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Modeling and Optimal Centralized Control of
a Large-Size Robotic Population

Dejan Milutinović and Pedro Lima

Abstract—This paper describes an approach to the modeling and con-
trol of multiagent populations composed of a large number of agents. The
complexity of population modeling is avoided by assuming a stochastic ap-
proach, under which the agent distribution over the state space is modeled.
The dynamics of the state probability density functions is determined, and
a control problem of maximizing the probability of robotic presence in a
given region is introduced. The Minimum Principle for the optimal control
of partial differential equations is exploited to solve this problem, and it is
applied to the mission control of a simulated large robotic population.

Index Terms—Hybrid automata, multirobot systems, optimal control.

I. INTRODUCTION

Multiagent systems (MAS), concerning both virtual [1], [2] and real
(robotic) [3], [4] agent populations, are currently a subject of major
interest in the literature. One of the most relevant topics in MAS is the
modeling of large-size agent populations.

Deterministic modeling and control approaches have been used both
for large-size [5] and small-size [6] robot formations. On the other
hand, the task allocation and task performance of groups of robots were
modeled under a probabilistic framework in [7]–[9].

In this paper, we are proposing a modeling approach which considers
not only the probabilistic description of task allocation, but also the
distribution of the population over the operating space. This is based
on our recent results [10] on the mathematical modeling of biological
systems [11]. In fact, our work was originally developed for modeling
cell interaction [10], but we found that such an approach also provides
results of potential interest for the MAS community [10], [12].

We introduce a model of robotic population, which is based on a Sto-
chastic Hybrid Automaton model [13]. Using statistical physics [14]
in this framework, the population state is defined by the probability
density function (PDF). Our model is the system of partial differen-
tial equations (PDEs) that describes the evolution of the population
state. This evolution depends on the population parameters, and some
of them can be considered as control inputs. Therefore, based on the
proposed modeling approach, we also derive control theory principles
for large-scale robotic populations.

The main motivation of our approach is to provide fundamental prin-
ciples of modeling and control for large-size populations, providing
math-based tools for the analysis and control design from specifica-
tions. We assume that the robotic population can execute the primitive
tasks driven by individual robot controllers and local information. For
example, each primitive task may correspond to one motion primitive.
The population is governed by a centralized controller, which sends
commands for task execution, task cancellation, or task switching. In
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Fig. 1. (a) Robotic population controlled by three signal sources. (b) Robotic
population microagent model [10].

such a way, the population is controllable as a single conventional gen-
eral-purpose robot. The centralized control strategy for a large-size
robotic population must take into account the uncertainty of each indi-
vidual robot reaction, due to communication problems, local character-
istics of the surrounding environment, etc. This uncertainty is included
in our PDE model.

The proposed centralized controller is based on the Pon-
tryagin–Hamiltonian optimal control theory for PDEs [15], and
provides the control of the population space distribution shape. How-
ever, as in classical optimal control [16], it is an open-loop controller
and there is no warranty that the control can be expressed analytically.
For the numerical computation of optimal control, discrete approxi-
mations in time and space are necessary.

II. MODELING AND CONTROL OF THE POPULATION

We support the description of our method by a motivating scenario.
The scenario, which introduces a class of optimal control problems
formulated in this paper, assumes a robotic population with a large
number of small mobile robots. The term small is used here to underline
that the robot dimensions are significantly smaller than the dimensions
of the region where the robots are operating. We also assume that the
robotic population is sparse, and therefore, no local interactions among
robots are considered.

Several robots are initially distributed over the operating space and
controlled by signal sources from aerial robots (Fig. 1). In this scenario,
each robot in the population moves left and right in the direction of
an active signal source, or stops when the stop signal is active. In this
case, the three vector fields directing the robots left, right, and stop are
f1(x) = �k1; f2(x) = k2, and f3(x) = 0, respectively. Thus, each
robot within the population can be in one of the three possible discrete
states q = 1; 2; 3. The control objective is to maximize the robots’
presence in a desired region of the operating space along the x axis.

The land robot population is steered by active signal sources gener-
ated by the aerial robots. However, not all the robots will react at the
same time and change their motion at once. This happens because the
population is composed of a large number of independent robots. The
uncertainty affecting the robot reaction to the sent command is included
in our modeling approach. This uncertainity can result from physical
constraints to the robot, such as existence of physical barriers between
the specific robot and the signal source. The other reasons for the uncer-
tainty can result from the limitation of robot resources. For example, a
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robot endowed with solar-light rechargeable batteries might rest till its
batteries have been fully recharged, and would not react to commands
meanwhile. To follow the complete dynamics of the population, we
need to model the reaction and motion of each robot. However, in order
to apply optimal control theory, a relationship between the robotic pop-
ulation spreading over the operating region and the population control
signals must be established in such a way that mathematical analysis
is possible. This fact motivated our general approach to the modeling
and control of a multiagent population.

Since the individual robot reaction to the command depends on many
uncertain factors, we can model this reaction by stochastic transitions
between discrete states, each of them representing a particular robot
behavior. In our scenario, each individual robot can be modeled by
the hybrid automaton model, presented in Fig. 1(b), which includes
stochastic transitions between the discrete states q.

The mission control in this case concerns the control of the sto-
chastic transition rates ui; i = 1; 2; 3, in such a way that the robotic
presence in a desired region along the axis x, is maximized. The mis-
sion-control problem we are considering here is an open-loop control
problem. Its closed-loop version would take into account the environ-
ment changes over the space as the robots move, and potential changes
in the robotic population, such as failures and commands not executed
properly. Therefore, the closed-loop control would lead to different ui
control requirements.

The robotic scenario introduced here is the simplified version of pos-
sible real-world examples. One major simplification is that commu-
nication among the robots is not considered. However, this helps us
in achieving a mathematical description suitable to model large-size
robotic populations, which can be exploited for the model-based con-
trol design. This is a paramount idea of this paper, and the robotic sce-
nario we are considering is along this line of thought.

The state of the individual robot is composed of a discrete and a con-
tinuous component. Therefore, the state PDF of the model presented in
Fig. 1(b) is given by the vector �(x; t) = [�1(x; t)�2(x; t)�3(x; t)]

0.
Each �i; i = 1; 2; 3 describes the PDF component corresponding to the
discrete state i. The modeling we are applying here is detailed in [10].

The following system of equations describes the evolution of the
robotic population state PDF:

@�(x; t)

@t
= F (u)�(x; t) = (Fu(u(t)) + F@)�(x; t) (1)

with

Fu(u) =

�u2 � u3 u1 u1

u2 �u1 � u3 u2

u3 u3 �u1 � u2

(2)

F@ = diag k1
@

@x
;�k2

@

@x
; 0

where u(t) = [u1(t)u2(t)u3(t)]
0 with 0 denoting the vector transposi-

tion, and the symbol t in u(t) is omitted in (2). The operator F (u)
is composed of the two components, Fu and F@ , corresponding to
the discrete state transitions and the motion of the robots, respectively
[10]. This system of PDEs is derived directly from the model shown in
Fig. 1(b), and describes the dynamics of the robotic population without
local interactions among the robots, or between the robots and the en-
vironment.

The probabilistic approach we are using here is of fundamental im-
portance to reach a mathematically tractable approach to the spatio-
temporal modeling of large-size robotic populations. The validity of
the model can be evaluated and the model accuracy will be certainly
dependent on the robotic population size and on the type of the oper-
ating environment uncertainties. Instead of going into modeling details,

we are more interested in the fundamental question of how this type of
model can be exploited for control.

If we consider that the robotic population parameters depend on the
control vector u(t), then the optimal control problem is to find a control
u(t) such that the following cost function is maximal:

J(u) =
X

w
0(x)�(x; u;T )dx (3)

where w(x) = [w1(x)w2(x)w3(x)]
0 is a vector of weighting func-

tions, T is the time duration of the mission, and �i; i = 1; 2; 3 de-
pend on u. In general, u is a vector of the population parameters that
may be set externally by appropriate commands sent to the population.
Here we consider the control problem where u is a time-dependent
vector composed of transition rates having the values between 0 and
the maximal value umax, i.e., the set of admissible controls for u(t) =
[u1(t)u2(t)u3(t)]

0 isUad = f[0; umax]�[0; umax]�[0; umax]g. Tran-
sitions are events dependent on correct command reception and condi-
tions for command execution. Therefore, transition rates depend on the
frequency of commands resending and environment characteristics. To
specify completely the solution of (1), the initial and boundary condi-
tions must be defined, and we will do that in the next section.

The optimal control problem is to determine the optimal control
u = u� which maximizes the criterion (3). This problem can be consid-
ered as a special case of a more general optimal-control problem of the
evolution equation [15]. Under the condition that the operator F (u) is
bounded, i.e., kF (u(t))k < 1, the minimum principle for PDEs can
be applied [15]. The Hamiltonian is

H(�(x; t); u; t) = h�(x; t); F (u)�(x; t)i (4)

where brackets h�; �i denote the scalar product of function vectors de-
fined as

hp(x); q(x)i =
X

p
0(x)q(x)dx: (5)

The function vector �(x; t) is the so-called adjoint state, and satisfies

@�(x; t)

@t
= �F 0(u�)�(x; t) (6)

�(x; T ) = �w(x):

According to the minimum principle for PDEs [15], the optimal control
u�(t) satisfies

u
�(t) = arg min

u2U
H(��(x; t); u(t); t): (7)

In words, for the optimal state trajectory ��(x; t), the optimal control
minimizes the Hamiltonian at each time point.

III. APPLICATION TO A ROBOTIC POPULATION

The initial robotic population state PDF is given by the initial PDF
of robots moving left, moving right, and not moving along the x axis,
�1(x; 0) = 0; �2(x; 0) = 0 and

�3(x; 0) =
1p

0:02�
exp � (x�2:5)

0:02
; 2 < x < 3

0; otherwise
(8)
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respectively. The duration of the robotic mission is T = 3h, and the
weighting function w3(x) is

w3(x) =
1p
0:01

exp �

(x�1:75)
0:01

; 1:25 < x < 2:25

0; otherwise
: (9)

The optimal-control problem for the robotic mission is given by the
cost function

J =
X

[0 0w3(x)]

w

�(x; T ): (10)

The motivation for the weighting function w3 choice is to compute
control that will move the center of the robotic distribution from 2.5 to
1.75, and make the distribution slightly sharper.

To show that the operator F (u) is bounded and to apply the min-
imum principle, we should first define a space of the state � and costate
� variables. We will assume that the solutions �; � of (1) and (6), re-
spectively, are from the same space of functions E that satisfies

�; � 2 E (11)

�; � : X ! L
2 � L

2
; @X ! 0

d(�2i ); d(�
2
i ) : Lebesgue integrable; i = 1; 2: (12)

The symbol L2 stands for the set of Lebesgue measurable functions
[17], @X for the boundary of the function domain X , and the symbol
d for differentiation. Therefore, we will assume that X = [0; 5] and
the boundary conditions

�(0; t) = �(5; t) = �(0; t) = �(5; t) = 0; t 2 [0; T ]: (13)

The weighting function w3(x), and initial PDFs �1(x; 0) and �3(x; 0)
are presented in Figs. 4 and 5. The nonzero intervals of w3(x) and
�3(x; 0) ensure that the boundary conditions (13) are satisfied, i.e., that
the population will not have time to reach the boundary of X .

Using the scalar product defined by (5), the space E of the functions
� is a Hilbert space [17] with the norm

k�k = (h�; �i) :

Therefore, we have

kF (u)�k = hF (u)�; F (u)�i

and the operator norm

kF (u)k = max
k�k�1

kF (u)�k:

To show that the operator F (u) is bounded, we use a triangular in-
equality

kF (u)k = kFu(u) + F@k � kFu(u)k+ kF@k:

The linear operator F@ is symmetric and we will exploit this to find
its norm as

kF@k = max
k�k�1

jh�; F@�ij:

However, applying the definition of the scalar product (5), and by virtue
of the space E property (12), we have

jh�; F@�ij = 0 8�) kF@k = 0:

Fu(u) is a matrix with finite real coefficients corresponding to the
values in the admissible set of controls Uad. For any choice of
admissible control values, there exists a maximal singular value
�max(Fu(u)), which is a finite number. Therefore, we can draw the
conclusion that the operator F (u) is bounded, i.e.,

kF (u)k � max
u ;u ;u 2U

kFu(u)k:

Therefore, we can exploit (7) to find the optimal control. The system of
equations which describes the evolution of the costate variables is (6)
with

�1(x; T ) = �2(x; T ) = 0; �3(x; T ) = �w3(x)

and the optimal control u�(t) = [u�1(t) u
�
2(t)u

�
3(t)]

0 satisfies (7),
which is equivalent to [10]

u
�(t) = arg min

u ; u ;u 2U
[u1I1(t) + u2I2(t) + u3I3(t)] (14)

where I1(t); I2(t); I3(t) are functions depending on ��(t) and ��(t).
If we can compute I1(t); I2(t) and I3(t), then the optimal controlu�(t)
will be defined as follows:

u
�
i =

0; Ii(t) > 0

umax; Ii(t) < 0

u�i 2 Uad; Ii(t) = 0

i = 1; 2; 3:

To compute the optimal control using this expression, we should prove
that either Ii(t) 6= 08t 2 [0; T ], or that Ii(t) = 0 only for a discrete
set of time instants tk . In the other cases, we can conclude that (14) is
still valid, but cannot help us to calculate the control u�i (t) because for
Ii(t) = 0, the control can take any value from the admissible set Uad.
This is the “singular control” problem [16]. In that case, some further
structural properties of PDE systems (1) and (6) must be examined. To
avoid the “singular control” problem in our example, we can modify
the cost function (10), adding the term which depends on the control u
and is penalized by the parameter " > 0. This results in

J
" =

X

w
0
�(x; T )� "

T

0

u
2
1(t) + u

2
2(t) + u

2
3(t)dt: (15)

Using a small ", we have J � J". Applying the minimum principle, the
Hamiltonian H", corresponding to the problem with the cost function
J", is [10]

H
"(t) = H(t) + " u

2
1(t) + u

2
2(t) + u

2
3(t) (16)

and the optimal control is defined as follows:

u
�
i =

0; � I (t)
2"

> 0

umax; � I (t)
2"

< umax

� I (t)
2"

; elsewhere

i = 1; 2; 3 (17)

In this case, the problem of singular control does not exist.
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Avoiding the “singular control” problem in this way results in an iter-
ative numerical algorithm for computing the optimal control, proposed
in the next section, that will not indefinitely stop at the points where
Ii(t) = 0, without the warranty that the computed control is optimal.
The price paid is that we are not solving the original optimal-control
problem, but the control problem with the cost function J".

The numerical algorithm used in this paper is based on the nonlinear
conjugate gradient method [18], which is proposed as an efficient gra-
dient-based method for Hamiltonian minimization in optimal control
of ordinary differential equations (ODEs) [18]. To compute the optimal
control, we are dealing with the discrete time approximation of the con-
trol. This type of control is so-called numerical optimal control [19].
Shortly, given the time range [0; T ], and discretization steps in space
�X and time �T , the algorithm is composed of the following steps.
Step 1) Calculate the discrete approximation �̂(x; t) of the time-

forward solution �(x; t), using the discretized version of
(1) and the control ûj(k) in the iteration j, given the initial
condition �(x; 0).

Step 2) Calculate the discrete approximation �̂(x; t) of the time-
backward solution �(x; t), using the discretized (6) and
ûj(k), given the terminal condition �(x; T ) = �w(x).

Step 3) Increase the iteration counter j by 1 and go to Step 4, or
stop the algorithm if the cost function J"(j) reaches the
maximum.

Step 4) For each k, calculate the control by the nonlinear conjugate
gradient update rule [18].

Since the discretization steps, initial condition, and weighting func-
tion are fixed, the result of the algorithm will depend on the free pa-
rameter " and the initial guess û1(k).

The chosen value for " depends on how close to J we want J" to be.
The smaller the ", the closer J" should be to J . However, " can not be
infinitely small, because the algorithm convergence may be influenced
when the minimization problem is close to the original problem with
the “singular control.” For decimal precision of dp, the term which
penalizes control in J" must be smaller than 10�d . Since we know
the maximal values of control umax, this can be expressed by

10�d > J � J
" = "

T

0

3

i=1

u
2

maxdt � 3Tu2max" (18)

which means that

" <
10�d

3Tu2max
: (19)

In the original PDE, the function vector �(x; t) is considered as a
state vector of the population at time t. In the discretized version, the
state vector is approximated by �̂, a finite-dimension state vector whose
dimension is given by

dim(�̂) = NM
D (20)

where N is the number of discrete states, in our exampleN = 3; M is
the number of finite elements used for the space discretization, and D
is the dimensionality of the operating space. The dimension (20) can
be used as a measure of the computational complexity of the proposed
algorithm. The complexity of the algorithm increases linearly with the
number of discrete states, and to the powerD, regarding the number of
finite elementsM . The only free parameter to “control” the complexity
is the number of the finite elements. However, during the algorithm de-
velopment, we noticed that a small number of finite elements leads to
a poor approximation of the integrals for computing the Hamiltonian.

Fig. 2. Cost functions. J : the cost function introduced to avoid the singular
control problem; " = 10 ; J : the original control problem cost function; u 2

[0; 2]; i = 1; 2; 3. Graphs of J and J are overlapped.

Fig. 3. Components of control û = [û û û ] computed after 44 itera-
tions. The control is computed for the cost function J ; " = 10 , �T =
0:03h; T = 3h; u 2 [0; 2]; i = 1; 2; 3.

Consequently, our algorithm can converge to a nonoptimal control so-
lution.

The major difficulty in extending the algorithm for two- or three-
dimensional operating space comes from the exponential dependence
of the complexity on the dimensionality D. Under the probabilistic
approach we are using, the complexity of the algorithm does not depend
on the population size.

A. Numerical Results

To solve numerical optimal control, we are using the sample time
�T = 0:03h. The terminal time of our problem is T = 3h. Therefore,
the optimal control is approximated by 100 samples. In this example,
the control limit is umax = 2, and the velocities of moving left and
right are k1 = 0:5 and k2 = 0:25, respectively. To avoid the singular
control problem, we decide to use the parameter " = 10�7. The initial
guess for the optimal control is û1(k) = [0:5 0:5 0:5]0 8k.

The cost function J" value iterations are presented in Fig. 2. The cost
function converges to the value of 1.3920. The same figure also shows
that the difference between J" and J is negligible, as it is expected
from (18). From this figure, we can conclude that the optimal control
û� is computed after 44 iterations.

The components of the control û� are given in Fig. 3. The first com-
ponent û�1 starts with zero value, then it changes at t = 0:21h to 2.
Before it turns to 0 again, the control û�3 has already changed from 0 to
2. Thus, between t = 1:71h and t = 1:74h; û�1 and û�3 are both 2. This
can be understood as an effective slowdown of the velocity of moving
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Fig. 4. State PDF evolution of robots moving left � (x; t) for t =
0:6; 1:2; 1:8; 2:4h; u 2 [0; 2]; i = 1; 2; 3.

Fig. 5. State PDF evolution of stopped robots � (x; t) for
t = 0:6;1:2;1:8;2:4h; u 2 [0; 2]; i = 1; 2; 3.

to the left, since each robot makes the transition to move left and stop
states with the highest possible rates. After t = 1:74h; û�1 is 0 and û�3
is 2 by the end of the time interval [0; T ]. All the time, in this interval,
û�2 is zero, i.e., the optimal control does not include transitions to the
discrete state move right. Since the initial PDF of robots moving right
is �2(x; 0) = 0, we can conclude that this PDF will be zero all the
time, i.e., �2(x; t) = 08t 2 [0; T ]. Therefore, only the evolutions of
�1(x; t) and �3(x; t) are presented in Figs. 4 and 5, respectively.

Starting with the initial PDFs �i(x; 0); i = 1; 2; 3, the control û�

produces distribution evolutions, such that at the terminal timeT = 3h,
the PDF �3(x; t = T ), depicted in Fig. 5, has one peak value at the
same position as the w3(x) peak. The transition rates are limited, there-
fore, there are robots that have never moved from the discrete state stop
at the terminal time T . This is shown in the plot of �3(x; T ), where a

small plateau exists for the x values corresponding to �3(x; 0) max-
imum.

We can see from Fig. 5 that our original intuition to produce a sharper
robot distribution in the terminal time, in comparison with the dis-
tribution in the initial time, has failed. This is because the evolution
of �3(x; t) is constrained by the population dynamics, i.e., the PDE
system (1) and the corresponding initial condition (8).

The presented numerical example along with the derivation of this
section shows that the minimum principle for PDEs can be exploited for
the computation of robotic population optimal control in the same way
as Pontryagin’s minimum principle is used for ODE optimal-control
computation [16], [19].

IV. CONCLUSION

In this paper, we introduced the modeling and control approach for
a large population of robots controlled by stochastic control signals. It
is based on a system of PDEs which describes the evolution of the state
PDF of the population. Using this probabilistic description of the pop-
ulation state, we formulated an optimal-control problem, introducing
a cost function which includes a weighting function and a state PDF
at the terminal time. We showed that the minimum principle for PDEs
may be exploited to solve this problem. These results were illustrated
using a simulated robotic population.

It is worth mentioning that the state PDF of the population evolves
in the same way as the state PDF of one robot with the same initial
conditions. Therefore, the same result can be used for modeling and
control of one robot in the probabilistic sense.

In this paper, we only considered centralized control, and have de-
signed the best controller applying this strategy. Though the central-
ized nature of the controller has its well-known drawbacks, it is used
here as a means of providing control principles for large-size robotic
populations, prone to mathematical analysis and design from speci-
fications. For further improvement of the control performance, local
robot controllers must be taken into account. We argue that the best
control strategy would be based on a two-level controller. The upper
level would be a centralized controller based on the PDE model of the
population. It would ensure the coherent behavior of the population
by broadcasting commands or settings for the robot control loops. The
lower level would be based on local robot controllers, to ensure perfor-
mance robustness. As future work, we are considering designing such
a controller under the framework introduced in this paper. We are also
considering extending the application of the PDE minimum principle
to other types of optimal criteria, e.g., optimal control with infinite ter-
minal time and different cost functions which can control the shape of
the state PDF.

The study of robotic populations by using the approach presented in
this paper is of potential interest for the mission control of nanorobots
or molecular devices, and applications to smart materials and advanced
medical treatments.
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Kinematic Control of Platoons of Autonomous Vehicles

Gianluca Antonelli and Stefano Chiaverini

Abstract—In this paper, an approach to control the motion of a platoon
of autonomous vehicles is presented. The proposed technique is based on
the definition of suitable task functions that are handled in the framework
of singularity-robust task-priority inverse kinematics. The algorithm is im-
plemented by a two-stage control architecture such that intervehicle com-
munication is not required. The effectiveness of the approach is investigated
by means of numerical simulation case studies.

Index Terms—Closed-loop inverse kinematics, formation control, multi-
robot systems, platoon of vehicles.

I. INTRODUCTION

A challenging research field for control application is represented
by autonomous multirobot systems that exhibit a form of cooperative
behavior.

The topic of multirobot systems is so wide, see, e.g., [9] for an
overview, that also the terminology is varied: the terms platoon, mul-
tirobot, team, formation, group, are frequently used with overlap of
meaning. In the remainder, for sake of simplicity, all the above terms
will be used as synonyms with a small preference for the term platoon.
According to the nomenclature in [9], this paper focuses on the problem
of traffic control, i.e., the path planning of multiple agents/robots/vehi-
cles in a common environment.

Different mathematical approaches have been investigated for this
control problem, such as flatness-based theory in [17], aimed at arti-
ficially coupling motion of the vehicles, or the use of control graphs
in [12], to address the problem of changing the platoon formation.
Few studies have also considered from a theoretical point of view the
problem of team coordination with underactuated/nonholonomic vehi-
cles [13], [21].

The avoidance of obstacles is, obviously, of primary importance,
since most of the platoon’s applications concern unstructured environ-
ments. The simplest approach is obtained by treating the formation as
a single rigid body and applying obstacle avoidance techniques for a
single vehicle, such as in [5]. More flexible approaches have been dis-
cussed, e.g., in [4], [6], [7], [16], and [19].

Following our previous work in [1] and [2], in this paper, an approach
to kinematic control of the shape of a platoon of autonomous vehicles
is developed. The proposed technique inherits from the work in [7]
the use of suitably defined task functions and the lack of intervehicle
communication. Nevertheless, our work handles redundancy resolution
in the framework of singularity-robust task-priority inverse kinematics
[11], thus overcoming some drawbacks that might be experienced by
applying the algorithms described in [7]; the main consequences of this
different choice are pointed out in Section III. The control scheme is
implemented by a two-stage architecture which only exchanges posi-
tion reference data from the centralized platoon-formation control al-
gorithm to the single-vehicle motion controllers; obstacle avoidance
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