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Abstract

In this study, we investigates the application of three powerful kernel-based supervised learning algorithms to develop 
a global model of the wear rate of grinding media based on the input factors such as pH, solid percentage, throughout, 
charge weight of balls, rotation speed of mill and grinding time. It is found that there is a trade-o� between the training 
and testing error when a single kernel function is used and therefore these methods cannot provide the generalization 
capability. However, this problem is solved utilizing the multiple kernel learning frameworks for support vector machine 
in which the kernel function was expressed as a combination of basis kernel functions. It is distinguished that compared 
to the single kernel and ANN-based techniques, the use of multiple kernel support vector machines bene�t from a higher 
degree of correctness and generalization ability for prediction of wear rate of grinding media. Meanwhile, the �ndings 
indicate that in this state, the values of  R2 are achieved 0.99417 and 0.993 for training and testing datasets, respectively.
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1 Introduction

The grinding media wear plays an important role in the 
economics of grinding processes in mineral processing 
plants. Wear is de�ned as a progressive loss of material 
from a solid body owing to its contact and relative move-
ment against a surface [1]. It has been accepted that wear 
is resulted in a lower the operational e�ciency of machin-
ery and its components, and also it is a major source of 
costs in the various industries [2]. Meanwhile, it is known 
that the mining and metallurgy industries signi�cantly 
depend on the comminution operations to increase min-
eral liberation. Comminution is one of the most important 
operational units in the mineral processing industry and it 

is well known that the direct operating costs in comminu-
tion circuits (including crushing and milling) are mainly 
the energy consuming and the metal lost through wear 
in the mineral industry [3, 4]. Radziszewski reported that 
typical operational costs may be divided into extraction 
(30–70%), separation (5–20%), and comminution (30–50%) 
[5]. Moema et al. stated that consumption of grinding 
media forms an important part of the operational costs 
and grinding medium wear can constitute up to 40–45% 
of the total operation cost in comminution process [6]. In 
addition, King et al. expressed that wear rate is one of the 
most signi�cant parameters for appraising the overall per-
formance of grinding medium [7]. Thus, grinding media 
should be produced to provide the highest performance 
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that is the lowest wear magnitude and largest grinding 
transfer to cost ratio [8].

Total media wear in grinding media is attributed to 
three main mechanisms, including abrasion, impact and 
corrosion. Abrasion and impact wear are described as 
metal loss due to mechanical force on the grinding media. 
Erosion wear results from the friction between grind-
ing media and particles. Additionally, corrosive wear is 
depicted as metal loss owing to chemical and/or electro-
chemical reactions of grinding media with the solution [9, 
10]. The grinding media wear is in�uenced by the di�erent 
operational factors. Many factors are beyond the control 
of the engineers, while, some of them cannot be even 
measured quantitatively with the available instruments 
[11–13]. A vast number studies were carried out on the 
in�uence of these factors in wear of grinding media. Chen 
et al. [14] performed a laboratory study of high chromium 
alloy wear on grinding mill in the Florida phosphate indus-
try and reported that corrosive wear was a very serious 
problem. Also, their �ndings indicated that the solution 
pH had the most in�uence on the wear rate and the mini-
mum wear rate were obtained at 8.7 solution pH, 61 rpm 
rotation speed, 65% solid percentage and 58% crop load. 
Azizi et al. [15] utilized response surface methodology for 
modeling and optimization of in�uential factors on the 
corrosive wear of grinding balls and reported that the 
interactive e�ects between factors had a signi�cant role 
on corrosive wear and the highest corrosion rate could be 
obtained 78.38 and 40.76 mils per year for low alloy and 
high carbon chromium steel balls, respectively. Addition-
ally, further investigations demonstrate using the classic 
routs of investigating the impacts of factors on the media 
wear in grinding mills. These methods rely on the empiri-
cal models which are achieved from statistical correlations 
among dependent and independent factors. One of the 
limitations with empirical models is series of simpli�ca-
tions and plurality of the parameters which should be 
considered in grinding media wear. In addition, studies 
indicate that linear models are well established and relia-
ble, but have limited application. Hence, some researchers 
have employed neural networks models as a very useful 
and powerful tool of the modeling the complex systems 
to estimate wear rate especially in mills [16, 17]. Mean-
while, more recent attentions have been made to build 
models for obtaining a better understanding from the 
mechanistic principles of grinding media wear. Kor and co-
workers have developed a fuzzy logic model to estimate 
the wear rate of a high chromium alloy [18]. Ashra�zadeh 
and Ashra�zadeh applied a numerical simulation including 
discrete element to predict the wear caused by solid par-
ticle impact [19]. Furthermore, developing the prediction 

capability of grinding media wear allows a more precise 
estimation of wear costs. Therefore, investigation of newer 
approaches to achieve a higher accuracy and generaliza-
tion capability can be bene�cial in mineral processing and 
metallurgy industries.

In recent years, data-driven soft sensors due to delay-
free and low-cost properties have been widely developed 
and utilized to predict the behavior of the chemical pro-
cesses, especially multi-grade processes [20–22]. It has also 
been accepted that among these methods, nonlinear soft 
sensors such as neural networks [23, 24], Gaussian pro-
cess regression (GPR) [25] and support vector regression 
(SVR) [26–29] are more attractive mainly because of the 
nonlinear relation existing between the response variable 
of process and operating conditions. In fact, these tech-
niques can relatively easily develop without deep under-
standing of the process mechanism [29]. Today, support 
vector machines (SVM) are a new achievement in the �eld 
of data driven modelling, and along with other learning 
based-kernel algorithms indicate better performance than 
arti�cial neural networks and other intelligent or statistical 
models on the most popular benchmark problems and has 
been successfully implemented in classi�cation, regression 
and function estimation [30, 31]. Multiple kernel support 
vector machine (MK-SVM) is a newer formulation of SVM, 
which results in higher accuracy and generalization capa-
bility in many applications [32].

The wear rate of grinding media is mainly in�uenced 
by various parameters such as pH, solid percentage, 
throughout, charge weight of balls, rotation speed of mill 
and grinding time which the relationship between the 
wear rate and the e�ective parameters is a highly-non-
linear and coupled multivariable relationship and cannot 
be expressed by an explicit mathematical model. On the 
other hand, the consumption of grinding media in grind-
ing circuits forms a remarkable part of the operating costs 
and also the required experimental and analytical tasks are 
costly, time consuming and complex. Therefore, it is very 
necessary to �nd a simple, reliable, capable and accurate 
approach or model for predicting the loss rate of gird-
ing media from these operating parameters. Hence, this 
study was aimed for the prediction of wear rate of grind-
ing media using MK-SVM modeling as a state-of-the-art 
estimation approach. Also, it needs to be pointed out that 
application of this algorithm is studied for wear rate pre-
diction of grinding media in mills for �rst time.

The present paper is organized in the following fash-
ion. Section 1 expresses the literature and a theoretical 
background of research. Experimental data is presented in 
Sect. 2. Section 3 provides a detailed explanation of sup-
port vector machines (SVM) and multiple kernels learning 
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(MKL). Then, Sect. 4 describes results and discussion and in 
fact the comparison between the single kernel SVM, ANN 
and multiple linear regression methods for predicting the 
wear rate of girding media. Finally, the conclusions are 
drawn in Sect. 5.

2  Experimental data

A data set derived from 50 experiments on the wear rate 
of a low alloy steel ball was applied in this work. The 
experimental data were obtained from literature [17]. 
The experimental conditions, influential factors and the 
total wear rate for each experiment, which was deter-
mined by the grinding media weight loss, are implied 
in Table 1. To measure the grinding media mass losses 
through total wear, 15 steel balls were handpicked and 
marked and then before and after each grinding test 
were weighted to determine the ball losses. Ultimately, 
the total wear rate was calculated from following Equa-
tion [33].

where CR is the wear rate in mils penetration per year 
(mpy), W denotes weight loss in milligrams, ρ represents 
density in grams per cubic centimeter, A depicts area in 
square inches, and t exhibits time in hours [33].

3  Support vector machines (SVM)

Rapid advances in information processing systems in 
recent decades, has led to a demanding need to sys-
tems that can learn from limited information and solve 
complex decision problems. The investigation and pro-
duction of algorithms that can learn from a series of 
observed data and make predictions based on them are 
explored by a subfield of computer science known as 
machine learning. In supervised learning, given a set of 
N input vectors 

{

x
n

}N

n=1
 and the corresponding targets 

{

t
n

}N

n=1
 , we want to learn a model of the dependency of 

the targets on the inputs in order to make predictions of 
in cases which have not been observed [34].

The SVM, in its present form, was developed in 1990s 
at AT&T Bell Laboratories [35] and has been proven to be 
efficient in many practical applications for classification 
and regression analysis. The major advantage of the sup-
port vector machines compared to the neural networks 
is minimization of the structural risk besides the empiri-
cal risk which leads to a better generalization capability.

(1)CR =
534 ×W

� × A × t

A SVM-based classifier system is described by Eq. (2), 
in which w and b represent the weights and bias vector, 
respectively. The goal is to find the hyper-plane which 
results in an equivalent maximum margin between 
the samples of the two classes in the training dataset. 
Maximization of the margin between the two classes 
is performed via minimization of the risk function R(w) 
described by Eq.  (3), subjected to the constraints of 
Eq.  (4), for the N samples of the  (xi,  yi) in the training 
dataset.

The support vectors lay on a hyper-plane satisfying 
the condition of

In case of a training database with samples which are 
not linearly separable, another factor will be added to 
the risk function in Eq. (3) for the inevitable error in case 
of the samples which lay outside the permitted borders, 
resulting in the risk function expressed in Eq. (6) sub-
jected to the restrictions of Eq. (7), in which �

i
 is the dis-

tance between the support vectors’ hyper-plane and the 
samples which lay outside it, as depicted in Fig. 1. The 
variable C implies the regularization factor which trades 
off the relative significance of maximizing the margin 
and training error.

This concept can be applied for nonlinear classifi-
cation by mapping the original feature space to some 
higher-dimensional feature space where the training set 
is separable by a hyper-plane, through a nonlinear func-
tion known as the kernel function [36].

Thus, SVM-based classification is described based on 
the following equation:

(2)f (x) = sign
(

wTx + b
)

(3)R(w) =
1

2
w

T
w =

1

2
w

2

(4)yi
(

wTxi + b
)

≥ 1, i = 1,… ,N

(5)ysp
(

wTxsp + b
)

= 1

(6)R(w) =
1

2

‖
‖
‖
w

2‖‖
‖
+ C

N∑

i=1

�
i

(7)s.t. yi(w
Txi + b) ≥ 1 − �i , i = 1, ...,N

(8)f (x) = sign
(

wT�(x) + b
)
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Table 1  The conducted 
experiments conditions and 
calculated values of wear rate 
[17]

Run pH Solid 
percentage 
(%)

Throughout (g) Charge 
weight 
(kg)

Speed (rpm) Grinding 
time (min)

Wear rate (mpy)

1 8 35 720 12 70 10 462.11

2 10 45 360 12 80 10 351.45

3 10 35 360 12 70 10 425.36

4 10 45 360 12 70 15 363.53

5 9 50 540 10 75 12.5 317.66

6 9 40 540 6 75 12.5 373.8

7 9 40 540 10 75 12.5 400.65

8 10 45 360 8 70 10 292.91

9 9 30 540 10 75 12.5 491.74

10 9 40 540 10 75 12.5 383.4

11 10 35 720 8 70 10 378.3

12 8 45 360 12 80 15 515.51

13 8 45 360 12 70 10 376.58

14 9 40 540 10 65 12.5 337.95

15 10 35 720 12 70 15 447.67

16 9 40 540 10 75 12.5 417.79

17 8 35 360 8 70 15 478.46

18 8 35 720 8 80 10 480.45

19 10 45 720 12 70 10 335.18

20 8 45 720 8 80 15 469.95

21 9 40 540 10 85 12.5 451.8

22 8 45 360 8 80 10 401.55

23 9 40 540 10 75 12.5 387.04

24 10 45 720 8 70 15 342.48

25 9 40 540 10 75 12.5 391.58

26 10 45 360 8 80 15 393.94

27 8 35 360 8 80 10 488.36

28 8 45 720 8 80 10 403.43

29 9 40 540 10 75 12.5 405.45

30 9 40 900 10 75 12.5 361.8

31 9 40 540 10 75 17.5 461.06

32 8 35 360 12 70 15 531.79

33 10 45 720 8 80 10 347.4

34 8 45 720 12 70 15 458.29

35 8 35 360 8 80 15 555.53

36 10 35 720 12 80 10 442.73

37 9 40 540 10 75 7.5 340.46

38 8 45 720 8 70 10 366.3

39 10 35 360 12 80 15 475.28

40 8 35 720 8 80 15 521.7

41 8 35 360 8 70 10 463.27

42 9 40 540 14 75 12.5 451.68

43 9 40 180 10 75 12.5 436.46

44 8 35 720 8 70 15 484.98

45 10 45 720 12 80 15 385.35

46 8 45 360 8 70 15 435.97

47 10 35 360 8 80 10 433.46

48 11 40 540 10 75 12.5 333.22

49 7 40 540 10 75 12.5 499.87
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where w and b can be determined using minimizing 
the risk function R(w) in Eq.  (6) with the limitation of 
Eq. (9):

In general, the concept of this classi�cation is general-
ized for the aims of regression with representing a margin 
of tolerance [27] and ultimately, the SVM-based regression 
(SVR) can be formulated as follow:

The error of SVM-based regression is measured based 
on Vapnik’s �-insensitive loss function, as shown in Fig. 1. 
Also, it can be expressed via below equation.

The aim is to determine the magnitudes of w and b 
based on a set of available training data, so that the dif-
ference between the original function and the predicted 
function is minimized. For this purpose, in SVM-based 

(9)yi
(

wT�(xi) + b
)

≥ 1 − �i ,

(10)y = f (x) =

m
∑

i=1

wi�i(x) + bi = wT�(x) + b

(11)� = |y − f (x)|� = max {0, |y − f (x)| − �}

regression, the parameters are calculated by minimizing 
the risk function R(w) formulated as:

By presenting the dual optimization problem [37], the 
convex optimization problem in (2011) is reformulated 
according to the following relation:

Based on the Mercer’s theorem [35], the inner product 

⟨�(x),�(x
i
)⟩ can be de�ned through a kernel K(x,xi) as

Therefore, the dual optimization problem is expressed as:

(12)

min

�
R(w) =

1

2

���w
2��� + C .

N�
i=1

�i + �∗
i

�

s.t.

⎧
⎪⎨⎪⎩

yi −
�
wT�

�
xi
�
+ b

�
≤ � + �i�

wT�
�
xi
�
+ b

�
− yi ≤ � + �∗

i

�i�
∗

i
≥ 0, i = 1,… ,N

(13)max

{

L
(

�i , �
∗

i

)

= −
1

2

N
∑

i=1

N
∑

j=1

{

(

�i − �∗

i

)

(

�j − �∗

j

)

�
(

xi
)

,�
(

xj
)

}

− �

N
∑

i=1

(

�i + �∗

i

)

+

N
∑

i=1

yi
(

�i − �∗

i

)

}

s.t.

⎧
⎪⎨⎪⎩

N∑
i=1

�
i
− �

∗

i
= 0

�
i
, �∗

i
∈ [0,C], i = 0,… ,N

(14)K
(

xi , xj
)

= �
(

xi
)

,�
(

xj
)

Table 1  (continued) Run pH Solid 
percentage 
(%)

Throughout (g) Charge 
weight 
(kg)

Speed (rpm) Grinding 
time (min)

Wear rate (mpy)

50 10 35 720 8 80 15 408.26

Fig. 1  SVM-based regression and the concept of �—insensitivity
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Finally, the dual optimization problem is solved by quad-
ratic programming optimization and based on the optimal 
obtained parameters. The estimated function is expressed 
as:

The most popular relations for the kernel function are 
presented in Table 2.

3.1  Multiple kernel learning

In SVM and other kernel-based learning algorithms, the 
e�ciency of the algorithm extremely depends on the data 
representation, selected through the kernel function. The 
nonlinear similarity between samples is measured by ker-
nel function and therefore an e�cient kernel must be able 
to represent data adaptively. In addition, the kernel func-

tion’s parameters de�ne a proper regularization term for 
the learning problem. In the most states, the parameters 

of a single kernel function are tuned for the whole data 
sets. Despite proper tuning of the kernel parameter can 
increase the generalization ability, learning with one ker-
nel is not very data-adapted and does not lead to accept-
able results. Recent developments in the literature on 
SVMs and other kernel approaches show the need to con-
sider multiple kernels to improve �exibility based on the 

(15)max

{

L
(

�i , �
∗

i

)

= −
1

2

N
∑

i=1

N
∑

j=1

{

(

�i − �
∗

i

)

(

�j − �
∗

j

)

K
(

xi , xj
)

}

− �

N
∑

i=1

(

�i + �
∗

i

)

+

N
∑

i=1

yi
(

�i − �
∗

i

)

}

s.t.

⎧
⎪⎨⎪⎩

N∑
i=1

�
i
− �

∗

i
= 0

�
i
, �∗

i
∈ [0,C], i = 0,… ,N

(16)f (x) =

N
∑

i=1

(

�i − �
∗

i

)

K
(

x, xi

)

+ b

fact that typical learning problems often involve multiple, 
heterogeneous data sources [38]. Multiple kernel learning 
(MKL) aims at simultaneously learning a kernel and the 
associated predictor in a supervised learning problem. In 
multiple kernel learning framework, the kernel function 
is constructed by a linear convex combination of M func-
tions [39], each one satisfying the Mercer’s conditions, 
expressed as:

where dm is the combining weight of the m-th basis ker-
nel function, satisfying the constraints of:

The vector of weights is de�ned as d =

[

d1,… , dM

]T
.

The multiple kernel learning (MKL) problem is learn-
ing the combining weights dm and the solutions of the 
original problem, for example, the solutions of �

i
 and 

�
∗

i
 for SVR problem in Eq. (16) in a single optimization 

problem. The optimization problem of MKL-based SVR 
is obtained by substitution of Eq. (17) into Eq. (15) as:

(17)K
(

x, xi

)

=

M
∑

m=1

dmKm

(

x, xi

)

(18)

M
∑

m=1

dm = 1, dm ≥ 0

(19)max

{

L
(

�i , �
∗

i

)

= −
1

2

N
∑

i=1

N
∑

j=1

{

(

�i − �
∗

i

)

(

�j − �
∗

j

)

M
∑
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dmKm
(

xi , xj
)

}

− �

N
∑
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(

�i + �
∗

i

)

+

N
∑

i=1

yi
(

�i − �
∗

i

)

}

s.t.

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

N�
i=1

�i − �
∗

i
= 0

�i , �
∗

i
∈ [0,C], i = 0,… ,N

M�
m=1

dm = 1, dm ≥ 0,m = 1,… ,M

Table 2  The most common 
formulations of the kernel 
function

Kernel type Formulation

Linear K
�
x, x

i

�
= ⟨x, x

i
⟩

Gaussian radial basis (RBF) K
�
x, xi

�
= exp(−

‖x−xi‖2

2�2
)

Polynomial of degree d K
�
x, xi

�
= (⟨x, xi⟩ + 1)

d
d ∈ N

Multi-layer perceptron (MLP) K
�
x, xi

�
= tanh

�
k.⟨x, xi⟩ + �

�
k, � > 0

Gaussian radial basis function (RBF) K
�
x, xi

�
= exp(−

‖x−xi‖2

2�2
)
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Rakotomamonjy and co-workers [39] suggested an 
ordinary and efficient algorithm for MKL-based SVM 
and expressed that the objective function L in Eq. (19) is 
convex and differentiable and accordingly the gradient 
descent method can be utilized to solve the optimiza-
tion problem. In this approach, the optimal vector of 
weights d, is achieved by updating it on the gradient 
descent direction of L. To calculate the gradient of the 
target function, the partial derivatives of L are measured 
from below equation.

Then the descent direction D of gradients is distin-
guished and d is updated via below relation.

in which � exhibits the step length. The gradient of 
the objective function is only updated when the target 
value reduces [40]. The described process is repeated 
until some stopping criterions are met, as discussed in 
ref [39].

4  Results and discussion

4.1  Predicting the wear rate of steel balls by single 
and multiple kernel SVM regression analysis

In this study, a database of 50 experimental measurements 
for the wear rate of grinding balls in mils penetration per 
year (mpy) and the corresponding input parameters of pH, 
solid percentage (%), throughout (weight of samples input 
ball mill) (g), charge weight of balls (kg), rotation speed of 
mill (rpm) and grinding time (minutes) was employed. The 
experimental conditions and measured values of input and 
output parameters are given in Table 1.

The models were trained using 40 randomly selected data 
(accounting for 80% of the total data) and the remaining 10 
data (accounting for 20%) were applied for testing purposes.

To improve the accuracy, all the input and target values 
were normalized between − 1 and + 1 via below Equation.

in which, max and min imply the maximum and minimum 
value of the input or the output from the whole datasets, 
respectively, p depicts the input or output and pn is corre-
sponded to normalized value.

(20)
�L

�dm
= −

1

2

N
∑

i=1

N
∑

j=1

(

�i − �
∗

i

)

(

�j − �
∗

j

)

Km
(

xi , xj
)

(21)d ← d + �D

(22)pn = 2 ∗

p −
(

max+min

2

)

(max −min)

According to the normalized dataset, the single kernel 
and multiple kernel SVM models were implemented utilizing 
the SVM-KM and the SimpleMKL toolboxes [41, 42], respec-
tively. Training the models and calculating the predicted 
normalized outputs, they were scaled to their original range:

where ŷ  is the predicted output in the original range and 

yn is the normalized predicted output.
The validity of the developed models was assessed using 

the root means square error (RMSE), normalized root means 
square error (NRMSE) and the coe�cient of determination 
 (R2) statistical indices, de�ned as:

In above equations, yi and ŷi represent the observed val-
ues and the estimated outputs, respectively, N denotes the 
number of training or testing samples, 

−

Y  implies the aver-
age value of the total outputs and 

−

y is the mean value of 
the corresponding training or testing measured outputs.

In case of the single kernel (SK-SVM) method, using 
the Gaussian kernel function, the kernel and model vari-
ables were obtained by minimizing the training root mean 

(23)ŷ = yn ∗
(

max −min

2

)

+

(

max +min

2

)

(24)RMSE =

�

∑N

i=1

�

yi − ŷi
�2

N

(25)NRMSE =

RMSE

Y

(26)R2 = 1 −

∑N

i=1

�

yi − ŷi
�2

∑N

i=1

�

yi − y
�2

Table 3  The single kernel SVM parameters

SVM kernel parameter 0.2

SVM regularization factor (C) 10,000

SVM insensitivity parameter ( �) 10–5

Table 4  Comparison of the statistical indices using the MK-SVM, SK-
SVM and ANN methods

Database Method RMSE NRMSE R2

Training MK-SVM 4.64 0.0111 0.99417

SK-SVM 4.6279 0.0110 0.9942

ANN [17] 12.75 0.0304 0.9545

Testing MK-SVM 16.003 0.0382 0.933

SK-SVM 62.314 0.1486 0.0163

ANN [17] 22.74 0.0542 0.912
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square error, as listed in Table 3. The multiple kernel algo-
rithm was trained with the same value of insensitivity 
parameter ( �) and the regularization factor set to C = 100. 
It needs to be pointed out that the kernel function was 
chosen as a mixture of ten Gaussians and three polynomial 
functions with parameters of 1, 2, 3.

4.2  Performance comparison of SVM

Using the MK-SVM method described above, all neces-
sary computations were implemented by supplying extra 
codes in MATLAB software. The calculated values of the 
statistical indices for the training and testing databases 
based on these methods and the ANN-based method 
reported by Azizi and co-workers [17] are presented in 
Table 4. The results highlighted the superior performance 
of MK-SVM method for prediction of the wear rate towards 
other methods investigated. In addition, the performance 
of SVM techniques were compared with the results esti-
mated and modeled by response surface methodology 
(RSM) based on the central composite design (CCD) [43]. 
The �ndings proved that the MK-SVM model suggested 
had comparable and relatively similar results with RSM 
Model (with predicted  R2 value of 0.93). Therefore, it can 
be concluded that the multiple kernel SVM methodology 
can be successfully applied for predicting and simulating 
the wear rates of grinding media.

In addition, further investigations exhibit that the 
SVM testing normalized root means square error can be 
decreased to 16.06 by changing the kernel parameter 
to 40, but with this kernel parameter, the training root 
mean square error became 21.053. Meanwhile, the SK-
SVM model is overlearned in training process and cannot 

be trained to make the best predictions for the test data 
besides the training data. Thus, the MK-SVM method ben-
e�ts from better generalization capability as well as higher 
overall precision. The measured outputs associated with 
the outputs estimated by the MK-SVM approach are illus-
trated in Figs. 2 and 3. Ultimately, the �ndings show an 
excellent agreement between measured and predicted 
values with  R2 magnitudes of 0.99417 and 0.933 for train 
and test datasets, respectively.

5  Conclusion

In present research, the use of multiple kernel SVM regres-
sion analysis was evaluated for modeling and predicting 
the wear rate of grinding media in mineral processing 
industry based on the input factors of pH, solid percent-
age, throughout, charge weight of balls, rotation speed of 
mill and grinding time. It is found that although a single 
kernel function’s parameter cannot be tuned to provide 
a good accuracy for both the training and test data in 
kernel based approaches, using an optimal linear com-
bination of basis kernel functions as the kernel function 
in support vector regression results in a good accuracy 
for both the test and training data. For this purpose, the 
kernel function was constructed based on a linear mix-
ture of polynomial and RBF kernel functions and conse-
quently applying a simple MKL algorithm, the optimized 
combination of the kernel function and the solutions of 
the SVR problem were achieved. Prediction results dem-
onstrated a high accuracy of the multiple kernel SVM and 
also its progressive generalization capability towards the 
single kernel SVM, relevance vector machine (RVM), arti-
�cial neural network (ANN) and multiple linear regression 
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methods. In this condition, the correlation coe�cients  (R2) 
were determined to be 0.99417 and 0.933 for training and 
testing stages, respectively. Thus, it can be concluded that 
the MK-SVM technique can be e�ciently utilized for pre-
dicting and modeling the wear rates of grinding balls in 
mineral processing industry. Additionally, Application of 
SVM method to modeling the wear and corrosion rates of 
liners in grinding mills and its performance comparison 
with ANFIS model can be considered for future researches.
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