
Modeling and prediction of environmental data
in space and time using Kalman filtering

A. W. Heemink, A. J. Segers

Abstract. The Kalman filter is used in this paper as a framework for space time
data analysis. Using Kalman filtering it is possible to include physically based
simulation models into the data analysis procedure. Attention is concentrated on
the development of fast filter algorithms to make Kalman filtering feasible for
high dimensional space time models. The ensemble Kalman filter and the reduced
rank square root filter algorithm are briefly summarized. A new algorithm, the
partially orthogonal ensemble Kalman filter is introduced too. We will illustrate
the performance of the Kalman filter algorithms with a real life air pollution
problem. Here ozone concentrations in a part of North West Europe are
estimated and predicted.
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1
Introduction
Most environmental processes vary in space and time. Modelling these processes
statistically from large data sets is far from trivial. The key problem is that the
number of degrees of freedom in these identification problems is extremely large.
In addition, physically based information of the process is required. Using tra-
ditional geostatistical methods, the variability of the process is often assumed to
be spatially homogeneous (Cressie 1991). Using principal oscillation patterns
(POPs), the process is considered to be a linear combination of a very limited set
of spatial patterns (Hasselmann 1988). Here the patterns are all constant, while
the weighing of the patterns varies in time. Other approaches to space–time
modelling have been published among others by Bogaert and Christakos (1997)
and by Christakos and Vyas (1998).

Wikle and Cressie (1999, 2000), introduced Kalman filtering as a framework for
space time modelling of environmental processes. They developed a reduced
dimension space time filter to analyse very large data sets. Their approach is
based on a general statistical space time description of the process. Using Kalman
filtering it is also possible to include physical knowledge into the data analysis
procedure. For some environmental processes it may be possible to include the
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concept of mass conservation or an advection-diffusion type model into the
analysis. The basic idea of our paper is to use physically based numerical models
together with the data. Integrating physically based model results with mea-
surements is often called data assimilation.

In order to use a Kalman filter for assimilating data into a numerical model, a
stochastic model or system is developed to model the inaccuracies of the underlying
deterministic model. By using a Kalman filter, the information provided by the
resulting stochastic dynamical model and the measurements are combined to
obtain an optimal (minimal estimation variance) estimate of the state of the system.

In the last decade Kalman filtering has gained acceptance as a powerful
framework for integrating space time data with physically-based models (Ghil and
Malanotte-Rizzoli 1991). However, using the standard Kalman filter implemen-
tation would impose an unacceptable computational burden. In order to obtain a
computationally efficient filter, approximations have to be introduced. The
ensemble Kalman filter is based on a representation of the probability density of
the state estimate by a finite number of randomly generated system states. A
serious disadvantage of this approach is that the statistical error of the approach
decreases very slowly with the sample size. Another approach for solving the large
scale Kalman filtering problem is to approximate the full covariance of the state
estimate by a matrix with reduced rank. To obtain a low rank approximation of
the covariance matrix, a singular value decomposition is used to select the leading
eigenvectors (EOF’s) of the covariance matrix. The disadvantage of this algorithm
is that by neglecting some of the eigenvectors the covariance matrix is under
estimated. It is well-known that underestimating the covariance may introduce
filter divergence. We propose using the partially orthogonal ensemble Kalman
filter (POEnKF), where the reduced rank approximation is used as a variance
reductor for the ensemble Kalman filter (EnKF) (Heemink et al. 2001). This
algorithm combines the best properties of both previous approaches. It is less
sensitive to divergence problems and computationally more effecient than the
ensemble Kalman filter.

We first describe in Sect. 2 the original Kalman filtering approach. In Sect. 3
we introduce a number of fast algorithms for solving Kalman filtering problems
with a very large number of variables. Finally in Sect. 4 an application of the
Kalman filter to an ozone analysis and prediction problem is discussed in detail.

2
Kalman filtering

2.1
An environmental model for air pollution
The air pollution model used for this research is a condensed version of the LOng
Term Ozone Simulator (LOTOS) (Builtjes 1992). LOTOS is an Eulerian grid model
used to study the controlling phenomena of ozone over Europe. The LOTOS
model is based on the advection diffusion equation including source and sink
terms for emissions, chemistry and deposition:
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where c is the concentration of one constituent, u; m are the wind velocities in
respectively x- and y-direction, kh is the dispersion coefficient, E represents the
emissions, R is the reaction term and S is the sink term. The horizontal grid
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spacing is 1:0� longitude by 0:5� latitude (about 60 � 60 km). The lowest 2–3 km
of the troposphere are modeled using three layers with a depth depending on the
height of the mixing layer (part of the meteorological input). The model includes
a chemistry according to the CBM-IV mechanism (Gery et al. 1989). The chemical
state in a grid cell is described in terms of concentrations (ppb) of 26 chemical
components including ozone, nitrogenous oxides, carbon bounds, and radicals.
Emissions of nitrogenous oxides, volatile organic compounds, and carbon
monoxide are injected in the lowest layer following time dependent profiles.
Components such as ozone and nitrogenous oxides are subject to dry deposition.
Concentrations at ground level are therefore computed from a deposition profile
and stored in a deterministic ground layer.

The version of the model used in this study was limited to a grid of 12 � 12
grid cells covering England and Wales (Fig. 1). This area was selected for its
rather isolated position, which ensures that the bulk of the NOx and VOC load
arise from local emissions. Only long periods of eastern wind lead to a substantial
inflow of pollutants from the continent. Besides, in this area a large number of
ozone measurements from rural sites are available online (DENR 1997).

In discrete time form, the model follows the state space representation:

xkþ1 ¼ f ðxkÞ ð2Þ

where the vector x contains the concentrations in ppb of all 26 species of the
CBM-IV mechanism, for each of the 12 � 12 � 4 grid cells in the model (including
the deterministic ground layer). The model provides hourly average concentra-
tion of all components in the states.

2.2
Stochastic state space model
The deterministic model (2) is able to produce the main trend of pollutant
propagation, and it provides a reasonable picture of the transport dynamics of air

Fig. 1. Domain of the model area and the (rural) measurement sites. The circles denote the
areas with the largest emissions of NOx and VOC
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pollution. However, since knowledge about the various physical phenomena is far
from complete, the transport model is only an approximation and simplification
of the real transport dynamics. The model results will never be perfectly con-
sistent with the observations. By modelling the effects of variability and uncer-
tainty in the natural system and model structure errors as system noise processes,
a stochastic state space model is obtained:

xkþ1 ¼ f ðxkÞ þ Ckwk ð3Þ

where Ck is a noise input matrix and wk is a Gaussian white noise process with
covariance Rw;k. The initial condition x0 is assumed to be Gaussian with mean x̂x0

and covariance P0.
As mentioned before the model just described usually does not provide an

accurate picture of the concentration. Therefore we want to use measurement
information to improve our insight into the space time behaviour of the pollutant.
Here we assume that the measurement yk is related to the system state according to:

yk ¼ Mkxk þ vk ð4Þ

where Mk is the measurement matrix and the measurement noise vk is a Gaussian
white noise processes with covariance Rv;k. The measurement noise is introduced
to model measurement errors.

2.3
Conventional Kalman filtering for non linear systems
It is desired to combine the measurement modelled by relation (4) with the
information provided by the system model (3) in order to obtain an optimal
estimate of the system state xk. If x̂xkjl is defined as the minimal variance estimator
of xk based on the measurements yð1Þ; . . . ; yðlÞ, and Pkjl is the covariance matrix
of the estimation error, recursive filter equations to obtain these equations are
described below.

The optimal state estimate is propagated from measurement time k to mea-
surement time k þ 1 by the equations

x̂xkþ1jk ¼ f ðx̂xkjkÞ ð5Þ

Pkþ1jk ¼ FkPkjkFT
k þ CkRw;kC

T
k ð6Þ

where

ðFkÞij ¼
of ðx̂xkjkÞi

oðx̂xkjkÞj

ð7Þ

represents the tangent linear model.
At measurement time k the measurement yk becomes available. The estimate is

updated by the equations

x̂xkþ1jkþ1 ¼ x̂xkþ1jk þ Kk½yk � Mkx̂xkþ1jk
 ð8Þ
Pkþ1jkþ1 ¼ Pkþ1jk � KkMkPkþ1jk ð9Þ

where
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Kk ¼ Pkþ1jkMT
k ½MkPkþ1jkMT

k þ Rv;k
�1 ð10Þ

is the Kalman gain. The initial condition for the recursion is given by x̂x0j0 ¼ x̂x0

and P0j0 ¼ P0.
By using the Kalman filter, both sources of information, model information

and measurement information are integrated to obtain an optimal reconstruction
of the concentration distribution. From the modelling point of view, measure-
ments are used to reduce the model errors and to improve the model results.
From the data point of view, model information in the form of a stochastic system
representation, is used as a physically based interpolation scheme to fill in the
gaps in the data set both in space as in time.

3
Kalman filter algorithms for high dimensional space time systems

3.1
Ensemble Kalman filter (EnKF)
The EnKF was introduced by (Evensen 1994) and has been used successfully in
many applications (Evensen and Van Leeuwen 1996; Houtekamer and Mitchel
1998; Canizares 1999). This Monte Carlo approach is based on a representation of
the probability density of the state estimate by a finite number N of randomly
generated system states. The algorithm does not require a tangent linear model
and is very easy to implement. The (EnKF) for the model (3)–(4) can be sum-
marized as follows (Burgers et al. 1998):

Initialization:
An ensemble of N initial states ðniÞ0j0 are generated to represent the uncertainty
in x0.

Time update:

ðniÞkþ1jk ¼ f ððniÞkjkÞ þ CkðwiÞk ð11Þ

x̂xkþ1jk ¼
1

N

XN

i¼1

ðniÞkþ1jk ð12Þ

Ekþ1jk ¼ ½ðn1Þkþ1jk � x̂xkþ1jk; . . . ; ðnNÞkþ1jk � x̂xkþ1jk
 ð13Þ

Measurement update:

Pkþ1jk ¼
1

N � 1
Ekþ1jkET

kþ1jk ð14Þ

Kkþ1 ¼ Pkþ1jkMT
kþ1½Mkþ1Pkþ1jkMT

kþ1 þ Rv;kþ1
�1 ð15Þ
ðniÞkþ1jkþ1 ¼ ðniÞkþ1jk þ Kkþ1ðykþ1 � Mkþ1ðniÞkþ1jk þ ðviÞkþ1Þ ð16Þ

here ðniÞkjk is an ensemble of state vectors generated with the realizations ðwiÞk
and ðviÞk of the noise process wk and vk respectively. Note that in the final
implementation of the algorithm P need not actually be computed (Evensen 1994).

For most practical problems Eq. (11) is computationally dominant. As a result
the computational effort required for the EnKF is approximately N model
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simulations. The errors in the state estimate are of statistical nature and decrease
very slowly with the sample size ð� 1

NÞ. This is one of the very few drawbacks of
this Monte Carlo approach.

3.2
Reduced rank square root filter (RRSQRT)
Another approach for solving large scale Kalman filtering problems is to
approximate the full covariance matrix of the state estimate by a matrix with
reduced rank. This approach was introduced by Cohn and Todling (1995, 1996),
and Verlaan and Heemink (1995, 1997). The latter used a more robust square root
formulation for the filter implementation. Algorithms based on similar ideas have
been proposed and applied by Lermusiaux (1997) and Pham et al. (1998).

The reduced rank approaches can also be formulated as an EnKF where the q
ensemble members are not chosen randomly, but in the directions of the q
leading eigenvectors of the covariance matrix (Verlaan and Heemink 1997). As a
result these algorithms do not require a tangent linear model.

The RRSQRT filter algorithm (Verlaan and Heemink 1997) is based on an
approximation of the covariance matrix of the state estimate according to
P ¼ LLT, where L is a matrix with the q leading eigenvectors (eigenvectors
with largest eigenvalues) li; i ¼ 1; . . . ; q of P as columns. The algorithm can
be summarized as follows:

Initialization:

x0j0 ¼ x0

L0j0 ¼ ½ðl1Þ0j0; . . . ; ðlqÞ0j0


Time update:

x̂xkþ1jk ¼ f ðx̂xkjkÞ ð17Þ

li;kþ1jk ¼
1

e
ðf ðx̂xkjk þ eli;kjkÞ � f ðx̂xkjkÞÞ ð18Þ

~LLkþ1jk ¼ ½l1;kþ1jk; . . . ; lq;kþ1jk; CkR
1=2
w;k
 ð19Þ

Lkþ1jk ¼ Pkþ1jk ~LLkþ1jk ð20Þ

where Pkþ1jk is a projection onto the q leading eigenvectors of the matrix
~LLkþ1jk ~LL

T
kþ1jk and where e is chosen close to 1.

Measurement update:

Pkþ1jk ¼ Lkþ1jkLT
kþ1jk ð21Þ

Kkþ1 ¼ Pkþ1jkMT
kþ1½Mkþ1Pkþ1jkMT

kþ1 þ Rv;kþ1
�1 ð22Þ
x̂xkþ1jkþ1 ¼ x̂xkþ1jk þ Kkþ1ðykþ1 � Mkþ1x̂xkþ1jkÞ ð23Þ

~LLkþ1jkþ1 ¼ ½ðI � Kkþ1Mkþ1ÞLkþ1jk;Kkþ1R
1=2
v;kþ1
 ð24Þ

Lkþ1jkþ1 ¼ Pkþ1jkþ1
~LLkþ1jkþ1 ð25Þ

230



where Pkþ1jkþ1 is a projection onto the q leading eigenvectors of the matrix
~LLkþ1jkþ1

~LLT
kþ1jkþ1. As in the EnKF the full covariance matrix need not to be com-

puted (Verlaan and Heemink 1997). This measurement update is not the most
efficient procedure. Equations (19)–(20) are, however, more general than mea-
surement update proposed by Verlaan and Heemink (1997). Equations (24)–(25)
holds for arbitrary filter gains Kk and not only for gain matrices satisfying
Eq. (22). This becomes important if the RRSQRT algorithm is used as part of the
POEnKF described in the next subsection.

For smaller values of q Eq. (18) is computationally dominant resulting in a
computational effort of q þ 1 model simulations. The projection (20) requires
Oðq3Þ computations. As a result for very large q this part of the algorithm becomes
time consuming too (see Canizares 1999). The errors of the algorithm are caused
by the linearized dynamics in Eq. (18) and the representation of the covariance
matrix by only the q leading eigenvectors. Because a number of eigenvectors are
neglected the covariance matrix is underestimated. As a result the algorithm is
sensitive to filter divergence problems. This problem can be avoided by choosing
q relatively large, but this obviously reduces the computational efficiency.

3.3
Partially orthogonal ensemble Kalman filter (POEnKF)
The EnKF and the RRSQRT filter are both of the more robust square root type
since both algorithms are formulated in terms of the square root of the covariance
matrix (respectively Ekþ1jk and Lkþ1jk). Also, both algorithms are of the ensemble
type. The ensemble filter is based on N randomly chosen ensemble members,
while in the reduced rank filter the ensemble members are chosen determinis-
tically in the direction of the q leading eigenvectors. Because the two algorithms
both have a very similar algorithmic structure, they can be integrated relatively
easy (Heemink et al. 2001).

The ensemble of the POEnKF consists of two parts. The q leading eigenvectors
li of the covariance matrix plus N randomly chosen ensemble members ni. The
ensemble members li are updated using a RRSQRT algorithm and ni by using the
EnKF algorithm. The two algorithms interact with each other a the measurement
update. Here only the information of the random ensemble members orthogonal
to the q leading eigenvectors is used.

The POEnKF algorithm can be summarized as follows:

Initialization:

½L0j0;E0j0
 ¼ ½ðl1Þ0j0; . . . ; ðlqÞ0j0; ðnqþ1Þ0j0; . . . ; ðnqþNÞ0j0


where li are the leading eigenvector of P0 and ni are generated randomly to
represent the uncertainty in x0.

Time update:

Time update equations (11)–(13) of the EnKF algorithm
Time update equations (17)–(20) of the RRSQRT algorithm

Measurement update:

E?
kþ1jk ¼ P?

kþ1jkEkþ1jk : ð26Þ
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where P?
kþ1jk is a projection of the random ensemble members orthogonal to the

first q ensemble members li.

Pkþ1jk ¼ Lkþ1jkLT
kþ1jk þ

1

N � 1
E?

kþ1jkE?
kþ1jk ð27Þ

Kkþ1 ¼ Pkþ1jkMT
kþ1½Mkþ1Pkþ1jkMT

kþ1 þ Rv;kþ1
�1 ð28Þ

Measurement update equation (16) of the EnKF algorithm for the ensemble Ekþ1jk
Measurement update equations (23)–(25) of the RRSQRT algorithm

For small values of q the time propagation equations for the ensemble is
computationally dominating. As a result for most practical problems the com-
putational effort for the POEnKF is approximately N þ q times the effort required
for one model simulation.

By integrating the EnKF and the RRSQRT filter the best of both are combined.
The reduced rank part acts as a variance reductor for the ensemble filter reducing
the statistical errors of this Monte Carlo approach significantly (Hammersley and
Handscomb 1964). At the other hand by embedding the reduced rank filter in an
EnKF the covariance is not underestimated, eliminating the filter divergence
problems of the reduced rank approach (also for very small numbers of q). As a
result q can be chosen on the basis of efficiency arguments and not for stabilizing
the filter algorithm.

4
Application to ozone analysis and prediction problems
In this section we will describe the setup and the results of filter experiments with
the LOTOS model. First, a description of the stochastic model will be given, Here
the emission input of the model is modelled as being stochastic. Second the test
period and the available measurements are described. Finally, the results of the
analysis and prediction experiments are presented, including a comparison of the
performance of the various filter algorithms.

4.1
Stochastic model
Important model errors are caused by erroneous emissions. The emission model
is based on time profiles, which assign fractions of yearly averaged emissions to
individual hours. Since the time profiles are based on average statistics, the actual
emissions might be quite different from the modelled one. The yearly averaged
emissions might also contain errors.

The following stochastic state space model is used for LOTOS with stochastic
emissions (Zhang et al. 1999; Segers et al. 2000):

xkþ1

dekþ1

� �
¼

f ðxk; ek½1 þ dek
Þ
adek

� �
þ

0ffiffiffiffiffiffiffiffi
1�a2

p
C

� �
wk ð29Þ

where xk denotes the concentration array of the deterministic model f as described
in Sect. 2.1. The model state xk has been augmented with the total emission in
mol/min for each specific hour, equal to the default emission ek multiplied with a
correction factor ð1 þ deÞ. In this research, the emissions of NOx, VOC and CO are
considered to be uncertain, varying independent from each other with standard
deviations of 30, 50, and 30% respectively. The emissions are disturbed in all grid
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cells covering England and Wales equally. The factor de is modelled as a colored
noise process (Jazwinski 1970), forced by white noise input wk. A time correlation
parameter a ¼ 0:95 ensures that samples of de are rather smoothed in time.

The specification of the model error statistics has been chosen on the basis of
expert opinions, since there is hardly any information on model errors available.
The various noise parameters of the Kalman filter have been validated by mon-
itoring the innovations of the filter and by checking whether their theoretical
statistics based on the model assumptions are in agreement with the measured
statistics of the innovations (Jazawinski 1970; Segers et al. 2000).

4.2
Measurements and observation error
A 6 day period from August 5 till August 10, 1997 was selected as a test period.
Ozone measurements for 11 rural sites are available during this period (Fig. 1).
During the first days of the test period, the ozone concentrations are rather low,
especially in the southern part of the domain. Investigation of the meteorological
data shows this could be explained from a rather high cloud cover. Later on, the
cloud cover decreases, and measured ozone levels start to show high peaks during
the day, with maximum values of 100 ppb. The model simulates the lower con-
centrations in the beginning and the high peaks later on correct, but is not able
reproduce the height of the peaks accurately. Some of the peaks are underesti-
mated with more than 30 ppb. Part of this misfit might be explained from the
coarse resolution of the model, which tends to spread local high concentrations
over a larger area. However, the height of the peaks are not reproduced for almost
all sites at the same time, suggesting a more systematic underestimation of the
ozone production.

The variability in the measurements is large: the measured values sometimes
differ with more than 10 ppb from 1 h to another, while a long term mean over
several hours is almost constant. One explanation is the occurance of measure-
ment errors, which are estimated to be 5–10% of the measured value (Tilmes and
Zimmermann 1998). Local whether conditions are also expected to have a large
impact on the variability, since a single hour of sunshine in a period with clouded
sky might lead to a higher ozone level.

The ozone measurements from Harwell, Bottesford, and Glazebury were used
for assimilation. The ozone levels at these sites are under direct influence of the
largest emission sources.

4.3
Experiment: 6 days assimilation
In a first experiment, the selected ozone measurements have been assimilated in
the model to see the impact on the ozone concentrations at other locations in the
grid and on other components in the state. An ensemble filter with 40 ensemble
members was chosen to obtain a benchmark for future experiments, since it
produced an accurate answer to the nonlinear filter problem. Repeating this
experiment did not change the results of the filter experiment significantly.

The time series for Glazebury in Fig. 2 show that the filter is able to decrease
the difference between model and measurements significantly. The results of the
filter are presented in the form of 2r error bounds. The true ozone concentrations
are expected to be within the bounds with a probability 95%. The high ozone
levels during daytime that were not reproduced by the model are now estimated
within the assumed measurement error. Only during the night, the very low
concentrations are not reproduced by the filter. The difference with the model is
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probably caused by other errors than those in the emissions, for example by
errors in the deposition rates. Similar results were obtained for the other
assimilated stations.

The spatial distribution of the adjustment at hour 87 (day 4, 15:00; Fig. 3)
shows that the underestimation of ozone is corrected by a plume arising from the
largest emission sources, flowing with the wind direction (north during day 4).
The filter corrects the difference between model and measurements using
decreased NOx emissions and increased VOC emissions.

The filter tends decrease NOx levels during the complete period. Comparison
with NOx measurements from Ladybower (Fig. 4) shows that this is during
daytime in agreement with reality. The nighttime values are however decreased to
far, which is another indication that the NOx emissions are not the only error
source in the model during the night.

Outside the plume, the adjustments of the ozone concentrations are minor. The
ozone concentrations in Aston Hill for example not significant influenced by the
changing emissions until day 6, when eastern wind has directed the emission
plume towards the site. Clear sky conditions lead to increased ozone levels, un-
derestimated by the model. Although the measurements are not assimilated, the
filter produced an improved estimation of the ozone level due to the assimilation
upwind from the site (Harwell). Improved results were also obtained for High
Muffles, which is downwind from the assimilated sites Bottesford and Glazebury
during episodes of southern wind. The results show that the filter technique is
able to improve ozone simulations significantly, based on the assumption that the
emissions are uncertain.

Fig. 2. Assimilation results for site Glazebury (assimilated): dots: measurements; dashed:
model; solid: assimilated mean � 2r
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4.4
Reconstruction of emissions
From the emission correction factors de of the state, it is possible to obtain some
insight in the actual values of the emissions estimated by the filter. Figure 5 shows
the total amount of NOx and VOC emitted in the area England/Wales by the
model, and the 2r error bounds during the 6-days assimilation experiment. Due
to the modelling with time profiles, the default emissions show a periodic and
block shaped pattern with high or low emission rates depending on different
human activities during day or night, and week or weekend (day 5/6). The
emissions of CO were found to be of minor impact for the ozone concentrations
in comparison with the impact of NOx and VOC, and are therefore omitted in the
discussion. The adjustments to the NOx emissions are rather small. During
nighttime, the emissions are estimated to be smaller since the model tends to
overestimate the ozone levels during the night. During daytime, the emissions
start at a lower level following the trend from the night before, and increases to a
peak emission just before sunset. The total amount of released NOx has however
hardly changed, from default 7:5 to 6:0–8:6 � 104 ppb N/min. Note the behavior
in the morning of day 6: The night time emissions were estimated to be slightly
increased, which cause a large additional emission when the emission profile
changes to daytime rate. This higher rate is however soon regarded as a mistake,
and the emissions fall back to a lower level. If the peak is omitted, the emissions
follow a rather smoothed profile like the profiles on day 2, 3, and 5.

Concluding, the filter approach is able to produce more accurate ozone con-
centrations by adapting the emissions of NOx and VOC. Including the correction
factors for the emissions in the state provides useful insight in how the filters
corrects discrepancies between model and measurements, although one should be
careful with the interpretation. A conclusion from our experiments is that at least

Fig. 3. Adjustment (assimilated mean minus model) of ozone concentration on day 4,
15:00. The adjustment of other components in the state show a similar spatial distribution.
The largest adjustments are made around the most important emission sources, with values
up 60 ppbC for VOC and �8 ppbC for NOx
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the time profiles used for the NOx emissions are subject to uncertainties, and that
VOC emissions are under estimated.

4.5
Experiment: forecast of ozone concentrations
In a second experiment, the filter technique was tested for its capabilities to ozone
forecasting. The mean state computed by the filter is in general a more accurate
approximation of the true state than what is computed by a deterministic model
run. If a model run is started with an assimilated mean as initial state, it is therefore
expected to be more in agreement with measurements. This property could be used
for an online forecasting system: The filter provides an accurate initial condition for
a deterministic forecast run. Apart from the initial state, the quality of an ozone
forecast also depends on the quality of the meteorological input. Since the forecast
skill of numerical whether prediction is limited to about 5 days, one cannot expect
an ozone forecast to be accurate over more than a few days.

The forecast skill of the filter has been tested starting from day 4, 15:00 (see Fig. 3
for the ozone distribution). During a first forecast run, model (29) was propagated
to the end of the 6 day period forced by a noise input wk equal to zero. The value of
the emission adjustment dek decayed from its mean value at 15:00 to its first guess
value zero with a rate of ak. The results in Fig. 6 show that a forecast with zero noise
input rapidly converges to a normal model run. After 24 h, the forecast is still in
good agreement with the measurements (as the normal model run was). The high
ozone level after 48 h is however not reproduced accurately. The forecast is still

Fig. 4. Three hour averages of NOx concentrations in Ladybower according to measure-
ments, the model, and the filter (same legend as Fig. 2). Model and filter results are a
combination of values extracted from the mixing and reservoir layer, depending on the
time
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better than the model simulation, partly because of the better initial condition, and
partly because still 10% of the emission adjustment is present in the state.

In a second run, the value of dek was fixed to the value at day 4, 15:00, by
setting a ¼ 0. This setup reflects the idea that errors in the emission profiles are
rather persistent in time as proved by Fig. 5. Figure 6 shows that fixed emissions
improve the forecast skill significantly. The forecast of the maximum ozone level
is close to the assimilated value.

4.6
Computational aspects
For each of the filter types described in Sect. 3, the efficiency has been judged
based on a large number of experiments. To get insight in the efficiency during
more complicated assimilations, the nonlinear character of the stochastic model
was slightly increased by introducing uncertain emissions of NOx and VOC in
two disjunct area instead of one, each covering one are a with large emissions.
The assimilation period was limited to the last three days of the previous de-
scribed period. The following filter setups have been examined: an ensemble filter
with N = 5, 10, 15, or 20 members, a RRSQRT filter with q = 1–5, 8, 12, or 20
modes, and a POEnKF with q = 1, 2, 4, 8, or 12 modes and N ¼ 5 random
ensembles. The results obtained for a particular filter setup have been compared
with the results obtained with an ensemble filter with 80 members, serving as a
reference solution of the filter problem. We used as error criterion the root mean
square over all grid cells and all hours between the ozone concentrations of the
‘true’ solution and those obtained with a particular filter. To see the impact of
the random number used in the EnKF and POEnKF algorithm, each of the

Fig. 5. Estimates of total emission in England/Wales; thick lines: model; thin lines: 2r
during assimilation
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experiments using one of these algorithms was repeated four times. The results
are plotted in Fig. 7 versus the number of required model evaluations (N for
EnKF, 1 þ q for RRSQRT, and 1 þ q þ N for POEnKF). The rms error of the
deterministic model was very large; the model underestimated the high ozone
levels during daytime with 20–30 ppb, leading to an rms of 12.4. The results show
that with only a few additional model evaluations, the filters are able to reduce the
rms error with a factor 2. The slow convergence of the EnKF filter is shown by
the large spread in the corresponding rms errors, even for large ensemble sizes.
The results show that the number of modes used in the RRSQRT algorithm
should exceed a critical level, before the filter converges. At least four modes are
required for properly expression of the covariance. The best possible solution is
obtained if the covariance is expressed in 12 modes or more. Comparing the
results of the RRSQRT filter with the POEnK variant shows that the introduction
of random ensembles only improves the results for small a number of modes
significantly. Comparison of the POEnKF results with the EnKF results for five
random ensembles shows that introduction of a few modes reduces the statistical
error. Where the rms errors for the EnKF range from 3 to 6, the range is decreased
to about 3–4 if two modes are ‘included’ in the algorithm.

5
Conclusions
In this paper the Kalman filter is introduced as a framework for analyzing space
time data. Our approach is based on the use of physically based simulation models.

Fig. 6. Forecast of ozone concentration in site Glazebury, from 15:00 August 8 1997 to the
end of August 10, as well as the assimilated mean value and a default model run. One and
two day forecasts are marked by the dotted lines
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By using Kalman filtering the high amount of information about the environmental
process contained in these models can be integrated in the data analysis procedure.
Because additional, physically based information is used, the final results of the
analysis procedure is less sensitive for fluctuation in the data. A number of efficient
filter algorithms for solving high dimensional filtering problems are described and
applied to a real life ozone analysis and prediction problem. The results show that
solving real life Kalman filtering problems is feasible. However computational
burden is still large, at least an order of magnitude larger then required for the
underlying deterministic transport model. The Kalman filter to improves the
analysis and prediction results of the ozone concentration significantly by recon-
structing the emissions. The main problem with the Kalman filtering approach is
the specification of the model error. In our approach the emissions were chosen as
the only error terms. There is, however, no consensus yet about the type model
errors in air pollution models. This is still in the stage of expert opinions. We
believe that in data model integration, getting quantitative information about the
model error is one of the major challenges in the near future.

References
Bogaert P, Christakos G (1997) Stochastic analysis of spatiotemporal solute content mea-
surements using a regression model. Stochas. Hydrol. Hydraul. 11(4): 267–295
Builtjes P (1992) The lotos – long term ozone simulation-project; summary report,
TNO-report TNO-MW-R 92/240, TNO, Delft, The Netherlands
Burgers G, Van Leeuwen PJ, Evensen G (1998) Analysis scheme in the ensemble Kalman
filter. Geophys. Res. Lett. 26: 1027–1030

Fig. 7. Root mean square error for various filter setups versus the number of required
model evaluation

239



Canizares R (1999) On the Application of Data Assimilation in Regional Coastal Models.
PhD thesis, Delft University of Technology. A.A. Balkema, Rotterdam, 133 pp
Christakos G, Vyas VM (1998) A composite space/time approach to studying ozone dis-
tribution over Eastern United States. Atmospheric Environ. 32(16): 2845–2857
Cohn SE, Todling R (1996) Approximate data assimilation schemes for stable and unstable
dynamics. J. Meteorol. Soc. Japan 74(1): 63–75
Cohn SE, Todling R (1995) Approximate Kalman filters for unstable dynamics. In: Second
Int. Symp. Assimilation of Observations in Meteorology and Oceanography, Tokyo,
pp. 241–246. WMO
Cressie N (1991) Statistics for Spatial Data. Wiley Inc., New York
Evensen E (1994) Sequential data assimilation with a nonlinear QG model using Monte
Carlo methods to forecast error statistics. J. Geophys. Res. 99: 10143–10162
Evensen G, Van Leeuwen PJ (1996) Assimilation of geosat altimiter data for the agulhas
current using the Ensemble Kalman filter with a quasigeostrophic model. Monthly Weather
Rev. 124(1): 85–96
Gery M, Whitten G, Killus J, Dodge M (1989) A photochemical kinetics mechanism for
urban and regional scale computer modelling. J. Geophys. Res. 94(D10): 12.925–12.956
Ghil M, Malanotte-Rizzoli P (1991) Data assimilation in meteorology and oceanography.
Adv. Geophys. 33: 141–266
Hammersley J, Handscomb D (1964) Monte Carlo Methods. Wiley and Sons Inc., London
Hasselmann K (1988) PIP’s and POP’s: The reduction of complex dynamical systems using
principal interaction and oscillation patterns. J. Geophys. Res. 93: 11,015–11,021
Heemink AW, Verlaan M, Segers AJ (2001) Variance reduced ensemble Kalman filtering.
Monthly Weather Rev. 129: 1718–1728
Houtekamer PL, Mitchel AL (1998) Data assimilation using ensemble Kalman filter tech-
nique. Monthly Weather Rev. 126: 796–811
Jazwinski AH (1970) Stochastic Processes and Filtering Theory, Vol. 64 of Mathematics in
Science and Engineering, Academic Press, New York
Lermusiaux P (1997) Error subspace data assimilation methods for ocean field estimation:
theory, validation and applications. PhD thesis, Harvard University, Cambridge, MA
Pham D, Verron J, Rouband M (1998) A singular evolutive extended Kalman filter for data
assimilation in oceanography. J. Marine Sys. 16: 323–340
Segers AJ, Heemink AW, Verlaan M, Van Loon M (2000), Non linear Kalman filter for
atmospheric Chemistry Models, Inverse Methods in global biogeochemical cyclus. Amer-
ican Geophysical Union, pp. 139–146
The UK National Qir Quality Information Archive (1997) Department of the Environment,
Transport and the Regions, http://www.aeat.co.uk/netcen/airqual/
Tilmes S, Zimmermann J (1998) Investigation on the spatial scales of the variability in
measured near-ground ozone mixing ratios. Geophys. Res. Lett. 25(20): 3827–3830
Verlaan M, Heemink AW (1995) Data assimilation schemes for non-linear shallow water
flow models. Proc. Second Int. Symp. Assimilation of Observations, Tokyo, Japan,
pp. 247–252. WMO
Verlaan M, Heemink AW (1997) Tidal flow forecasting using reduced rank square root
filters. Stochastic Hydrol. Hydraul. 11: 349–368
Wikle CK, Cressie N (1999), A dimension-reduced approach to space-time Kalman filter-
ing. Biometrika 86: 815–829
Wikle CK, Cressie N (2000) Space-time statistical modeling of environmental data, In: Todd
Mowrer H, Congalton RG (eds), Quantifying Spatial Uncertainity in Natural Resources:
Theory and Applications for GIS and Remote Sensing. Ann Arbor Press, Chelsea Michigan,
pp. 213–235
Zhang X-F, Heemink A, Janssen L, Janssen P, Sauter F (1999) A computationally efficient
Kalman smoother for the evaluation of the ch4 budget in Europe. Appl. Mathe. Model.
23(2): 109–129

240


