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ABSTRACT Path sequence selection is important for multimodal transport processes. AND/OR

graphs (AOG) have been applied to describe practical multimodal transport route planning problems by

using ‘AND’ and ‘OR’ matrices. An AOG-based multimodal transport route planning problem is an NP-hard

combinatorial optimization problem. Heuristic evolution methods can be adopted to handle it. While

adjacency (AND) relationship issues can be addressed, contradiction (OR) relations are not well addressed by

existingmultimodal transport route planningmethods. Thus, an ineffective result may be obtained in practice.

The ORmatrix is a conflict matrix that describes the choice of mode of transport in the process of multimodal

transport. By using a contradiction matrix together with an adjacency matrix and tabu list, an approach used

in existing work, this paper proposes an effective triple-phase generate route method (TPGR) to produce

a feasible multimodal transport path sequence based on an AOG. This paper uses energy consumption to

evaluate the multimodal transport energy efficiency. The information entropy is applied to describe the risks

of the transport process. The energy consumption and the information entropy lead to a novel dual-objective

optimization model where route energy consumption and route risk are minimized. An improved ant colony

algorithm is developed to effectively generate a set of Pareto solutions for route selection, which are used for

the dual-objectivemultimodal transport route optimization problem. This methodology is applied to practical

multimodal transport route selection processes on two maps to verify its effectiveness and feasibility.

INDEX TERMS Multimodal transport, AND/OR graph, dual-objective discrete ant colony optimization,

modeling and simulation.

I. INTRODUCTION

Due to a shortage of resources and environmental pollution,

environmentally friendly transport has become vital to sus-

tainable development and has attracted the attention of gov-

ernmental regulators for a number of years. The risk of a path

is also an important part of the multimodal transport process.

Due to path risks, a large number of goods are damaged,

delayed, or even unable to reach their destination each year.

The associate editor coordinating the review of this manuscript and

approving it for publication was Di Wu .

Therefore, it is important to choose appropriate paths in the

transportation process.

Wang et al. [1] proposed a value-at-risk model based on an

opportunity measure and determined the optimal route plan

to minimize risks. Luan et al. [2] constructed a combined

weighting model (consistency matrix analysis and informa-

tion entropy method) to evaluate and prioritize the LRT

network. Niven et al. [3] proposed a generalized maximum

entropy framework to infer the state of a flowing network in

the form of probability. Amari et al. [4] proposed a probability

distribution manifold based on the entropy regularization

of the optimal transport problem. Wang et al. [5] used the
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information entropy method to determine the weight of each

factor and the combined weight of each indicator in the

urban traffic green evaluation index system. Liu et al. [6]

compared the difference in traffic flow entropy of heavy

trucks of different proportions. Chen et al. [7] transformed

the solid transport model based on uncertain entropy into

a deterministic equivalent model. Zhang et al. [8] proposed

multivariate multi-scale distributed entropy (MMSDE). The

complex entropy causality plane was used to evaluate

the complexity of a traffic system. Zhang et al. [9] used the

comprehensive evaluation method, combining information

entropy theory and data envelopment analysis to evaluate

the comprehensive benefits of enterprises. Dong et al. [10]

adopted the traffic entropy model and the fuzzy c-mean

method. The opening time was determined by calculating the

entropy value and entropy generation of the boundary road

network. Zhou et al. [11] introduced entropy to calculate the

concealment degree of transportation, studied the conceal-

ment problem of military supply transportation in the whole

network, and proposed the optimal flow distribution model.

He et al. [12] studied the cluster of departure and destina-

tion (OD) trips and adopted entropy theory and probability

distribution functions for parameter selection. Chai et al. [13]

analyzed the complexity of dynamic network areasbased on

the study of information entropy of natural structures in high

dimensions in networks. Peng et al. [14] combined AHP

and entropy- weighted methods, where the response taken

by the stationwas used to obtain the risk rating of the risk

factors.

Noussan et al. [15] proposed a scenario analysis for the

future of European passenger transport by evaluating the

potential effects of digitalization on mobility demand, energy

consumption and CO2 emissions under different assump-

tions. Wang et al. [16] presented a greenhouse gas emission

and energy consumption accounting approach for on-road

transportation. Fan et al. [17] introduced a new graphi-

cal decision-making tool to facilitate the rapid selection

of transportation modes that minimize energy consumption

or emissions, indicating the most sustainable transportation

mode. Needell et al. [18] introduced a Trip Energy vehi-

cle energy model capable of simulating the impact of traf-

fic conditions on energy consumption and CO2 emissions.

Rehermann et al. [19] analyzed how GDP per capita affects

transport energy consumption, testing possible nonlinear

relationships between variables. Zhang et al. [20] presented

an analysis of factors driving the market diffusion of EVs and

the reasons for varying results across the investigated cities,

in addition toestimates of related EV impacts on local energy

consumption and CO2 emissions.

Mnif et al. [21] introduced a new method for solv-

ing the problem of multimodal transport network plan-

ning to determine the optimal multimodal transport strategy.

Laurent et al. [22] considered carbon emissions to con-

struct multimodal transport planning decisions. Li et al. [23]

established an intermediate route selection model for multi-

modal transport in a low-carbon environment. Sun et al. [24]

modeled and optimized the freight routing problem in a

road-railway multimodal transport network according to the

network structure. Fan et al. [25] took the whole process of

container multimodal transport as the research perspective

to build a production system and analyze its operation pro-

cess. Chen et al. [26] studied the route selection problem of

multimodal transport to achieve the optimal balance between

transportation time and transportation cost. Zhao et al. [27]

constructed a multimodal transport cargo path system with

vehicle availability and capacity constraints based on hierar-

chical co-simulation optimization (COSMO) methods.

To summarize, information entropy is widely used in

transportation problems, and energy consumption is widely

used in industrial problems. The research on multimodal

transport is mainly focused on the optimization of trans-

portation cost, while the research on the application of

energy consumption and information entropy in multi-

modal transport is rare. Therefore, this paper constructs a

multimodal transport paths optimization model with dual

objectives that considers information entropy and energy con-

sumption. Due to the characteristics of multimodal transport

problems, a large number of infeasible solutions are gener-

ated in algorithm design. To handle it, we propose a triple-

phase generate route method (TPGR) added to an improved

ant colony algorithm that produces a large, diversified quan-

tity of feasible solutions. Compared with existing research,

we have two contributions: (1) To solve the adjacency (AND)

and contradiction (OR) relations and constraints between

paths of a multimodal transport AND/OR graph, we intro-

duce adjacency and contradiction matrices. We also pro-

pose TPGR to produce feasible paths sequence solutions.

(2) To solve a dual-objective multimodal transport path

sequence optimization problem, we designed a dual-objective

discrete ant colony algorithm (DDACO) producing Pareto

solutions. It includes ant route representation, the evalua-

tion of objective functions, pheromone updates, and multi-

objective optimization.

II. PROBLEM STATEMENT

A. PROBLEM STATEMENT

This work handles the multimodal transport path plan prob-

lem from low risk and energy-efficient perspectives. Mul-

timodal transport is a risky activity. Unforeseen situations

such as bad weather and war may lead to longer trans-

portation times, the loss of goods in transit, and the fail-

ure of goods to arrive at their intended destination. Thus,

minimizing risk during the multimodal transport process is

one optimization goal. Meanwhile, the multimodal transport

process is an energy-intensive activity. Owing to growing

energy usage and environmental concerns, energy consump-

tion in a multimodal transport process is more and more

important. Thus, minimizing energy consumption is another

optimization goal. A multimodal program to minimize trans-

port risk and energy consumption is subject to some spe-

cific constraints that we therefore propose to solve in this

work.
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The transportation of a particular batch of goods can

usually take different routes, which is commonly expressed

as sequences of paths selection. Paths selection sequencing

involves graphically representing the set of all the possible

path sequences and selecting the optimum sequence out of

this set via heuristics, meta-heuristics, or mathematical pro-

gramming. A path selection process for a given good can

be represented by an AND/OR graph. Different multimodal

transport paths, each of which is expressed via a feasible route

sequence, are embodied in an undirected route AND/OR

graph.

The undirected route AND/OR graph describes the adja-

cency and contradiction relations among paths. A variety of

complex multimodal transport processes with multiple paths

are frequent and typical in practice. In this work, the area

affected by the risk is also taken into account. The basic

ideas of AND/OR graphs are explained with a simulation

multimodal transport map whose topological and geometric

data, shown in the map drawing in Fig. 1, are converted to an

AND/OR graph, shown in Fig. 2.

FIGURE 1. A simulation multimodal transport map.

FIGURE 2. The AND/OR graph of the map in Fig. 1.

In Fig. 1, the nodes represent cities that can switch to

different modes of transport. For example, at node a, the

transport can be converted from road and rail to road, rail

and water or from road, rail and water to road and rail.

The path is expressed with an edge that is written by two

nodes plus one number. The number means themode of trans-

port, specifically, that 1 is road transport, 2 is rail transport,

and 3 is water transport. For example, the edge ab1 represents

the path from node a to node b or from node b to node

a with road transport. When two edges are connected by

only one node, the paths represented by the two edges rep-

resent an adjacency relationship (AND relationship). When

two edges are connected by two nodes, the paths repre-

sented by the two edges represent a contradiction relationship

(OR relationship).

In Fig. 2, nodes represent a path that is the same as the

edge in Fig. 1, and the edge represents an adjacency relation-

ship (AND relationship). For example, after eg1 is selected,

de2, ef2, ef3, ce1, cg1, and cg2 nodes can be selected.

A hyper-edge represents a contradiction relationship

(OR relationship). For example, the hyper-edge (3) has three

nodes, ab1, ab2 and ab3. After ab1 is selected, ab2 and

ab3 cannot be selected, whichmeans that only one path can be

selected between node a and node b in Fig. 1. The adjacency

(and)/contradiction (or) relationship between paths can be

represented by a matrix and obtained by calculation through

incidencematrix F. The calculationmethod is shown in Fig. 3.

There are four kinds of matrices in the Fig. 3, which are

explained in the next part.

FIGURE 3. Adjacency (AND)/contradiction (OR) matrix generation flow
chart.

The incidence matrix is the basis matrix in Fig. 3. It is a

matrix whose rows correspond to paths and whose columns

correspond to cities. If city is the endpoint of a path, the city

is an incidence within the path. Each city is numbered by

1, 2, . . . , I where I represents the number of cities. Each path

is numbered by 1, 2, . . . , J where J represents the number

of paths. Note that this work adopts the incidence matrix

F = [fij] to represent the incidence relationship among cities

and paths, and F’ is the transpose of the matrix F

fij =

{

1 if city i is an incidence in path j

0 otherwise
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Thus, the incidence matrix F of the map shown in Fig. 3 is

expressed as:

F =

ab1

ab2

ab3

ac1

ac2

bd1

bd3

ce1

cg1

cg2

de2

ef 2

ef 3

eg1

















































1 1 0 0 0 0 0

1 1 0 0 0 0 0

1 1 0 0 0 0 0

1 0 1 0 0 0 0

1 0 1 0 0 0 0

0 1 0 1 0 0 0

0 1 0 1 0 0 0

0 0 1 0 1 0 0

0 0 1 0 0 0 1

0 0 1 0 0 0 1

0 0 0 1 1 0 0

0 0 0 0 1 1 0

0 0 0 0 1 1 0

0 0 0 0 1 0 1

















































The transition matrix G is calculated by:

G = F ∗ F ′ − 2 ∗ E

E is the identity matrix. G has two properties that can be

used in the next part and section III.

Define a set V = {n, d} where n represents a point (city)

in incidence matrix F . Let d represent an edge (path) in

incidence matrix F such that d = {n1, n2}, where n1 and n2
are the endpoints of d .

Property 1: the transition matrix G only contains 0, 1 and

2 elements.

Proof: define dj = {nj1, nj2}, dk = {nk1, nk2}, where j, k

represent any edge serial number. When j 6= k , nj1 = nk1 &

nj2 6= nk2, we obtain dj ∩ dk = {nj1}, ||dj ∩ dk || = 1. When

j 6= k , nj1 = nk1& nj2 = nk2, we obtain dj ∩ dk = {nj1, nj2},

||dj∩dk || = 2. When j 6= k , nj1 6= nk1& nj2 6= nk2, we obtain

dj ∩ dk = {8}, ||dj ∩ dk || = 0. The numerical of the matrix

G represents the norm value of the intersection of the vertices

of two edges, indicating that there are only norm values 0, 1,

2 in the transition matrix G.

Property 2: the value of the elements on the main diagonal

of the matrix obtained by the transition matrix G is 0

Proof: define dj = {nj1, nj2}, dk = {nk1, nk2}, When

j = k, we obtain dj ∩ dk = {nj1, nj2}, ||dj ∩ dk || = 2. Since

the diagonal operation conforms to i = j, the element values

on it are all 2.

This work adopts transition matrix G = [gjk ] to represent

the relationship among paths. j, k denotes any path in G.

According to Property 1, we obtain

gjk =











2 if j is contradiction relationship with k

1 if j is adjacency relationship with k

0 otherwise

Thus, the transition matrix G of the map shown in Fig. 2 is

expressed as:

G =

















































0 2 2 1 1 1 1 0 0 0 0 0 0 0

2 0 2 1 1 1 1 0 0 0 0 0 0 0

2 2 0 1 1 1 1 0 0 0 0 0 0 0

1 1 1 0 2 0 0 1 1 1 0 0 0 0

1 1 1 2 0 0 0 1 1 1 0 0 0 0

1 1 1 0 0 0 2 0 0 0 1 0 0 0

1 1 1 0 0 2 0 0 0 0 1 0 0 0

0 0 0 1 1 0 0 0 1 1 1 1 1 1

0 0 0 1 1 0 0 1 0 2 0 0 0 1

0 0 0 1 1 0 0 1 2 0 0 0 0 1

0 0 0 0 0 1 1 1 0 0 0 1 1 1

0 0 0 0 0 0 0 1 0 0 1 0 2 1

0 0 0 0 0 0 0 1 0 0 1 2 0 1

0 0 0 0 0 0 0 1 1 1 1 1 1 0

















































According to transition matrix G, adjacency matrix D1

and contradiction matrix D2 are obtained separately. This

work adopts adjacency matrix D1 = [d1jk ] to represent the

adjacency relationship among paths, where path j, k means

any path in D1. Since the element with number 1 in the

transition matrix G represents an adjacency relation, this part

is extracted as adjacency matrix D1.

d1jk =

{

1 if path j is adjacency with path k

0 otherwise

Thus, the adjacencymatrixD1 of themap shown in Fig. 2 is

expressed as:

D1 =

















































0 0 0 1 1 1 1 0 0 0 0 0 0 0

0 0 0 1 1 1 1 0 0 0 0 0 0 0

0 0 0 1 1 1 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 1 1 1 0 0 0 0

1 1 1 0 0 0 0 1 1 1 0 0 0 0

1 1 1 0 0 0 0 0 0 0 1 0 0 0

1 1 1 0 0 0 0 0 0 0 1 0 0 0

0 0 0 1 1 0 0 0 1 1 1 1 1 1

0 0 0 1 1 0 0 1 0 0 0 0 0 1

0 0 0 1 1 0 0 1 0 0 0 0 0 1

0 0 0 0 0 1 1 1 0 0 0 1 1 1

0 0 0 0 0 0 0 1 0 0 1 0 0 1

0 0 0 0 0 0 0 1 0 0 1 0 0 1

0 0 0 0 0 0 0 1 1 1 1 1 1 0

















































This work adopts contradiction matrix D2 = [d2jk ] to

represent the contradiction relationship among paths, where

path j, k means any path in D2. Since the element with

number 2 in the transition matrixG represents a contradiction

relation, this part is extracted as the contradiction matrix D2.

d2jk =

{

2 if path j is contradiction with path k

0 otherwise
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Thus, contradiction matrixD2 of the map shown in Fig. 2 is

expressed as:

D2 =



















































0 2 2 0 0 0 0 0 0 0 0 0 0 0

2 0 2 0 0 0 0 0 0 0 0 0 0 0

2 2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0



















































Each path needs to consume some energy during trans-

port. A feasible route path should satisfy a specific length

constraint to reduce energy consumption for a route selection

process.

In addition, as shown in Fig. 2, to reach different mul-

timodal transport routes, different paths to solutions may

be generated. This work aims to determine and select

Pareto solutions among the paths to minimize multimodal

transport risk while also minimizing the total multimodal

transport energy consumption to meet the specific energy

consumption requirement. We call this problem the multi-

modal transport route sequence optimization problem based

on an AND/OR graph from risk and energy-efficiency

perspectives.

B. MATHEMATICAL MODEL

1) i,j— the index of a multimodal transport path, with i, j ∈

{1, 2, 3, . . . ,N }, where N is the number of all multimodal

transport paths in a given AND/OR graph

2) ci—the per weight energy consumed per unit transport

length of path i

3) Cij—the per weight energy consumed of conversion

from multimodal transport path i to multimodal transport

path j

4) Li— the length of multimodal transport path i

5) Pi— the probability of the risk of multimodal transport

path i

6) Qi— the maximum capacity of multimodal transport

path i

7) q— the goods’ weight

8) D1— adjacency matrix(AND matrix) of multimodal

transport path

9) D2— contradiction matrix(OR matrix) of multimodal

transport path

10) Qs— full permutation matrix, which represents

whether there are risk situations in the selected multimodal

transport.Qs is 0 in the case of a risk situation or 1 in the case

of a risk situation

Decision variables:

xi : xj = 1 if multimodal transport path i is performed,

otherwise, xi = 0.

By considering the two goals of minimizing multimodal

transport route information entropy and minimizing multi-

modal transport route energy consumption, a dual-objective

multimodal transport path sequence plan problemmodel sub-

ject to multiple constraints is given as follows:

min f1 = Cpath + Ctransformation (1)

The objective of function f1 is to minimize energy consump-

tion when selecting the multimodal transport route, where its

first item in (1) is obtained energy consumption during trans-

portation, and where its second item in (1) is obtained energy

consumption during transformation transportation mode.

Cpath =

N
∑

i=1

xi ∗ Li ∗ ci ∗ q (2)

The energy consumption during transportation is expressed

in (2), which represents the energy consumption of goods in

transit. Where, Li is the length of multimodal transport path i.

ci is the per weight energy consumed per unit transport length

of path i.

Ctransformation =

N
∑

j=1

N
∑

i=1

⌊

(D1ij + xi ∗ xj)/2
⌋

∗ Cij ∗ q (3)

The energy consumption during transformation transporta-

tion mode is expressed in (3), which represents energy con-

sumption when goods are changing transportation mode.

Where, D1ij is the element of the adjacency matrix. Cij is the

per weight energy consumed of conversion. q is the goods’

weight.

min f2 =

2sx
∑

b=1

Ib (4)

The objective of function f2 is to minimize information

entropy, which represents the route risk in (4).Where, Ib is the

amount of information. The time complexity of information

entropy calculation can be obtained asO(2sx), sx is the length

of the selected path.

sx =

N
∑

i=1

xi (5)

sx represents the number of the paths that are selected

in (5).

Ib = −1 ∗ Psb ∗ log2 Psb b = 1, 2, . . . , sx (6)

Ib represents the amount of information from which some

path risks occur in (6). b = 1, 2, . . . , sx, where sx is the

number of path risk combinations.

Psb =

N
∏

i=1

|Qsbi − Pi ∗ xi| b = 1, 2, . . . , sx (7)
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Psb represents probability at which some path risks occur

in (7). Where, Qs is a matrix, which represents all of the

cases in the risk. The elements of sx are only 0 and 1 in the

paths obtained and is otherwise 0. For example, when sx= 3,

paths 4, 8, 12 are obtained. Qs can be obtained:

Qs =

























0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0

























Qi − q ∗ xi ≥ 0 i = {1, 2, . . . ,N } (8)

Constraint (8) ensures that the goods’ weight is no more

than the max capacity in path i. Where, Qi is the maximum

capacity of multimodal transport path i. q is the goods’

weight.































































N
∑

j=1
j 6=O

⌊

(D1ij + xi ∗ xj)/2
⌋

= 1 i = O

N
∑

j=1
j 6=i

⌊

(D1ij + xi ∗ xj)/2
⌋

= 2 i 6= O, i 6= D

N
∑

j=1
j 6=D

⌊

(D1ij + xi ∗ xj)/2
⌋

= 1 i = D

(9)

Constraint (9) represents a multimodal transport route

sequence that must be continuous from starting point to end

point. There is only one edge adjacent to the starting edge and

the ending edge. There are two edges adjacent to the other

edges. Where, D1ij is the element of adjacency matrix. O is

the starting path, and D is the ending path. i is that path that

has been selected.

N
∑

i=1

xi ≤

N
∑

i=1

(1/(

N
∑

j=1

D2ij/2 + 1)) (10)

Constraint (10) represents the number of selected paths

that must be less than are stricted quantity. Where, D2ij is the

element of contradiction matrix.

N
∑

j=1

(xj ∗ D2ij/2) = 0 (11)

Constraint (11) ensures that there can be only one mode

of transportation between two adjacent multimodal transport

nodes, where, D2ij/2 = 1 represent or relationship between i

and j.

0 ≤ Pi ∗ xi ≤ 0.5 (12)

Constraint (12) represents the max probability of mul-

timodal transport path risk, which must be less than 0.5.

When the maximum probability of multimodal transport path

risk is greater than 0.5, the ability of the model to find the

multimodal transport route with less risk is affected by the

information entropy formula. In addition, the min probability

of multimodal transport path risk must be greater than 0.

Where, Pi is the probability of the risk.

III. THE PROPOSED ALGORITHM

This work proposes an evolutionary heuristic algo-

rithm which can quickly solve large-scale industrial

problems [28]–[33] called DDACO. The method can be

applied to an expandable AND/OR graph. This enables the

gradual increase of map complexity to handle large-scale

complex route optimization problem due to strong search

ability of evolutionary heuristic algorithm. It is demonstrated

that the convergence of the evolution process is satisfactory,

and the required CPU time appears comparatively small and

only moderately increases with the number of constraints.

The method can be applied to questions with a complexity

that cannot be managed with an exact method.

There are few control parameters and well optimization

effects in the ACO algorithm [34]–[39], which are its main

advantages. Due to its simplicity and ease of implementation,

it has gained more and more attention and has been used

to solve many practical and complex industrial optimiza-

tion problems [40]–[45]. Hence, we used ACO to solve our

proposed multimodal transport route sequence optimization

problem.

However, the basic ACO algorithmwas originally designed

for continuous function optimization instead of our proposed

integer programming model. In addition, the two objec-

tives of the proposed model form Pareto solutions, which

are different from the single objective problem in the basic

ACO algorithm. Thus, in order to make it applicable for

solving the problem considered, we established a novel

dual-objective discrete version of the ACO algorithm, named

DDACO. As is known, a non-dominated sorting approach in

NSGA-II [46]–[50] is one of the most popular and widely

used algorithms to solve multi-objective optimization prob-

lems due to its excellent performance. Hence, this work

adopted a non-dominated sorting procedure to produce a set

of Pareto solutions and update an external Pareto solutions

archive.

The proposed solution approach consists of four phases:

A) ant route representation, B) evaluation of objective func-

tions, C) pheromone update, D) multi-objective optimizer,

and E) termination rules.

A. ANT ROUTE REPRESENTATION

The ant route represents a solution vector of a multi-

modal transport path sequence. As the basic characteris-

tic of our problem, a single-link list method is selected

as an encoding one. Namely, an ant route is expressed by

S = {L1, . . . ,Lk , . . . ,Ln} where sk is encoded by binary

number (0 or 1) and n is the number of paths. For example,
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FIGURE 4. Triple-phase generate route.

S = {0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0} denotes that path 2,

path 7, path 11 and path13in S are performed.

As is known, the first problem to be solved in a multimodal

transport route sequence optimization problem is the rapid

creation of feasible multimodal transport route solutions

since multiple potential constraint requirements, listed in

Section II, exist. Particularly, solving a multimodal transport

path sequence problem should produce a great number of fea-

sible solutions for the quasi-optimal or optimal solutions in

the whole iterative evolution. Thus, we propose a triple-phase

generate route (TPGR) excepting the first path generated,

which satisfies the potential constraint requirement.

TPGR includes three phases. The first phase is to choose

the adjacent paths. The second phase is to screen out adjacent

paths that are not feasible for meeting constraints 10 and 11.

The third phase is to put the appropriate path into a solution

vector and update the tabu table. Due to the use of TPGR,

constraints 9-11 are satisfied. The proposed ant route with

TPGR carries out the following steps:

The selection of the first path: To do so, we first introduce

an alternative set, which includes alternate paths and a tabu

table, including selected paths and paths that are contradic-

tory with selected paths. We then put the paths adjacent to

the starting point into the alternate set. According to the

pheromone rule in the ant colony algorithm, roulette is used

to select a path A in the alternative set and put it into the

ant route (solution vector). Then, we put the paths in the

alternative set into the tabu table. If any path in the ant route

(solution vector) is adjacent to the termination point, the

path generation process ends, otherwise the path generation

process continues.

For example, in Fig. 1, we first put the paths {1(a-b[1]),

2(a-b[2]), 3(a-b[3]), 4(a-c[1]), 5(a-c[2])} into the alternate

set, which is adjacent to the starting point a. Second,

we choose path 2 to place into the ant route (solution vector).

Finally, we put the paths {1(a-b[1]), 2(a-b[2]), 3(a-b[3]),

4(a-c[1]), 5(a-c[2])} into the tabu table, as shown in Fig. 4.

The selection of the remaining paths: first, according to

the path adjacency (AND) matrix, all paths adjacent to the

last path of the ant route (solution vector) are put into the

alternative set. Second, we should check whether the paths

in the alternative set are looped in the AND/OR graph after

they are added into the ant route (solution vector), and,

if so, remove them from the alternative set. The paths in the

tabu table are also removed. According to the pheromone

rules in the ant colony algorithm, roulette is used to select

a path B in the alternative set and put it into the ant route

(solution vector). Third, according to the contradiction (OR)

matrix, we put path B and the paths that contradict B into

the tabu table. Finally, if a path in the ant route (solution

vector) is adjacent to the termination point, the path gener-

ation process ends; otherwise, the path generation process

continues.

For example, in Fig. 1, we first see that according to

the path adjacency (AND) matrix, {4(a-c[1]), 5(a-c[2]), 6(b-

d[1]), 7(b-d[3])} should be put into the alternative set.

In the second phase, we remove {4(a-c[1]), 5(a-c[2])} from

the alternative set that exists in the tabu table. The path

7(b-d[3]) is placed into the ant route(solution vector). In the

third phase, according to the contradiction (OR) matrix,

we put path 7 and path 6, which contradicts with path 7, into

the tabu table, as shown in Fig. 4.
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TABLE 1. The path corresponds to the mode of multimodal transportation.

TABLE 2. Length of path in multimodal transportation.

TABLE 3. The transport resource capacity of path in multimodal transportation.

From Fig. 4, we can clearly see that the gen-

erated multimodal transport route solution/sequence is

2(a-b[2])→7(b-d[3])→11(d-e[2])→13(e-f[3])(shaded). Due

to the characteristics of a multimodal transport route opti-

mization problem, it is rather hard to obtain a feasible solution

for a heuristic algorithmwith the abovementioned generation.

Generally, as the number of operations grows, the number of

solutions increases rapidly, which implies that the probability

of producing an infeasible solution can be great, especially

for some large-scale multimodal transport route optimization

processes. Thus, TPGR is significant in order for this problem

to be solved.

B. EVALUATION OF OBJECTIVE FUNCTIONS

It is necessary to evaluate an ant route solution. It is com-

posed of two objectives: energy consumption and informa-

tion entropy. The evaluation of the ant route solution, which

represents a multimodal route, is calculated by the objective

function. For example, the energy consumption of the route

a-c[2]→c-g[2]→e-g[1]→e-f[2] is 2614.25J,and the infor-

mation entropy of the route a-c[2]→c-g[2]→e-g[1]→e-f[2]

is 1.1114bit.

C. PHEROMONE UPDATE

The two fitness values of each ant are calculated. Accord-

ing to the results of the dual-objective optimizer, the non-

dominant solution set in the current iteration times was

recorded, and the pheromone concentration on the connecting

path of each city was updated according to formula (13) and

formula (14). In addition, we updated the probability that

each path is selected, according to the pheromone update

result in formula (15).











τij(t+1)= (1−ρ) ∗ τij(t)+1τij

1τij =

m
∑

k=1

1τ kij
i, j = 1, 2, . . . ,N (13)

FIGURE 5. The outline of DDACO algorithm.

1τ kij represents the pheromone concentration released by

the kth ant on the connection path between node i and node j,

where m is the number of ants. τij represents the sum of

the pheromone concentrations released by all ants on the

connection path between node i and node j, and t represents

iteration in formula (13).

1τ kij =

{

Q The kth ant accesses path i from path j

0 otherwise
(14)
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TABLE 4. Energy consumption in switching modes of transport.

TABLE 5. Starting point and ending point.

TABLE 6. The probability of risk in multimodal transportation.

TABLE 7. The speed of transport mode in multimodal transportation.

TABLE 8. Energy consumption per unit time of different modes of transportation.

TABLE 9. Produced Pareto solutions for case study 1.

1τ kij means that the pheromone released each time is a

constant value in formula (14)

Pkij(t)=τij(t)/

N
∑

j=1

τij(t) k=1, 2, . . . ,m i, j=1, 2, . . . ,N

(15)

Pkij represents the probability of the t iteration ant k trans-

ferring from node i to node j, and N represents the number of

nodes in formula (15).

D. MULTI-OBJECTIVE OPTIMIZER

This work solves the retention rules of the algorithm iter-

ations and uses a non-dominated sort algorithm to divide
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TABLE 10. Produced Pareto solutions for case study 2.

the population solutions into several levels according to

their dominated solution count. In addition, archive set A

is used to store the top solutions found during the search

process. In each generation, all non-dominated solutions in

the current population are regarded as candidate solutions to

update A. If both of the target values of a candidate solution

satisfy a non-dominant requirement, the solution is added

to A.

E. TERMINATION RULES

In this work, we select the maximum iteration count as the

termination rule

Based on the above description, the proposed approach is

shown in Fig. 5.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section assesses the performance of multimodal trans-

port paths sequence plan problem running experiments. The

proposed problem is implemented in MATLAB 2016 A

and executed on an Intel(R) Core(TM) i7 CPU

(2.53 GHz/4.00-GB RAM) PC with a Windows 10 operating

system.

Its parameter values are as follows:

The population size ApopSize = 50, which is equal the

number of ants.

The maximum iteration count of DDACO amax = 200.

The amount of Pheromone release in DDACO Q = 1.

The pheromone play factor in DDACO ρ = 0.2.

FIGURE 6. Pareto solutions of case study 1 in the objective space.

A. CASE STUDY 1

First, the proposed approach is applied to case 1 in Section II.

It has 7 nodes and 14 paths. The parameter values of case 1 are

show in Tables 1-8.

The results of the DDACO algorithm are executed for three

runs in Table 9. The first column lists the number of runs,

and the second one gives the serial number of the Pareto

solutions obtained in each run. The third column represents

the multimodal transport route solutions obtained in each run.

The fourth and fifth columns show f1 and f2 values of the

Pareto solutions, respectively. The sixth column gives the

computational time for finding the solutions. We can see that

the consumed energy and the information entropy in those
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FIGURE 7. The AND/OR graph of the radio set of case study 2.

FIGURE 8. Pareto solutions of case study 2 in the objective space.

obtained Pareto solutions fall into [2507.25, 3619.25] and

[0.5793, 1.3758], respectively.

The Pareto solutions obtained in the three runs are also

shown in Fig. 6. Each run is able to produce the same

solutions, which indicates that the algorithm performance is

stable. In addition, the average running time for three times

is 10.1152 seconds, which indicates the efficiency of the pro-

posed algorithm. Thus, it can effectively solve a multimodal

transport optimization problem. We used the spacing metric

as the indicator to evaluate the spread performance (SP) of

the set. The mean of the results from the three calculations

is 17.1490.

B. CASE STUDY 2

To further validate the availability and performance of the

DDACO algorithm, we set up another more complex map

of multimodal transportation, which simulates the relative

positions of 34 provinces in China with 34 notes and 80 paths,

shown in Fig. 7. We start at point K and end at point AG.

Only road transport, represented by 1, and rail transport,

represented by 2, are considered here, and each path has its

own transportation capacity constraints. The length of each is

in the range [1000, 2000], each path transportation capacity is

in the range [1,3], each change in the mode of transportation

energy consumption is in the range [1,3], the risk probability

in each path is in the range [0.001,0.3], and the weight of each

good is in the range [1,3].

From Table 10, for this case, the DDACO algorithm is

capable of generating satisfactory results within acceptable

time in three runs. Additionally, as the scale of nodes and

paths increase, the AOG becomes more complex, such that

the computational time to obtain the Pareto solutions is sig-

nificantly larger. The average running time for three times

is 284.3293 seconds. Moreover, Fig. 8 shows the obtained

Pareto solutions of this case. We used the Spacing Metric

as the indicator to evaluate the spread performance (SP) of

the set. The mean of the results from the three calculations is

272.6110. The proposed algorithm is capable of generating

highly similar Pareto solutions, and thus it is effective in
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solving the proposed multimodal transport route sequences

plan problem.

V. CONCLUSIONS

This work addresses a dual-objective multimodal transport

path sequence optimization issue based on anAND/OR graph

from energy-efficient and risk perspectives for the first time.

Its goal is to minimize energy consumption and information

entropy in the multimodal transport process. To achieve an

AND/OR graph-based heuristic route planning, adjacency

and conflict matrices are introduced to describe accessible

AND and exclusive OR conflicts among a selected path’s

relations and constraints. An effective triple-phase generates

route method satisfying three constraints is proposed to create

feasible path sequences. A dual-objective discrete ant colony

is proposed to solve the proposed model. The proposed algo-

rithm can solve the model effectively and efficiently and

generate the Pareto solutions of a dual-objective multimodal

transport paths sequence optimization problem. The results

can be used to guide decision makers in making better deci-

sions when a route is selected in a real multimodal transport

process.

Although the efficacy of the proposed model has been

verified, certain limitations exist. First, this work does not use

actual multimodal transport route data to validate this method

to provide the best decision support. Second, with increases

in the complexity of the path selected, the calculation time

of the information entropy formula increases exponentially.

Therefore, to overcome the mentioned limitations, we need to

develop more advanced multimodal transport path planning

models and methods in the future.
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