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Abstract

An ability to predict the popularity dynamics of individual
items within a complex evolving system has important im-
plications in an array of areas. Here we propose a generative
probabilistic framework using a reinforced Poisson process to
explicitly model the process through which individual items
gain their popularity. This model distinguishes itself from ex-
isting models via its capability of modeling the arrival process
of popularity and its remarkable power at predicting the pop-
ularity of individual items. It possesses the flexibility of ap-
plying Bayesian treatment to further improve the predictive
power using a conjugate prior. Extensive experiments on a
longitudinal citation dataset demonstrate that this model con-
sistently outperforms existing popularity prediction methods.

Introduction
Information explosion, from knowledge database to online
media, places attention economy in the center of this era.
In the heart of attention economy lies a competing process
through which a few items become popular while most are
forgotten over time (Wu and Humberman 2007). For exam-
ple, videos on YouTube or stories on Digg gain their popu-
larity by striving for views or votes (Szabo and Huberman
2010); papers increase their visibility by competing for ci-
tations from new papers (Ren et al. 2010; Wang, Song, and
Barabási 2013); tweets or Hashtags in Twitter become more
popular as being retweeted (Hong, Dan, and Davison 2011)
and so do webpages as being attached by incoming hyper-
links (Ratkiewicz et al. 2010). An ability to predict the popu-
larity of individual items within a dynamically evolving sys-
tem not only probes our understanding of complex systems,
but also has important implications in a wide range of do-
mains, from marketing and traffic control to policy making
and risk management. Despite recent advances of empirical
methods, we lack a general modeling framework to predict
the popularity of individual items within a complex evolving
system.

Current models fall into two main paradigms, each with
known strengths and limitations. One focuses on repro-
ducing certain statistical quantities over an aggregation of
items (Barabási and Albert 2005; Kempe, Kleinberg, and
Tardos 2003; Backstrom et al. 2006; Dezso et al. 2006;
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Crane and Sornette 2008; Ratkiewicz et al. 2010). These
models have been successful in understanding the under-
lying mechanisms of popularity dynamics. Yet, as they do
not provide a way to extract item-specific parameters, these
models lack predictive power for the popularity dynam-
ics of individual items. The other line of enquiry, in con-
trast, treats the popularity dynamics as time series, making
predictions by either exploiting temporal correlations (Sz-
abo and Huberman 2010; Yang and Leskovec 2010; Ler-
man and Hogg 2010; Yan et al. 2011; Yu et al. 2012;
Bao et al. 2013b) or fitting to these time series certain classes
of functions (Bass 1969; Mahajan, Muller, and Bass 1990;
Vu et al. 2011; Matsubara et al. 2012; Lerman and Hogg
2012; Gomez-Rodriguez, Leskovec, and Schölkopf 2013;
Yang and Zha 2013). Despite their initial success in certain
domains, these models are deterministic, modeling the pop-
ularity dynamics in a mean-field, if heuristic, fashion by fo-
cusing on the average amount of attentions received within
a fixed time window, ignoring the underlying arrival process
of attentions. Indeed, to the best of our knowledge, we lack
a probabilistic framework to model and predict the popular-
ity dynamics of individual items. The reason behind this is
partly illustrated in Figure 1, suggesting that the dynamical
processes governing individual items appear too noisy to be
amenable to quantification.

In this paper, we model the stochastic popularity dynam-
ics using reinforced Poisson processes, capturing simultane-
ously three key ingredients: fitness of an item, characteriz-
ing its inherent competitiveness against other items; a gen-
eral temporal relaxation function, corresponding to the aging
in the ability to attract new attentions; and a reinforcement
mechanism, documenting the well-known “rich-get-richer”
phenomenon. The benefit of the proposed model is three-
fold: (1) It models the arrival process of individual atten-
tions directly in contrast to relying on aggregated popularity
time series; (2) As a generative probabilistic model, it can be
easily incorporated into the Bayesian framework to account
for external factors, hence leading to improved predictive
power; (3) The flexibility in its choice of specific relaxation
functions makes it a general framework that can be adapted
to model the popularity dynamics in different domains.

Taking citation system as an exemplary case, we demon-
strate the effectiveness of the proposed framework using
a dataset peculiar in its longitudinality, spanning over 100
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Figure 1: Stochastic Popularity dynamics. (a) 20 papers ran-
domly selected from Physical Review during 1960s. (b) 20
Hashtags randomly selected from Twitter in 2012.

years and containing all the papers ever published by Amer-
ican Physical Society. We find the proposed model consis-
tently outperforms competing methods. Moreover, the pro-
posed model is general. Hence it is not limited to predicting
citations, but with appropriate adjustments will likely apply
to other domains driven by competing processes.

Reinforced Poisson Process
The popularity dynamics of individual item d during time
period [0, T ] is characterized by a set of time moments
{tdi }(1  i  nd) when each attention is received, where
nd represents the total number of attentions. Without loss of
generality, we have 0 = t

d
0  t

d
1  · · ·  t

d
i  · · · 

t

d
nd

 T . To model the arrival process of {tdi }, we consider
two major phenomena confirmed independently in previous
studies of population dynamics: (1) the reinforcement cap-
turing the “rich-get-richer” mechanism, i.e., previous atten-
tion triggers more subsequent attentions (Crane and Sornette
2008); (2) the aging effect characterizing time-dependent
attractiveness of individual items (Ulrich and Miller 1993;
Wang, Song, and Barabási 2013). Taken these two factors
together, for an individual item d, we model its popularity
dynamics as a reinforced Poisson process (RPP) (Pemantle
2007) characterized by the rate function xd(t) as

xd(t) = �dfd(t; ✓d)id(t), (1)

where �d is the intrinsic attractiveness, fd(t; ✓d) is the relax-
ation function that characterizes the temporal inhomogene-
ity due to the aging effect modulated by parameters ✓d, and
id(t) is the total number of attentions received up to time t.
From a Bayesian viewpoint, the total number of attentions
id(t) is the sum of the number of real attentions and the ef-
fective number of attentions which plays the role of prior
belief. Here, we assume that all items are created equal and
hence the effective number of attentions for all items has the
same value, denoted by m. Therefore during the time inter-
val between the (i� 1)th and ith attentions, we have

id(t) = m+ i� 1, (2)

where 1  i  nd. Accordingly, during the time interval
between the ndth attention and T , the total number of atten-
tions is m+ nd.

The length of time interval between two consecutive at-
tentions follows an inhomogeneous Poisson process. There-
fore, given that the (i � 1)th attention arrives at tdi�1, the
probability that the ith attention arrives at tdi follows

p1(t
d
i |tdi�1) = �dfd(t

d
i ; ✓d)(m+ i� 1)

ií1tií1
d ti

dt1
d

dtnd
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Figure 2: Graphical representation of the generative model
for popularity dynamics via reinforced Poisson process.

⇥e
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R td
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td
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�dfd(t;✓d)(m+i�1)dt
, (3)

and the probability that no attention arrives between t

d
nd

and
T is

p0(T |tdnd
) = e

�
R T

tdnd

�dfd(t;✓d)(m+nd)dt
. (4)

Incorporating Eqs. (3) and (4) with the fact that attentions
during different time intervals are statistically independent,
the likelihood of observing the popularity dynamics {tdi }
during time interval [0, T ] follows

L(�d, ✓d) = p0(T |tdnd
)

ndY

i=1

p1(t
d
i |tdi�1)

= �

nd
d

ndY

i=1

(m+ i� 1)fd(t
d
i ; ✓d)⇥

e

��d((m+nd)Fd(T ;✓d)�
Pnd

i=1
Fd(t

d
i ;✓d))

,

(5)

where Fd(t; ✓d) ⌘
R t
0 fd(t; ✓d)dt and we have reorganized

the terms on the exponent for simplicity. For clarity, we illus-
trate the proposed RPP model in the graphical representation
(Figure 2).

By maximizing the likelihood function in Eq. (5), we ob-
tain the most likely fitness parameter �⇤

d for item d in closed
form:

�

⇤
d =

nd

(m+ nd)Fd(T ; ✓
⇤
d)�

Pnd

i=1 Fd(t
d
i ; ✓

⇤
d)
. (6)

The solution for ✓⇤d depends on the specific form of relax-
ation function fd(t; ✓d). We save the discussions about the
estimation of ✓⇤d for later.

Next we show that, with the obtained �

⇤
d and ✓

⇤
d, the model

can be used to predict the expected number cd(t) of atten-
tions gathered by item d up to any given time t. Indeed, ac-
cording to Eq. (1), for t � T , this prediction task is equiva-
lent to the following differential equation

dcd(t)
dt

= �dfd(t; ✓d)(m+ c

d
(t)) (7)

with the boundary condition c

d
(T ) = nd. Solving this dif-

ferential equation, we obtain the prediction function

c

d
(t) = (m+ nd)e

�⇤
d

�
Fd(t;✓

⇤
d)�Fd(T ;✓⇤

d)
�
�m. (8)
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Figure 3: Probabilistic graphical model for reinforced Pois-
son process with conjugate prior.

Reinforced Poisson Process with prior
Maximum likelihood parameter estimation suffers from the
overfitting problem for small sample size. For example,
Eq. (6) gives �⇤

d = 0 when nd = 0, and results in a null fore-
casting of future popularity, i.e., cd(t) = 0 at any future time
t. Moreover, the exponential dependency of cd(t) on �

⇤
d in

Eq. (8) leads to a large uncertainty in the prediction of cd(t).
In this section, to overcome the drawback of the parameter
estimation in Eq. (6), we adopt the Bayesian treatment for
popularity prediction by introducing a conjugate prior for
the fitness parameter �d, leading to a further improvement
of the prediction accuracy of the proposed RPP model.

The likelihood function in Eq. (5) is a product of a power
function and an exponential function of �d. Therefore, the
conjugate prior for �d follows the gamma distribution

p(�d|↵,�) =
�

↵

�(↵)

�

↵�1
d e

���d
. (9)

Note that this conjugate prior is the prior distribution of fit-
ness parameters for all N items rather than for certain indi-
vidual item. Hereafter, for convenience, we use ~

t

d ⌘ {tdi }
to denote all the arrival time of attentions gathered by item
d. After introducing the conjugate prior, the graphical repre-
sentation of model is depicted in Figure 3.

Using Bayes’ theorem and combining Eqs. (5) and (9), we
obtain the posterior distribution of �d

p(�d|~td, ✓d,↵,�) =

p(

~

t

d|�d, ✓d)p(�d|↵,�)R
p(

~

t

d|�d, ✓d)p(�d|↵,�)d�d

=

(� +X)

↵+nd

�(↵+ nd)
�

↵+nd�1
d e

�(�+X)�d
, (10)

where X ⌘ (m+ nd)Fd(T ; ✓d)�
Pnd

i=1 Fd(t
d
i ; ✓d).

With the obtained posterior distribution of �d, the ex-
pected number of attentions cd(t), as shown in Eq. (8), can
be predicted using its mean over the posterior distribution as

hcd(t)i =

Z
c

d
(t)p(�d|~td, ✓d,↵,�)d�d

= (m+ nd)

✓
� +X

� +X � Y

◆↵+nd

�m,(11)

where Y ⌘ Fd(t; ✓d)� Fd(T ; ✓d). When � ! inf , the pre-
diction function reduces to a naive method, i.e., predicting
that the popularity keeps constant in future. Eq. (11) is the
Bayesian prediction function, predicting c

d
(t) using the pos-

terior distribution of �d instead of using a single value of

�

⇤
d obtained by maximum likelihood estimation. Neither X ,

corresponding to empirical observations, nor Y , reflecting
the rate difference in reinforced Poisson process, is in the
exponent, indicating the robustness of this prediction func-
tion.

We now discuss how to determine the parameters ↵ and �

of prior distribution. In principle, the values of prior param-
eters could be tuned by checking the accuracy of prediction
function with respect to prior parameters on so-called vali-
dation set. Yet, this requires us to know the future popularity
of some items to determine prior parameters, hence may not
be practical in scenarios where such information is not avail-
able.

One alternative solution is the fully Bayesian approach
which introduces hyperprior for prior parameters. Although
the fully Bayesian approach is theoretically elegant, the in-
ference of prior parameters is intractable in most cases. Ap-
proximation methods or Monte Carlo methods have to be
adopted. As a result, the benefit of fully Bayesian approach
is discounted by approximation gap in approximation meth-
ods or high computational cost of Monte Carlo methods.

In this paper, we determine the value of prior parame-
ters by adopting maximum likelihood estimation with la-
tent variable. Specifically, we choose the ↵ and � values that
maximize the following logarithmic likelihood function

L(↵,�) =

NX

d=1

ln

Z
p(

~

t

d|�d)p(�d|↵,�)d�d. (12)

Here, ✓d is not explicitly written to keep the notation unclut-
tered. In sum, ↵ and � are obtained according to

@L(↵,�)
@�

=

N↵

�

�
NX

i=1

�d, (13)

@L(↵,�)
@↵

= N(ln� � �0(↵)) +

NX

d=1

ln

�d

↵+ nd

+

NX

d=1

�0(↵+ nd), (14)

where �0 is the digamma function and the latent variable is

�d =

↵+ nd

� + (m+ nd)Fd(T ; ✓d)�
Pnd

i=1 Fd(t
d
i ; ✓d)

. (15)

Comparing Eq. (15) and Eq. (6), we can see that the fitness
parameter �d is adjusted by prior parameters ↵ and �.

Note that the parameters ✓d for all items are also deter-
mined by maximizing the likelihood function in Eq. (12).
The calculation depends on the specific form of relaxation
function fd(t; ✓d), which is given in experiments on real
dataset.

Experiments
In this section, we demonstrate the effectiveness of the pro-
posed RPP model, with and without prior.
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Experiment setup
Dataset. We conduct experiments on an excellent longitu-
dinal dataset, containing all papers and citations published
by American Physical Society between 1893 and 2009. We
choose this dataset for two main reasons: (1) It covers an
extended period of time, spanning 117 years, ideal for mod-
eling and predicting temporal dynamics; (2) Treating papers
as items, their popularity is well-defined, characterized by
citations. Statistics about this dataset are shown in Table 1.
Relaxation function. When formalizing the model for pop-
ularity dynamics, we introduced a general relaxation func-
tion fd(t; ✓d) and skipped the discussion of parameter ✓d.
Here, when applying this model to a specific case, i.e., to ci-
tation system, we need to determine the specific form of the
relaxation function as well as ✓d. Previous studies (Radicchi,
Fortunato, and Castellano 2008; Wang, Song, and Barabási
2013) on citation dynamics suggest that the aging of papers
is captured by a log-normal relaxation function

fd(t;µd,�d) =
1p

2⇡�dt
exp

✓
� (ln t� µd)

2

2�

2
d

◆
, (16)

a common relaxation function, which is also observed in
other domains such as messages in microblogging net-
works (Bao et al. 2013a).

For item d with log-normal relaxation function, ✓d is re-
placed by parameters µd and �d, which can be calculated
by maximizing the logarithmic likelihood L in Eq. (12) and
Eq. (5) for the proposed RPP model with and without prior,
respectively. In this paper, we maximize logarithmic likeli-
hood using optimization methods which leverage gradients

@L
@µd

=

1

�d

(
ndX

i=1

h
⌧

d
i � �d�(⌧

d
i )

i

+�d(nd +m)�(⌧

d
)

)
, (17)

@L
@�d

=

1

�d

(
ndX

i=1

h
⌧

d
i ⇤ ⌧di � �d⌧

d
i �(⌧

d
i )

i

+�d(nd +m)⌧

d
�(⌧

d
)� nd

)
, (18)

where � is the probability density function of standard nor-
mal distribution, ⌧di ⌘ (ln t

d
i � µd)/�d and ⌧

d ⌘ (lnT �
µd)/�d. Therefore, we can use Eqs. (17) and (18) together
with Eqs. (13) and (14) to maximize the logarithmic likeli-
hood in Eq. (12) for the RPP model with prior, together with
Eq. (6) to maximize the likelihood in Eq. (5) for the RPP
model without prior.
Baseline models and evaluation metrics. We compare the
RPP model with three widely-used models for popularity
prediction: the classic autoregression (AR) method (Box,
Jenkins, and Reinsel 2008), the linear regression method of
logarithmic popularity (SH) (Szabo and Huberman 2010),
and the WSB model (Wang, Song, and Barabási 2013),
which is equivalent to the proposed RPP model without
prior when the log-normal relaxation function is adopted.
We adopt two standard measurements as evaluation metrics:

Table 1: Basic statistics of dataset.
Journal #Papers #Citations Period
PRSI 1, 469 668 1893-1912
PR 47, 941 590, 665 1913-1969
PRA 53, 655 418, 196 1970-2009
PRB 137, 999 1, 191, 515 1970-2009
PRC 29, 935 202, 312 1970-2009
PRD 56, 616 526, 930 1970-2009
PRE 35, 944 154, 133 1993-2009
PRL 95, 516 1, 507, 974 1958-2009
RMP 2, 926 115, 697 1929-2009
PRSTAB 1, 257 2, 457 1998-2009
PRSTPER 90 0 2005-2009
Total 463, 348 4, 710, 547 1893-2009

• Mean Absolute Percentage Error (MAPE) measures the
average deviation between predicted and empirical popu-
larity over an aggregation of items. Denoting with c

d
(t)

the predicted number of citations for a paper d up to time
t and with r

d
(t) its real number of citations, we obtain the

MAPE over N papers

MAPE =

1

N

NX

d=1

����
c

d
(t)� r

d
(t)

r

d
(t)

���� .

• Accuracy measures the fraction of papers correctly pre-
dicted for a given error tolerance ✏. Hence the accuracy of
popularity prediction on N papers is

1

N

NX

d=1

|{d :

����
c

d
(t)� r

d
(t)

r

d
(t)

����  ✏}|.

We set the threshold ✏ = 0.1 in this paper.

Experiment Results
In this section, we report two sets of experiments: (1) We
compare the predictive power of RPP model with other com-
peting methods, finding that RPP consistently outperforms
other models; (2) We perform detailed analysis to under-
stand the factors that could affect the performance of RPP
model, including the length of training period, the effective
number of attentions, and the prior parameters.
Popularity prediction. We evaluate the prediction results
on three collections of papers: (a) papers published in Phys-
ical Review (PR) from 1960 to 1969; (b) papers published
in Physical Review Letters (PRL) from 1970 to 1979; (c)
papers published in Physical Review B (PRB) from 1980 to
1989. These samples vary in timeframes and scopes, span-
ning three decades and covering three types of journals. Us-
ing papers with more than 10 citations during the first five
years after publication, we compare the RPP model with and
without prior against the AR and SH models. The number
of papers in the three collections is 3242, 2017 and 3732,
respectively. The training period is 10 years and we predict
the citation counts for each paper from the 1st to 20th year
after the training period. For collection (c), we predict the
citation counts up to the 10th year after training period due
to the cutoff year of the data (2009). We set the parameter
m = 30 for now, corresponding to the typical number of
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Figure 4: The performance comparison in popularity prediction.

references for a paper, leaving the effect of varying m on the
performance of RPP model for later discussions.

We find the RPP model, proposed in this paper, achieves
higher accuracy than the AR and SH methods (Figure 4).
Yet in absence of prior it only exhibits modest performance
in terms of MAPE, indicating that the RPP model without
prior performs well on most papers but can be skewed by
large errors on a handful of papers. This is mainly caused
by its exponential dependence on the fitness parameter that
sometimes yields overfitting problem when maximum like-
lihood parameter estimation is adopted. This problem is
nicely avoided by incorporating conjugate prior for the fit-
ness parameter, documented by the fact that the RPP model
with prior consistently outperforms the other three methods
on all collections.

The superiority of the RPP model with prior, compared
to the AR and SH methods, increases with the number of
years after the training period. This improvement is rooted

in the methodological advantage: the RPP model is a gen-
erative probabilistic model that explicitly models the arrival
process of attentions, while the two baseline methods only
capture the correlation between early popularity and future
popularity, linearly or logarithmically. In addition, the re-
inforced Poisson process could model the “rich-get-richer”
phenomenon in popularity dynamics and thus could char-
acterize the logarithmic correlation between early popular-
ity and future popularity. Therefore, when compared with
the AR method, the superiority is more obvious than being
compared with the SH method. This is because of the linear
nature of the AR method, while the SH method works in a
logarithmic manner.

Furthermore, the RPP models with and without prior are
trained only on the popularity dynamics during training pe-
riod while the training of the AR and SH models depend on
the knowledge of future popularity dynamics. When training
these two models, we employ the leave-one-out technique
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Figure 5: Effect of training period length.

which uses all papers except the target paper for prediction.
Yet, in most cases, it is unrealistic to know future popularity
dynamics when training the model, limiting their applica-
tions in real scenarios.

Finally, being a generative model, the RPP model is able
to reproduce the citation distribution. Indeed, as shown in
Figure 4 (g-i), the distribution of citations predicted by the
RPP model with prior matches very well with that of real
citations on all studied collections, indicating that the RPP
model can also be used to model aggregated properties of a
system. Moreover, for completeness, we offer the values of
prior parameters ↵ and � for the three collections of papers:
↵ = 5.322 and � = 6.796 for collection (a); ↵ = 5.703 and
� = 7.901 for collection (b); ↵ = 5.000 and � = 5.827 for
collection (c).
Analysis of relevant factors. The superior predictive power
in the RPP model with prior raises an interesting question:
what are the possible factors that affect its predictive power?
In this section, we study a number of factors which could
affect the performance of the RPP model with prior. Here-
after, we use hMAPEi to denote the average MAPEs for pre-
dictions from the 1st to 10th year after training period. The
training period is 10 years except when we discuss the effect
of varying training period length. The parameter m is set to
be 30 except when we discuss the effect of changing m.

First, we study the prediction accuracy of the RPP model
with prior by varying the length of training period. Experi-
ments are conducted on the paper collection (a). As shown
in Figure 5, hMAPEi decreases as the training period in-
creases. Hence increasing the training period improves the
prediction accuracy. However, the rate at which hMAPEi di-
minishes slows down quickly, indicating the marginal gain
of increasing training period. We also find that the mean of
prior distribution stays almost constant as the length of train-
ing period increases from 5 years to 15 years, indicating the
expected fitness parameter learned by the RPP model is ro-
bust against varying training period. At the same time, in-
creasing training period reduces the role of prior in predic-
tion, partly explaining the role of prior in overcoming the
overfitting problem, as the variance in the prior distributions
increases with the length of training period.

Second, we investigate the effect of parameter m, i.e., the
effective number of attentions by conducting experiments on
the paper collection (a). Intuitively, m balances the strength
in the reinforcement mechanism. Indeed, as shown in Ta-

Table 2: Effect of the number of conceived attentions (m).

m Mean (↵/�) Variance (↵/�2) hMAPEi
10 1.467 0.193 0.0762
20 1.005 0.150 0.0776
30 0.783 0.115 0.0781
40 0.647 0.091 0.0784
50 0.554 0.074 0.0785

Table 3: Performance on RMP papers over four decades.

Period ↵ � ↵/� hMAPEi
1950s 4.237 4.061 1.043 0.075
1960s 4.759 4.440 1.072 0.084
1970s 6.130 4.924 1.245 0.111
1980s 10.706 5.379 1.990 0.120

ble 2, the mean and variance of the prior distribution decay
with m, demonstrating these parameters are mainly deter-
mined by papers with fewer citations. We also find that de-
creasing m reduces hMAPEi, indicating that the disparity
in citations is captured appropriately by the reinforcement
mechanism in our model, as a larger m implies a weaker
role of the reinforcement mechanism. Taken together, Ta-
ble 2 confirms that the reinforcement mechanism is crucial
to modeling popularity dynamics in citation system.

Finally, we use papers published in Reviews of Modern
Physics (RMP) to illustrate the change of prior parameter
↵ and � over four decades and their influence on the pre-
diction accuracy of the RPP model with prior. As shown in
Table 3, the mean of prior distribution (i.e., ↵/�) increases
with the increasing magnitude of both ↵ and � over the four
decades. This indicates that the expected citations for pa-
pers in this prestigious journal steadily increases during the
second half of the 20th century. Meanwhile, the hMAPEi of
the RPP model also increases. Hence it becomes more dif-
ficult to predict the citations of these papers, as a result of
the increasing disparity in citation distribution (Barabási et
al. 2012).

Conclusions
Taken together, we presented a general framework to model
and predict popularity dynamics based on a reinforced Pois-
son process. This model incorporates three key ingredients
of popularity dynamics: the fitness parameter characterizing
intrinsic attractiveness, the temporal relaxation function ex-
plaining the aging effect in attracting new attentions, and
the reinforcement mechanism corresponding to the “rich-
get-richer” effect in popularity dynamics. Being a generative
probabilistic framework, it explicitly models the stochastic
process of gaining popularity for each item, in contrast to ex-
isting deterministic approaches. We developed optimization
methods to train the proposed RPP model with and with-
out priors. The RPP model with prior allows us to apply the
Bayesian treatment, resulting in more robust and accurate
predictions for popularity dynamics. We empirically vali-
date our model on an excellent longitudinal dataset on cita-
tions, spanning more than one hundred years, demonstrating
its clear advantages over competing methods.
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