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The relative motion of the friction and separator plates in wet clutches during the disen-
gaged mode causes viscous shear stresses in the fluid passing through the 100 microns
gap. This results in a drag torque on both the disks that wastes energy and decreases fuel
economy. The objective of the study is to develop an accurate mathematical model for the
above problem with verification using FLUENT and experiments. Initially we two consider
flat disks. The mathematical model calculates the drag torque on the disks and the 2D
axisymmetric solver verifies the solution. The surface pressure distribution on the plates
is also verified. Then, 3D models of one grooved and one flat disk are tested using CFD,
experiments and an approximate 3D mathematical model. The number of grooves, depth
of groove and clearance between the disks are studied to understand their effect on the
torque. The study determines the pressure field that eventually affects aeration incipience
(not studied here). The results of the model, computations and experiments corroborate
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1 Introduction

The fluid motion over a single rotating plate has been studied
extensively. Von Karman [1] studied the problem of an infinite
disk rotating in quiescent fluid revealing the swirling flow patterns
over the disk. He reduced the equations of motion to a nonlinear
differential equation using the assumption of axisymmetry and
similarity. His work and the subsequent solution to those equa-
tions by Cochran [2] determined the nature of flow field over the
rotating disk. Fluid entrains axially and exits the disk surface ra-
dially. This problem has many similarities to rotating turbo ma-
chinery such as compressors and centrifugal pumps. Here, our
primary interest is in the open clutch system where two disks
rotate at different speeds. Some early work with two co-rotating
disks is attributed to Batchelor [3] and Stewartson [4]. Batchelor
proposed that the core of fluid between the two plates away from
the boundary layer on the disks rotates with constant angular ve-
locity while Stewartson suggested that boundary layer forms only
on the rotating disk and that the remaining fluid will not rotate if
one disk is stationary or counter-rotating.

Further, we study the case where the plate separation is small
and lubrication scaling is appropriate. Recent work by Kitamura
[5] highlights this asymptotic treatment of the Navier-Stokes
equations. Since the gap between the two disks is very small
compared to their radii, the equations can be scaled accordingly.
The relative effects of inertial, gravitational and surface tension
forces were assessed. These simplified equations are the basis of
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well in the single-phase regime. [DOI: 10.1115/1.2162553]

the mathematical model for the problem in this paper. The ease of
pressure and shear stress distribution calculations using the model
makes this tool very useful.

This study focuses on reducing shear stress and hence conse-
quently the drag on the disks. In an open clutch system, a rotating
friction plate (FP) and a stationary separator plate (SP) are
100 microns apart. An oil film is maintained between the disks for
lubrication when the clutch disks are brought together for engage-
ment. However in the disengaged mode, the viscous shearing of
this oil film causes unnecessary torque on both disks. This wastes
energy that decreases fuel economy.

Schade [6], Fish [7], and Lloyd [8] empirically determine
trends regarding geometric parameters such as groove patterns,
depths as well as clearance and flow rate. They also indicate the
importance of disk waviness in reducing drag torque. This study is
restricted to flat (not wavy) plates, with the exception of possible
grooves [9-11].

The most important aspect that reduces the torque is aeration.
Air infiltration between the two disks reduces torque substantially
since air has low viscosity. The analysis here will show where
aeration is likely to occur. The flow rate is very important in
determining the pressure distribution along the disks however its
direct effect on drag torque for nonaerated lubrication is minimal.
As a result, varying flow rates are not considered in these single-
phase simulations. We leave aeration study to subsequent publica-
tion.

Yuan [12] also compares computations of grooved plates with
experiments. Their results suggest that surface tension has an im-
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Schematic diagram of the apparatus, showing oil entering axially from the center of

rotating plate and exiting radially at r=R, due to centrifugal action. The origin of the coordinate
system is on the symmetry axis halfway between the two plates. The relevant dimensions are

shown.

portant role in the incipience of aeration. The parametric study of
Kitabayashi [13] concluded that speed is the most important pa-
rameter that affects drag torque.

In Sec. 2, we start with the asymptotic analysis of the Navier-
Stokes equations and the subsequent derivation of the lubrication
model. Section 3 describes the 2D axisymmetric modeling of the
flow using FLUENT. Section 4 explains the experimental apparatus.
Section 5 comprises of 3D computations and contours of impor-
tant solution variables at low rotation speed. Section 6 compares
the model, computations and experiments. Both the pressure dis-
tribution and shear stress distribution are considered for an effec-
tive comparison even though we are primarily interested in the
shear stress values. Section 7 enlists the conclusions of the study.

2 Mathematical Model

Asymptotic Analysis of Navier-Stokes Equations. In this sec-
tion, the momentum equations are reduced by making lubrication
approximations with reduced equations offering us an exact local
velocity profile (Fig. 1). The flow is assumed to be steady and
axisymmetric. Hence, d/dt=3/96=0. In addition, r, R;, and R, are
scaled by R,,, z is scaled by &, v is scaled by wR,,, u is scaled by
R, h2pl, p is scaled by pv?, w is scaled by w’h’p/p, Q is
scaled by u,R,, and 7 is scaled by pw?*h®. The usual lubrication
approximations are made; h<<R,,; w,<<u, and the inertial forces
in the axial and tangential directions vanish such that Re,,
=wihp/ u—0 and Re,=ushp/u—0. The clearance between the
two plates, h, is constant. Also, we define the parameter &
=h/R,,.

Even though this is a lubrication problem, the scale chosen for
pressure is not the viscous type but an inertial one. This is non-
standard but can be justified since centrifugal force is the domi-
nant effect driving the fluid in the radial direction.

Putting the scaled variables in r direction momentum equation
and noting that w’R,,h>p/u=u,, the lowest-order » momentum
equation in ¢ is

v 7 _7u "
o r a2
Similarly, the z momentum equation is
p
- =0, 2
P 2

and the # momentum equation becomes
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The continuity equation becomes,
19(ru) ow
Loy v _y, 4)
roor oz

The boundary conditions on the disk are u(z=xh/2)=w(z
=+h/2)=v(z=-h/2)=v(z=h/2)—wr=0. At the inlet and outlet
two more conditions are needed; one on pressure and the other on
radial component of velocity (flow rate). However, we can choose
to specify conditions on the inlet and outlet pressures and leave
the flow rate unspecified

p(}’:Ri) —p0=p(r=RO)—p0=0‘

Equations (1)—(4) govern the problem. The pressure is just a func-
tion of radius r and is independent of z. Also, the tangential ve-
locity profile is linear with no slip conditions at the walls. On
specifying the appropriate boundary conditions, the above set of
partial differential equations constitute a well-posed problem with
four equations and an equal number of unknowns.

Solution of (3) gives us the exact profile for the tangential com-

ponent of velocity v.
3
=rlz+< .
14 Z 9

Using this and noting that the pressure gradient is independent of
z from (2), we integrate (1) and upon applying boundary condi-
tions obtain

dp (zz 1 ) zzr<z2 z 1 ) dzr  Tr
u=—\—--|-—|—+-+—- |+ —+—.
dr\2 8 2\6 3 4 96 192

This profile for the radial velocity u is an exact solution of the
lubrication equations. Finally, the pressure gradient is calculated

using continuity.
12
0
f u(z)dz = 2—
-12 mr
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dp _ 12_#<L &)
dr h* \40 2mr)’
The pressure profile is obtained by integrating the above equation
and using the boundary condition that the pressure at outer edge is
ambient
P-P,=12

1
—(rz—R(Z))——lnL .
80 2m R

Approximate Solution of the Equations. The inertial term is
normally absent in lubrication theory and the velocity profile is
parabolic. However here, the inertial term is not only dominant
but also has a z dependence. For an approximate model, the iner-
tial term is modeled by some term which is independent of z.
More simplifications allow these equations to become ordinary
differential equations. The first requires w to be neglected. This
assumption is aided by the constant geometry in the radial direc-
tion. The clearance remains constant and as a result the fluid is not
accelerated or decelerated as it passes between the two plates.
This assumption is checked in the a posteriori computations to
follow. Thus, continuity reduces to the trivial form

i)

r

M(I",Z) =

This assumption is also required for the above exact model. The
second assumption is that f(z) is a second-order polynomial in z.
This means that the diffusion term in (1) is independent of z.
Equation (2) suggests that pressure is independent of z. But, the
centrifugal force term in (1) is strongly a function of z. Thus the
two assumptions not only introduce a contradiction in the govern-
ing equation, but also have changed the nature of the system to
four equations and three unknowns.

Assuming a second-order polynomial profile in z(u/dz3=0)
that satisfies the boundary conditions and continuity, the radial
velocity is given by uc (1/4—z%)/r. Now the second term on the
left hand side (LHS) of (1) is z-dependent. Therefore, we must
assume an averaged centrifugal force from the mean of the tan-
gential velocity between top and bottom plates. Therefore, the
dimensionless average velocity is v=0.5r. The factor of 0.5 was
later modified to 0.565 to better compare to computational results.

Letting (u) denote the average radial velocity at any radius r,

Q2
2ar’

()=

where Q is the volumetric flow rate and the definition of average
is

172

(uy = u(z)dz.
“12

Upon applying the quadratic radial velocity assumption and rec-
ognizing that Q is constant gives

To check the validity of the approximations, the terms dropped
from the original Navier-Stokes r direction momentum are com-
pared with the most dominant term. The L, norm is used to com-
pare the terms. If g(x) is a function of x defined in the domain
a<x<b, then the L, norm of g(x) is defined by

b
lela= +/ J ()

Assuming typical dimension values for these constants

0=.00634;R,=1.05

*»7ro
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Fig. 2 Pressure distribution vs radial coordinate. The case
where pressures at both the inner and outer radii are zero cor-
responds to the natural flow rate of the system. Pressure is
normalized with pv§ and radius with R,

R;=0.95;
The compared terms are
”u”rHZ —17% 10_7; Hu/r2H2 -7 % 10_11;||(rur)r/r||2 —5% 10!
”Mzz 2 zzll2 Uzl

The above procedure checks the asymptotic result obtained previ-
ously. The sample values were chosen to be in accord with the
assumptions made while choosing the scales. Thus, the centrifugal
force and the viscous diffusion term are the most dominant terms
in the r-momentum equation along with the pressure gradient.

d_p_v2 Fu

dr r 92

The assumed radial and tangential velocity profiles are used to
solve the above equation for pressure p

1 3 1
v= Er and u(z,r) = ;%(Z —zz>

Solving this ordinary differential equation (ODE) in r, and impos-
ing the boundary condition p(r=R,)=p, gives

p—p0=6—an<&>+é(r2—R§). (5)

o r

Thus, the pressure obtained at each point in the flow is a function
of r. Figure 2 shows how the pressure distribution varies with
varying flow rate. The condition where the gauge pressure at inlet
and exit is zero corresponds to the natural flow rate of the device.
To promote aeration in the plates, the flow rate supplied should be
less than what the plates can pump out due to centrifugal action.
Only in such a case will air be entrained from the outer radius and
torque on the plates reduced. This natural flow system rate can be
calculated using (5) for a particular flow, speed and plate clear-
ance.

Torque Calculations. To find the torque, the stresses acting on
the plates are calculated. After considering the axisymmetric as-
sumption, the components of shear stress in cylindrical coordi-
nates reduce to
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In the model, since w is much smaller than both u and v, the
axisymmetric equations reduce to

du v
7.=0; 7,= (9_2 Ve, 7p=74= 19_2 vlwy.

The velocity profiles are

4 ¢ 1
u(z,r) = ;o ov=rlz+<.
wr
Thus,
-6
T, = o (Radial wall shear stress)
Tre
rwi .
7,9= — (Swirl wall shear stress) (6)

s

The torque acting on the plates can be found by integrating this
shear stress over the surface area:

2 R, 2 R, v
T= f f Tdrd = f f —r3drde.
0 R; 0 R; Wy

This expression for torque is proportional to the rotational veloc-
ity and inversely proportional to the clearance between the two
plates. Torque increase due to increasing speed can be attributed
to steeper gradients at the wall. Increasing clearance results in
reduction of these gradients and hence the torque reduces as well.

3 2D FLUENT Overview and Modeling

Overview. To verify the model, results were obtained from the
computational fluid dynamics package FLUENT that satisfies the
full Navier-Stokes equations. As a result, we need additional
boundary conditions at r=R; and R,. Apart from the boundary
conditions mentioned on the velocities at the wall, natural bound-
ary conditions are specified at the inlet. The pressure condition is
specified on the outlet, i.e., the pressure is atmospheric and the
inlet pressure is left unspecified. Instead flow rate is specified and
that allows us effective comparisons with experiments.

Physical Specifications. The computational grid was set up
using “GAMBIT,” the standard grid generating package used for
FLUENT. The physical quantities assumed for generating the grid
are as follows:

R;=0.95
R,=1.05

Grid Generation. The grid used 150 equally spaced points in
the radial direction and 100 points in the axial direction. The grid
points in the axial direction were placed symmetrically about mid-
plane between the two walls using a ratio of 1.05 to separate
adjacent grid points. This forms a dense mesh in the near wall
region to resolve higher gradients near the wall.

Solver. The FLUENT solver used for computations was “axisym-
metric with swirl.” Such a solver made it possible to model a three
dimensional flow (since all three components of velocity exist)
using a two-dimensional geometry. The swirl velocity represents
the tangential component of velocity “».” The fluid modeled in the
computations was a standard automatic transmission fluid with
1=0.048 Ns/m?, p=960 kg/m?>. The angular velocity was set at
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Fig. 3 Axial derivative of pressure at the inlet for different
boundary conditions. The natural boundary condition shows
that dp/ 3z=0, in agreement with the asymptotics. Derivative of
pressure is normalized with p»?/h and axial coordinate by h.

2000 rpm. Under-relaxation parameters for pressure and momen-
tum were set slightly below one. This stabilizes the solution pro-
cedure but on the flipside the iterations take longer to converge.
The convergence criteria were set as 0.001 for residuals of the
three components of velocity and continuity.

Specification of Boundary Conditions. The boundary condi-
tion at the outer radius was set to the “pressure outlet” condition.
The gauge pressure was set to 0. Different inlet conditions were
tried. Constant radial velocity profile, the mass flow inlet and the
natural boundary conditions were used. The solution obtained was
similar in each case except that there were some differences in the
very small region near the inner radius. This was observed be-
cause FLUENT had to adjust from the given velocity profile to the
actual profile obtained. Once the actual velocity profile was ob-
tained, the results showed very good consistency between each
other.

Figure 3 shows that the pressure strongly depends on z at the
region near inner radius if the inlet boundary condition is given as
a constant radial velocity profile. This contradicts the results ob-
tained from the model. However, if the natural boundary condi-
tions are used at the inlet, then dp/dz=0 and this is consistent
with the results of the model. Once sufficiently inside the domain,
i.e., at about 1 mm beyond inner radius, this anomaly is remedied
in both inlet profiles and the pressure truly becomes independent
of z.

It should be noted that FLUENT does not permit specifying natu-
ral boundary conditions at the inlet. The “outflow” condition
specifies natural boundary conditions on the outlet. To specify
natural boundary conditions at the inlet, we:

» created a preliminary grid such that its outer radius is equal
to the actual grid’s inner radius

* specified “outflow” boundary condition on its outlet and
solved the solution

* saved the velocity profiles at its outlet and prescribed them
on the inlet of the actual grid.

Solution Profiles. Presented below are some FLUENT results for
the case where gauge pressure at both the inner and outer radius is
zero. The profile of pressure in the radial direction is parabolic.
The second term on the right hand side (RHS) of (5) has a qua-
dratic dependence on radius and hence the nature of the curve.
Therefore the dominant term in (5) is known, justifying the as-
sumption that the scale for pressure should be inertial rather than
viscous. Viscous scaling would have been more appropriate for a
logarithmic pressure profile.

The second set of results, Figs. 4 and 5 are for radial and axial
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Fig. 4 Radial velocity versus axial coordinate. Radial velocity
normalized with w?R,,h%p/ n and axial coordinates by h.

Radial Velocity

velocity profiles and their relative magnitudes. The plots are non-
dimensionalized with their respective scales. The tangential veloc-
ity profile obtained was linear as predicted by Eq. (3), and hence
is not shown here.

The radial velocity profile obtained is slightly asymmetric with
the peak shifted toward the rotating plate. The peak values de-
crease from inlet to the outlet as expected because of continuity.
The specification of natural boundary conditions on the inlet gives
a very smooth profile transition. Assuming a symmetric radial
velocity can be allowed since FLUENT simulations show the asym-
metry to be small at low rotation rates.

4 Experimental Apparatus

A small experimental rig was setup to test various groove pat-
terns and verify the effects of clearance, rotation speed and groove
depth. A high-speed camera visualizes the flow and the incipience
of aeration. The flow periodicity that could be affected by gravity
is checked visually so we can assure the veracity of simulating
only a sector of the actual plate for computational efficiency.

Thermocouples monitor oil temperatures as it enters the plates
and when it is ejected out from the outer radius and a heater
warms the oil if needed. The temperature rise resulting from vis-
cous dissipation between the plates is small, at most 2C, and
hence viscosity can be assumed to be constant.

Figure 6 shows the overall system configuration as a block
diagram. A 15 hp inverter-type motor (400—3450 rpm) drives the
rotating clutch plate. Centrifugal pump supplies oil throughout the
system and the pump work and friction work between the plates
increases the system temperature accordingly. The oil flow rate is

0.01
AN
0.008 \
AY
Inlet ——— 7 N
0.006 / \
¥ / L
= 0.004 —z
E /J.:,_«-/ = . \
3 Outlet ———"/ %,
0.002 T o \
/./ o e N
0 ,,,_:,i‘:,:-'—"""/ —m\\_
-0.002
D5 0 05

Axial Coordinate

Fig. 5 Axial velocity versus axial coordinate. These are nor-
malized by w?h3p/u and h, respectively.
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Fig. 6 Block diagram of overall system configuration. The cir-
culation pump helps to maintain a steady oil temperature
throughout. The syringe pump is used whenever a fixed flow
rate of oil is to be prescribed. St. P: Stationary plate, RP: Ro-
tating Plate, TA: Torque arm, T: Thermocouple, M: Motor, PG:
Pressure gauge, SG: Strain gauge, DB: Driving belt, SP; Sy-
ringe pump, OS: Oil sump, CP: Circulation pump.

precisely controlled by a displacement syringe pump that com-
presses two 50 ml syringes at a prescribed speed. When the inlet
and outlet oil temperatures reach steady state, a valve attached to
the centrifugal pump is closed to stop oil supply and the accu-
rately metered, constant displacement syringe pump starts for the
torque and optical measurements. A beam type single point load
cell measures the drag torque of the stationary plate.

One end of the 15 inch long moment arm is bolted to the sta-
tionary plate axis and the other end is placed on top of the load
cell. This makes it possible to calculate the drag torque by multi-
plying the force measurement of the load cell by the moment
length. A high-speed imager captures digital images through the
transparent rotating plate at a rate of 4500 fps. A 500 W electrical
heater installed in the oil sump allows experiments with elevated
oil temperature.

Figures 7 and 8 show the photograph of the assembly and cir-
culation system. Transparent quartz rotating disk plate allows vi-
sualization of the flow pattern. The stationary plate is made of
aluminum disk. To minimize the influence of the inner circular
region, the stationary plate has a 4 mm depth (very large com-
pared to the clearances between the two plates that are 100 and
200 wm) step “d.” Five different stationary plates investigate the
groove effect on drag torque. Four plates are made by two differ-
ent numbers of grooves (40 and 80) and 2 groove depths (200 and
400 um) combinations and a no groove plate (flat disk) is tested
for generic experiment.

Fig. 7 Photograph of the assembly and the relevant compo-
nents. The view is taken from the rotating plate side.

Transactions of the ASME



Fig. 8 Photograph of the circulation system. The oil sump is
heated if required. The circulation pump maintains the oil tem-
perature while the motor rotates one plate.

The repeatability of the experiments was tested by four re-
peated runs on successive days. The test cases for 80 grooves,
100 micron clearance, and 100 ml/min flow rate are shown in
Fig. 9. The temperature was kept nearly constant, by beginning
each test with the fluid and apparatus at room temperature and
keeping run times short. The standard deviation of the resulting
torque is 0.03 or about 6% variation.

5 3D Single-phase Flow Modeling

Flow and Geometry Description. The experiments provide a
good way to test various groove patterns. The model predicts drag
torque and pressure without extensive experimentation or compu-
tation. However, the computations will help us experiment with
different groove patterns without manufacturing plates. The opti-
mization study that we will further carry out in the future can best
be done using CFD. It is in this regard that the computations
assume an important role in this study.

In the effort to reduce drag, we performed numerical simula-
tions for one grooved disk with the other disk flat. The grooves
were radial, as they are known to reduce drag. Eight different
models were created to simulate various parameters. We varied
the clearance, groove depth and the number of grooves with flow
rate kept constant, as it does not significantly affect drag torque.
Since the axisymmetry assumption can no longer be used, the
modeling is three-dimensional. In an effort to reduce computa-

08

07

06

05

04

Drag Torque {Nan}

03

B e R S

02

600 800 1000 1200

Rotation Rate {(rpm)

1400

Fig. 9 Repeatability study experiments for 80 grooves,
100 micron clearance
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Fig. 10 Pressure contour for the 40 grooved plate and the
modeled geometry. The top plate moves in anticlockwise direc-
tion. Pressure is high near the downstream notch.

tional effort, the flow was assumed to be N-fold periodic in the 6
direction. Numerical tests on varying sized domains validated this
periodicity. The table below shows the specification of 8 models
(2 different No. of Grooves+2 Clearance+2 Groove Depths).

No. of Groove Depth Clearance Area Percentage
Grooves (microns) (microns) (ungrooved:total)
40 200 100 83.4%
80 400 200 66.8%

The inner and outer radii of 7.2 and 8.13 cm, respectively, were
chosen to match experiments.

Grid Generation and Convergence Test. GAMBIT, the stan-
dard grid package for FLUENT generated the geometry of the
model. The grid had 21 by 56 by 36 node points in the radial,
tangential and axial directions, respectively. The grid in the axial
direction was made finer near the walls to resolve the gradients
near the wall. The width of groove was 2 mm. The boundary
conditions specified were natural boundary conditions at inlet, at-
mospheric pressure at the outlet and periodic boundary conditions
on two radial faces. The flat plate rotates while the grooved plate
is stationary.

To check the accuracy of our solutions, we conducted a grid
convergence study as follows: The simulation for the finest grid
resolution, with all three components of velocity and pressure
computed were compared with results for lower grid resolutions.
The error was defined as the L, norm of the difference between all
variables of any particular resolution and the finest resolution. The
tests showed the finite difference scheme to be first-order accu-
rate.

Solution Variable Profiles and Flow Visualization. Figure 10
shows that the downstream face stagnates the oil flow and creates
a high pressure region. Correspondingly, pressure at the upstream
notch drops down and hence aeration can be promoted at the
upstream notch near the outlet. Figures 11 and 12 show the fluid
path lines in the domain. Figure 11 is the top view of the plates
with the upper plate rotating. The fluid flow in the groove is pre-
dominantly in the radial direction whereas the flow in the remain-
der of the domain is in the tangential direction. Figure 12 shows
the view from the inner radius. The axial fluid velocity is very
small since the axial pressure gradient is small. The fluid in the
groove shows stronger spiral motion.

Figure 13 shows the tangential component of shear stress. The
tangential shear stress on the rotating wall is fairly uniform. The
tangential shear stress in the groove is low compared to the face
(i.e., not in groove). This is because the flow is predominantly
radial. Thus grooves can be helpful in reducing the torque.

APRIL 2006, Vol. 128 / 427
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Fig. 11 Fluid path lines as viewed from the top. The fluid in the

notch goes radially outward while the fluid in between the two
plates moves predominantly in the tangential direction.

6 Comparison of Results

Pressure Comparisons of Model and Simulation. The pres-
sure distribution across the disks is determined by the mass flow.
The results shown in Fig. 14 always have zero gauge pressure.
The gauge pressure at the inlet, however, depends on the mass
flow rate. Negative or suction gauge pressure occurs at the inlet if
less oil is supplied to the plates, indicating likely aeration. The
comparisons shown between FLUENT and the two models are in
Fig. 14. Since flow rate is the comparison parameter, we show
various pressure profiles from FLUENT and the lubrication models,
both exact and approximate. Comparison is within 10% and in
some cases within 5%. FLUENT uses the natural boundary inlet
conditions as prescribed in Sec. 3.

The model used for comparisons are

Flat rotating plate

e

Periodic
Face-1

 Periodic
Face-2

Grooved Stationary plate ||

Fig. 12 Fluid path lines as seen from the inner radius. The
spiraling motion of the fluid can be seen in the notch. The fluid
moves in almost horizontal planes between the two disks.

Outer Radius
i =2
Periodic
-'"‘ Face-2
N
Periodic
Face-1
Inner Radius
Min = -130 NJ/m? Max =60 N/m?

'-a:t_—_:-|

Fig. 13 Tangential component of shear stress. The rotating
plate has a very large value of shear stress throughout. The
grooved plate shows less tangential shear stress in the region
of the notch due to predominant radial motion of fluid.
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Fig. 14 Pressure comparison of FLUENT with model for three
different flow rates. Pressure is normalized with p»? and radius
with R,,. The solid line is FLUENT, dotted line is the exact model
and dashed line is the approximate model.
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6 R 1
P-P = 60 ln(—") +—(*- R,z)) Approximate solution
T r

° 6.25

P-P,= IZ[L(r2 -R)- < ln(L” Exact solution
80 27 \R,
The denominator in the second term in the right hand side of (5)
changed form 8 to 6.25 and this is a result of changing from a
factor of 0.5 to a factor of 0.565. Pressure is important because for
aeration incipience.

The difference between the approximate solution and the exact
solution is negligible. The simplification that the centrifugal term
is independent of the z coordinate reduces the order of radial
velocity profile from 4 to 2, but the solution changes are small
(Fig. 15).

Shear Stress Comparison of Model and Simulations. Figure
16 shows the radial variation of shear stress as predicted by the
models and FLUENT. The wall shear stress is linear in radius as
predicted by (6). FLUENT predicts slightly different shear stresses
for the rotating and the stationary wall, resulting in differing
torques. Conservation of angular momentum for the system re-
quires a torque imbalance between the two plates to impart angu-
lar momentum to the fluid although the difference in shear stresses
is small as indicated by the stress scale in Fig. 16. Our lubrication
model predicts the same shear stress values for both the stationary

0.6 =

0.3

Radial Velocity

0.24

0.1

-0.6 -04 0.2 1] 02 04 LX)
Axdal location |
Fig. 15 Radial velocity comparison of FLUENT with models. The
three curves correspond to FLUENT, exact and approximate
models lie almost on top of each other.
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Fig. 16 Shear stress versus radius. FLUENT predicts shear

stress on the stationary and rotating wall to be slightly different
to give increasing angular acceleration to the fluid.

and rotating disk. The shear stress values and hence the torque
given by both methods is in very close agreement.

Torque Comparisons of Model, Experiment, and
Simulations. Figures 17 and 18 show the results for 2D axisym-
metric flow. Figure 17 shows the drag torque versus rotational
speed for the model, computations as well as experiments when
the clearance is 100 microns. The drag torque increases linearly
with speed. The model and simulation show results in close agree-
ment. The experimental results are off by a factor of 1.5. Figure
18 shows the same result for the 200-micron clearance case. In
this case the results are within a factor of 1.1-1.2. Correcting the
clearance reduces experimental error. Hence the values match bet-
ter with the 200-micron case than the 100-micron case. Also in
Fig. 18 the torque values match well at 500 rpm but diverge
slightly at 1500 rpm due to aeration that is not accounted for in
the model and the simulation for single-phase. Aeration reduces
torque as expected.

Figures 19-21 show the results of disks with grooves. Since
these simulations do not include multiphase flows, the compari-
sons were done at low rpm (here 500 rpm). The results and trends
are expected to hold true until about 1000 rpm. The approximate
model is derived from the mathematical model. Since the grooves
reduce the contact area of the two disks, a good engineering ap-
proximation to the problem will be to reduce the drag of the
axisymmetric case by the area ratio.

This can be mathematically expressed as
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Fig. 17 Drag torque versus rotation rate at 100 microns clear-
ance. The comparisons show that the simulation and model are
in close agreement with each other.
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Fig. 18 Drag torque versus rotation rate at 200 microns clear-
ance. The discrepancy between experiments and simulation is
much lower than that of Fig. 17 because sensitivity of error in
setting the clearance is less at higher separations.
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Fig. 19 Drag torque versus rotation rate for the 40 grooves per

plate. The 3D single-phase simulation show excellent agree-
ment with the experiments.
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Fig. 20 Drag torque versus clearance for the 80 grooves plate.
On average, the 80 groove plate shows less torque than 40
groove plate. The approximate model is valid only in the single-
phase region.
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where AR is the area ratio of the grooved disk. Figure 19 shows
the variation of torque with clearance for the 40 grooves per disk
case. The torque drops with increasing clearance because the gra-
dients near the wall are higher for lower clearances. The approxi-
mate model matches well with simulations. The experimental re-
sults also match within a factor of 1.5. Figure 20 shows the same
result but for the 80 grooves per plate case. The torque values for
experiment, simulation and approximate model match closely at
both clearances. Figure 21 shows the relation between torque and
the number of grooves at 200-micron clearance case. The 80
grooves plate shows significantly less torque than the 40 grooves
plate. Figure 13 shows that the tangential component of shear
stress in the region of groove is substantially lower than the re-
maining of the ungrooved plate. This reduction in shear stress is
because the nature of fluid flow in the groove is entirely different
from the rest of the domain. The flow in the groove is radial and
so has very small gradients in the tangential direction. The 80
grooves plate has more surface area covered with grooves (since
their width was kept constant at 2 mm) than the 40 grooves per
plate case. This fact manifests itself into reducing torque on the 80
grooves plate. However, there is a practical constraint on increas-
ing the number of grooves. The engagement of the clutch is its
primary function and increasing the number of grooves reduces its
engagement properties. Hence, there is a limitation on increasing
the number or size of grooves.

7 Conclusions

The lubrication model derived in this paper closely matches the
results from computations and experiments for both the shear
stress and pressure distributions. The derived exact lubrication
model is only slightly more involved than the approximate model
representative of lubrication theory velocity. The differences be-
tween the results of these two models are insignificant. The com-
putations show that the radial motion of the fluid in the grooves
causes a significant drop in the tangential component of shear
stress resulting in reduced torque. This also explains why sunburst
and spiral grooves increase torque since the motion of fluid in the
groove is primarily in the tangential direction. The pressure dis-
tribution suggests that the onset of aeration happens near the outer
radius of the upstream notch. On comparing experiments, compu-
tations and models, clearance has the most significant effect on
reducing drag torque. Increasing the number of grooves also re-
duces torque. However, the groove depth is not a significant pa-
rameter; at least when the groove is on the stationary disk. The

430 / Vol. 128, APRIL 2006

expression for torque derived for the axisymmetric case can be
used with fair approximation for the grooved plates by multiply-
ing the torque in the axisymmetric case with the fraction of area
which is not grooved. This method is valid only if the entire flow
is single-phase.
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Nomenclature

= inlet flow area m
= volumetric flow rate between disks

= Reynolds Number

= depth of the stationary plate notch m
= axial clearance between disks m

= pressure

= radial coordinate

= time

= radial component of velocity

= tangential component of velocity

axial component of velocity

axial coordinate

tangential coordinate

dynamic viscosity Ns/m?

density kg/m?

angular velocity in rad/s

shear stress

inner radius

mean radius (R;+R,)/2

outer radius

= atmospheric pressure

= radial component of velocity scale m/s
= tangential component of velocity scale m/s
= axial component of velocity scale m/s

2
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7., = normal component of shear stress on disks
T,y = tangential component of shear stress

7,, = radial component of shear stress on disks
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