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Abstract—The pivotal issue of reliability is one of colossal
concern for circuit designers. The driving force is transistor
aging, dependent on operating voltage and workload. At the
design time, it is difficult to estimate close-to-the-edge guard-
bands that keep aging effects during the lifetime at bay. This
is because the foundry does not share its calibrated physics-
based models, comprised of highly confidential technology and
material parameters. However, the unmonitored yet necessary
overestimation of degradation amounts to a performance decline,
which could be preventable. Furthermore, these physics-based
models are exceptionally computationally complex. The costs of
modeling millions of individual transistors at design time can be
evidently exorbitant. We propose the revolutionizing prospect of
a machine learning model trained to replicate the physics-based
model, such that no confidential parameters are disclosed. This
effectual workaround is fully accessible to circuit designers for
the purposes of design optimization. We demonstrate the models’
ability to generalize by training on data from one circuit and
applying it successfully to a benchmark circuit. The mean relative
error is as low as 1.7 %, with a speedup of up to 20X. Circuit
designers, for the first time ever, will have ease of access to a high-
precision aging model, which is paramount for efficient designs.
This work is a promising step in the direction of bridging the
wide gulf between the foundry and circuit designers.

Index Terms—Circuit Reliability, Transistor Aging, Degrada-
tion, Machine Learning.

I. INTRODUCTION

RELIABILITY is a major concern in today’s circuits. As
CMOS scaling reaches the atomic level, the impact of

degradation effects on the reliability becomes stronger [1].
Aging is the most dominating effect and changes the transistor’s
properties like the threshold voltage Vth. Consequently, it can
cause permanent failures in a circuit. Even before such failures,
aging indirectly impacts the circuit’s timing and hinders
performance improvements. The negative bias temperature
instability (NBTI) aging mechanism is responsible for the
highest degradation [2]. During regular transistor operation,
Si-H bonds at the Si-SiO2 interface might be broken and
annealed. Additionally, charges are captured and emitted in the
oxide vacancies at the interface layer. Over time, these defects
accumulate and manifest themselves as a shift in Vth, referred
to as ∆Vth. The induced increase in the propagation delay of
the logic gates can cause timing violations.
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Fig. 1. Worst-case models are typically employed in the industry. For transistor
aging, they assume constant stress and thus the highest possible degradation
(red). Physics-based models are far more accurate because they take the input
waveform and recovery effects into account.

To prevent such timing violations and ensure the circuit
performs as specified during its entire projected lifetime, timing
guardbands are added during the design phase. Such additional
slack compensates for the reduced switching speed of aged
transistors. The design challenge is to balance such guardbands
between too pessimistic, reducing the circuit’s performance,
and too optimistic, increasing the risk of premature failures. To
find an optimal guardband (i.e. small, yet sufficient), the aging-
induced ∆Vth has to be accurately estimated. Aging models
are required to abstract the underlying physical behaviors,
take technology parameters, stress patterns, and voltages into
account, and predict the evolution of ∆Vth over time. Only
with such models can designers make informed and proper
decisions on the guardband of every transistor.

Physics-based aging models capture the dynamics of the
fundamental physical behavior and chemical reactions inside
the transistors. Complex differential equations take the material
and technology dependent parameters into account. This makes
the model capable of capturing recovery effects, where Vth is
indeed reduced as shown in Fig. 1. During low-stress phases,
the defects are partially healed and Vth recovers [3]. The supply
voltage VDD is dynamic, creating such phases, changes over
time, and is typically defined through the workload of the
circuit. To capture these voltage dynamics, an aging model has
to process such a voltage waveform. Worst-case aging models
are not capable of this. They are created by fitting measurements
of constant voltage stress on a transistor. Hence, they cannot
model the physics of voltage dynamics and recovery effects.
To process a voltage waveform, the highest voltage is applied
for the whole duration of the voltage waveform. Consequently,

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

ar
X

iv
:2

20
7.

04
13

4v
1 

 [
cs

.L
G

] 
 8

 J
ul

 2
02

2



2

Accessible to designerFoundry

Physics-based
model

Basic PDK for
new transistorsModel Training

ML-based
model

Worst case
transistor specs

Workload-specific
aging data

+

+

Worst case
corner slow-slow

Workload-specific
aging-aware corners

Design with
large guardbands

Design with
efficient guardbands

Circuit designer

confidential parameter

computes degradation

provides

request model
w/ deployment
characteristics

voltage,
temperature

actual workload
create

traditional

our ML-based

smaller guardbands =
higher frequency

Fig. 2. Typically, circuit designers do not have access to accurate physics-based aging models to estimate efficient (i.e., small, yet sufficient) guardbands. A
machine learning-based aging model are free sensitive material and process parameters of the foundry and can thus be shared with designers. Now, circuit
designer can create workload-specific aging data for efficient guardbands.

they overestimate the impact of aging significantly. Today’s
high-end devices are operating at the technological limits and
cannot afford the unnecessary performance penalties mandated
by such pessimistic predictions, an ideal aging model has
to be as precise as possible. While physics-based models
achieve such high accuracy, they require parameters specific
to the manufacturing process to compute the degradation.
Such parameters are a valuable secret of the foundry because
they reveal details about their technology through material-
dependent parameters. The foundry instead provides a process
design kit (PDK) covering various corner cases including the
worst case (i.e., the slow-slow corner). In summary, designers
have limited options to optimize their circuit, which reduces
performance and increases costs. An “ideal” aging model
should therefore not expose any confidential information about
the underlying technology. At the same time, it should still
provide accurate estimations, including recovery.

The foundry only guarantees the slow-slow corner leading to
very pessimistic guardbands and hence efficiency losses. With
the risk of failure on the designers’ side, this pessimism might
be reduced. Alternatively, the degradation can be measured
during post-silicon validation. However, at this stage, the design
is almost complete making changes costly. With an aging
model, the impact of the circuit’s workloads and voltages on
Vth can be predicted early in the design phase. Starting with the
much faster typical-typical corner, an appropriate guardband is
added. An ideal aging model is thus available to the designers
during design time and allows them to predict the degradation
for each individual transistor. During runtime, the remaining
guardband can be treated as a resource like remaining battery
power. Resource management schemes require a long-term
aging model to optimize over the whole lifetime. Physics-
based models are not an option, because of their confidential
parameters and their high computational complexity. An ideal
aging model has a low computational cost to be employed
for millions of transistors during design time. At runtime, it
provides predictions as a low-overhead background task in the
operating system.

Our Main Contributions
Designers require an accurate and fast transistor aging model
to optimize the performance of their circuit designs depending
on the potential workload. Further, simulating millions and
billions of transistors is time consuming necessitating a fast
aging model. Physics-based models are slow and confidential,
i.e., not accessible to designers. Therefore, we propose to
employ machine learning (ML) to model transistor aging. As
shown in Fig. 2, the foundry employs its confidential physics-
based models to train an ML-based model. Such a model is fast
and does not reveal the technology and material parameters.
Hence, it can be provided to the circuit designers. They employ
the model in conjunction with their workloads to generate
their workload-specific, aging-aware PDK. With this PDK,
guardbands can be reduced increasing performance.

In this paper, we investigate for the first time how physics-
based models can be abstracted through ML methods. ML
algorithms like deep neural network (DNN) or long short-term
memory (LSTM) have a high computational complexity but
can achieve in high accuracy in many applications. As a less
computational-intense algorithm, lightweight brain-inspired ML
methods have attracted the interest of the community in recent
years. Brain-inspired hyperdimensional computing (HDC) does
not utilize networks of neurons but is built around large
randomly-generated hypervectors [4]. The accurate yet complex
equations of physics-based models have to be replaced by a
trained ML model. To this end, we investigate two challenges.
First, the capability to constructed a ∆a Vth trace from a voltage
activity waveform. Such traces and waveforms are typically
in the range of nanoseconds to minutes and model short-term
aging [5]. Second, predict only the last degradation ∆Vth value
for a single transistor based on a given short voltage activity
waveform. This prediction is essential for an extrapolation to
ten years until the end of lifetime (EoL) of the device. We
investigate the accuracy of the ML models not only on their
prediction of this ∆Vth value. We also employ the predicted
∆Vth further to extrapolate the circuit delay after ten years
and compare the impact on the delay. The performance of the
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models is evaluated by training on the transistors of standard
cells and an 8-bit adder. The test set are the transistors of a
32-bit MAC unit with which we also evaluate the prediction
of the delay after 10 years.

II. RELATED WORK AND BACKGROUND

Transistor aging has been studied for many years and the
impact is well understood. This sections aims at summarizing
this research briefly.

A. Transistor Aging Models

Since manufacturing technology has moved past 45 nm, new
materials had to be used [6]. Hafnium Oxide (HfO2) is used as a
high-κ dielectric and replaced the traditional silicon dioxide. A
drawback of HfO2 is its higher number of pre-existing defects
in the material itself, making it more susceptible to degradation
and thus less reliable. Hence, transistor aging has become a
major consideration in modern circuits.

In this work, we focus on NBTI as the primary aging mech-
anism [2]. Note that our method can be applied analogously
to other aging mechanisms like hot carrier degradation (HCD).
NBTI aging occurs when the pMOS transistor is turned on.
During the on-time, two effects come into play. First, positively
charged holes are trapped inside the HfO2 dielectric. This
increases the Vth of the transistor. If the stress is reduced, i.e.,
the voltage lowered or the transistor completely turned off, then
the holes can be removed and the initial Vth can be recovered
over time. Due to the second effect, new traps are generated
in the interface material. If the transistor is turned on, these
traps are positively charged increasing the Vth. Similar to the
first effect, some of these traps may be deactivated once the
stress is reduced or removed partially restoring Vth. In both
cases ∆Vth is dictated by the applied voltage.

Most models (especially analytical models) consider recovery
only at 0 V. However, measurements have proven that even a re-
duction in the voltage starts the recovery [3]. The phenomenon
is demonstrated in Fig. 1, in which a physics-based NBTI
model is employed to calculate the transient trap occupancy,
among others [2]. Hence, it is indispensable to consider the
dynamics of different voltage levels when modeling aging [7].

ML-based methods to model and predict the impact of aging
have been investigated at different levels of the stack. At the
system level, reinforcement learning-based methods have been
used to schedule threads on a multi-core CPU to reduce aging
[8]. At the circuit level, the increase in path delay due to an
increased ∆Vth has been modeled with multivariate adaptive
regression splines and compared against support vector machine
(SVM) and recurrent neural network (RNN) [9]. Their model
takes changing operation conditions, like different voltages,
into account. At the gate level, the generation of reliability-
aware cell libraries through ML has been demonstrated [10]. In
[11], at device level, a single transistor is subjected to constant
voltage stress and the Vth curve is fitted with a regression model.
In this work, we are the first to explore the applicability of ML
methods at the device and physics level. In contrast to [11],
we include voltage dynamics and recovery effects. Further, the
input to our model is not a single fixed voltage or a statistical

assumption of on/off times, but a trace representing workloads
and operating conditions for an individual transistor.

B. Machine-learning Methods

As for our predictive models, we used different strategies
and analyzed what were the trade-offs between each one
of them. The multilayer perceptron (MLP) model is one
of the simplest neural network models and this practicality
has caused its increase on popularity. On the other hand,
ML focused on the maximization (support) of separating the
margin between classes (vector), also called SVM learning,
is a powerful classification tool that has been used widely on
many applications and achieved great results.

RNNs are frequently used in application involving sequential
data, which fits the temporal nature of aging. However, RNNs
frequently fail to learn the important information from the input
data involving learning long-term dependencies. By introducing
gate functions into the cell structure, the LSTM is able to
handle the problem of long-term dependencies well [12]. Since
its introduction, almost all the results based on RNNs have
been achieved by LSTMs. The many applications include
machine translation, time series prediction, natural language
processing, and Computer Vision among others [13]. Because of
the influence of previous voltages on aging, LSTM’s ability to
successfully train on data with long-term temporal dependencies
makes it natural choice for this application [14].

C. Brain-Inspired Hyperdimensional Computing

Brain-inspired HDC is a lightweight alternative to traditional
ML approaches. It is a rapidly emerging concept that has been
successfully applied to voice recognition [15], and hand gesture
identification [16], seizures detected [17], image classification
[18], pattern recognition for wafer defect maps [19], circuit
reliability estimation [20, 21], and others. Implementations
range from low-power embedded devices [22] to high-power
GPUs [23]. HDC is based on the concept of hypervectors,
vectors with thousands of dimensions. The hypervectors can
consist of simple bits, integers, real numbers, or other symbols.

Hypervectors representing real-world values (e.g., 0.7 V) are
generated once and stored in the item memory. If the same
value has to be mapped into hyperdimensional space again, the
previously generated item hypervector is retrieved from the item
memory. Due to the high dimension, it is very likely that two
randomly-generated hypervectors are orthogonal to each other.
For binary hypervectors, this similarity metric is computed
with the Hamming distance, for integer-based hypervectors
using the cosine similarity.

Multiple item hypervectors are combined into a class
hypervector through the basic operations of bundling and
binding [4]. This process is also called encoding. A voltage
waveform is encoded into a single hypervector which then
represents said waveform. If a similar waveform is encoded,
then its resulting hypervector has a high similarity to the
first hypervector. Each operation is executed on the individual
independent components of the hypervector making them trivial
to parallelize.
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Traditional ML methods such as DNN require huge amounts
of data and lots of processing power for training [15]. HDC
promises to reduce these requirements. Learning from few
samples has been demonstrated for the example of seizure
detection [24]. The distributed design of hypervectors makes
HDC very robust against failures in the underlying memory and
thus well suited for less reliable low-power emerging memories
[25]. The design makes it also robust against noise in the data,
e.g., from low-quality aging monitors embedded in the circuit.
Additionally, HDC operations are trivial to parallelize to make
use of multiple processing units. All these properties suggest
that an ideal aging model can be implemented with HDC.

III. EXPERIMENTAL SETUP

To evaluate the impact of transistor aging on a circuit,
the analysis starts at application level. The activities of the
application generates the stimuli for the inputs of the circuit
(a NAND gate in this example) as shown in Fig. 2 1 . Those
stimuli are then propagated to the individual transistors in 2 .
In larger circuits, not every transistor is connected to an input
and thus its stimulus depends on the logic inside the circuit.
Therefore, the circuit has to be simulated to extract the voltage
waveforms. In 3 , the waveforms are provided as an input to the
aging models which generate the corresponding degradation
trace. Based on this short-term trace, the EoL degradation
is extrapolated, typically to ten years 4 . The resulting EoL
∆Vth for each transistor is applied to the circuit 5 and causes
an increase of the propagation delay or latency. Only if this
aging-induced shift is considered during design can the system
continue functioning properly over its whole lifetime.

This work builds on top of the CARAT framwork [26] to
simulate circuits with SPICE, extract the voltage waveforms,
run the aging models, and simulate again to determine the
additional propagation delay. A circuit designer can have
access to such a framework except for the aging models,
which contain sensitive parameters that the foundry does not
share. Consequently, the whole flow does not benefit the

designer because they do not know how much guardband each
transistor requires. To explore the problem space, the state-
of-the-art physics-based BTI Analysis Tool (BAT) framework
[2] is employed. It estimates the impact of NBTI on different
transistor technologies and manufacturing processes. BAT has
been validated against several technologies including FinFET,
FD-SOI, and nanosheets. It models the generation of interface
and bulk oxide traps as well as hole trapping and other aging
effects, including recovery. The model has been calibrated with
experimental measurements to obtain the otherwise confidential
parameters. Such an effort is infeasible for most designers
and not possible for technologies in the early prototype stage.
Training data is generated from simple circuits like XOR and
NAND. For all our experiments, the temperature is constant
at 90 °C. We discuss other temperature values in Section VI.
The operating voltage is set to 0.7 V.

In this work, the traditional ML-method SVM and the
emerging brain-inspired HDC are investigated. The training data
is presented to both methods as described in Section III-B. SVM
is based on statistical learning frameworks.Training samples
are assigned to one of two groups. To support more classes
(i.e., more fine-grained ∆Vth values), the problem is mapped
to multiple binary classifications. The employed Scikit-learn
library provides an SVM written in C. An SVM can be extended
to a nonlinear classifier using the kernel trick. We perform a
grid search to find the best model parameters and utilize the
SVM implementation of the Scikit-learn library [27]. The core
parts have been implemented in C.

The recently-proposed OnlineHD is selected as an HDC
implementation [23]. It uses the MAP-B hypervector archi-
tecture [28], in which –1 and 1 are the vector components.
The distance between two hypervectors is computed with the
cosine similarity. OnlineHD supports retraining to increase the
prediction accuracy. During retraining, the model is queried
with the training dataset and if the prediction is incorrect,
the class hypervector is slightly altered to be more similar to
the query hypervector. In this work, the number of retraining

NAND
in1

in2

out

Circuit Level
1 Stimuli from

application level

Transistor Level

in1 in2

N1 N2

in1 in2

out

0

VDD

V
G

in
1

0

VDD

Time

V
G

in
2

0

1 nV

N
1
∆

V
th

0

1 nV

Time

N
2
∆

V
th

Aging
models:
NBTI
HCD

10-year ex-
traplotaion

∆Vth of
N1 at EoL

∆Vth of
N2 at EoL

0

VDD
Aging-
induced

shift

NAND out 1→ 0

Propagation delay2 Voltages apply
to transistors

3 Aging models for short-term aging 4 Extrapolate to EoL

5 ∆Vth increases delay

Fig. 3. In the experimental setup, stimuli are applied at circuit level 1 and voltage waveforms for each transistor extracted 2 . Those are passed to the aging
models 3 to generate the ground truth for the training of the machine learning models. Then, their prediction is extrapolated to the end of lifetime (EoL) 4 .
Finally, the degradation is applied again at circuit level for efficient guardband estimation 5 .



5

iterations (epochs) is set to 50 and the learn rate to 0.01. Similar
to SVM, major parts of OnlineHD have been implemented in
C through PyTorch.

In addition, an LSTM model is implemented as an alternative
method to the history-based approach with SVM and HDC.
LSTM models have been show to work well in sequence to
sequence learning applications such as translation tasks [29].
In this work, an an LSTM encoder-decoder model is trained
to predict the full trace based on the input waveform. The
encoder contains two layers of stacked LSTMs, each with 256
units, which learn to map the input waveforms to an internal
fixed-size vector representations of size 256. The decoder is
a one layer LSTM with 256 units. The decoder is trained to
map the fixed internal vector to the degradation trace. Similar
to [29], the performance of the LSTM model is improved by
reversing the input waveforms.

The LSTM model’s performance improved as the number
of layers and units in each layer increased, as did the model’s
complexity. It was observed that model tends to overfit when
the number units is increased above 256. The LSTM model’s
performance tends to deteriorate when the number of segments
in the input waveform is greater than 32.

This allows for a fair comparison of the computational
demands of both methods and against the physics-based BAT,
all running on an AMD Ryzen 9 3950X .

A. Datset Generation
Circuit designers have access to foundry-provided PDKs to

create and tune their systems. Typically, the foundry publishes
an additional set of PDKs with aging data under worst-case
conditions, which lead to an overestimated guardband. Actual
workloads are far from such worst-case conditions. Therefore,
aging models take the workload into account to predict the
expected degradation at EoL for a single transistor. The input to
the aging model is a waveform (V1, ..., Vl) which is a sequence
of l segments where each segment Vi with i ∈ {1, . . . , l}
represents the gate voltage applied to the transistor. The supply
voltage can be any of the voltage corners provided by the
foundry Vi ∈ Vcorners. The time component is included in the
waveform through the segment index, with each segment lasting
the same amount of time.

The waveform is provided to the aging model, which
produces a trace (∆Vth,1, ...,∆Vth,l) reporting a ∆Vth for each
segment. The effect of the input voltage is reflected in the
output trace Vi → ∆Vth,i. However, simply using this mapping
as a model does not reflect the voltage dynamics and cannot
capture recovery effects. The ∆Vth,i of segment Vi depends
also on the previous segment’s Vi–1, as show in Fig. 1.

Physics-based models can take the whole waveform and
compute the expected ∆Vth for each point in time. To make
such a model accessible to the designer, it has to be replaced
with a similarly behaving ML-based model to not disclose
the confidential technology parameters. Physics-based models
retain the state of the transistor (e.g., the number of defects
in the material) during the prediction, which is the basis for
their powerful predictive capabilities. In contrast, lightweight
ML-based methods do not have such an internal state and have
to predict ∆Vth iteratively.

Voltage waveform
waveform = (V1, ..., Vl)

trace
trace = (∆Vth,1, ...,∆Vth,l)

TrainingCreate context
(Fig. 5)

Physics-based
NBTI model

training samplei

Vi, ..., Vi–h ∆Vth,i–1, ...,∆Vth,i–h
∆Vth,i
as label

ML-based Model

Repeat for every segment Vi

Fig. 4. Voltage waveforms derived from circuit-level stimuli are supplied to
the physics-based transistor aging model to create training data for the machine
learning-based models. Once they are trained, they take voltage waveforms
and predict the degradation trace.

B. Training data generation

Training data is generated from 62 standard cells (e.g. XOR,
full adder). The cells employed in this work have at most
five input terminals and no internal state. With the design of
digital circuits in mind, those input terminals are either at
0 V or at VDD. Random stimuli are applied, which in turn
stimulate the internal transistors. Through SPICE simulations,
the analog waveform for each transistor can be extracted.
The physics-based aging model is then executed to compute
the corresponding trace. The trace represents the label for a
waveform. Depending on the type of the cell, each standard cell
contains between 4 and 27 pMOS check transistors. In total,
all standard cells contain 414 pMOS transistors. Thus, 414
waveform-trace pairs, the training samples, can be generated.

While the design of the standard cells is well known, the
designer’s circuits is their intellectual property that cannot be
shared with third parties like the foundry. Therefore, we mimic
the application scenario for a circuit designer and generate the
test set from transistors in larger circuits. In this work, two
circuits are explored. First, an adder for two 8-bit numbers
with 111 transistors. Second, a 32-bit MAC unit, that multiplies
an 8-bit weight with an 8-bit input and accumulates the result
with a 32-bit partial sum. The circuit contains 1395 pMOS
transistors. The inputs of each circuit are stimulated with
random data for an unbiased evaluation. A circuit designer
would simulate their typical workload patterns. Similar to the
standard cells, the inputs propagate through the circuit and
waveforms for each transistor are extracted. In other words,
the designer extracts waveforms representing their workload.
For evaluation purposes, the physics-based aging model is
employed again to compute the traces as a ground truth. The
number of consecutive addition or MAC operations can be
set to generate waveforms of various lengths. The longer the
trace, the more it challenges the ML model since more features
(input voltages) have to be considered.

IV. SCENARIO 1: PREDICTING A FULL TRACE

The objective is to predict a ∆Vth for each segment of the
waveform. In contrast to an LSTM, an SVM or an HDC cannot
directly convert a sequence to another. Hence, the waveforms
have to be processed to make them learnable by the latter
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Fig. 5. Some history is added to the current input voltage to better capture
the voltage dynamics. In this example h = 3, i.e., the input voltage and ∆Vth,i
from ti-1, ti-2, and ti-3 are included.

models. The training procedure for one waveform is sketched
in Fig. 4. Since the current state of the transistor is not available
for training, the voltage dynamics have to be captured with
a history of h previous waveform segments. However, such a
snippet of the waveform sequence is not bound to a specific
point in time or, more importantly, to the current internal state
of the transistor. Setting h = l (i.e., include all segments) is not
viable due to the prohibitively large parameter space. Thus,
a history of the h previous ∆Vth values is included as well.
The combination of voltage and ∆Vth provides a more detailed
context for training. Fig. 5 visualizes the information contained
in three training samples for h = 3. The label for each sample
at time i is the ∆Vth,i of the segment taken from the trace. The
∆Vth,i is quantized to discrete labels for classification.

The results show that the SVM and HDC models have a bias
in their predictions. Although their predictions follow the traces
in general, the nominal ∆Vth values often deviate. A multiplier
can reduced this offset. After the model training is complete,
it is used on the training set itself to predict the traces. The
disagreement between the ML-based and the physics-based
model is analyzed and the resulting average deviation is used
as a multiplier during inference.

A. Inference

During inference, the same data representation, described
above, is used for SVM and HDC. This representation includes
the h previous ∆Vth. However, only the waveform is available
during inference. Hence, the ∆Vth values have to be predicted
online during inference. They are then adjusted with the
multiplier to be directly used to predict the next segment.
For the first segment i = 1, the initial ∆Vth and the “previous”
∆Vth is set to 0 mV, as shown in Fig. 5. In effect, only the
input voltage V1 determines ∆Vth,1. The predicted ∆Vth,1 is
then used to create the context for segment i = 2, ∆Vth,1 and
∆Vth,2 for segment i = 3, and so forth. Due to this recursive
process, prediction errors multiply requiring high precision.

B. Evaluation

The performance of the ML-based models under a variety of
different aspects is evaluated. The datasets are generated and
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Fig. 6. Example of a waveform (gray), the baseline trace from the physics-
based model (green) and the predicted traces from various ML models.

split into training and testing set with a 70 % split. As a metric,
the relative error per segment REi = (MLi – BATi)/BATl ∗ 100 %
is used. MLi and BATi are the predictions for segment i from
the ML-based and physics-based models, respectively. The
difference is divided by BATl, the final ∆Vth. Overestimating
the degradation results in a positive RE, underestimating it in
a negative. The results in Fig. 7 show balanced models with a
tendency for overestimation.

C. Dimension of the HDC Model

The dimension of the hypervectors determines their capacity
to store information. The higher the dimension, the higher the
expected accuracy. This increase levels off at an application-
specific point, which is not known a priori. A higher dimension
also correlates with more costly operations and higher memory
requirements. Both costs are not the primary concern during de-
sign time. Therefore, HDC-based models with high dimensions
above 10,000 are feasible.

In this work, dimensions from 1000 to 20,000 vector
elements are explored. Contrary to the initial assumption, a
higher dimension does necessarily not result in higher accuracy.
The mean RE for different dimensions is shown in Fig. 8.
The highest dimension of 20,000 performs best on average
over different h, but even the lowest dimension with 1000
outperforms others. These results indicate that the HDC model
has unused capacity available.

D. Impact of History h

The parameter h determines how many previous segments
are taken into account to predict the next segment. The SVM
performs best with h = 8. For HDC, the combination with
the dimension has to be considered. More history requires a
higher capacity of the model to contain the information. While
this capacity is available with the high dimensions, the results
suggest an oversaturation of the query hypervector with the
same voltage hypervector. A different encoding is expected to
mitigate this issue. The overall best performances for HDC are
achieved with h around seven.

The hyperparameters dimension and h can be selected based
on the model’s performance on the training data. Our analysis
of circuits, discussed in Section V, shows that different settings
are required depending on the workload characteristics. The
best model is selected by the foundry and send to the designer.
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Fig. 8. Mean r2 scores for different histories h with
an HDC dimension of 20k for the adder dataset.

TABLE I
EXECUTION TIMES FOR THE 8-BIT ADDER CIRCUIT.

Task Wall-clock time

Training set generation (total) 409.0 s
HDC training (total) 34.2 s – 152.3 s
SVM training (total) 407.7 s

Physics-based trace prediction (mean) 602.2 ms
HDC trace prediction (mean) 28.7 ms – 88.1 ms
SVM trace prediction (mean) 624.1 ms
LSTM trace prediction (mean) 1006.7 ms

E. Reduction of Model Execution Time

In the HDC model, the complex differential equations of
the physics-based model are replaced with simple operations
on integer vectors. The performance advantages are reflected
by a reduced execution time shown in Tab. I. Predicting a
32-segment trace for the 8-bit adder takes 29 ms to 88 ms for
a dimension of 1000 and 20,000, respectively. This is up to
30X faster compared to the physics-based model with 602 ms
or the SVM with 624 ms. The time for training varies with
h, but it is consistently lower for the HDC model compared
to the SVM. OnlineHD utilizes multiple CPU cores to reduce
the training time. The LSTM takes the most time, even longer
than the physics-based model, but achieves the best accuracy.

V. SCENARIO 2: END-OF-LIFETIME AGING

Recreating the degradation trace is useful in evaluating short-
term aging effects [5]. To predict the degradation at the EoL
of the device, and thus for circuit designers to add sufficient
guardbands, the whole trace is not necessary. The extrapolation
model for NBTI considers the waveform as well as the last
∆Vth value. Hence, an ML model is sufficient for EoL ∆Vth
estimation if it can predict this last value. Consequently, the
challenge transforms from a recursive trace reconstruction to
a simpler regression. With the focus on long-term aging, the
final impact of inaccurate predictions from ML models can be
evaluated at circuit level. The physics-based BAT is replaced
with an ML model to provide the short-term aging value. This
result is then processed further by the CARAT framework
to predict the aging-induced shift in the circuit’s propagation
delay.

A. Model Training and Evaluation

Many ML algorithms exist to solve regression problems.
The input is a waveform, where each segment acts as a feature
and the predicted output is the last ∆Vth value.

An SVM can also be used for regression and is then referred
to as an SVR. The implementation is based on the Scikit-
learn library [27] and a grid search is done for hyperparameter
tuning. The SVR has an Radial Basis Function kernel, a gamma
value of 0.001, and a C of 100. An MLP is implemented with
PyTorch [30]. It has a total of three layers with 128 neurons in
the hidden layer. The output layer is a single neuron. In contrast
to classification, this single neuron returns a floating point value
representing the last ∆Vth. An HDC classifier can be used for
regression by quantizing the ∆Vth values and treating those as
classes. For comparison, a worst-case model is created. With
NBTI, the pMOS transistor ages if no gate voltage is applied.
Hence, the worst case assumes that the transistor is turned off
and only turns on at the end of the simulated time frame to
maximize the aging effect.

Each model is trained and evaluated on three circuits. The
dataset generation is described in detail in Section III-A. The
aging extrapolation models for NBTI depend on the last ∆Vth
value and the waveform. But instead of the physics-based
aging model, the ML models are employed. The predictions
are compared with the output of the physics-based model as
a baseline. As an accuracy metric, r2 score is select, with a
value of ‘1’ as a perfect match.

B. Results at Circuit Level

To judge the complex of the problem, the models are trained
and tested on the adder circuit. Three sets of random inputs
are generated for training, hyperparameter tuning, and testing.
The results are presented in Fig. 9 and show the correlation
between the baseline physics-based last ∆Vth values and the
ML-based ones for all transistors. The r2 scores are given above
the plots and show that the best ML approach is the LSTM
model. An r2 score of 0.37 was achieved with a training for
500 epochs, two hidden layers with 25 units per layer, and
the L1 loss function. Although there is some spread around
the baseline, the model’s ability to predict the ∆Vth is clear.
A similar picture is given by the MLP, the predictions are
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Fig. 11. The models are trained on the adder circuit and used to predict the degradation in the MAC circuit. The large dataset from the adder allows the
LSTM to train and provide adequate results. The outliers are analyzed in Section V-C.

correlated with the baseline values. For HDC, the spread is
even larger but still follows the baseline. The model is trained
with a dimension of 4000 for 50 epochs.

While HDC has the highest spread, the mean aging-induced
shift in the propagation delay at circuit level is equal to
the baseline. Tab. II compares the different models and also
includes the worst-case model with constant aging stress. Both,
HDC and MLP, overestimate the impact overestimate aging,
which is preferable to the LSTM, which underestimates the
impact and thus could lead to insufficiently small guardbands.
However, even with doubling the ML-based predictions to save
guard against underestimation, the ML-models still outperform
the worst-case model by a factor of three.

Training and predicting for the same circuit would require
that the circuit designers share details with the foundry, which
would train the model. To minimize data sharing, the foundry

can train a model on their standard cells and provide those
models to designers. However, the results plotted in Fig. 10
show a significant degradation of the quality of the predictions.
The r2 scores drop below zero and the models struggle to
generalize. Worse, the LSTM and the MLP predict low ∆Vth
values although the baseline values are close to the maximum
(prediction in lower right corner). While the spread of the
SVM has increased compared to a training with the adder, the
maximum prediction errors are smaller than with other ML
models. The HDC model has failed to generalize and is not
included in the results.

Similar and better results are shown in Fig. 11 for training
on the adder and testing on the MAC circuit. First, the
LSTM has sufficient data to train and can predict most
samples with a low error. Nevertheless, outliers can cause
incorrect guardband estimations. Second, while the SVM’s r2
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TABLE II
AGING-INDUCED DELAY FOR TRAIN AND TEST ON ADDER CIRCUIT.

Delay (ps) Baseline LSTM SVR HDC Worst Case

min −2.08 −2.08 −0.40 −1.81 −2.12
mean 4.88 4.66 5.33 4.88 31.36
max 12.60 11.70 11.70 13.90 61.10

TABLE III
AGING-INDUCED DELAY FOR TRAIN ON STANDARD CELLS AND TEST ON

ADDER CIRCUIT.

Delay (ps) Baseline LSTM SVR MLP Worst Case

min −2.08 −4.33 −0.93 −1.14 −2.13
mean 4.76 6.76 5.06 5.19 31.52
max 10.90 18.80 12.60 15.10 61.10

is the lowest, it underestimations the least preventing severely
incorrect guardband estimations. Overestimations are limited
to smaller ∆Vth values and in total the SVM model achieves
a mean relative error of 1.7 % compared to the LSTM’s 3 %.
Finally, the largest ∆Vth value in the MAC dataset is higher
than in the adder and this behavior is not not captured by the
ML models, they are limited by their training. This is evident
by the horizontal cluster in the top right.

C. Error Analysis

While many predictions of the LSTM are within a tolerable
error range, there are outliers that are either under- or overes-
timated as shown in Fig. 11. The same samples are plotted in
Fig. 12 for an error analysis. First, overestimated samples have
a lower duty cycle and especially fewer voltage transitions in
the waveform. In other words, transistors that are off most of the
time and change their on/off state seldom. Overestimations have
a negative impact on the circuit’s timing because guardband
are designed unnecessary large. However, they do not lead
to failure of the device, in contrast to underestimations. The
impact of aging is underestimated for some transistors with a
duty cycle above 0.6. Their waveforms have an average amount
of transitions. This combination of duty cycle and number of
transitions is not a defining feature for underestimations by
the LSTM model. Hence, it is impossible to derive a simple
rule-based solution to contain the potential timing errors due
to insufficient guardbands.

The SVR shows a similar pattern. Overestimations correlate
with a low duty cycle combined with a low number of
transitions in the waveform. Underestimations are not as
frequent and as pronounced. While they occur mainly above a
duty cycle of 0.4, worst-case underestimations do not correlate
with the number of transitions in the waveform. Hence, similar
to the LSTM, a simple rule-based error reduction cannot be
derived. In summary, the models perform well for most samples
but outliers, especially underestimations, still pose a challenge.

VI. DISCUSSION

The focus of this work is on NBTI, the dominant degradation
effect in current transistor technology [2]. Nevertheless, PBTI
and HCD also play an important role. Their impact on the

TABLE IV
AGING-INDUCED DELAY FOR TRAIN ON ADDER AND TEST ON MAC

CIRCUIT.

Delay (ps) Baseline LSTM SVR MLP Worst Case

min −1.80 −2.90 −2.10 −3.80 −70.70
mean 5.03 5.58 5.31 4.94 88.67
max 15.00 14.90 12.60 11.50 450.91
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Fig. 12. Analysis of the LSTM model for the MAC circuit. The largest
prediction errors are correlated with a low duty cycle and a low number of
voltage transitions.

transistor has to be considered as well to design the circuit with
small yet sufficient timing guard bands. Hence, an investigation
into replacing those models with ML-based models is necessary.
Preliminary results suggest that the methods explored in this
work are challenged by the different types of stimuli driving
those degradation effects. In NBTI, the on/off time is the
dominant factor whereas in HCD the number of transitions has
to be considered, among other stimuli.

Aging effects also depend heavily on the temperature of
the transistor. The experiments in this work assume a constant
temperature of 90 °C. However, the temperature of a transistor
keeps changing between high-load phases and standby states of
the overall system the circuit is integrated in. Those dynamic
changes have to be investigated and included for a temperature-
aware ML-based trace prediction.

VII. CONCLUSION

Accurate physics-based aging models include confidential
technology and material parameters. Thus, such models are
not available to circuit designers to optimize their designs
under the actual impact of aging. This work explores the
applicability of ML-based methods to train on the physics-
based models, in particular traditional SVM, LSTM, and brain-
inspired HDC. While ML-based models can predict the impact
of aging for most transistors accurately, outliers can be over- or
underestimated. Nevertheless, the explored ML-based methods
predict the degradation about 3x more precise than available
worst-case models. For the first time, circuit designers have
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access to an accurate aging model which is indispensable for
efficient designs. This work opens the door to narrow the
boundary between foundry and circuit designers.
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