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Abstract. The amount of signals that can be recorded during a surgery,
like tracking data or state of instruments, is constantly growing. These
signals can be used to better understand surgical workflow and to build
surgical assist systems that are aware of the current state of a surgery.
This is a crucial issue for designing future systems that provide context-
sensitive information and user interfaces.
In this paper, Hidden Markov Models (HMM) are used to model a laparo-
scopic cholecystectomy. Seventeen signals, representing tool usage, from
twelve surgeries are used to train the model. The use of a model merg-
ing approach is proposed to build the HMM topology and compared to
other methods of initializing a HMM. The merging method allows build-
ing a model at a very fine level of detail that also reveals the workflow
of a surgery in a human-understandable way. Results for detecting the
current phase of a surgery and for predicting the remaining time of the
procedure are presented.

1 Introduction

Over the last decades an immense amount of information has become available
in the OR. Novel imaging modalities, image processing methods and electronic
patient recordings allow obtaining and accessing huge amounts of data. This
development is to appreciate but also raises new challenges. During surgery,
clinical personnel have to cope with information overload while experiencing
high stress. Often, technological innovations are not well integrated into surgical
workflow and there are deficiencies in effective information handling, which is
also subject of recent critique [1, 2]. Low acceptance concerning systems that
are driven by emerging technologies and not by the need of the surgeons has
been criticized [3]. To develop better solutions, that are well integrated into the
surgical workflow and are adapted to the needs of the surgeon, there are several
issues to deal with.

In this work statistical models are discussed that represent a surgery based
on signals that are obtained from the OR. Such a model can be used in many
ways. Offline for analyzing surgeries in order to better understand their work-
flow. Online for recognizing the current phase of a surgery, which can be used



for providing context-sensitive user interfaces, monitoring or predicting the re-
maining duration of a surgery. With signals, we refer to any kind of information
that can be obtained automatically from the OR. This includes e.g. the use of
surgical instruments, the state of devices, biomedical data or the position of the
surgeon. In this work, Hidden Markov Models are used to model a surgery based
on such signals. Instead of using simple HMM topologies we propose using a
model merging approach to automatically derive the HMM topology from the
data. An important advantage compared to simpler methods for initializing an
HMM, is that with this approach we obtain a human-interpretable model of a
surgery. In [4] it was already discussed how to use HMMs for visualizing workflow
at different levels of detail. In this work we discuss how to recognize the current
phase of a running surgery. The method is evaluated based on the capability to
recognize the current phase of a laparoscopic cholecystectomy. Also results for
predicting the remaining duration of a procedure are presented.

In the medical domain, HMMs have been used to model surgical activities for
skill evaluation. In [5] 6-DOF data was recorded from a laparoscopic simulator
and used to train four-state HMMs for classifying subjects according to their
skill level. A Markov Model was build in [6] based on position, orientation, force
and torque data of two endoscopic tools. Using the Markov Model, difference in
the skill of subjects with different levels of training could be shown. Segmenta-
tion of surgical motions recorded from the da Vinci robot for skill evaluation has
been done in [7]. In [8] video images were used to detect a patient entering or
leaving the room, and the beginning and end of an operation. These four states
were recognized using a combination of support vector machines and HMMs. In-
formation obtained with an eye-tracker combined with visual features were used
in [9] to recognize start and end of one surgical phase in a porcine laparoscopic
cholecystectomy with an accuracy of 75%. In previous work, we already have
segmented surgical phases of a laparoscopic cholecystectomy using a combina-
tion of Dynamic Time Warping (DTW) and AdaBoost [10]. While this method
achieved an accuracy of 99.7%, it is limited to offline use, as the whole surgery
must be recorded before DTW can be applied for segmentation.

2 Method

First we briefly describe the surgery and signals that are used in this work. Then
the general method for recognizing the current phase of a running surgery using
a HMM is explained. Next, simpler HMM topologies and the model merging
approach are explained.

2.1 Setup and Signals

Laparoscopic cholecystectomy is a common but complex surgery. With 95% of
the cases performed laparoscopically it is one of the most established minimally
invasive surgeries. The objective is to remove the gallbladder. Most of the signals
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Fig. 1. View of the operating room (a) and the signals representing the instrument use
during one surgery (b). The dotted lines indicate the 14 surgical phases.

used in this work are binary and represent the use of surgical instruments. Addi-
tional signals are whether one of the four trocars is inserted and high frequency
(HF) coagulation and cutting, which are performed by applying a current to
an instrument. This data was collected for 12 surgeries O = {O1,O2 . . .O12},
where Oi = Oi1Oi2 . . . OiT and T is the length of a surgery i in seconds. Each
Oit is a vector consisting of 17 binary values, representing instrument use. These
instrument vectors will also be referred to as observations. An example of this
can be seen in figure 1. Each surgery was segmented into 14 surgical phases.
The surgeries were performed by three different surgeons in several operating
rooms. All surgeries were videotaped and the use of the instruments was labeled
manually afterwards. However, all of the signals can be obtained automatically.
Information like the use of HF coagulation and cutting can be taken directly from
the devices. The main challenge is to obtain the information about instrument
use. This could be done using e.g. computer vision, barcodes or radiofrequency
tags. A solution that is currently under development together with our medical
partner is to use trocars equipped with a sensor that can detect instruments that
are inserted and removed.

2.2 Hidden Markov Models

A HMM is a statistical model, describing a process over time. It is defined by
the parameters λ = (N,M,A,B, π), where N is the number of hidden states
S1, S2, . . . , SN ; M the number of observation symbols, A the transition proba-
bility distributions, B the observation probability distributions and π the ini-
tial state distribution. Given a HMM λ and a partial observation sequence
Oit = Oi1Oi2 . . . Oit, where t ≤ T , the probability of the HMM having gen-
erated the sequence, P (Oit|λ), can be computed using the forward algorithm.
While doing this, also the probability of being in one of the hidden states Sn

at time t, P (Sn|Oit, λ) is computed. To estimate the current phase, we intro-
duce the phase probability distribution cn. Given that we are in state Sn, the
probability of being in phase i is given by cni = P (phase = i|Sn). Using



N∑
n=1

P (phase = i|Sn)P (Sn|Oit, λ), (1)

we compute the probability of being in phase i, after having observed the surgery
up to time t.

The straightforward way of using this, would be to build a 14-state left-to-
right HMM where each state represents one phase and it is only possible to stay in
one state or move on the state representing the next phase. The phase probability
distribution is directly set to cii = 1 and to 0 for all other phases. The transition
and observation probabilities can be derived from the segmented training data
by counting the length of the phases and the number of observations per phase.
As can be seen later in the results section such a simple model already allows
automatic phase recognition, but shows room for improvement.

As some phases consist of many actions, it would be appropriate to use mul-
tiple states to model one phase. In [11] we used a left-to-right HMM on similar
data, where the number of states per phase is based on the average length of
the phase. The training sequences for one phase are divided into subsequences
of equal length. Transition and observation probabilities for each state are com-
puted based on the length of the subsequences and the number of observations
per subsequence. The phase probability is set to 1 for the corresponding phase.
After building one HMM per phase, they are concatenated to obtain a model of
the whole surgery that is capable of recognizing the current phase. This model
shows good results, but has one important drawback. While the number of states
per phase is related to the length of the phase, there is no direct relationship
between HMM states and the surgical work steps a human would recognize.

2.3 Model Merging

Instead of using the method described before we propose to use a model merging
approach, to generate a HMM that models the surgical workflow with much more
detail and in a way that can be interpreted by humans. The method we are using
is based on the model merging approach by Stolcke and Omohundro [12, 13]. The
idea is to build an initial model that represents every action from every training
example by one state. Such a model exactly explains every step that occurred in
the training data and is thus completely overfitted. By iteratively merging two
states, a more compact model is generated that still explains the training data
well, but does generalize better over unseen data.

The model is build phase-wise by first generating one left-to-right HMM for
each training surgery. Each time one of the binary value changes, a new state is
added to this HMM. Transition probabilities are set according to the duration
of the actions. The initial model λ0 is built by taking all these paths, each
describing one surgery, in parallel. An illustrative example, using only a short
action sequence from two surgeries is shown in the upper part of figure 2.

Obviously, λ0 is of no use for detecting the current phase, as it only explains
the training data. To obtain a more compact HMM that generalizes better,
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Fig. 2. This is an example of how the model merging would work using only two
training surgeries. At the beginning of phase two, usually trocar 2 is placed, the optics
is inserted and then trocar 1 in placed. In some cases the optics is taken out in between
to clean it. For better comprehensibility, the nodes are not labeled with the binary
instrument vectors, but with the last instrument that changed. The upper part of the
image shows the initial model that is build from two surgeries and contains two parallel
paths. In the middle part, the model is shown after three merging steps. The states
trocar2 in , trocar1 in and optics in have been merged. In the lower part, the model
after two additional merging iterations is shown.

states are iteratively merged based on the probability of explaining the training
data. In each step i a new HMM λi is built, by merging two states from λi−1.
using a best-first heuristic. For all pairs, P (O|λi) is computed, and the pair
giving the highest probability is chosen. In figure 2, the results after three and
after five merging steps are shown. In this example, P (O|λ3) is only slightly
lower than P (O|λ0) and so λ3 still explains the training data well. P (O|λ5)
is considerably lower as it has to represent two different observation with one
state. Every additional merging step would drastically lower this probability. In
order to obtain a compact HMM that still explains the training data well, we
abort the merging as soon as the decrease in P (O|λi) reaches a threshold. As
this value decreases very slowly at the beginning and very fast later, the exact
value of this threshold has only little effect. To obtain a model that reflects the
consecutive characteristics of the workflow, we have chosen to only allow merges
that do not lead to loops in the HMM. This constraint did not change the results
of the online phase recognition significantly, but leads to a model that can be
interpreted more intuitively by humans.

The merging process is computationally very demanding, as in every step
the forward probability of the HMM must be computed for every pair of states.
To speed up this algorithm, some approximations, that have already been pro-



posed in [13] were used, namely the Viterbi path approximation and optimistic
path updating. As we have a very sparse HMM, where most transition probabil-
ities are 0, we also used a graph implementation to speed up computation. To
build a model of the whole surgery, we run the model merging for each phase
independently and set the phase probability distribution accordingly. After the
merging process is finished, expectation maximization is used to refine the tran-
sition and observation probabilities. Next, the models of all phases are simply
concatenated, to build a model that is capable of recognizing the current phase
of a surgery.

3 Results

We have done a complete cross-validation, where the model was trained on all but
one surgery and evaluated by remaining one. At each time t the phase with the
highest probability was computed based on the partial sequence Oit, as described
in the last section. In table 1 the overall error and the mean error per phase are
shown. The overall error is the percentage of time steps, where the phase with
the highest probability differs from the ground truth. Some phases are extremely
short, and even an error of some seconds would result in not recognizing most of
this phase correctly. To account for this, the mean error per phase is computed
based on the percentage of errors per phase.

We compared the results to both methods described in section 2.2. The model
merging approach has clearly outperformed the 14-state model. Splitting the
sequences into equal subsequences for initializing several states per phase has
shown results that are comparable to the merging approach. However, the model
merging has important advantages. The topology of the HMM allows humans
to analyze the workflow. The constraint to build models without loops results
in very comprehensible models, as can be seen in figure 3. This phase consists
of one to four uses of the clipping device followed by the use of the scissors,
which is also reflected in this model. As discussed in [4], this can be used for
analyzing the workflow and statistical properties of a surgery. The labels in figure
3 have been created automatically by naming the state with the lowest number of
instruments idle. All other states are labeled by the additional instruments. Such
a visualization is not only important for analyzing surgical workflow but also for
designing context-sensitive systems. It is possible to select one, or several states
for triggering some action like displaying some information which is important
for these steps. Using simpler HMM topologies, this would only be possible at
the level of phases and not of single actions.

One application where automatic phase recognition could be used, is to pre-
dict the remaining time of a surgery. This is important for managing perioper-
ative activities like anesthesia and scheduling of ORs and personnel. A HMM
is a generative model, so we can use it to simulate the process it describes. To
predict the remaining time, the most probable current state is computed and
the remainder of the surgery is simulated several times. The remaining time is
predicted as the average length of these simulations. If we would simply compute



overall error mean error per phase

14 state HMM 14.01% 17.36%

subsequence initialization 7.49% 8.41%

model merging 6.73% 8.90%

Table 1. Errors obtained during a cross-validation on all 12 surgeries.
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Fig. 3. A visualization of the HMM of phase four that has been obtained using the
merging method. For a clearer visualization, the probability of staying in one state has
been omitted. This model was obtained after performing 59 merging steps.

the average length of the surgeries, and assume that a new surgery would have
the same length, the average error would be 14min 40sec. As can be seen in
figure 4, the error at the beginning of a surgery coincides with this value. This
is natural, as we do not have any information and can only assume the average
duration. However, as the surgery goes on, our prediction gets better. Especially
in the last quarter of a surgery, the prediction is very reliable. These results are
based on a complete cross-validation. Note that the error is made of two com-
ponents. The error in estimating the current state, and the error of predicting
the remaining time from this state.

4 Discussion

In this work we have discussed different HMM topologies to model surgical
workflow and detect the current phase. We propose the use of a model merging
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approach that is capable of detecting phases and delivers a very detailed model.
Such a model allows detecting work steps at a finer level and is also interpretable
by humans. This method has delivered good results, although only a small set
of training data was available. The method is not limited to signals representing
instrument use. When using vector quantization to build the initial model λ0, it
can also be applied to continuous data like tracking data or biomedical signals.

As the number of signals that can be obtained during a surgery is steadily
increasing, methods for handling them are of growing interest. We believe that
the use of such statistical models will be of great importance for developing fu-
ture surgical assist system. They allow to better understand the workflow and
to build systems that adapt to the current state of a surgery.
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