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Modeling and Optimization of Compact
Microwave Bandpass Filters

Maged Bekheit, Member, IEEE, Smain Amari, Member, IEEE, and Wolfgang Menzel, Fellow, IEEE

Abstract—This paper presents the modeling and optimization
of compact microwave bandpass filters whose compactness leads
to complex and strong stray coupling paths, thereby making the
identification of a simple and sparse coupling topology difficult
and even impossible. The strong coupling coefficients needed for a
broadband response can also cause an ambiguity in identifying the
spatial extent of local resonances. An equivalent circuit, which is
extracted directly from Maxwell’s equations, is used in optimizing
these filters. The filter is represented by its global resonances in-
stead of individual resonators. The extraction of the parameters of
the equivalent circuit is carried out in the physical frequency and
not in the normalized frequency in order to preserve the physi-
cality of the equivalent circuit, especially for asymmetric responses.
The technique is successfully applied to the optimization of second-
order suspended stripline bandpass filters with one transmission
zero either below or above the passband, as well as fourth-order fil-
ters with three transmission zeros. A fourth-order filter with three
transmission zeros is fabricated and measured.

Index Terms—Eigenmode, resonator filters, suspended stripline
(SSL), synthesis.

I. INTRODUCTION

M
ODERNwirelesscommunicationsystemshave increased
the demand for compact microwave filters. As the size of

thesefilters isdecreased, strayelectromagnetic (EM) interactions
between their individual building blocks, especially resonators,
are increased. Identifyingasimpleandsparse topology toaccount
for the couplings between the resonators becomes difficult and
even impossible. The problem is accentuated in filters with mod-
erate to broad and ultra-wide bandwidths in which strong cou-
plings are needed. An accurate equivalent circuit must account
for all these effects in addition to the frequency dependence of the
coupling coefficients in simple topologies. Obviously, the cou-
pling matrix concept, which is a narrowband approximation, is
not practical in designing these filters.

A narrowband coupled resonator bandpass filter of order
has been thus far modeled as a set of resonances that are
coupled by frequency-independent coupling coefficients. Under
the narrowband assumption, the equivalent circuit is the clas-
sical coupling matrix whose diagonal elements represent the
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frequency shifts in the resonant frequencies of the individual
resonators with respect to the center of the passband [1]. Its
off-diagonal elements are the frequency independent coupling
coefficients between the different resonators and between the
ports and resonators. A comprehensive solution to the problem
of extracting the elements of the coupling matrix with a desired
topology to reproduce a prescribed response is now known [2].

The design and optimization of microwave coupled res-
onator bandpass filters, through space-mapping techniques, for
example, assumes a topology that is capable of reproducing the
target response including the presence of transmission zeros
at finite frequencies. An underlying and crucial assumption
of this approach is that the individual resonances and their
spatial extent, as well as that the coupling topology can be
easily identified. This is certainly the case for most narrowband
filters. However, the identification of a simple and sparse
coupling topology in compact structures is not always possible.
The proximity of the different resonators, assuming that these
can be spatially identified, causes stray (unwanted) coupling
coefficients to be present and often with comparable strength
to those assumed in the selected topology.

To address this important issue, we propose to use an equiv-
alent circuit whose form is always the same regardless of the
characteristics of the response of the filter such as symmetry,
presence, and number of transmission zeros at finite frequen-
cies. It is not longer necessary to define well-localized reso-
nances. The circuit can also model both narrow and broadband
responses. In order to derive such a circuit, we start from re-
sults that are obtained directly from Maxwell’s equations. The
topology of the equivalent circuit is sparse, unique, and uni-
versal when the normal modes of the entire filter are used as
a basis. For narrowband responses, this leads to the transversal
coupling matrix, as shown in [3]. When the narrowband ap-
proximation is no longer valid, the filter can be characterized
by an admittance (impedance) matrix whose form remains the
same regardless of the order, symmetry, presence and number of
transmission zeros at finite frequencies [3]. As long as the con-
tribution of higher order modes to the power transport between
the two ports of the filter can be ignored—this is the case for a
well-designed filter with a good spurious response—a filter of
order is characterized by resonances in or in the vicinity of
its passband. When a more accurate description of the response
away from the passband is needed, higher order resonances can
be readily included in the equivalent circuit.

II. TWO EXAMPLES

In order to better show why a new circuit model instead of

the coupling matrix is needed, especially for compact filters, we

consider two examples.

0018-9480/$25.00 © 2008 IEEE
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Fig. 1. (a) Layout of the second-order SSL filter with one transmission zero
above the passband. (b) Layout of the second-order SSL filter with one trans-
mission zero below the passband. (c) Cross section of the structure.

Fig. 2. Response of optimized filter in Fig. 1(a).

A. Second-Order Filter With One Transmission Zero

We first consider the second-order filters shown in Fig. 1(a)

and (b). The suspended stripline (SSL) technology is chosen

because it allows the implementation of compact bandpass fil-

ters with moderate to very wide bandwidths with little difficulty.

Strong coupling coefficients are realized by placing the coupled

elements on different sides of the suspended substrate. Weak

coupling coefficients can be achieved by placing the elements

on the same side [4].

The optimized response of the filter in Fig. 1(a), as obtained

from the commercial software package Sonnet, is shown in

Fig. 2.

In order to optimize this filter, we preferably require a simple

and sparse coupling topology. The presence of the transmission

zero in the upper stopband suggests the presence of cross-cou-

plings in the structure. For example, nonzero bypass coupling

between the input and the second resonator, as well as between

Fig. 3. Geometry of the fourth-order SSL filter.

Fig. 4. Simulated response of optimized fourth-order filter with three transmis-
sion zeros.

the load and the first resonator, generates a transmission zero.

Another possibility is to view the coupling between the two res-

onators as frequency dependent. The coupling through the gap

in Fig. 1(a) is capacitive, while the one through the portions

that are grounded is inductive. The capacitive and inductive cou-

pling paths cancel each other to generate the transmission zero

[5]. It is not obvious which model is more realistic or accurate,

especially when the bandwidth is increased.

B. Fourth-Order Filter With Three Transmission Zeros

The second example is a fourth-order bandpass filter with

three transmission zeros. It is obtained by cascading two second-

order building blocks of the type used in the previous example,

as shown in Fig. 3. The response of this optimized filter, as ob-

tained from Sonnet, is shown in Fig. 4.

In this seemingly inline direct-coupled resonator filter, no

transmission zeros are expected to be present. The appearance

of three transmission zeros suggests the presence of cross-cou-

plings within the language of coupling matrices. Unfortunately,

it is not obvious where these additional coupling paths are in the

circuit. In other words, the topology of an acceptable coupling

matrix yielding three transmission zeros is not readily estab-

lished. As in the previous example, one might consider an equiv-

alent circuit in which the coupling coefficients are allowed to

vary with frequency. A transmission zero is generated whenever

a coupling coefficient in the purely inline configuration van-

ishes. Unfortunately, this model would fail to predict the appear-

ance of three distinct transmission zeros in this symmetric filter.

Indeed, from symmetry considerations, the coupling coefficient
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between the first and second resonators should be identical to

the one between the third and last resonators. This would mean

that a second-order transmission zero, instead of two distinct

transmission zeros, should be observed. This is not the case.

These two examples demonstrate the limitations of using the

standard coupling matrix, with a topology based on the physical

arrangement of the resonators, as an equivalent circuit for both

diagnosis and optimization purposes of compact microwave fil-

ters. To overcome this problem, we use a representation of the

structure in which the resonances are not localized. By doing so,

we eliminate the need to identify a topology since all filters will

then have the same topology.

III. GLOBAL EIGENRESONANCE REPRESENTATION

OF SSL FILTERS

In order to be able to efficiently optimize compact microwave

filters, it is important to find a circuit model that accurately rep-

resents their physical behavior. The EM characteristics of cavity

resonator filters are rigorously described by Maxwell’s equa-

tions. A convenient approach, especially for coupled resonator

filters, is to expand an arbitrary EM field in the volume of the

filter in terms of the normal resonances of the entire structure.

The mathematical steps and details of this formulation were re-

ported by a number of researchers.

The first study along these lines seems to have been given

by Slater who derived an expression for the input impedance of

a cavity fed by a uniform waveguide [6]. Later work by Teich-

mann and Wigner showed that Slater failed to use a complete set

of vector functions in his expansion [7]. A more detailed inves-

tigation of cavity resonators was given by Muller [8]. In a sem-

inal paper, Kurokawa showed how the port parameters of one-

and two-port cavities can be derived when complete sets of res-

onant solutions are used [9], [10]. Similar characteristics were

discussed in connection with numerical techniques [11]–[13].

For our needs in this study, the main result is the expansion

of the generalized admittance matrix of a cavity in terms of

the short-circuit resonant modes. For a cavity fed by a uniform

waveguide, the two-port admittance matrix takes the form [9],

[10]

(1)

Here, and are the port numbers, , ,

are real constants related to the coupling integrals of the

dominant mode in the feeding waveguide or transmission line

to the th eigenresonance in the cavity, and is the resonant

angular frequency of the same resonance.

In the case of SSL filters, we assume that the structure is fed

by a 50- SSL, which support a quasi-TEM mode. Under these

conditions, the terms in (1) are small enough to be ne-

glected. For a filter of order , we further assume that only

resonances significantly contribute to the power transport be-

tween the input and output over the frequency range of interest.

If a more accurate account of the response of the filter is de-

sired over a wider frequency band, additional higher order

Fig. 5. Equivalent circuit of N th-order SSL filter where N passband reso-
nances and p higher order resonances are included.

resonances are retained in (1). Under these conditions, the ad-

mittance matrix in (1) reduces to

(2)

The assumption of a quasi-TEM mode in the feeding lines

implies a practically frequency-independent characteristic

admittance . The inverters in (2) can be normalized by ,

for convenience, and remain fairly constant versus frequency.

Note that, in actuality, the denormalized inverters depend only

weakly on frequency since they are determined by coupling

integrals, which are purely geometrical quantities for homo-

geneously filled structures. Although the SSL structure is not

homogeneous, it is mainly the higher order modes that are

significantly affected, especially for thin dielectric substrate.

The SSL filters considered in this study are then described by

the following admittance matrix:

. . .
...

...
...

(3)

Here, we again assume that passband resonance and higher

order resonances are included. An exact circuit representation

of the admittance matrix in (3) is given in Fig. 5. Each path is

represented by a parallel LC circuit sandwiched between two

admittance inverters. It is straightforward to show that the ad-

mittance parameters seen by the source and load in this circuit

are identical to the expansion in (2).

To illustrate the accuracy of the equivalent circuit, the re-

sponse of the second-order filter with one transmission zero,

shown in Fig. 1(a), is shown in Fig. 6. The solid lines represent

the full-wave simulated response as obtained from Sonnet. The

dotted lines are the best fit that was obtained when only two res-

onances are included in the model ( , ). Although

good agreement is achieved between the two responses in the
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Fig. 6. Response of second-order filter with one transmission zero [see
Fig. 1(a)]. Solid lines: full-wave simulation from Sonnet, dotted lines: equiv-
alent circuit with two passband resonances (N = 2, p = 0) and dashed
lines: equivalent circuit with two passband resonances and one higher order
resonance (N = 2, p = 1).

passband, larger deviations appear below and above the pass-

band. When a higher order resonance, whose resonant frequency

is adjusted during the fitting process, is included, the response

shown by the dashed lines is obtained. It agrees within plotting

accuracy with the full-wave EM simulation. The improvement

over the two-resonance circuit is evident. The circuit with one

higher order resonance represents accurately the EM behavior

of the filter.

Similar results are obtained for the fourth-order filter with

transmission zeros whose response is shown in Fig. 4. If only

four resonances, whose resonant frequencies are in the passband

or its immediate vicinity, are included ( , ), the re-

sponse of the corresponding equivalent circuit is shown as the

dotted lines in Fig. 7. As in the previous example, good agree-

ment is achieved in and close to the passband. The response of

the equivalent circuit when four passband resonances and two

higher order resonances are included ( , ) is shown

as the dashed lines. It is evident that this sixth-order circuit rep-

resents accurately the EM behavior of the structure.

In order to use the equivalent circuit to optimize these filters, it

is important that detuned responses be accurately approximated.

As an example, the response of a detuned fourth-order filter with

a relative bandwidth of roughly 20% is shown in Fig. 8. The

solid lines show the simulated results as obtained from Sonnet

and the dashed lines show the response of the equivalent circuit

with and . Excellent agreement between the two

results is achieved.

These results show that the response of these filters can be ap-

proximated sufficiently accurately in the passband and its imme-

diate vicinity by the equivalent circuit in Fig. 5 with only those

resonances in and close to the passband included. In all cases in-

vestigated thus far, this has been sufficient to optimize the filter.

When an accurate description of the response away from the

passband is required, higher order resonances must be included

in Fig. 5. The required number of higher order resonances is de-

termined by the extent of the frequency range over which the

response is approximated, as well as the frequency separation

Fig. 7. Response of second-order filter with three transmission zeros (Fig. 3).
Solid lines: full-wave simulation from Sonnet, dotted lines: equivalent circuit
with four passband resonances (N = 4, p = 0) and dashed lines: equivalent
circuit with four passband resonances and two higher order resonances (N = 4,
p = 2).

Fig. 8. Response of detuned broadband fourth order filter with three transmis-
sion zeros (Fig. 3). Solid lines: full-wave simulation from Sonnet, and dashed
lines: equivalent circuit with four passband resonances and two higher order res-
onances (N = 4, p = 2).

between the edge of such a range and the next spurious band.

Note that, had we insisted on using the expansion over resonant

modes as a full-wave simulation tool, a much higher number of

resonances would have been required to describe a lower order

filter. For example, an accurate description of the response of

a second-order dual-mode filter requires up to 48 modes [13,

p. 195]. This number is significantly reduced by accepting not

to use the expansion as a full-wave simulation tool and consid-

ering only those modes that account for the power transport, as

described by the scattering parameters. In other words, we are

not interested in calculating the admittance parameters in (1),

as done in [13], where reference planes are placed relatively far

from the first discontinuity to allow a simple extraction of the

low-frequency behavior of these parameters. However, by ex-

tending the lengths of the uniform feeding lines, we introduce

more modes at lower and lower resonant frequencies. On the

other hand, the return loss and insertion loss of the filter are not
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Fig. 9. Full-wave simulated response of dual-mode filter in [13] (solid lines)
and response of equivalent circuit with N = 2 and p = 1 (dashed lines). The
dimensions of the filter are given in [13, p. 196].

affected by the lengths of the uniform sections. It is arguably

better to keep these short, ideally of zero length, thereby limiting

the number of resonances in the passband and its vicinity only

to those responsible for power transport. Indeed, the response

of the dual-mode filter in [13] can be accurately approximated

by an equivalent circuit with and resonances, as

shown in Fig. 9. The EM simulation results, shown as solid lines,

were obtained from the commercial software package Wave

Wizard from Mician, Bremen, Germany. The response of the

equivalent circuit, shown as the dashed lines, is in good agree-

ment with the full-wave simulation. The slight deviation be-

tween the two results at the upper edge of the frequency range

reflects the effect of other higher order resonances.

IV. TRANSVERSAL COUPLING MATRIX

The theory presented in this paper can be used to show that

the coupling matrix concept in which the coupling coefficients

are assumed frequency independent is inherently narrowband.

To prove this, we show that the transversal circuit used in this

paper reduces to the transversal coupling matrix introduced by

Cameron [14] in the narrowband limit. We start from an

transversal circuit whose nodal admittance matrix

is of the form

...
. . .

...
...

(4)

We define the usual normalized frequency, which describes the

low-pass to bandpass transformation

(5)

where is the center frequency of the passband. Note that the

fractional bandwidth is absorbed in the normalized frequency to

ease the algebra, and it can be restored at the end if needed. The

transformation (5) is inverted to extract the physical frequency

as

(6)

The negative values of are ignored since the passband is cen-

tered about a positive value . In terms of , the frequency-

dependent diagonal elements in (4) take the form

(7)

If we expand this expression in a Taylor series around

and keep only the first two terms, we get

(8)

This equation is valid as long as is small. This implies that

results obtained from it are narrowband and may not be valid

over a wide frequency band. The relative error in the linear ap-

proximation (8) can be easily assessed by direct comparison

with (7). For example, for , a 10% error results

at .

Upon substitution of (8) in (4), we get

...
. . .

...
...

(9)

Since all the ’s defined in (8) are positive, we can scale (9) to

finally get

...
. . .

...
...

(10)

By comparing this nodal admittance matrix to that of the

transversal network in [14], we can identify the transversal
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coupling matrix as

...
. . .

...

...
. . .

...
...

(11)

This derivation shows that the concept of the transversal cou-

pling matrix is inherently a narrowband concept. Similarity

transformations can be applied to (11) to achieve sparse topolo-

gies that are, of course, valid only for narrowband filters.

V. OPTIMIZATION EXAMPLES

Here, the optimization of second- and fourth-order SSL

filters is discussed. This class of filters have been reported

in [15]. In this study, the operation of these filters will be

modeled and explained using the global eigenmodes approach.

For second-order filters, the zero-shifting property is also used

to move the transmission zero from one side of the band to

the other by interchanging the resonant frequencies of the

even and odd modes.

The layouts of the second- and fourth-order filters are shown

in Figs. 1 and 3, respectively. The thickness of the dielectric

slab is mm and the height of the air gap above

and below the dielectric slab is mm. In some examples,

the dielectric constant of the substrate is taken as ,

whereas in others, it is when a reduced sensitivity

to manufacturing errors is required. The structures are assumed

lossless. The commercial software package Sonnet, in which the

conducting strips are assumed of zero thickness, is used to an-

alyze them. The optimization is based on the equivalent circuit

in Fig. 5 where no higher order resonances are used. It is, how-

ever, worth mentioning that the extraction of the elements of

the circuit in Fig. 5 is carried out directly in the physical fre-

quency and not in the normalized low-pass frequency. In fact,

no low-pass prototype is used in this study.

1) Second-Order SSL Filter: The first example is a

second-order SSL filter with a fractional bandwidth of 15%

and one transmission zero above the passband. The structure

is shown in Fig. 1(a). Since the structure is symmetric, the

frequency response of the filter can be described by its even

and odd modes where the symmetry plane is at half distance

between the feeding lines at the input and output. The coupling

of a given mode to the input and output are also equal in magni-

tude. The filter is, therefore, modeled by the admittance matrix

Fig. 10. EM simulated response for second-order bandpass filter with very
weak input and output coupling. Solid lines: initial dimensions, dashes lines:
only the g dimension is perturbed by �0.1 mm.

in (3) where only two resonances at and are retained, i.e.,

(12)

Note that the resonant frequencies and are not necessarily

close and that the normalized inverters are assumed frequency

independent, as discussed earlier.

The response of the filter can be optimized by controlling the

resonant frequencies of the two modes and their respective cou-

pling to the feeding lines. In order to control the resonant fre-

quencies of the two modes separately, regions of strong electric

and magnetic fields of each mode must be identified. A field

plot can be easily generated using a field solver if needed. For

example, it is obvious that the width of the gap (see Fig. 1) im-

pacts the resonant frequency of the mode with an electric wall

along the plane of symmetry significantly more than the one

with a magnetic wall. The effect of the different dimensions on

the eigenmode frequencies can be investigated by weakening

the coupling to the input and output (increasing in Fig. 1) and

then examining the response when a given dimension is mod-

ified. For example, when the width of the gap is changed by

0.1 mm, the response shown in Fig. 10 is obtained. It is ob-

vious from this figure that the width of the gap can be used to

control the resonant frequency of one of the modes. Using this

method, we can identify the set of dimensions that are to be per-

turbed in the optimization process.

The elements of the admittance matrix in (12) that yield a

specified response can be determined either analytically or by

optimization. For example, for a second-order filter with a center

frequency of 10 GHz, in-band return loss of 20 dB, a relative

bandwidth of 15%, and a transmission zero at 14.0 GHz, we

obtain , , GHz, and

GHz.
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The space-mapping optimization technique is used in this

study where the global eigenmode model is used as a coarse

model or equivalent circuit. The technique depends on estab-

lishing a relationship between the physical dimensions and the

circuit parameters (coupling and eigenmode frequencies) that

can be inverted in order to calculate the target physical dimen-

sions at every optimization step. Since the technique is well es-

tablished, only a brief summary is presented here, for more de-

tails see, for example, [16] and [17].

A crucial step in this optimization technique is the extraction

of the elements of the equivalent circuit. In this study, this is

achieved by minimizing the following cost function:

(13)

Here, the circuit parameters are used as optimization vari-

ables and are judiciously chosen frequency points.

A linear approximation is assumed between the circuit

parameters and the physical dimensions. For a canonical

problem where the number of physical dimensions is equal to

the number of coarse model parameters, the Jacobian can be

calculated using finite differences. Each adjustable quantity

is perturbed by a small, ideally infinitesimal, amount , and

the corresponding circuit parameters extracted. After all the

adjustable parameters are perturbed, we get an approximation

of the Jacobian as follows:

(14)

If the parameters of the equivalent circuit are grouped in a vector

and the perturbations in a vector , we have

(15)

where is the vector of the initial circuit parameters (before

any perturbations). The target physical dimensions can be ob-

tained by substitution in (15) as

(16)

where is vector representing the dimensions prior to the

perturbations. The process is repeated until convergence is

achieved.

Asanexample, thesecond-orderfilter inFig.1(b)wasdesigned

at 10 GHz using a dielectric substrate of . The initial de-

sign starts by setting the arms of the resonator to a quarter wave-

length. Taking advantage of the symmetry of the structure, the

even and odd modes are analyzed separately by placing electric

and magnetic walls along the symmetry plane. The group delay

can be obtained by means of the derivative of the phase of the

reflection coefficient of the resulting one-port, as in the theory

of narrowband coupled resonator filters. The controlling dimen-

sions and are adjusted in order to adjust the two resonant fre-

Fig. 11. Response of initial design of second-order filter. The transmission zero
is not included in the design.

Fig.12. Optimizationprogress for second-orderfilter startingfromanextremely
detuned response. Dotted line: initial response, solid line: optimized response,
and dashed line: ideal response.

quencies to the required values and compensate for the loading.

Initially, the dimension is determined such that the input cou-

pling is equal to that required for an inline filter with the same re-

turn loss. Fig. 11 shows the EM simulated response of the initial

design, as obtained from the above procedure. The dimensions

of this initial design are mm, mm, mm,

mm, mm, mm, and mm.

Note that the presence of the transmission zero is not taken into

account in the initial design. Its position is adjusted first manually

and then during the optimization.

To better test the optimization process, the initial design was

purposely detuned further, as shown by the dotted lines in Fig. 12.

The progress of the optimization is shown in Fig. 12. It took three

iterations to reach the response shown as the solid lines. For com-

parative purposes, the ideal response is shown as the dashed lines.

Excellent agreement between the two curves is achieved in the

passband and its vicinity. The deviation between the simulated

response of the optimized structure and the ideal response away

from the passband is caused by the spurious higher order reso-
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Fig. 13. Optimization progress for second-order SSL filter with transmission
zero below the passband. Dotted line: initial response, solid line: optimized re-
sponse (iteration 1), dotted line: ideal response.

nances that are not taken into account in the admittance matrix

in (12) (see Fig. 6). The dimensions of the optimized filter are

mm, mm, mm, mm,

mm, mm, and mm. The negative value

of the dimension indicates that the two metallic layers, on op-

posite sides of the substrate, are overlapping.

A second-order filter with a transmission zero below the pass-

band was designed based on the structure in Fig. 1(b). Compared

to thefilter in Fig. 1(a), theorder of the resonant frequenciesof the

even and odd modes are reversed. This is achieved by changing

the nature of the connection between the arms of the resonator

and the wall of the metallic enclosure. The response of the op-

timized filter is shown in Fig. 13 as the solid lines. It took one

iteration for the process to converge. For comparison, the ideal

response is shown as the dashed lines. Good agreement between

thetworesponsesisachievedinthepassbandanditsvicinity.Asin

the previous example, deviations between the two results appear

away from the passband. These can be accounted for by adding

higher order resonances. The dimensions of the optimized filter

are mm, mm, mm, mm,

mm, mm, and mm.

2) Fourth-Order SSL Filter: The third example is a fourth-

order filter with three transmission zeros, as shown in Fig. 3. As

in the previous example, in the optimization process, we only

keep resonances in the passband and its vicinity; all

higher order resonances are “ignored” . The filter is

then described by an admittance matrix of the form

(17)

Fig. 14. Response of initial design of fourth-order filter.

The filter is to have a passband of 1 GHz centered at 10 GHz

with an in-band return loss of 20 dB. The response must have

transmission zeros at 6, 11.2, and 12.22 GHz. These specifica-

tions are met by the following values of the parameters in (17),

i.e., , , , ,

GHz, GHz, GHz, and

GHz.

The initial design exploits the symmetry of the filter and a

similar procedure as for the second-order filter was used. First,

the length of the arms of the resonators is fixed at a quarter

wavelength. Electric and magnetic walls are inserted along the

symmetry plane in order to be able to analyze the even and odd

modes separately. The one-port group delay can be calculated,

and in this case, two peaks are observed. These occur at the

eigenmode frequencies of the two even or odd modes depending

on the boundary condition set at the symmetry plane. The con-

trolling dimensions , , , and in Fig. 3 are adjusted such

the resonant frequencies are at the required values. It should be

noted that the dimension impacts the odd modes more than

the even ones; it can be fixed in the configuration with the elec-

tric wall along the symmetry plane. Fig. 14 shows the response

of the initial design. The corresponding dimensions are ,

mm, mm, mm, mm,

mm, mm, mm, mm, and

mm. Note that the transmission zero are not included

in the initial design. Their positions is first adjusted manually

and then during the optimization process.

The progress of the optimization process is shown in Fig. 15

along with the ideal response as obtained from the nodal admit-

tance matrix in (17). One iteration based on a linear approxi-

mation [17] is sufficient to bring the in-band return loss from

11 to 20 dB and adjust the bandwidth and center frequency of

the passband. A dielectric slab with is used where

the input lines and the resonators are placed on opposite sides

of the substrate. The six controlling dimensions that were per-

turbed and optimized are , , , , , and (see Fig. 3).

The dimensions of the optimized filter are mm,

mm, mm, mm, mm,

mm, mm, mm, mm, and
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Fig. 15. Optimization progress for fourth-order SSL filter. Dotted lines: initial
response, solid lines: optimized response (one iteration), dashed lines: ideal re-
sponse.

Fig. 16. Fabricated fourth-order filter with opened metallic enclosure and
feeding lines. The four resonators on the backside of the substrate are shown
in the inset (not to scale) of this figure.

mm. Although a total of eight parameters are needed

to adjust the structure to yield an arbitrary fourth-order response

with three transmission zeros, the selected six parameters were

sufficient to meet the specifications. For more general and arbi-

trary requirements, more adjustable parameters may be needed.

In such a case, the concept of pseudoinverse or singular value

decomposition can be used to obtained the best set of values of

the parameters at each iteration. A minimization approach can

also be used to determine the optimal values of the parameters

at each iteration.

VI. EXPERIMENTAL RESULTS

A fourth-order filter with three transmission zeros was se-

lected for fabrication. Given the sensitive nature of these filters,

a lower dielectric constant of was chosen in order to re-

duce the effect of manufacturing errors. The other dimensions

of the metallic enclosure remain unchanged from Fig. 1. The

filter was optimized by following the same procedure as in the

previous example.

Fig. 17. Measured (solid lines) and simulated (dashed lines) results of fourth-
order filter.

Fig. 18. Measured (solid lines) and simulated (dashed lines) results of the struc-
ture that was actually fabricated.

A photograph of the fabricated filter is shown in Fig. 16.

The measured and simulated results are shown in Fig. 17 as the

solid and dashed lines, respectively. Acceptable agreement is

achieved between the simulated and measured insertion loss of

the filter. Deviations between the in-band return loss reflect the

sensitivity of these types of filters to manufacturing errors and

the mismatch caused by the SMA connectors at the input and

output. Better agreement between the simulated and measured

results is obtained when the small extension of the dielectric

layer into grooves to suspend it is included in the simulation

process.

The fabricated substrate is placed into a 30-mm-long mount

and soldered to coaxial connectors. Substrate edges were cut

slightly to improve the return loss of the transitions. Measure-

ments were done with an Agilent 8510 network analyzer using a

coaxial two-port calibration. Accordingly, the measured results

include some excess line length and the transitions to the coaxial

measurement system.

A comparison between the measured and simulated results

with the modifications in place is shown in Fig. 18. Compared
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Fig. 19. Sensitivity analysis of the fabricated structure. Only the dimensions
s , g, and x are varied by�25 �m each. Solid line: EM simulations and dotted
line: measurements.

to Fig. 17, better agreement is achieved. Fig. 19 shows the sen-

sitivity analysis of the fabricated structure when only three di-

mensions ( , , and ) were allowed to vary by 25 m each.

It is obvious from the plot that the filter is quite sensitive to man-

ufacturing tolerances, especially in the passband where the re-

turn loss falls to 11 dB when the three dimensions are perturbed

simultaneously. In this analysis, metallic and dielectric losses

were not taken into consideration. The remaining difference be-

tween the measured and simulated return loss (roughly 3 dB)

may be due to losses and the SMA transitions, which are not

taken into account in the simulation.

VII. CONCLUSIONS

A technique that exploits an equivalent circuit based on the

global eigenmodes of the entire filter, instead of the individual

resonators, as used in coupled-resonator filter theory, has been

used to optimize compact bandpass microwave filters. The

equivalent circuit overcomes the difficult issue of identifying

a simple and sparse topology in compact structures where

stray couplings are too strong to neglect. Within the presented

approach, the form of the admittance (impedance) matrix

representing the filter is always the same regardless of the char-

acteristics of the response of the filter. The equivalent circuit

has the advantage of handling narrowband, as well as broader

bandwidths. Broadband filters can be modeled by including the

global eigenmodes whose resonant frequencies fall within or

close to the passband, as well as few higher order modes. The

technique has been applied to the optimization of filters with

bandwidths of up to 15%. Good results have been obtained.
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