
fire ignitions (comprising 77% of all occurrences), we estimated
that the majority of them (∼80%) would have a maximum error
of ∼250 m. Although we believe that these positional uncertain-
ties do not have a significant influence on our analysis, because
we are mainly dealing with geographic information at relatively
large spatial scales and with a very large sample, they influenced
some subsequent decisions concerning the spatial resolution of
cartographic layers (see next section).

Cartographic information

All the spatial analysis and cartographic production were made
using GIS, mainly ArcGIS (ESRI 2005). Because of the men-
tioned ignition location uncertainties, and in order to reduce
their potential influence on the analysis, the base raster maps
were produced with 250-m spatial resolution, as it is recognized
that an increment in cell size (i.e. generalization) can reduce
or eliminate location accuracy problems (e.g. Koutsias et al.
2004). Next, we describe the base cartography used and the pre-
processing steps performed to obtain the explanatory variable
maps.

(i) Population density – this map was obtained using a database
from the National Statistics Institute concerning the 2001
Census (INE 2003), which included the number of persons
present in each parish. This information was assigned to the
official parish map (IGP 2004b; vector format) and the pop-
ulation density (number of persons per km2) was calculated
for each of the 4050 parishes in the country mainland.

(ii) Land cover – we used the Corine Land Cover 2000 car-
tography at 1 : 100 000 scale (IA 2005; vector format). The
Portuguese cartography identifies 42 land cover classes,
which were grouped into six major classes according to
their main characteristics: (1) agriculture (agricultural areas;
covering ∼47.8% of the country surface); (2) forests (cov-
ering 27.3%); (3) shrublands (covering 18.8%; including
some natural grasslands); (4) urban–rural interspersed areas
(covering 2.7%; including urbanized and other artificially
modified areas); (5) sparsely vegetated areas (covering
1.9%); and (6) wetlands (covering 1.5%; also including
water bodies, covering 0.1%). Class 4 corresponds mainly to
areas where urban structures and other artificially modified
areas are interspersed with other land uses (mainly agricul-
ture); continuous urban fabric represents less than 6% of the
total area of this class.

(iii) Distance to roads – this map was obtained using the
Portuguese Itinerary Military Map in vector format at
1 : 500 000 scale (IGEOE 2005), representing the main
national and regional roads. Distance (in m) from each
location of the territory to the nearest road was calculated,
producing a raster map with 100-m spatial resolution that
was resampled to 250 m using the bilinear interpolation
method (ESRI 2005).

(iv) Elevation – we used a digital elevation model (m) in raster
format and with 90-m spatial resolution (NASA et al. 2004).
This map was submitted to several operations, including
projection transformation to be consistent with other data
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layers, and correction of negative and no-data values. Finally
the map was also resampled to 250 m using the bilinear
interpolation method.

Fire ignition characterization and modeling

The fire ignition database, including both fire ignitions and non-
ignitions, was transformed into a vector point map and overlayed
with all the other maps in order to gather all the information in a
single database, where each presence–absence record contained
the information of all the other layers.As we noticed the existence
of a residual number of ignitions (∼0.08%) located in dams or
other water bodies (wetlands class) that were considered location
errors, we opted to assign these points to the nearest land cover
class.

In a first step, we performed a frequency analysis to charac-
terize the spatial occurrence of fire ignitions. For that purpose,
continuous variables were classified in intervals, and expected
v. observed frequencies were registered and compared. Observed
frequencies were the number of fire ignitions that occurred in the
5-year period in each class interval, and the expected frequencies
were represented by the area of each class in the whole country,
assuming that this would correspond to a random distribution.
Comparisons between observed and expected frequencies were
based on χ2 statistics (Sokal and Rohlg 1987), using a signifi-
cance level of 0.001.The same method was used by other authors
(Badia-Perpinyã and Pallares-Barbera 2006).

In a second step, using the training dataset, we used logis-
tic regression to fit models to predict the probability of ignition
occurrence.As the proportion of ignitions was determined by the
number of non-ignition localities that were defined, the obtained
logistic model probabilities represent relative probabilities,
rather than real ignition probabilities.

Continuous variables were very skewed; thus they were
log(x + 1) transformed to approach normality and reduce vari-
ance. As models with transformed variables systematically
showed a better fit to the data, they were retained, replacing
the original variables.Additionally, the correlation between vari-
ables was analyzed using the Pearson correlation coefficient.The
most correlated pairs of variables were distance to roads and
population density (r = −0.328; P < 0.01), and population den-
sity and elevation (r = −0.315; P < 0.01); thus all the variables
were used as candidates for model selection. For the multivari-
ate logistic regression, the independent variables were selected
using forward stepwise selection (forward likelihood ratio).

The results of the statistical tests performed should always be
seen as an indication, as observations are bound to have some
degree of temporal and spatial dependence. All analyses were
carried out using SPSS software (SPSS 2006).

Production of the fire ignition risk map

In order to spatialize the model obtained in the multivariate
logistic analysis, we had to prepare all the cartographic layers
using GIS techniques. All the maps needed to be in raster for-
mat and coregistered in a common base 250-m cell size. The
maps in vector format (population density and land cover) were
directly converted to the raster format, while distance to roads
and elevation maps were previously resampled using a bilinear

interpolation technique. Following these steps, the model equa-
tion was spatialized through map algebra operations in a GIS
environment, in order to obtain the ignition risk map. The map
produced was classified into six risk classes, representing the
different probabilities that a sample point corresponds to a wild-
fire ignition: extremely low (0–10%), very low (10–20%), low
(20–40%), medium (40–60%), high (60–80%) and very high
(80–100%).

Evaluation of model and ignition risk map performance

The assessment of the model’s performance and adjustment were
done by means of different standard approaches for logistic
regression. First, signs of estimated parameters were checked
to make sure they agreed with theoretical expectations based on
previous knowledge of fire occurrence. The significance of each
single variable was evaluated using the Wald test (Legendre and
Legendre 1998), considering that the parameter was useful to the
model if the significance level was lower than 0.001. The overall
significance of the models was assessed through the Hosmer and
Lemeshow goodness-of-fit test, which is a measure of how well
the model performs (Hosmer and Lemeshow 1989; SPSS 2006).
If the significance of the test is small (i.e. less than 0.05), then
the model does not adequately fit the data (Norusis 2002; SPSS
2006).

Quantification of the model predictive ability was also done
by comparing observed with predicted probability of ignition,
both in the training and in the validation datasets. A confusion
matrix (Congalton 1991) was used to assess the model clas-
sification accuracy, as a 2 × 2 classification table of observed
v. predicted values. For this purpose, we had to establish some
probability at which to accept the occurrence of an ignition.
Cut-off points are used to convert probability of ignition to
dichotomous 0–1 data, where cells with values below the cut-
off are considered as non-ignition sites, while all above become
predicted as ignition sites. Although in some cases a value of 0.5
is used, this threshold can be modified, and ultimately depends
on the objectives of the user (Vega-Garcia et al. 1995; Vasconce-
los et al. 2001; Chuvieco et al. 2003). The training dataset was
used to construct classification tables for different cut-off points,
helping define an optimal value. Two statistics were computed
for each cut-off point considered: sensitivity and specificity. Sen-
sitivity is the proportion of true positives that are predicted as
events and specificity is the proportion of true negatives that
are predicted as non-events. The optimal cut-off point corre-
sponds to the value where both sensitivity and specificity reach
the same proportion (e.g. Vega-Garcia et al. 1995; Vasconcelos
et al. 2001), which in our case was 0.34.

Another procedure used to evaluate how well a model is
parameterized and calibrated in presence–absence models is the
ROC (receiver operating characteristic) analysis (Swets 1988;
Pearce and Ferrier 2000; SPSS 2006). The ROC method has
advantages in assessing model performance in a threshold-
independent fashion, being independent of prevalence (e.g.
Manel et al. 2001). The curve is obtained by plotting sensitiv-
ity v. specificity for varying probability thresholds. Good model
performance is characterized by a curve that maximizes sensitiv-
ity for low values of specificity (i.e. large areas under the curve,
(AUC)). Usually AUC values of 0.5–0.7 are taken to indicate
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Fig. 2. Fire ignition frequency in relation to different variables: (a) population density; (b) distance to roads; (c) land cover; and (d) elevation. The expected
frequencies (country) are represented by the area of each class in the country, assuming that this would correspond to a random distribution[AQ3].

low accuracy, values of 0.7–0.9 indicate useful applications and
values above 0.9 indicate high accuracy (Swets 1988).

The produced ignition risk map was also evaluated to assess
its ability to predict ignition occurrence. This was also made
through a confusion matrix using the validation dataset com-
posed of 63 745 known ignition points, and with an equal number
of non-ignition points, in order to evaluate the effect of model
spatialization. Additionally, for each ignition point, we recorded
the respective probability value present in the map, and analyzed
the results by comparing the percentage of area covered by each
risk class in the whole country with the percentage of ignitions
occurring at each one. Ignition density in each risk class was also
evaluated using all ignition points. At a final step, a regression
equation was developed to predict average density of ignitions
from the original explanatory variables.

Results

Frequencies of fire ignitions

During the period analyzed, the year 2005 registered the high-
est number of ignitions (27.2%), followed by 2001 (20.5%),
2002 (20.0%), 2004 (16.3%) and 2003 (16.1%). The majority

of fire ignitions occurred between June and September (76.2%
of the total), which is the fire season in Portugal. A prelimi-
nary analysis of the ignition spatial distribution in relation to
the selected variables showed that ∼98% of ignitions occurred
less than 2 km from the nearest road, and regarding elevation,
98% occurred below 1000 m. Approximately 60% of ignitions
were located in agricultural areas, and 25% occurred in urban–
rural interspersed areas. Forested areas registered 8.5% of all
ignitions, and uncultivated areas (including shrublands and natu-
ral grasslands) registered 6.2%. Concerning population density,
although municipalities with more than 100 persons per km2

only represent 21% of the territory, they registered 70% of all
fire ignitions.

Comparisons between observed and expected frequencies of
fire ignitions in relation to the selected variables are presented
in Fig. 2. We used a homogeneity test to evaluate the differences
between observed and expected frequencies, and confirmed the
existence of significant differences in their spatial distribution
in relation to all variables. The χ2 homogeneity test for popu-
lation density with respect to frequency of ignitions per ha of
land showed that fire ignitions are more likely to occur in more
populated areas (χ2 = 1 77 138.8, P < 0.001). The frequency
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Table 1. Results of multivariate logistic regression model using four variables

Variables are ordered by decreasing importance. Full model goodness-of-fit statistic = 78 885.53 (d.f. = 8, P < 0.001); AUC (area
under the curve) = 0.869 ± 0.001 (P < 0.001)

Variables Coefficient s.e. Wald χ2 d.f. P value

Population density 0.820 0.005 24 266.36 1 <0.001
Land cover 9667.60 5 <0.001

Urban–rural 2.455 0.158 242.06 1 <0.001
Agriculture 1.672 0.157 113.89 1 <0.001
Shrublands 0.439 0.158 7.74 1 0.005
Sparsely vegetated 0.426 0.170 6.33 1 0.012
Forest 0.388 0.157 6.08 1 0.014

Elevation 0.585 0.007 6981.76 1 <0.001
Distance to roads −0.166 0.002 5919.22 1 <0.001
Constant −7.833 0.162 2336.07 1 <0.001

Table 2. Results of multivariate logistic regression model using three variables

Variables are ordered by decreasing importance. Full model goodness-of-fit statistic = 1688.19 (d.f. = 8, P < 0.001);
AUC = 0.847 ± 0.001 (P < 0.001)

Variables Coefficient s.e. Wald χ2 d.f. P value

Population density 0.875 0.005 30 968.93 1 <0.001
Distance to roads −0.214 0.002 11 072.16 1 <0.001
Elevation 0.473 0.006 5492.23 1 <0.001
Constant −5.890 0.049 14 552.78 1 <0.001

of ignitions also depended on the variable distance to roads
(χ2 = 82 308.2, P < 0.001), showing that ignitions are more
likely to occur closer to the main roads. The land cover variable
also influenced the occurrence of fire ignitions (χ2 = 2 57 366.0,
P < 0.001), and all classes were significant. The class desig-
nated as urban–rural had nine times more ignitions than would
be expected if they occurred randomly in the territory, and
as expected, the opposite situation was observed in wetlands,
where ignition frequency was nine times lower. Forested and
uncultivated areas (including shrublands and natural grasslands)
registered approximately three times less fire ignitions than if
they were randomly distributed. Finally, ignitions were also sig-
nificantly affected by elevation (χ2 = 1906.2, P < 0.001), but
the differences between observed and expected frequencies are
much less obvious than with the other three variables.

Fire ignition models

The obtained logistic regression model (Table 1) showed that
the most influential variable explaining the spatial patterns of
ignitions was population density, followed by land cover type,
elevation, and distance to roads. The Hosmer and Lemeshow
goodness-of-fit test showed adequate fit of the model to the data
(χ2 = 78 885.53, P < 0.001). TheAUC for this model was 0.869,
and its global accuracy was 79.8% (using the training dataset),
both of which indicate good model adjustment.

The model obtained is represented by the following equation:

P1 = 1/(1 + e

−(−7.833+0.820Pop_D−0.166D_roads+0.585Elev
+2.455Urb+1.672Agr+0.388For+0.439Shr+0.426Spa)),

where P1 is the probability that a point corresponds to a fire igni-
tion, Pop_D is the population density (persons km−2), D_Roads

is the distance to the nearest road (m), Elev is the elevation (m),
Urb is the land cover class representing urban–rural interspersed
areas, Agr represents agriculture, For represents forest, Shr rep-
resents shrublands, and Spa represents sparsely vegetated areas
(all variables but land cover are log(x + 1) transformed).

Model classification accuracy was also evaluated using the
validation dataset. According to the confusion matrix produced,
this model correctly classified 80.3% of all observations.Among
observed ignitions, 78.2% were correctly predicted by the model,
and 82.7% of non-ignitions were also well classified. The omis-
sion and commission errors for both ignition and non-ignition
were not very high. Omission error of ignition events was 16.7%,
representing the percentage of observed ignitions that were not
predicted by this model, and the commission error was 21.8%,
representing the percentage of expected ignitions that were not
observed. The comparison between the model accuracy obtained
with the training and the validation datasets revealed very small
differences (79.8 v. 80.3%).TheAUC using the validation dataset
was 87.2% (s.e. = ±0.001, P < 0.001).

In a subsequent step, we also evaluated the possibility of
developing a simpler model to predict ignition occurrence, as
it would allow easier use by managers. A model with fewer
variables is expected to be more stable and easily generalized;
however, the more variables are included in the model, the higher
will the estimated standard errors and the model dependence on
the observed data (Hosmer and Lemeshow 1989). Thus, a new
logistic model was developed without using the land cover vari-
able, which is more likely to change through time than the other
variables.

The performance of the model using only three variables
(Table 2) was not much different from the model using four
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Fig. 3. Fire ignition risk map produced for the entire Portuguese mainland[AQ4].

variables. The simplest model presented a global accuracy of
77.1% with both the training and the validation datasets. The
omission error of ignition events was 23.2% and the commission
error was 22.7%.TheAUC was 0.847 (s.e. = ±0.001, P < 0.001)
with the training dataset, and 0.849 (s.e. = ±0.001, P < 0.001)
with the validation dataset.

The new model obtained is represented by the following
equation:

P2 = 1/(1 + e−(−5.890+0.875Pop_D−0.214D_roads+0.473Elev)).

In order to evaluate model stability during the study period,
we compared the coefficient values and the model performance
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of the global model (fitted with data from the 5-year period) with
those from separate models for each of the 5 years, and verified
that both coefficients and performance (AUC range = 0.832–
0.855) were very similar. The same constancy was observed in
the model using four variables.

Fire ignition risk map

The fire ignition model obtained using four explanatory vari-
ables was spatialized in a GIS environment. The map obtained
representing the relative probability that an ignition occurs at a
given location (Fig. 3) was classified into six risk classes rang-
ing from extremely low to very high. The representation of each
class in the country was the following: extremely low (covering
42.1% of the territory), very low (23.0%), low (18.9%), medium
(8.8%), high (4.6%) and very high (2.6%). The areas with high
and very high risk of ignition occurrence, representing only 7.2%
of the country, are mainly located in the north and central coastal
regions, where human presence and activity is more important.

We evaluated the performance of the ignition risk map using
a confusion matrix, as we did previously for model evaluation.
The map produced also showed good predictive results, with
a global accuracy of 79.1%. With the objective of describing
the map prediction ability in a more detailed way, we overlaid
the validation ignition points with the map, recording the exact
risk class where the ignitions were located, verifying that more
than 50% of them were located in high and very high risk classes
although they only represent 7% of the country area (i.e. ignitions
occurred at these classes with a much higher frequency than
would be expected in a random distribution). However, only 10%
of the ignitions were located in the two lowest risk classes, which
cover more than 65% of the country area.

Average ignition density in each risk class (ignitions per
100 km2 per year) was also computed to give a better idea of
the potential number of ignitions that managers can expect. In
a 1-year period, the ignition density is expected to be ∼139
times higher in the areas with very high risk than in areas with
extremely low risk (covering 42% of the country), and four times
higher than in areas with medium ignition risk. There is a strong
relationship between the obtained fire ignition risk (P) and the

real average density of ignition (D) (Fig. 4). The combination of
the model developed for P1 and the relationship between P1 and
D allows a general comprehensive final equation that predicts
the average density of ignitions directly from the explanatory
variables as:

D = 166.23/(1+e

−(−7.833+0.820Pop_D−0.166D_roads+0.585Elev
+2.455Urb+1.672Agr+0.388For+0.439Shr+0.426Spa))2.

Discussion and conclusions

Determinants of fire ignition

Portugal is the southern European country with the highest den-
sity of fire ignitions (EC 2007). Results of the present study
show that, as hypothesized, human presence and activity are the
key drivers of ignitions in Portugal. The selected explanatory
variables, namely population density, distance to roads, land
cover and elevation, were all highly significantly related with
the spatial distribution of ignitions.

Population density was the most important variable in our
model. This variable showed a positive influence on ignition
occurrence, meaning a higher probability of ignition in the more
populated areas, as was previously hypothesized. In regions
where most fires are human-caused, this is a logical result, and in
several other studies, population density was found to positively
related to wildfire ignitions (e.g. Cardille et al. 2001; Mercer
and Prestemon 2005). Also according to prior expectations,
distance to roads showed a negative influence on ignitions distri-
bution, meaning a decreasing probability of ignition occurrence
with increasing distance to roadways. This result is also consis-
tent with other authors’ findings (e.g. Vega-Garcia et al. 1996;
Romero-Calcerrada et al. 2008). Roadways increase human
access to several areas, including those with low population den-
sity, and we think that this is the main reason for the higher
frequency of ignitions near roads. In our study, 98% of ignitions
occurred less than 2 km from the nearest road and 85% were
within a distance of 500 m.

Land cover showed a strong influence on fire ignitions,
and other authors also found this variable to be important
(e.g. Cardille and Ventura 2001; Vasconcelos et al. 2001; Yang
et al. 2007). Most ignitions were located in agricultural and
urban–rural interspersed areas (85%), and only 15% occurred
in forested or uncultivated areas, although they cover 50% of the
country. Our results indicate that agriculture is a very important
factor influencing fire starts and are in accordance with previous
investigations of fire causes in Portugal and Spain, which con-
cluded that a large proportion of wildfires (both in terms of num-
ber and of resulting area burned) is due to agricultural activities
and mainly to agricultural burns (DGF 2003; MMA 2007). Also
contributing to this high ignition incidence is probably the fact
that more people are usually present in these areas, and that the
herbaceous vegetation in many Mediterranean agricultural areas
is easier to ignite and propagate fires in than other fuel types,
especially during the summer when fuel moisture is very low.
The high incidence of ignitions in urban–rural areas may also
be explained by the co-occurrence of agricultural activities and
a higher human presence. Forests, shrublands and sparsely veg-
etated areas also showed a positive influence on ignition occur-
rence, but their influence was considerably lower. The ignition
frequency of these land cover classes was approximately three
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times lower than would be expected in a random distribution.
Although small differences exist between forests, shrublands
and sparsely vegetated areas, we can rank land cover classes in
terms of the relative probability of ignition occurrence in the
following way: urban–rural > agriculture > shrubs > sparsely
vegetated > forests > wetlands. Cardille andVentura (2001) also
found that fires in the NW USA were more likely to start in
non-forest than within forests, independently of the resulting
fire size, and other authors reported that an important propor-
tion of wildfires in southern Europe start in non-forested areas
(Badia-Perpinyã and Pallares-Barbera 2006; EC 2007). How-
ever, these patterns can be completely distinct in regions with
different characteristics (Yang et al. 2007).

Elevation was found to have a positive influence on igni-
tion distribution. This effect may be due to the fact that there
are some human activities at higher altitudes, such as the ren-
ovation of pastures for livestock, which are known to cause
frequent burns in the Iberian Peninsula, and to be one of the
major factors contributing to the total area burned (DGF 2003;
MMA 2007). For example Badia-Perpinyã and Pallares-Barbera
(2006) also found a higher ignition frequency at higher eleva-
tion in a rural area of NE Spain. Additionally, and according to
some authors, lightning-caused ignitions are also more likely to
occur at higher elevations (Vazquez and Moreno 1998; Kilinc
and Beringer 2007).

Predictive ability of the model

The model obtained using four variables showed good predic-
tive ability when applied to the validation dataset. Analysis of
the ROC curve indicates 87.2% concordance between predicted
probabilities and observed outcomes, while with the confusion
matrix method, we achieved a global accuracy of 80.3%.

Although this model was developed at a national level, and
thus with large human and natural variability, the results were
quite good when compared with other logistic regression models
developed to predict fire occurrence. For example, Vasconcelos
et al. (2001) modelled the spatial occurrence of fire ignitions
in five Portuguese municipalities (∼1.6% of the country area),
obtaining a global accuracy of 73.9% (omission and commission
errors were respectively 22.1 and 48.6%). Chuvieco et al. (1998,
2003) developed models to predict the occurrence of large fires
in southern Europe, obtaining a global accuracy of 60.0% (omis-
sion and commission errors for observed fires were respectively
37.5 and 51.7%). In another study, Vega-Garcia et al. (1995)
also used logistic regression to predict the daily occurrence of
fires in Alberta (Canada), obtaining a global accuracy of 74.1%;
these authors obtained an omission error of 25.9% for fire-days
and a very high commission error (95.1%). Although only the
first of the models referred to is completely comparable with the
one developed in the present work, these can give an idea of the
accuracy levels achieved in modeling fire occurrence.

A simpler model, using only three variables, was also devel-
oped. In this model, the land cover variable was not included,
as it is more complex to compute, and because this variable is
expected to suffer more changes in the short to medium term. As
expected, its global accuracy was lower than in the more com-
plex model (77.1 and 80.3%, respectively), but the differences
concerning both global accuracy and omission or commission

errors were not sufficiently important to discourage its use as an
alternative solution.

Additionally, it was confirmed that models built for different
years had a very similar performance, which seems to indicate
that little spatial variability is to be expected in a 5-year period,
and that models developed using information from 1 or more
years are expected to achieve similar results. The final equation
expressing D as a function of the explanatory variables has two
different components: a geographical component expressed by
P1, and a coefficient, representing the maximum local density
of ignitions, estimated at 166.23 ignitions per 100 km2 per year
for the period 2001–05, but that can vary yearly in accordance
with varying weather and social behavior.

Implications for management

When using the model or the map produced, the following issues
should be kept in mind, particularly in terms of fire prevention
and definition of priorities for firefighting:

(1) Special attention should be given to large forested areas
with high or very high risk, where ignitions can easily
occur and produce large forest fires. However, areas with
low or medium ignition risk can also be very susceptible to
wildfires because of high biomass accumulation. Previous
analysis (e.g. Rego et al. 2004) showed that the areas of the
country with the highest density of ignitions do not coincide
with those where larger fires occur. The increasing human
migratory fluxes from inland to coastal areas have led to
a situation of land abandonment, contributing to reducing
the risk of fire ignition in many inland regions. However,
this situation simultaneously increased fuel accumulation
and consequently increased fire hazard. At the same time,
many of these areas have a low population density and are
more distant from roads, being less accessible to firefight-
ers. Thus, these areas should be analyzed in fire planning
and surveillance operations by simultaneously evaluating
the fire hazard.

(2) Attention should also be given to non-forested areas with
a higher ignition risk, especially when they are near poten-
tially hazardous areas that are important to preserve (owing
to their social, economical or ecological interest). Nowa-
days, in several southern European countries (e.g. Portugal,
Spain, Greece), a large proportion of both number of fires
and area burned is not restricted to forested land (Moreno
et al. 1998; EC 2007; MMA 2007), and many fires starting
in agricultural areas or shrublands can rapidly spread and
propagate into forest stands or to other areas with a higher
fire hazard (DGF 2003).

(3) Because of the strong positive influence of population den-
sity on fire ignition risk, it can be seen that the areas
corresponding to the centre of the larger cities (namely
Lisboa and Porto) have been classified with a high risk
of ignition, although we know that in fact very few igni-
tions occur in these highly urbanized areas because they
have almost no fuels to ignite . However, this kind of prob-
lem will obviously be eliminated if the fire ignition map is
used in association with a fire hazard map (or alternatively,
by overlaying it with a fuel load or fuel models map and
reclassifying the areas without vegetation).
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(4) To use the information presented at the regional level, model
adjustments, including updated and more detailed data or the
inclusion of other variables, can be required to improve the
accuracy of predictions. Variables could include, for exam-
ple, summer population density in regions where tourism
highly increases the population during the fire season, as
happens in Algarve (southern Portugal), or cattle density in
areas where pastoralism is an important activity.

In this work, we demonstrated the feasibility of modeling and
mapping ignition risk at a national level using a limited number
of easily obtainable variables. We consider that both the models
developed and the ignition risk map produced have enough pre-
dictive accuracy to be used in predicting the likelihood of ignition
occurrence in Portugal. Nowadays, many fire-management deci-
sions are still exclusively based on the factors influencing fire
spread and suppression difficulty. However, and as resources are
limited, it is important to define priorities among areas. Under
similar fuel, topographic or weather conditions, the areas with
higher ignition risk should be given priority for surveillance
(Vasconcelos et al. 2001; Chuvieco et al. 2003). The obtained
models and the ignition risk map are now available and can be
easily used in a GIS environment to integrate fire danger estima-
tion systems, helping managers to define vigilance priority areas
for ground patrol units, or to define priority locations for new
lookout tower installation (Catry et al. 2004; Rego and Catry
2006; Catry et al. 2007b). These results can also be used for
more informed decisions of firefighting resources allocation, or
to optimize fire prevention public campaigns, by indicating the
most problematic areas.

In spite of good results obtained, the prediction model can
probably be improved by including more accurate and updated
information, or by including some additional explanatory vari-
ables. It would be very useful if the national authorities could
improve the ignition location accuracy, especially if the objec-
tives are to model this event at the local or municipal level. We
expect that this study, the first performed in Portugal at a national
level, will encourage further research needed on this topic, which
could include for example analyzing the characteristics of igni-
tions that resulted in large fires, or measures of temporal fire
activity, such as predictions of number of fires per day.Additional
research on spatial and temporal factor variability of different
causes should also be useful.
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