
Tranport in Porous Media TIPM1075 manuscript No.
(will be inserted by the editor)

Modeling and Numerical Simulations of Immiscible

Compressible Two-Phase Flow in Porous Media by the

Concept of Global Pressure

Brahim Amaziane · Mladen Jurak · Ana
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1 Introduction

The understanding and prediction of multiphase flow through porous media is of

great importance in various areas of research and industry. Petroleum engineers need

to model multiphase and multicomponent flow for production of hydrocarbons from

petroleum reservoirs. Hydrologists and soil scientists are concerned with underground

water flow in connection with applications to civil and agricultural engineering, and, of

course, the design and evaluation of remediation technologies in water quality control

rely on the properties of underground fluid flow. More recently, modeling multiphase

flow received an increasing attention in connection with the disposal of radioactive

waste and sequestration of CO2.

In this paper, we focus our attention on the modeling and simulation of immisci-

ble compressible two-phase flow in porous media, in the framework of the geological

disposal of radioactive waste. As a matter of fact, one of the solutions envisaged for

managing waste produced by nuclear industry is to dispose it in deep geological forma-

tions chosen for their ability to prevent and attenuate possible releases of radionuclides

in the geosphere. In the frame of designing nuclear waste geological repositories appears

a problem of possible two-phase flow of water and gas. Multiple recent studies have

established that in such installations important amounts of gases are expected to be

produced in particular due to the corrosion of metallic components used in the reposi-

tory design. The creation and transport of a gas phase is an issue of concern with regard

to capability of the engineered and natural barriers to evacuate the gas phase and avoid

overpressure, thus preventing mechanical damages. It has become necessary to carefully

evaluate those issues while assessing the performance of a geological repository, see for

instance OECD/NEA (2006). As mentioned above, the most important source of gas

is the corrosion phenomena of metallic components (e.g. steel lines, waste containers).

The second source, generally less important depending on the type of waste, is the

water radiolysis by radiation issued from nuclear waste. Both processes would produce

mainly hydrogen. Furthermore the microbial activity will generate some methane and

carbon dioxide and also would transform some hydrogen into methane. Hydrogen is

expected to represent more than 90% of the total mass of produced gases. Recently, the

Couplex-Gas benchmark (http://www.gdrmomas.org/ex qualifications.html) was pro-

posed by Andra and MoMAS to improve the simulation of the migration of hydrogen

produced by the corrosion of nuclear waste packages in an underground storage. This

is a system of two-phase (water–hydrogen) flow in a porous medium. This benchmark

generated some interest and engineers encountered difficulties in handling numerical

simulations for this model.

Historically, there have been two main approaches to modeling multiphase flow in

porous media. The first is based on individual balance equations for each of the fluids,

while the second involves manipulation and combination of those balance equations

into modified forms, with concomitant introduction of ancillary functions that we will

refer to as the fractional flow or global pressure saturation formulation. The notion of

global pressure was first introduced by Antontsev at al. (1990); Chavent and Jaffré

(1986) and was then revisited by other authors, see for instance Chen and Ewing in

TPM (1997). It has been since used in a wide range of engineering specialties related to

numerical simulation in hydrology and petroleum reservoir engineering, see for instance

Chen et al. (2006) and the references therein. It has been proved that this fractional

flow approach is far more efficient than the original two-pressure approach from the

computational point of view Chen et al. (2006).
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The study of two immiscible incompressible two-phase flow using the feature of

global pressure is well known, see for instance Antontsev at al. (1990); Chavent and

Jaffré (1986); Chen et al. (2006). This is not the case for two compressible phases

except in the case of small capillary pressure so that the densities are assumed to

depend on the global pressure, see for instance Chavent and Jaffré (1986); Galusinski

and Saad (2008) and the references therein. In this simplified model, it is assumed

that the nonlinear functions appearing in the system depend on the global pressure by

ignoring the error caused by calculating them for the fluid phase at the global pressure

instead of the phase pressure. These assumptions have limited the use of the global

pressure formulation in numerical simulations codes. However, comparison with other

formulations Chen et al. (2006) show the computational effectiveness of the global

pressure when it can be put to work, which may explain the current revival of interest

for the concept of global pressure for numerical modeling of multiphase flow in porous

media. A fully equivalent global pressure formulation of compressible two phase flows

was announced in Amaziane and Jurak (2008) and it was established for three-phase

flows in Chavent (2009).

In this paper, we focus our attention on the study of immiscible compressible two-

phase flow in porous media taking into account gravity, capillary effects and hetero-

geneity. The fractional flow formulation employs the saturation of one of the phases

and a global pressure as independent variables. The fractional flow approach treats

the two-phase flow problem as a total fluid flow of a single mixed fluid, and then de-

scribes the individual phases as fractions of the total flow. This approach leads to a

less strong coupling between the two coupled equations: the global pressure equation

and the saturation equation.

Numerical methods are very sensitive to the choice of form of the governing equa-

tion. In the light of the new and continuing developments in numerical methods for

the solution of the multiphase flow equations, it is worthwhile revisiting the question

of the form of the governing equations and exploring the implications of this equation

form for a numerical method based on it.

The aim of this paper is to derive a new fully equivalent fractional flow formulation

for immiscible compressible two-phase flow in porous media which can be efficiently

solved numerically. We will consider a general case of two compressible fluids but in

numerical simulations we restrict our attention to water (incompressible) and gas such

as hydrogen (compressible) in the context of gas migration through engineered and

geological barriers for a deep repository for radioactive waste.

The global pressure is the primary variable in the new fractional flow formulation

and a computation of phase pressures corresponding to a given global pressure requires

a solution of a differential equation (see (19)). It follows that an evaluation of the coeffi-

cients depending on phase pressures requires more computations in the fully equivalent

fractional flow model (28)–(30) than in the original model (1), (2) which could numer-

ically be done by using standard libraries existing in the literature. For this reason, we

also develop an approximate fractional flow formulation which is not fully equivalent to

the corresponding phase equations but which is more simple to use. We then compare

approximate fractional flow formulation to fully equivalent fractional flow formulation

by comparing the coefficients in the two formulations and by performing numerical

simulations in one-dimensional test problems for both models. Our goal is to recognize

situations in which approximate fractional flow formulation can be safely used and

to show differences in approximate and fully equivalent formulations when they are

significant.
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The rest of the paper is organized as follows. In the next section, we review the dif-

ferential problem describing immiscible compressible two-phase flow in porous media.

In Section 3 we derive a new fully equivalent fractional flow formulation. This formu-

lation leads to a coupled system which consists of a nonlinear parabolic (the global

pressure) equation and a nonlinear diffusion-convection one (the saturation equation).

In Section 4 we recall a simplified fractional flow formulation described in Chavent

and Jaffré (1986), and show its deficiency in certain range of pressures and propose a

modification that makes the model more applicable. In Section 5 we compare the fully

equivalent fractional flow model with the simplified one. Since the two models differ

only in the way of calculating coefficients in the partial differential equations, we first

compare the coefficients. Then we perform numerical simulations with both models for

one-dimensional problems. We will present differences in pressure phases and water

saturation. All numerical results are presented for water-gas system with incompress-

ible water and compressible gas. Data are chosen from the Couplex-Gas benchmark.

Additional conclusions are drawn in Section 6.

2 Governing Equations

The usual equations describing immiscible compressible two-phase flow in a porous

medium are given by the mass balance equation and Darcy’s law for each of the fluid

phases (see, e.g., Bear and Bachmat (1991); Chavent and Jaffré (1986); Chen et al.

(2006); Helmig (1997)):

Φ
∂

∂t
(ραSα) + div(ραVα) = Fα and Vα = −K

krα(Sα)

µα
(∇pα − ραg), (1)

where Φ and K are the porosity and the absolute permeability of the porous medium;

α = w denotes the wetting phase (e.g. water), α = g indicates the nonwetting phase

(e.g. gas), ρα, Sα, pα, Vα and µα are, respectively, the density, (reduced) saturation,

pressure, volumetric velocity, and viscosity of the α-phase, Fα is the source/sink term,

krα is the relative permeability of the α-phase, and g is the gravitational, downward-

pointing, constant vector. In addition to (1), we also have the customary property for

saturations and the capillary pressure function:

Sw + Sg = 1, and pc(Sw) = pg − pw. (2)

The primary variables are Sα, pα, and Vα. Here we assume that the porosity Φ and

the absolute permeability K are functions of space and viscosities µw, µg are constant.

Finally, we assume that the capillary pressure and relative permeabilities depend upon

the saturation solely. For notational simplicity, we neglect their dependence on space.

With respect to the mass densities we do not set any particular restrictions, but in

numerical examples we will be interested in the special case of water-gas system where

ρw is a constant and ρg is given by the ideal gas law: ρg(pg) = cgpg, with constant cg.

For expository convenience, we introduce the phase mobility functions:

λα(Sw) = krα(Sw)/µα, α = w, g (3)

and the total mobility

λ(Sw, pg) = ρw(pw)λw(Sw) + ρg(pg)λg(Sw). (4)
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Then, we define the fractional flow functions:

fα(Sw, pg) = ρα(pα)λα(Sw)/λ(Sw, pg), α = w, g, (5)

and also the following nonlinear functions:

ρ(Sw, pg) = (λw(Sw)ρw(pw)2 + λg(Sw)ρg(pg)2)/λ(Sw, pg), (6)

α(Sw, pg) = ρw(pw)ρg(pg)λw(Sw)λg(Sw)/λ(Sw, pg), (7)

and

bg(Sw, pg) = (ρw(pw) − ρg(pg))α(Sw, pg), a(Sw, pg) = −α(Sw, pg)p′c(Sw). (8)

Note that in the above formulas we have chosen the nonwetting pressure pg and the

wetting phase saturation Sw as independent variables, which is possible due to (2).

The governing equations (1)–(2) are a set of coupled, nonlinear partial differential

equations (PDEs). The basic equations can be mathematically manipulated into sev-

eral alternate forms (see Chen and Ewing in JCP (1997), Chen et al. (2006)) with

various choices of primary dependent variables. The choice of equation form and pri-

mary solution defined by variables have considerable implications for the mathematical

analysis and the numerical method used to solve these equations.

Here we rewrite the equations (1)–(2) by summation of the two equations and

introduction of total flux, Qt = ρw(pw)Vw + ρg(pg)Vg, as follows:

Φ
∂

∂t
(Swρw(pw) + (1 − Sw)ρg(pg))

− div (λ(Sw, pg)K [∇pg − fw(Sw, pg)∇pc(Sw) − ρ(Sw, pg)g]) = Fw + Fg,
(9)

Qt = −λ(Sw, pg)K (∇pg − fw(Sw, pg)∇pc(Sw) − ρ(Sw, pg)g) , (10)

Φ
∂

∂t
(ρw(pw)Sw) + div(fw(Sw, pg)Qt + bg(Sw, pg)Kg) − div(a(Sw, pg)K∇Sw) = Fw.

(11)

The governing equation for the saturation (11) is a nonlinear convection-diffusion

PDE and the equation for pressure (9) is a nonlinear PDE strongly coupled to the

saturation equation through the gradient of capillary pressure and the time derivative

term. Our goal is to partially decouple equations (9) and (11) by eliminating capillary

pressure gradient in (9).

Remark 1 Phase fluxes can be expressed through the total flux as:

ρw(pw)Vw = fw(Sw, pg)Qt − a(Sw, pg)K∇Sw + bg(Sw, pg)Kg, (12)

ρg(pg)Vg = fg(Sw, pg)Qt + a(Sw, pg)K∇Sw − bg(Sw, pg)Kg. (13)
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3 A Fully Equivalent Fractional Flow Formulation

We can eliminate the capillary pressure gradient term from (9) by expressing the total

flux Qt as the Darcy flux of some mean pressure p, which leads to

∇pg − fw(Sw, pg)p′c(Sw)∇Sw = ω(Sw, p)∇p, (14)

where the function ω(Sw, p) is to be determined. To that aim we introduce the following

unknown function π such that

pg = π(Sw, p), (15)

which relates the gas pressure pg and a new variable p which will be called the global

pressure. The global pressure is expected to be an intermediate pressure between pw

and pg. From (14) and (15) we have

∇pg = ω(Sw, p)∇p + fw(Sw, π(Sw, p))p′c(Sw)∇Sw,

or

∂π

∂Sw
(Sw, p)∇Sw +

∂π

∂p
(Sw, p)∇p = ω(Sw, p)∇p + fw(Sw, π(Sw, p))p′c(Sw)∇Sw.

Since p and Sw are independent variables we must have

∂π

∂Sw
(Sw, p) = fw(Sw, π(Sw, p))p′c(Sw) (16)

∂π

∂p
(Sw, p) = ω(Sw, p). (17)

We will integrate (16) to obtain π, and use (17) as a definition for ω. If we assume that

the capillary pressure is equal to zero at Sw = 1 then we set π(1, p) = p, and we can

rewrite the differential equation (16) in a form of the following integral equation:

π(Sw, p) = p +

∫ Sw

1
fw(s, π(s, p))p′c(s) ds, (18)

which gives us

p ≤ π(Sw, p) ≤ p + pc(Sw),

and therefore pw ≤ p ≤ pg. The integral equation (18) can be rewritten in a form of

the Cauchy problem for an ordinary differential equation as follows:











dπ(S, p)

dS
=

ρw(π(S, p) − pc(S))λw(S)p′c(S)

ρw(π(S, p) − pc(S))λw(S) + ρg(π(S, p))λg(S)
, S < 1

π(1, p) = p.

(19)

Problem (19) can be given a form easier to solve by introducing the capillary pressure

as an independent variable. Since the capillary pressure is invertible, u = pc(Sw) can

be written as Sw = Sw(u); any function of the water saturation f(Sw) can be replaced
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by the corresponding function of capillary pressure f̂(u) = f(Sw(u)). Therefore, we

introduce the function π̂(u, p) as a solution of the Cauchy problem (p is a parameter),










dπ̂(u, p)

du
=

ρw(π̂(u, p) − u)λ̂w(u)

ρw(π̂(u, p) − u)λ̂w(u) + ρg(π̂(u, p))λ̂g(u)
, u > 0

π̂(0, p) = p.

(20)

For problem (20) it is easy to see that it has a global solution, and then a solution of

(19) is given by a simple change of variables as

π(Sw, p) = π̂(pc(Sw), p).

Having found the function π we can give a formula for ω based on the equation (17).

First we introduce a new notation for the coefficients which now depend on the global

pressure p instead of the phase pressures pg and pw. All these functions will carry the

superscript n:

ρn
w(Sw, p) = ρw(π(Sw, p) − pc(Sw)), ρn

g (Sw, p) = ρg(π(Sw, p)), (21)

λn(Sw, p) = ρn
w(Sw, p)λw(Sw) + ρn

g (Sw, p)λg(Sw), (22)

fn
w(Sw, p) =

ρn
w(Sw, p)λw(Sw)

λn(Sw, p)
, fn

g (Sw, p) =
ρn

g (Sw, p)λg(Sw)

λn(Sw, p)
(23)

ρn(Sw, p) = ρ(Sw, π(Sw, p)), an(Sw, p) = a(Sw, π(Sw, p)), (24)

bn
g (Sw, p) = bg(Sw, π(Sw, p)). (25)

Note that the coefficients (21)–(25) are obtained from (3)–(8) by replacing pg by

π(Sw, p) and pw by π(Sw, p) − pc(Sw). Fluid compressibilities are defined as:

νn
w(S, p) =

ρ′w(π(S, p) − pc(S))

ρw(π(S, p) − pc(S))
, νn

g (S, p) =
ρ′g(π(S, p))

ρg(π(S, p))
. (26)

From (16) and (17) it follows that ω(Sw, p) satisfies a linear ordinary differential equa-

tion
∂ω

∂Sw
(Sw, p) = ∂πfw(Sw, π(Sw, p))p′c(Sw)ω(Sw, p),

(p being a parameter) which has a solution

ω(Sw, p) = exp

(

∫ 1

Sw

(νn
g (s, p) − νn

w(s, p))
ρn

w(s, p)ρn
g (s, p)λw(s)λg(s)p′c(s)

(ρn
w(s, p)λw(s) + ρn

g (s, p)λg(s))2
ds

)

, (27)

where we have taken ω(1, p) = 1, as a consequence of π(1, p) = p. From (27) it is

evident that ω is strictly positive function and it is less than one if the nonwetting

phase compressibility is greater that the wetting phase compressibility.

Finally, replacing pg by π(Sw, p) in equations (9)–(11), and using (14), we obtain

the following system of equations:

Φ
∂

∂t
(Swρn

w(Sw, p) + ρn
g (Sw, p)(1 − Sw)) (28)

− div
(

λn(Sw, p)K(ω(Sw, p)∇p − ρn(Sw, p)g)
)

= Fw + Fg,

Qt = −λn(Sw, p)K(ω(Sw, p)∇p − ρn(Sw, p)g), (29)

Φ
∂

∂t
(Swρn

w(Sw, p)) + div(fn
w(Sw, p)Qt + bn

g (Sw, p)Kg) = div(an(Sw, p)K∇Sw) + Fw.

(30)
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The system (28)–(30) is expressed in the variables Sw and p. The phase pressures

pg and pw are given as smooth functions of Sw and p through pg = π(Sw, p) and

pw = π(Sw, p) − pc(Sw). Since the derivative ∂π(Sw, p)/∂p = ω(Sw, p) is strictly

positive, we can find the global pressure p in the form p = ηg(Sw, pg), with some

smooth function ηg, allowing us to conclude that the flow equations (28)–(30) are fully

equivalent to equations (9)–(11), and therefore to (1), (2).

Remark 2 Using the global pressure we can write the total flow Qt in the form of

Darcy-Muskat law. The global pressure can be then interpreted as a mixture pressure

where the two phases are considered as mixture constituents (see Wang (1997)). Let

us also note that the sum of “phase energies” can be decomposed as

ρw(pw)λw(Sw)K∇pw · ∇pw + ρg(pg)λg(Sw)K∇pg · ∇pg

= λn(Sw, p)ω(Sw, p)2K∇p · ∇p + αn(Sw, p)K∇pc(Sw) · ∇pc(Sw).
(31)

The equation (31) shows again physical relevance of the global pressure.

Remark 3 In development of (19) and (20) we have assumed that the capillary pressure

is equal to zero for Sw = 1. However, a common situation is also to have pc(Sw = 1) =

p0, where p0 > 0 is an entry pressure. In that case wetting and nonwetting relative

permeabilities, for capillary pressures in the interval (0, p0), are naturally defined as one

and zero respectively, and problem (20) is again well defined. Consequently, π(Sw, p) =

π̂(pc(Sw), p) gives π(1, p) = p + p0, that is, at Sw = 1 the global pressure is equal to

the wetting phase pressure. One could equally introduce other definitions of the global

pressure attaining at Sw = 1 any value between pw and pg. They would all differ by

an additive constant.

In numerical simulations based on the system (28)–(30), we need to compute the

coefficients (21)–(27) by integrating the equation (20) for different initial values of the

global pressure p. From a practical point of view one can solve (20) approximately

for certain values of initial data and then use an interpolation procedure to extend

these values to the whole range of interest. Necessary calculations can be done in a

preprocessing phase, without penalizing the flow simulation.

We end up this section by the following remarks.

Remark 4 The definition of the global pressure, introduced in this section by (15) and

(19), is not affected by possible variations in absolute permeability and porosity and it

is therefore applicable to heterogeneous media. If the porous medium is composed of

different rock types, having different set of saturation functions in different subdomains,

such as relative permeabilities and capillary pressure functions, then the global pressure

must be defined in each subdomain separately. At the boundaries of the subdomains

the global pressure will be generally discontinuous and continuity of phase pressures

will introduce compatibility condition on the global pressure, namely that the function

π(S, p) must be continuous across the subdomain boundaries. In this respect the global

pressure variable in multiple rock-type domains is similar to the saturation variable.

Remark 5 The main advantage of the new fractional flow formulation (28)–(30) over

other equivalent formulations obtained by simple manipulations from the original equa-

tions is that the coupling between the two PDEs is much less strong. This was obtained

by elimination of the gradient of the capillary pressure from equation (9). Furthermore

the form of the PDEs of the system from the new fractional flow formulation (28)–(30)

is more adapted for the mathematical and numerical analysis.
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4 A Simplified Fractional Flow Formulation

In the existing literature the global pressure is always introduced in compressible two

and three phase models by means of an approximation. More precisely, it is assumed

that one can ignore the error caused by calculating the phase density ρα at the global

pressure p instead of the phase pressure pα. This assumption is introduced in Chavent

and Jaffré (1986) and widely used in petroleum engineering applications (see, e.g.,

Chen and Ewing in JCP (1997); Chen et al. (2006)), but it cannot be satisfied for all the

existing immiscible compressible two-phase flow. We will describe shortly this simplified

global pressure formulation in the case of the two-phase flow and then compare it to

the new formulation introduced in the previous section.

We return now to the equation (14) and we will solve it by using the assumption

that the phase pressure in the water fractional flow function can be replaced by the

global pressure p. Therefore, (14) is transformed to:

∇pg − fw(Sw, p)p′c(Sw)∇Sw = ω(Sw, p)∇p,

which can be satisfied by

pg = p − γ(Sw, p), γ(Sw, p) = −
∫ pc(Sw)

0
f̂w(u, p) du, (32)

where, as before, f̂w(u, p) = fw(Sw, p) for u = pc(Sw). From (32) it follows

∇p = ∇pg +
∂

∂p
γ(Sw, p)∇p − fw(Sw, p)p′c(Sw)∇Sw,

which means that

ω(Sw, p) = 1 − ∂

∂p
γ(Sw, p). (33)

The total flux is now expressed in a form of the Darcy law:

Qt = −λ(Sw, p)K(ω(Sw, p)∇p − ρ(Sw, p)g). (34)

The system (9)–(11), written in the unknowns p and Sw, now takes the form:

Φ
∂

∂t
(Swρw(p) + (1 − Sw)ρg(p)) (35)

− div (λ(Sw, p)K[ω(Sw, p)∇p − ρ(Sw, p)g]) = Fw + Fg,

Qt = −λ(Sw, p)K(ω(Sw, p)∇p − ρ(Sw, p)g), (36)

Φ
∂

∂t
(Swρw(p)) + div(fw(Sw, p)Qt + Kgbg(Sw, p)) = div(Ka(Sw, p)∇Sw) + Fw, (37)

where, according to our initial assumption, we have systematically approximated ρg(pg)

by ρg(p) and ρw(pw) by ρw(p). The coefficients in (35)–(37) are, therefore, given by

λ(Sw, p) = ρw(p)λw(Sw) + ρg(p)λg(Sw). (38)

fα(Sw, p) = ρα(p)λα(Sw)/λ(Sw, p), α = w, g, (39)

ρ(Sw, p) = (λw(Sw)ρw(p)2 + λg(Sw)ρg(p)2)/λ(Sw, p), (40)

α(Sw, p) = ρw(p)ρg(p)λw(Sw)λg(Sw)/λ(Sw, p), (41)

bg(Sw, p) = (ρw(p) − ρg(p))α(Sw, p), (42)

a(Sw, p) = −α(Sw, p)p′c(Sw), (43)
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and (33). It is clear that the systems (35)–(37) and (28)–(30) are different only in the

way that the coefficients are calculated.

Remark 6 Note that (32) defines pg as a function of Sw and p in a form pg = π(Sw, p) =

p−γ(Sw, p), but for fixed pg and Sw, (32) is a nonlinear equation in p and its solvability

is to be demonstrated if we want to have an invertible change of variables. From (32)

it also follows that the new global pressure p is between the two phase pressures:

pw ≤ p ≤ pg.

Remark 7 The simplified definition of the global pressure (32) is also applicable in the

case when pc(Sw = 1) = p0 > 0, assuming that the relative permeabilities are defined

as in Remark 3, giving p = pw at Sw = 1.

Let us now turn to the question of well-posedness of the simplified global formu-

lation. The system (35)–(37) is physically relevant only if the function ω, introduced

by (33), is strictly positive since ω is a certain correction factor of the total mobility

that takes into account that the gas pressure is now a nonlinear function of the global

pressure. This function can be written as

ω(Sw, p) = 1 +

∫ pc(Sw)

0

∂

∂p
f̂w(u, p) du

= 1 −
∫ pc(Sw)

0

λ̂w(u)λ̂g(u)

(λ̂w(u) + M(p)λ̂g(u))2
du M ′(p), (44)

where we set

M(p) =
ρg(p)

ρw(p)
, M ′(p) = M(p)

(

ρ′g(p)

ρg(p)
− ρ′w(p)

ρw(p)

)

. (45)

We see that the condition ω > 0 is critical only in the case when the nonwetting phase

compressibility is greater than the wetting phase compressibility, which is usually the

case. In that case we have to impose

∫

∞

0

λ̂w(u)λ̂g(u)

(λ̂w(u) + M(p)λ̂g(u))2
du M ′(p) < 1, (46)

for all pressures p in the range of interest. Under the condition (46) we can show that

the change of variables (Sw, p) → (Sw, pg) is invertible.

Lemma 1 For given pg > 0 and 0 < Sw ≤ 1, assume that the condition (46) is

satisfied for p ∈ (pw, pg), with pw = pg − pc(Sw). Then, the global pressure p is well

defined by the equation (32).

Proof For Sw = 1 we obviously have p = pw = pg. For Sw ∈ (0, 1) we define a function

ΦSw
(p) = p − pg +

∫ pc(Sw)

0

ρw(p)λ̂w(u)

ρw(p)λ̂w(u) + ρg(p)λ̂g(u)
du.

The global pressure p is defined by ΦSw
(p) = 0. Note that Φ′

Sw

(p) = ω(Sw, p), and by

(46) we have Φ′

Sw

(p) > 0 for all p ∈ (pw, pg). It easily follows that ΦSw
(pg) > 0, and

ΦSw
(pw) < 0, so that ΦSw

must have a unique zero in interval (pw, pg). ⊓⊔
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Note that the condition (46) is not always satisfied in the whole range of the global

pressure p. If we take, for example, incompressible wetting phase and the ideal gas law

ρg(p) = cgp for a nonwetting phase, then (46) reduces to

∫

∞

0

cgρwλ̂w(u)λ̂g(u)

(ρwλ̂w(u) + cgpλ̂g(u))2
du < 1,

which will generally be true only for p sufficiently large. Therefore, the simplified frac-

tional flow model is not well defined if the field pressure in the porous domain is not

sufficiently large.

In order to correct this deficiency of the simplified fractional flow model we will

redefine the function ω. The formula (44) was obtained as a consequence of calculation

of mass densities ρw and ρg in the global pressure instead of the appropriate phase

pressure. We can make this kind of approximation directly in the formula (27) for ω

in a fully equivalent fractional flow model, leading to

ω(Sw, p) = exp

(

∫ 1

Sw

(νg(p) − νw(p))
ρw(p)ρg(p)λw(s)λg(s)p′c(s)

(ρw(p)λw(s) + ρg(p)λg(s))2
ds

)

= exp

(

−
∫ pc(Sw)

0
M ′(p)

λ̂w(u)λ̂g(u)

(λ̂w(u) + M(p)λ̂g(u))2
du

)

. (47)

A benefit of the formula (47), in contrast to (44), is its strict positivity. It is clear that

the formula (44) gives only the first two terms in Taylor’s expansion for the exponential

function in (47) and these remarks allow us to conclude that (47) is a more consistent

approximation than (44). Consequently, in numerical simulations with the simplified

fractional flow model, we will use ω given by (47).

Remark 8 There is another way of introducing a global pressure in compressible two-

phase flow based on approximate calculation of mass densities. Namely, one can use

the global pressure definition from incompressible case Chavent and Jaffré (1986):

p = pg −
∫ 1

Sw

λw(s)

λw(s) + λg(s)
p′c(s) ds. (48)

This change of variables permits to eliminate the saturation gradient from the total

velocity, Vt = Vw + Vg, but it will not eliminate it from the pressure equation (9),

except in the case ρw(p) = ρg(p). In that particular case, the global pressure (48) is the

same as the global pressure in the simplified fractional flow formulation presented in

this section. We will not consider further formulation based on (48), noting only that

the existence of its weak solution was recently proved in Galusinski and Saad (2008,

2009).

5 Comparison of Fully Equivalent and Simplified Formulations

Note that the simplified assumption introduced in Section 4 leads to a fractional flow

model in which the coefficients are calculated from the mass densities, the relative per-

meabilities and the capillary pressure, without solving a large number of the Cauchy

problems for ordinary differential equation as in (28)–(30). This makes the simplified
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model (35)–(37) interesting and sets a question of error introduced by replacing sys-

tematically the phase pressures by the global pressure in the calculations of the mass

densities. We will address this question by comparing the coefficients in the two models

and by performing 1D numerical simulations using these two models. In what follows

we will denote differential equations (28)–(30), with coefficients given by (19) and (21)–

(27), as the new model, and differential equations (35)–(37), with coefficients given by

(38)–(43) and (47), as the simplified model.

5.1 Comparison of the Coefficients

The difference in the coefficients of the two models is introduced by replacing the fluid

phase pressures pg = π̂(u, p) and pw = π̂(u, p) − u by the global pressure p. We will

estimate differences pg − p and p − pw using the fact that pw ≤ p ≤ pg and that the

mass density is a non decreasing function of the corresponding phase pressure. Then

we have
ρg(pg)

ρw(pw)
≥ ρg(p)

ρw(p)
= M(p), (49)

where M(p) is introduced in (45). From (18) and (5) we have

0 ≤ π(Sw, p) − p =

∫ pc(Sw)

0

λ̂w(u)

λ̂w(u) + (ρg(pg)/ρw(pw))λ̂g(u)
du,

from which, using (49) we get

0 ≤ π(Sw, p) − p ≤
∫ pc(Sw)

0

λ̂w(u)

λ̂w(u) + M(p)λ̂g(u)
du. (50)

Note also that in general, the relative permeability functions depend on a dimension-

less variable of the form v = u/p0
c , where u is the capillary pressure and p0

c is some

characteristic capillary pressure value. In that case we can write, by a simple change

of variables,

0 ≤ π(Sw, p) − p ≤ p0
c

∫ +∞

0

λ̂w(v)

λ̂w(v) + M(p)λ̂g(v)
dv, (51)

where the integral on the right hand side is independent of the strength of the capillary

pressure.

Difference between the wetting fluid pressure and the global pressure can be calcu-

lated from (18) and (5) as

p − pw =

∫ pc(Sw)

0

λ̂g(u)

(ρw(pw)/ρg(pg))λ̂w(u) + λ̂g(u)
du,

and therefore, using again the estimate (49), it follows

∫ pc(Sw)

0

M(p)λ̂g(u)

λ̂w(u) + M(p)λ̂g(u)
du ≤ p − pw ≤ pc(Sw). (52)

From the estimates (51) and (52) we can draw several conclusions. In order to

simplify discussion we consider only the most common case where the nonwetting

phase is more compressible than the wetting phase, i.e. the case in which the function

M(p) is increasing.
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Fig. 1 Phase pressures pg = π̂(u, p) and pw = π̂(u, p) − u, for two fixed global pressures
p = 0.5 and p = 5 MPa, as functions of capillary pressure u.

1. The global pressure will be uniformly close to the gas pressure if the characteristic

capillary pressure p0
c is small. From (51) we also see that the difference between

the global and the gas pressure is smaller for higher global pressures.

2. From (50) and (52) we see that for Sw close to one, the global pressure is closer

to the wetting phase pressure than to the nonwetting one. But, for small Sw, the

difference p − pw can be arbitrary large.

3. From preceding conclusions we see that the approximation errors are larger when

the two fluids are equally compressible, and capillary pressure is large. There is

also an influence of the pressure p that affects differently pg − p and p − pw: when

p increases difference pg − p decreases and p − pw increases.

For numerical tests, we take a set of data from the Couplex-Gas benchmark Couplex-

Gaz (2006), with incompressible wetting phase (water) and the ideal gas law ρg(pg) =

cgpg for the nonwetting phase (hydrogen) and a set of van Genuchten’s saturation-

functions.

The choice of incompressible wetting phase makes the approximation of coefficients

independent of the difference p− pw. Error introduced by replacing pg by p in density

calculation depends now only on the characteristic capillary pressure p0
c and the global

pressure p.

The fluid characteristics are given in Table 1, where n and Pe are van Genuchten’s

parameters.

µw µg ρw cg n Pe

Pa s Pa s kg/m3 kg/(m3MPa) - MPa
0.86 · 10−3 9 · 10−6 996.5 0.808 2 2

Table 1 Fluid properties

Van Genuchten’s capillary pressure is given by

pc(S) = Pe

(

S−1/m − 1
)1/n

,
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and the relative permeabilities are

krw(S) =
√

S
[

1 −
(

1 − S1/m
)m]2

, krg(S) =
√

1 − S
[

1 − S1/m
]2m

.

In the above formulas we have m = 1−1/n and we assume that water and gas residual

saturation are equal to zero.

In Figure 1 we show pg = π̂(u, p) and pw = π̂(u, p) − u for a two fixed global

pressures, p = 0.5 and 5 MPa. These figures show that the global pressure is more

close to the wetting phase pressure pw for small to intermediate capillary pressure

values but the difference p − pw grows unbounded when capillary pressure augments.

The difference pg − p tends to a constant when the capillary pressure grows.

In Figures 2 and 3 we compare the coefficients in new and simplified models: bg

and bn
g (= b g on the figure), a and an, λ and λn (= tot mob on the figure), fw and fn

w

(= f w on the figure), and functions ω (= omega on the figure) given by formulas (27)

and (47). The comparisons are given at the global pressure of p = 0.1 MPa in Figure 2

and at p = 5 MPa in Figure 3. All functions are presented as functions of wetting fluid

saturation, while the global pressure plays a role of a parameter.

These figures confirm that the difference in the coefficients diminishes when the

global pressure augments, which is a consequence of the fact that ρw is constant and

the approximation error depends only on pg − p. Similarly it could be demonstrated

that the difference in the coefficients diminishes when the capillary pressure diminishes.

Fig. 2 Comparison of the coefficients in new and simplified global pressure models at the
global pressure of 0.1 MPa. The coefficients are presented as functions of the wetting phase
saturation S with fixed global pressure p.
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Fig. 3 Comparison of the coefficients in new and simplified models at the global pressure of 5
MPa. The coefficients are presented as functions of the wetting phase saturation S with fixed
global pressure p.

5.2 Numerical Simulations

Now we compare the two models by means of a numerical simulation in one space

dimension, with gravity being neglected. The porous domain is L = 100 meters long

with homogeneous permeability K of 1 mD and porosity Φ = 0.1. Fluid properties are

given in Table 1. Discretization of the systems (28)–(30) and (35)–(37) is performed

by a vertex centered finite volume method, see, e.g., Afif and Amaziane (2002), with a

fully implicit time stepping. Now we give some details of the numerical scheme which

applies to the simplified and the fully equivalent models since the difference is only in

the differential equation coefficients.

Let us give a short description of the numerical scheme used for the simulations. As

usual, let (tk), k = 0, 1, . . . , NT be a partition of the time interval [0, T ] with a time step

∆t := tk+1 − tk, and let (xi), i = 0, 1, . . . , Nx be a partition of the spatial domain I =

[0, L] with xi = i∆x. We denote by xi+1/2 the center of Ii+1/2 := [xi, xi+1], x1/2 := 0,

xNx+1/2 := L, ∆x = xi+1/2 − xi−1/2, and the control volume Ii = [xi−1/2, xi+1/2],

i = 0, 1, . . . , Nx. Let pk
i [resp. Sk

i ] be an approximation of p(xi, tk) [resp. S(xi, tk)]

which will be defined precisely in the sequel. For simplicity in notation, we will only

present the scheme for the simplified model. Integrating the system (35)–(37) over the

set Ii× [tk, tk+1], we obtain the following finite volume scheme: for k = 0, 1, . . . , NT −1

and i = 0, 1, . . . , Nx − 1
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Φ∆x
Mk+1

i − Mk
i

∆t
= Rk+1

p,i , (53)

Φ∆x
Nk+1

i − Nk
i

∆t
= Rk+1

S,i , (54)

where M := M(S, p) = ρw(pw)S + ρg(pg)(1 − S) and N := N(S, p) = ρw(pw)S, and

where pw and pg are calculated from p and S by using formulas developed in Section 3

or, simply replacing them by global pressure p.

The term Rk+1
p,i is given by

Rk+1
p,i = (λω)k+1

i+1/2K∗(pk+1
i+1 − pk+1

i ) − (λω)k+1
i−1/2K∗(pk+1

i − pk+1
i−1 ) + ∆x

(

Fk+1
w,i + Fk+1

g,i

)

where K∗ = K/∆x, and the functions ω and λ are calculated at xi+1/2 as arithmetic

means; Fk+1
w,i , Fk+1

g,i are the water and gas source terms. The term Rk+1
S,i is given by

Rk+1
S,i = αk+1

i+1/2K∗(β(Sk+1
i+1 ) − β(Sk+1

i )) − αk+1
i−1/2K∗(β(Sk+1

i ) − β(Sk+1
i−1 ))

− Qk+1
i+1/2fup,k+1

w,i+1/2
+ Qk+1

i−1/2fup,k+1
w,i−1/2

+ Fk+1
w,i

where α(S, p) = ρw(p)ρg(p)/λ(S, p) and

β(S) = −
∫ 1

S
λw(s)λg(s)p′c(s) ds.

The upwind value fup,k+1
w,i+1/2

is determined in the usual way (see, e.g., Afif and Amaziane

(2002)) with respect to the total flux Qk+1
i+1/2

, which is discretized as

Qk+1
i+1/2 = −(λω)k+1

i+1/2K∗(pk+1
i+1 − pk+1

i ).

Equations (53) and (54) are complemented by incorporating the boundary conditions,

then the obtained nonlinear system is solved by the Newton method.

We compare the global pressure in new and simplified models denoted by pnew and

psimp, the phase pressures in both models, denoted by pnew
α and psimp

α , for α = g (gas)

and α = w (water), and water saturation in both models, denoted by Snew
w and Ssimp

w .

In the following we present three different simulations corresponding to gas injec-

tion, water injection and gas source term.

Simulation 1 In this simulation, the gas is injected on the left end of the porous medium

initially saturated by water. As in other simulations we use Dirichlet boundary condi-

tions for the global pressure and the Dirichlet condition for water saturation on injec-

tion boundary completed by the Neumann condition on the output end of the domain.

Therefore, we solve (28)–(30) and (35)–(37) with the following boundary conditions:

Sw(0, t) = 0.4, p(0, t) = 2.0, p(100, t) = 0.1,
∂

∂x
Sw(100, t) = 0,

and the initial conditions:

Sw(x, 0) = 1.0, p(x, 0) = 0.1.

The initial pressure is chosen to be low in order to maximize the difference in the

coefficients of the two models. The source terms are equal to zero: Fw = Fg = 0. The

results of this simulation are shown in Figure 5 for the time instance of 45 days.
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Simulation 2 In this simulation pure water is injected in the porous domain filled with

30 % of gas. We solve (28)–(30) and (35)–(37) with the following boundary conditions:

Sw(0, t) = 1.0, p(0, t) = 4.0, p(100, t) = 0.5,
∂

∂x
Sw(100, t) = 0,

and the initial conditions:

Sw(x, 0) = 0.7, p(x, 0) = 0.5.

The source terms are equal to zero: Fw = Fg = 0. The results of this simulation are

shown in Figure 6 for the time instance of 45 days.

Simulation 3 In this simulation we have added a constant source term Fg on the

interval [47, 53] with intensity of 0.01 kg/day; the water source is equal to zero: Fw = 0.

The porous medium is initially saturated by water at pressure of 0.1 MPa and boundary

conditions, consistent with the initial conditions, are of Dirichlet type. The results of

this simulation are shown in Figure 7 for the time instance of 12 days.

Fig. 4 Global and phase pressures in Simulation 1 (left figure) and Simulation 2 (right figure)
given by the fully equivalent fractional flow model.

Fig. 5 Simulation 1: Comparison of the global and phase pressures and saturations produced
by new and simplified models.
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Fig. 6 Simulation 2: Comparison of the global and phase pressures and saturations produced
by new and simplified models.

First, in Figure 4, we show the global and the phase pressures in the first two

simulations at t = 45 days. These figures show that in given saturation range the

global pressure is more close to the wetting phase pressure and that the difference to

the nonwetting phase pressure can be quite large. Moreover, Simulation 1 shows clearly

that the global pressure is a variable with more smoothness than the phase pressures.

In Figure 5 we show the results of the simulation 1 at t = 45 days performed by new

and simplified models. On the left figure we give a comparison of the global and phase

pressures in new model (pnew, pnew
w and pnew

g ) and in simplified model (psimp, psimp
w

and psimp
g ). On the right figure we see water saturations Snew

w and Ssimp
w . Generally,

there is very small difference in water saturations, but rather large difference in global

pressures and, accordingly, in the gas pressure. Relative difference in total mass of the

gas in new and simplified models, at this time instance, is 9.12 %.

In Figure 6 we show the results of the simulation 2 at t = 45 days performed by

new and simplified models. On the left figure we give a comparison of the global and

phase pressures in new model (pnew, pnew
w and pnew

g ) and in simplified model (psimp,

psimp
w and psimp

g ). On the right figure we see water saturations Snew
w and Ssimp

w . In

this simulation we have a front propagating from the left to the right end of the domain

and we see that the difference in propagation speeds in new and simplified simulations

in negligible. Relative difference in the mass of the gas in new and simplified models is

of 2 %, at this particular time instance. Smaller difference between the two simulations

is a consequence of higher pressures and smaller range of saturations in the simulation.

Finally in Figure 7 we present the results obtained by the two models in the sim-

ulation 3. Again, we have relatively small difference in water saturation but larger

difference in pressures, giving, at this time instance of 12 days, relative difference in

total mass of gas of 9.58 %. As the water saturation in this simulation is close to

one, we see that the global pressure in both models are indistinguishable from the

corresponding wetting phase pressures.
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Fig. 7 Simulation 3: Comparison of the global and phase pressures and saturations produced
by new and simplified models.

6 Conclusion

We have developed a new immiscible compressible two-phase flow model (28)–(30)

based on the concept of the global pressure which is fully equivalent to the original

phase equation formulation (1), (2). This model is compared to simplified fractional

flow model presented in Section 4. By comparing the coefficients in the two models we

show that simplification based on replacing the phase pressures by the global pressure

in calculations of mass densities can safely be used in applications with high mean

field pressure and relatively small capillary pressure if wetting phase is not strongly

compressible, as for example in oil-gas systems. In hydro-geological applications, where

capillary pressures may be elevated with respect to mean field pressure, this approxi-

mation can introduce unacceptably large errors, especially in predicting total mass of

nonwetting phase. These conclusions are verified by means of numerical simulations in

a simple homogeneous one-dimensional test case, with incompressible wetting phase.

We have shown that although saturations produced by the two models are very close,

the difference in pressures may be significant. Our future work will be concentrated on

the extension of the numerical results described in this paper to the two-dimensional

problem.
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